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Time-independent square patterns in surface-tension-driven
Bénard convection
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The transition between hexagonal and square patterns is investigated in laboratory experiments on
surface-tension-driven Be´nard ~Marangoni! convection in a fluid of Prandtl number 81. As the
Marangoni numberM is increased, an ideal hexagonal pattern is supplanted by a defect-free square
pattern; the transition occurs gradually with patterns of mixed hexagonal, pentagonal, and square
symmetry arising at intermediate values ofM. An elementary topological process associated with
two-dimensional patterns governs local changes in morphology; the dynamics are relaxational with
all patterns becoming stationary withM fixed for a sufficiently long time. The transition is hysteretic
and depends strongly on the pattern wave number. ©1999 American Institute of Physics.
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I. INTRODUCTION

Hexagonal flow patterns have been associated with
onset of convection ever since Be´nard’s observations of thin
fluid layers heated from below;1 until recently, however, the
transition from hexagons to other patterns was unexplo
for the surface-tension-driven regime of Be´nard’s studies.
Experiments with fluids of very high Prandtl numberP
;1000 suggest that defects increase in number with
creased heating, thereby inducing a gradual transition f
hexagons to disordered cellular arrays that can be chara
ized using techniques describing melting in two-dimensio
~2-D! systems.2 Alternatively, more recent experiments wit
P;100 demonstrate a transition from hexagons to squ
patterns as the heating is increased.3,4 In both cases, the ex
perimental results suggest that time-dependent flows a
from the instability of hexagons.

We report the observation of time-independent squ
patterns arising from secondary instability in surfac
tension-driven Be´nard ~Marangoni! convection experiments
on a fluid withP581. As the temperature gradient across
layer is increased quasistatically, hexagonal patterns lose
bility to patterns of mixed symmetry as individual hexago
undergo local changes in topology and transform first i
pentagons and, then, into squares; for sufficiently large h
ing, the system forms a nearly ideal square pattern. Fo
fixed temperature gradient, these states are time indepen
even when the pattern is a mixture of hexagons, pentag
and squares. The transition between patterns exhibits hy
esis; moreover, the transition onset depends on the pa
wave number, which, in turn, depends on the initial con
tions of the experiment.

a!Electronic mail: michael.schatz@physics.gatech.edu
2571070-6631/99/11(9)/2577/6/$15.00
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II. DESCRIPTION OF EXPERIMENT

Surface tension gradients at the interface between
cone oil and air layers drive flow patterns in our experime
~Fig. 1!. The silicone oil layer is heated from below by a
cm thick gold coated aluminum mirror at a temperatureTb ;
the air layer is cooled from above by a 0.3 cm thick sapph
window at a temperatureTt. For sufficiently smallTb2Tt ,
the oil–air interface is isothermal and the surface tens
s(T) is uniform. With Tb2Tt sufficiently large, instability
induces surface tension variations at the interface that d
flow in the bulk. The average temperature difference acr
the oil layerDT is related toTb andTt as described below
we useDT to form the dimensionless parameter, the M
rangoni numberM, which describes the strength of the su
face tension driving: M[sTDTd/rnk, where sT

[uds/dTu, andr, n, k are, respectively, the liquid density
kinematic viscosity, and thermal diffusivity~Table I!. For
heating from below, flow may also be driven by buoyancy
characterized by the Rayleigh numberR[gaDTd3/nk with
liquid expansion coefficienta and gravitational acceleratio
g. We minimize buoyancy effects by performing expe
ments in thin liquid layers where 8,M /R[sT/(ragd2)
,15 independent ofDT ~Table II!. The corresponding Ray
leigh number in the air is negligibly small.

During assembly of the convection apparatus, the d
tanced1dg ~Fig. 1! is set using indium shims that are d
formed to a predefined thickness. The mirror and the wind
are then aligned parallel within62 mm by interferometry. A
precisely defined volume of silicone oil is injected into th
apparatus to set bothd anddg . ~The dependence ofd on the
oil volume is determined by calibration.! The entire convec-
tion apparatus is then adjusted until the liquid surface
aligned parallel with the mirror and window within62 mm,
except for a small region in the vicinity of the sidewa
where there is nonuniformity due to irregular pinning of t
7 © 1999 American Institute of Physics
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2578 Phys. Fluids, Vol. 11, No. 9, September 1999 Schatz et al.
meniscus at the sidewall.Tb is imposed by a thin-film heater
during a run Tb fluctuates by 60.0003 °C about the
computer-controlled setpoint values.Tt is fixed by cooling
water at 13.31060.002 °C, which washes over the windo
and circulates around a chamber that encloses the conve
apparatus. The temperature is measured using thermi
placed in the bottom mirror and above the top window. Co
mercial silicone oils~polydimethylsiloxane! are distilled to
eliminate multiple polymer components; the resulting pu
fied oil consists of a single component, hexacosamethyldo
casiloxane, of.95% purity with Prandtl numberP581 and
other physical properties as listed in Table I.5 The sidewall is
made of Teflon bonded to an aluminum ring that surrou
the mirror.

