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The transition between hexagonal and square patterns is investigated in laboratory experiments on
surface-tension-driven ‘Bard (Marangonj convection in a fluid of Prandtl number 81. As the
Marangoni numbeM is increased, an ideal hexagonal pattern is supplanted by a defect-free square
pattern; the transition occurs gradually with patterns of mixed hexagonal, pentagonal, and square
symmetry arising at intermediate valuesMf An elementary topological process associated with
two-dimensional patterns governs local changes in morphology; the dynamics are relaxational with
all patterns becoming stationary withfixed for a sufficiently long time. The transition is hysteretic

and depends strongly on the pattern wave number.1999 American Institute of Physics.
[S1070-663(199)00209-3

I. INTRODUCTION II. DESCRIPTION OF EXPERIMENT

Hexagonal flow patterns have been associated with the Surface tension gradients at the interface between sili-
onset of convection ever since ®ad’s observations of thin cone oil and air layers drive flow patterns in our experiments
fluid layers heated from belodyntil recently, however, the (Fig. 1). The silicone oil layer is heated from below by a 1
transition from hexagons to other patterns was unexplore@M thick gold coated aluminum mirror at a temperatlige
for the surface-tension-driven regime of iged’s studies. the air layer is cooled from above by a 0.3 cm thick sapphire

Experiments with fluids of very high Prandtl number ~ Window at a temperatur&;. For sufficiently smalll,—Tt,
~1000 suggest that defects increase in number with inthe oil-air interface is isothermal and the surface tension

creased heating, thereby inducing a gradual transition fronﬁr(T) Is uniform. W'th Tb_TF s.uﬁ|C|entIy Iqrge, instability .
Induces surface tension variations at the interface that drive

hexagons to disordered cellular arrays that can be charact fow in the bulk. The average temperature difference across
ized using techniques describing melting in two-dimensiona he oil layerAT is related toT, andT, as described below:

(2-D) system¢g. Alternatively, more recent experiments with we useAT to form the dimensionless parameter, the Ma-

P~100 demonstrate a transition from hexagons to Squargngoni numbeM, which describes the strength of the sur-
patterns as the heating is increasédn both cases, the ex- face  tension driving: M=oATd/pvk, where o7

perimental results suggest that time-dependent flows arisg|dg/d-|-1 andp, v, k are, respectively, the liquid density,
from the instability of hexagons. kinematic viscosity, and thermal diffusivitgTable ). For
We report the observation of time-independent squaréeating from below, flow may also be driven by buoyancy as
patterns arising from secondary instability in surface-characterized by the Rayleigh numtRegaATd®/ v« with
tension-driven Beard (Marangonj convection experiments liquid expansion coefficient and gravitational acceleration
on a fluid withP=81. As the temperature gradient across theg. We minimize buoyancy effects by performing experi-
layer is increased quasistatically, hexagonal patterns lose stesents in thin liquid layers where 8M/R=o+/(pagd?)
bility to patterns of mixed symmetry as individual hexagons<15 independent oAT (Table Il). The corresponding Ray-
undergo local changes in topology and transform first intdeigh number in the air is negligibly small.
pentagons and, then, into squares; for sufficiently large heat- During assembly of the 'con'vegtion apparatus, the dis-
ing, the system forms a nearly ideal square pattern. For fnced+dg (Fig. 1) is set using indium shims that are de-
fixed temperature gradient, these states are time independefffmed to a predefined thickness. The mirror and the window
even when the pattern is a mixture of hexagons, pentagongl,re t_hen a"gf_‘ed parallel W'th'ﬁ..z pm b)_/ |_nte_rf_eromet_ry. A
and squares. The transition between patterns exhibits hyste!?—reclsmy defined volume of silicone oil is injected into the

i moreover. the transition onset depends on th it ﬁpparatus to set bothandd, . (The dependence afon the
€s1S, moreover, the transiion onset depends on e patietliy '\, 1ume is determined by calibrationThe entire convec-
wave number, which, in turn, depends on the initial condi-

) . tion apparatus is then adjusted until the liquid surface is
tions of the experiment. aligned parallel with the mirror and window within2 um,
except for a small region in the vicinity of the sidewall,
dElectronic mail: michael.schatz@physics.gatech.edu where there is nonuniformity due to irregular pinning of the
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TABLE Il. Parameters for the two experimental configurations explored in
our surface-tension-driven Bard convection experiments.

Parameter Config. 1 Config. 2
Oil depthd (cm) 7.11+0.04x 102 9.65+0.04x1072
Sidewall? Air depthdg (cm) 10.39+0.04x10°2 7.55+0.04x10 2
] Time scaler, () 5.9 10.8
Aspect ratiol’ 32 23
Biot numberB 0.14 0.26
M/R 15 8

FIG. 1. Cross section of our cylindrical convection apparatus.

Using an infrared camera in separate experiments, we
directly measure the horizontally averaged temperature at the
meniscus at the sidewall,, is imposed by a thin-film heater; interface(T;) to obtain the temperature difference across the
during a run Ty, fluctuates by =0.0003°C about the oil layer AT=T,—(T;) used in our definition oM. We use
computer-controlled setpoint valueg, is fixed by cooling an infrared detectoliquid nitrogen-cooled 258256 array
water at 13.31€:0.002 °C, which washes over the window of indium antimonide photodiodgso measure thermal ra-
and circulates around a chamber that encloses the convectidiation emitted from a silicone oil mixture consisting of ap-
apparatus. The temperature is measured using thermistopgoximately 90% commercial polydimethylsiloxane
placed in the bottom mirror and above the top window. Com+0.05 cnfs ! viscosity and 10% polymethylhydrosilox-
mercial silicone oils(polydimethylsiloxang are distilled to  ane(0.35 cnfs ! viscosity. This blend of silicone oils en-
eliminate multiple polymer components; the resulting puri-sures that the detected thermal radiation is emitted essen-
fied oil consists of a single component, hexacosamethyldodetially at the surface of the oilwithin ~50 um of the
casiloxane, o£>95% purity with Prandtl numbeP=81 and interface; i.e., the oil layer appears as a nearly ideal black-
other physical properties as listed in TabfeThe sidewall is body when the detector is narrow bandpass filtered around
made of Teflon bonded to an aluminum ring that surroundshe very strong absorption peak for polymethylhydrosiloxane
the mirror. at 4.61 um. The exact mixture ratio of the silicone oils is
Patterns are visualized using the shadowgraph metho@¢hosen to match the viscosity at 25 °C of the purified fluids
The images are acquired from a standard NTSC video camised in the pattern forming experimeiif&able ). This mix-
era by a computer-controlled frame grabber and by a timeture is put in a specially built convection apparatus where the
lapse VCR. The patterns are analyzed by representing thgindow (Fig. 1) is liquid cooled using chloroform, which is
images using a Wigner—Seitz constructfoA. threshold is  transparent to thermal emissions in the range of intérest.
applied to the images to determine the centers of the cell$he imager is first calibrated using a silicone oil layer that is
(the warm upflow regions The Wigner—Seitz construction sufficiently thin to remain in the conduction regime for a
is then formed by