Patterns are visualized using the shadowgraph met
The images are acquired from a standard NTSC video c
era by a computer-controlled frame grabber and by a tim
lapse VCR. The patterns are analyzed by representing
images using a Wigner–Seitz construction.6 A threshold is
applied to the images to determine the centers of the c
~the warm upflow regions!. The Wigner–Seitz constructio
is then formed by finding the midpoints of each line segm
that joins a cell center to its nearest neighbors; the perp
dicular bisectors at the midpoints intersect to form a clo
convex polygon that is associated with each cell center.
boundaries of the Wigner–Seitz polygons are seen to fa
fully match the downflow boundaries from the shadowgra
images~Fig. 2!. We use the Wigner–Seitz representation
determine the relative fractionn and the average areaA for
cells of a given symmetry. The average wavelengthl is ob-
tained fromA, assuming all cells of a given symmetry ha
edges of equal length; in this case, the average wavele
for squares isls5AAs and the average wavelength for hex
gons islh5AA3Ah/2.

TABLE I. Values at 25 °C of silicone oil and air physical properties f
surface-tension-driven Be´nard convection experiments.

Oil densityr 0.93 g cm23

Oil kinematic viscosityn 0.070 cm2 s21

Oil thermal diffusivity k 8.631024 cm2 s21

Oil thermal expansion coeff.a 1.031023 K21

Surface tension coeff.uds/dTu 0.068 dyne cm21 K21

Oil thermal conductivityk 13.03103 erg s21 cm21 K21

Air thermal conductivitykg 2.63103 erg s21 cm21 K21

FIG. 1. Cross section of our cylindrical convection apparatus.
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Using an infrared camera in separate experiments,
directly measure the horizontally averaged temperature a
interface^Ti& to obtain the temperature difference across
oil layer DT[Tb2^Ti& used in our definition ofM. We use
an infrared detector~liquid nitrogen-cooled 2563256 array
of indium antimonide photodiodes! to measure thermal ra
diation emitted from a silicone oil mixture consisting of a
proximately 90% commercial polydimethylsiloxan
(0.05 cm2 s21 viscosity! and 10% polymethylhydrosilox-
ane~0.35 cm2 s21 viscosity!. This blend of silicone oils en-
sures that the detected thermal radiation is emitted es
tially at the surface of the oil~within ;50 mm of the
interface!; i.e., the oil layer appears as a nearly ideal blac
body when the detector is narrow bandpass filtered aro
the very strong absorption peak for polymethylhydrosiloxa
at 4.61mm. The exact mixture ratio of the silicone oils
chosen to match the viscosity at 25 °C of the purified flu
used in the pattern forming experiments~Table I!. This mix-
ture is put in a specially built convection apparatus where
window ~Fig. 1! is liquid cooled using chloroform, which is
transparent to thermal emissions in the range of intere7

The imager is first calibrated using a silicone oil layer tha
sufficiently thin to remain in the conduction regime for
wide range of temperatures; oil is then added untild anddg

match that of the pattern forming experiments. Thermal i
ages are then captured and used to measure^Ti& and, there-
fore, determineDT as a function ofTb2Tt . We apply this
temperature calibration to our pattern forming experimen
where infrared imaging could not be used by assuming b

TABLE II. Parameters for the two experimental configurations explored
our surface-tension-driven Be´nard convection experiments.

Parameter Config. 1 Config. 2

Oil depthd ~cm! 7.1160.0431022 9.6560.0431022

Air depth dg ~cm! 10.3960.0431022 7.5560.0431022

Time scaletv ~s! 5.9 10.8
Aspect ratioG 32 23
Biot numberB 0.14 0.26
M /R 15 8

FIG. 2. Patterns obtained from Marangoni convection experiments are
represented using a Wigner–Seitz unit cell construction. A pattern is sh
for d50.0711 cm.~a! The pattern planform is visualized using shadowgr
phy; warm fluid wells up to the layer’s free surface in each cell’s cen
~dark region! and flows back down into the layer at the cooler edges of e
cell ~bright lines!. ~b! A Wigner–Seitz construction~black lines! is super-
imposed on the pattern in the original shadowgraph image shown in~a!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2579Phys. Fluids, Vol. 11, No. 9, September 1999 Time-independent square patterns in Bénard convection
experiments have the sameDT for a givenTb2Tt ; in Table
III, this is represented by expressingM (}DT) as a function
of M cond (}Tb2Tt), the Marangoni number based o
DTcond[(Tb2Tt)•(11B21)21 with the Biot numberB
[kgd/kdg ~see Fig. 3!. Below the onset of convection,B
describes the conductive heat transport across the oil–ai
terface andDT5DTcond. Above onset, however, the conve
tive flow in the oil enhances heat transport relative to p
conduction, soDT,DTcond. Nevertheless, bothM and
M cond are well-defined control parameters with different a
vantages for describing flow above the onset of convect
M cond ~unlike M! is independent of the flow structure8 while
M permits a comparison to previous experiments,2 where the
air layer is unbounded above andM cond is ill defined. For the
results presented here, we use the reduced Marangoni n
berse[(M2Mc)/Mc and econd[(M cond2Mc)/Mc , where
Mc is the critical value of the Marangoni number determin
from linear stability theory.8

III. EXPERIMENTAL RESULTS

An overview of the transition from hexagons an
squares is illustrated in Fig. 4. We investigate the transit
by slowly ramping e over a range sufficient to induc
changes in the pattern; for our studiesde/dt'331024,
where time is scaled bytv5d2/k ~Table II!. We typically
begin experimental runs at low values ofe, where stationary
hexagons are stable and cycle the control parameter by

TABLE III. Coefficients for determining the Marangoni numberM from
temperature calibrations using infrared imaging with measurements oTb

andTt expressed asM cond:M5C01C1M cond.

d ~cm! C0 C1

7.1160.0431022 24.34 0.6536
9.6560.0431022 40.68 0.4900

FIG. 3. A calibration curve for determining the reduced Marangoni num
e for d50.0711 cm. For each data point~solid squares!, econd is determined
from Tt andTb, assuming conductive heat transport, whilee is determined
from a direct measurement by infrared imaging of the average temper
at the liquid–gas interface. The solid line represents a linear least-squar
to the data; the dashed line corresponds toe5econd.
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sistatically and repeatedly increasing and decreasinge over
some range. Beginning with the onset of convection, a h
agonal pattern with a few nonhexagonal defects arises
persists for a range ofe @Fig. 4~a!#. As e is increased further,
some hexagons transform into pentagons and squares@Fig.
4~b!#. With e sufficiently large, the pattern exhibits most
square cells, with nonsquare cells limited to the periphery
the apparatus to accommodate the pattern within the circ
lateral boundary@Fig. 4~c!#. In this range ofe, the interior of
the pattern sometimes consists of a single domain of squa
as shown in Fig. 4~c!, or may contain multiple~typically two
or three! domains with differing orientation of the squar
pattern; the selection between square patterns of either s
or multiple domains depends on the initial conditions of t
experiment. Ase is then decreased, the square pattern lo
stability; patterns of mixed symmetry like in Fig. 4~b! reap-
pear; a planform dominated by hexagonal cells reappe
with e sufficiently small@Fig. 4~d!#.

Further insight into the transition can be obtained
describing the change to a localized region of the pattern
terms of elementary topological processes by which tw
dimensional patterns may be modified. For each convec
cell in a hexagonal pattern, downflow boundaries form
six edges of each cell and three edges intersect to for
vertex @Fig. 5~a!#. The topology of hexagonal networks ca
be modified when an edge shrinks to zero length and the
vertices that terminate the edge approach one another
coalesce to form the intersection of four edges.@Compare,
for example, the left edge of cell number 4 in Figs. 5~a!–
5~d!.# In many hexagonal networks, the four edges w
‘‘swap neighbors’’ as the intersection of the four edges sp
up into two new vertices that are separated by a new ed

r

re
fit

FIG. 4. Shadowgraph images illustrate the secondary instability leadin
square patterns in Marangoni convection withd50.0711 cm. The convec-
tive pattern changes with increasinge from hexagons ate51.61~a!, through
a mixed state ate53.90 ~b!, to a square pattern ate57.22 ~c!. As e is then
decreased, hexagons reappear in the pattern bye53.50 ~d!; note, however,
that the reappearing hexagons are larger than in~a! ~see the text!. For fixed
e, all the patterns are time independent.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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this topological transformation is known as a ‘‘T1 process9

However, for hexagonal patterns with increasinge in Ma-
rangoni convection, this T1 process is arrested; as the v
ces coalesce, the angles between adjacent edges ch
from 120° to 90° and the intersection of four edges becom
stable. Each such arrested T1 process causes two cells to
an edge; thus, this process initially leads to the formation
pentagons@e.g., cells 1 and 4 in Fig. 5~d!#; with increasinge,
further arrested T1 processes lead to the formation of squ
@Figs. 5~e!–5~g!#. The occurrence of this process in a giv
cell tends to induce it in neighboring cells; thus, the form
tion of vertices with four-fold coordination occurs in chain
@e.g., the left and right edges of cells 4 and 7 in Figs. 5~c!–
5~f!#. Moreover, distorted cells near the boundary tend
induce this process; thus, pentagons and squares frequ
first appear near the lateral boundaries of the pattern. By
process, square cells become predominant as most ver
become fourfold@Fig. 5~h!# with e sufficiently large. Ase is
decreased, the time-reversed version of this arrested T1
cess occurs as fourfold vertices split into two threefold v
tices with the appearance of a new edge; this, in turn, lead
the formation of pentagons from squares and, then, hexa
from pentagons. The hexagonal planform returns fore suffi-
ciently small.

All patterns are time independent for fixed conditions
the range ofe we explored~Fig. 6!. Qualitatively, the time
evolution of pattern topology behaves in a relaxatio
‘‘stick-slip’’ or ‘‘avalanche’’ fashion as e is slowly
ramped—time periods of no pattern activity are intersper
with periods when one or several arrested T1 processes o
in bursts lasting several tens oftv . If the ramping ofe is
halted at any stage in the transition between the two id
planforms@Figs. 4~a! and 4~c!#, then the pattern may underg
significant changes within'200tv after the ramping ofe
ceases; thereafter, the patterns typically remain static
terms of the horizontal diffusion timeth[G2tv51.7 h, we
have observed steady square patterns for fixede for as long
as 54th ~almost four days! and steady mixed patterns for a
long as 15th ~26 h!; in both cases, the observation perio
were limited only becausee was changed to new paramet
values ~Fig. 6!. The observation of stationary patterns d

FIG. 5. The transition from hexagons to squares for a localized region o
pattern with increasinge is shown by a sequence of shadowgraph imag
Initially, the pattern is a nearly perfect hexagonal lattice ate51.61 ~a! @the
lower right corner in Fig. 4~a!#. Cell edges then disappear via an element
topological process~a modified T1 process; see the text! ase is increased;
~b! e52.68, ~c! e52.98, ~d! e53.30, ~e! e53.89, ~f! e54.15, ~g! e54.28.
Eventually, all cells~locally! become squares~h! e54.56.
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pends crucially on the lateral sidewall boundary conditio
in experiments where a nonuniformity in temperature or p
ning is known to exist, we observe that cells at the late
sidewall may move parallel to the boundary and induce m
tion throughout the entire pattern. Even in well-controll
experiments, small changes in the patterns under fixed c
ditions can often be attributed to motion of the cells at t
lateral boundary@e.g., the slight shifting of cells on the lef
side of Fig. 6~a!#.

The transition between hexagons and squares dep
strongly on the initial conditions and the previous history
the pattern. We first consider the case wheree is increased up
to a value where square cells are just beginning to domin
i.e., the relative number fraction of square cellsns has just
exceeded1

2 @Figs. 4~b! and 7#. The transition appears to b
subcritical since the number fraction exhibits hysteresis

e
.

FIG. 6. The very weak time dependence of the patterns is illustrated
superimposed images of the convective flow withd50.0965 cm.~a! Two
images of stationary square patterns separated by 54th ~almost four days!
are shown fore56.0. The downflow boundaries of the initial pattern and t
final pattern are shown in white and black, respectively.~b! Two images of
stationary patterns of mixed symmetry separated by 15th ~26 h! are shown
for e54.5.

FIG. 7. The relative fraction of squaresns ~a! and wavelengthl of squares
and hexagons~b! as a function ofe for transition between small hexagon
and squares ford50.0711 cm@Figs. 4~a! and 4~b!#. Closed symbols corre-
spond to increasinge quasistatically while open symbols correspond to d
creasinge quasistatically; symbol shape indicates cell symmetry.~a! With
two complete cycles of increasing and decreasinge, ns exhibits a repeatable
hysteresis loop.~b! The average wavelengths of both hexagons (lh) and
squares (ls) are nearly identical, are reproducible for each cycle, and
crease with increasinge. The wavelengths are nondimensionalized byd; for
comparison,l53.14 at the onset of hexagonal convection.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2581Phys. Fluids, Vol. 11, No. 9, September 1999 Time-independent square patterns in Bénard convection
substantial number of squares occurs at lower values ofe for
decreasinge as compared to increasinge @Fig. 4~a!#. Defin-
ing the transition to occur ates corresponding tons50.5 for
the pattern, we havees'3.8. The wavelengthsl for both
hexagons and squares are nearly equal and increase wi
creasinge @Fig. 4~b!#. In this range ofe it is noteworthy that
the wavelength’s dependence one is ‘‘reversible;’’ the wave-
length for both squares and hexagons takes on a unique v
ase is cycled and displays little evidence of hysteresis tha
present forns .

Both ns andl exhibit different behavior if the range ofe
is increased so that the experiment obtains a nearly pe
pattern of squares@Figs. 4~c! and 8#. In this regime, experi-
ments begin also with a pattern of hexagons like in Fig. 4~a!;
however, instead of decreasinge afterns just exceeds 0.5, a
in Fig. 7, e is further increased untilns approaches unity
@ramp 1 in Fig. 8~a!#. The wavelength for square patterns
observed to increase significantly@Fig. 8~b!# in this process;
the increase in square size is readily visible by compar
Figs. 4~b! and 4~c!. If e is then decreased@ramp 2 in Fig.
8~a!#, ns exhibits seemingly little hysteresis as squares l
stability to hexagons; however, the square wavelength m
tains its increased value@Fig. 8~b!# and induces hexagon
with a substantially increased wavelength@Fig. 8~c!#, as can
be seen by comparing Figs. 4~a! and 4~d!. Thereafter, re-

FIG. 8. Relative fraction of squaresns ~a! and wavelengthl of squares~b!
and hexagons~c! as a function ofe for transition between large hexagon
and squares ford50.0711 cm.~a! The beginning with a mixed pattern o
small cells@Fig. 4~b!#; e is increased until large squares arise@Fig. 4~c!#
~closed squares, up arrow 1!. These square patterns lose stability to lar
hexagons~open squares, down arrow 2! with decreasinge. Subsequent in-
creases ine ~closed diamonds, up arrow 3! and decreases ine ~open dia-
monds, down arrow 4! lead to transitions between large hexagons a
squares for the range ofe shown.~b! Wavelength for squares in the range
e corresponding to the ramps ine in ~a!. ~c! Wavelength for hexagons in the
range ofe corresponding to the ramps ine described in~a!.
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peated cycling ofe ~ramps 3 and 4 in Fig. 8! causes the
pattern to range between large squares and large hexa
@Figs. 4~c! and 4~d!# with approximately the same wave
length; the transition once again exhibits hysteresis inns,
with an onset that has increased toes'5. The pattern may be
returned to a transition like that observed in Fig. 7 by d
creasinge to sufficiently small values such that a pattern
small hexagons returns.

IV. COMPARISON WITH PREVIOUS WORK

Our results support several findings of the experime
of Eckert ~née Nitschke! and Thess3 ~ET!, the numerical
simulations of Bestehorn10 ~B!, and the combined experi
ments and simulations of Eckert, Bestehorn and The4

~EBT!. ET, B, and EBT find that hexagonal patterns lo
stability to square patterns fore sufficiently large. Both ET
and EBT observed the transition to squares to appear gr
ally over a range ofe and describe the transition betwee
hexagons and squares as being ‘‘mediated’’ by pentag
ET and EBT also observe hysteresis in the relative num
fraction of square cells ase is cycled over the transition
range. The simulations of B suggest that the observation
squares requiresP to be not too large; this may explain wh
our observations atP581 and those of ET and EBT atP
5100 differ from observations of a disordering transition
experiments atP'1000.2

The time independence of the patterns we observe
fers from the experimental observations of EBT, but
agreement with the simulations of EBT. After hexagons lo
stability, the experiments of EBT atP5100 andG532 ex-
hibit patterns that continually evolve over slow time sca
;th ; this evolution occurs even for patterns withns50.55,
the largest relative fraction of squares observed in their
periments. The simulations of EBT atG511.5, however,
suggest that both square and mixed patterns are time i
pendent forP.40. EBT suggest that largerG in the experi-
ments yields mean flow effects that are sufficiently strong
drive time-dependent flow; however, our experimental
sults at comparableG suggest that the mean flow effects a
not sufficiently strong to induce time dependence. Buoy
effects are stronger in the experiments of EBT and may
count for the differences in observations; thickerd in EBT
yield M /R'3, smaller than in our experiments~Table II!,
while the simulations of EBT neglect buoyancy. Finally, o
observations of time dependence induced by the motion
cells near the lateral boundary suggest that nonuniformit
the lateral boundary could drive cell motion in the expe
ments of EBT, which, in turn, may induce time dependen
throughout the entire pattern. Future simulations at la
M /R and largeG should shed some light on this issue.

The results of ET and EBT suggest a well-defined me
e andl for the appearance of square patterns while our
sults show that the transition is strongly dependent on
history of the pattern. The experimental results of EBT a
consistent with a transition like that shown in Fig. 7, whe
the pattern ranges between a nearly perfect hexagonal a
at low e and a mixed symmetry planform with squares in t
bare majority (ns slightly larger than 0.5! at high e. In this
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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regime, both our experiments and EBT experiments sh
that l of both hexagonal and square cells increase with
creasinge; moreover,l~e! exhibits virtually no hysteresis
However, for transitions wherens approaches unity, we ob
serve bothl and ns can exhibit hysteresis and the onset
squares atns50.5 is shifted to larger values ofe. The simu-
lations of EBT do not address the effect ofl on the transition
between hexagons and squares~l is fixed by the periodic
boundary conditions of the simulation!. However, the simu-
lations of EBT find that the transition is dependent
Prandtl numberP; they estimate that the transition occurs
econd50.28P0.68; for P581 of our experiments, the simula
tions predict transition atecond55.6, which lies in the range
of 4.5,econd,6.4 observed in our experiments. It should
noted that the simulations of EBT are conducted withB
50.6, larger than for our experimentsB50.14 or 0.26;
moreover, ford/dg'1 of our experiments, it is known tha
the heat transfer across the oil–air interface at the onse
convection is more sensitive tol than for thed/dg'0.3 of
both experiments and simulations of EBT.8

V. CONCLUSIONS

The secondary instability leading to stationary defe
free square patterns in Marangoni convection differs qua
tively from the appearance of squares in other convec
flows, where square patterns arise at the primary instab
of the uniform state. For example, in buoyancy-driv
~Raleigh–Be´nard! convection in a binary fluid,11,12 square
patterns arise at onset and lose stability to rolls~stripes! as
DT is increased. Squares also arise at the primary instab
in pure fluid Raleigh–Be´nard convection that either has
strongly temperature-dependent viscosity13 or is sandwiched
between top and bottom boundaries of poor therm
conductivity;14 in the former case, hexagons can also oc
at the onset of convection, but are observed to lose stab
to either stripes15,16or to disordered polygons13 that are simi-
lar in appearance to patterns arising from instability of he
gons in Marangoni convection at highP.2

Pattern competition between hexagons and square
Marangoni convection poses interesting theoretical ch
lenges similar to those that arise in pattern selection i
ferrofluid layer. In the latter case, experiments show tha
steady hexagonal planform may lose stability either to stri
or square patterns.17,18 Symmetry-breaking bifurcation
theory applied to ferrofluid instability captures some featu
of the pattern selection,18 but is inherently unable to describ
the transition between hexagons and squares in ferrofluid
in Marangoni convection because no two-dimensional lat
can be constructed that contains the symmetries of both
terns as subgroups.18 An additional difficulty arises when the
stable wave number for the patterns may vary over a rang
values~Figs. 7 and 8!.18 Model equations can be formulate
where hexagons and squares may compete;19 however, in
this case, no direct connections can be made between
coefficients for the model equations and the conditions of
experiments.
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An open experimental issue is the nature of instability
square patterns forM sufficiently large. Our preliminary ob-
servations indicate that squares are transformed into di
dered polygonal patterns at the onset of time dependence
cell size continually increases with increasingM. We plan to
explore these phenomena in detail in future experiments
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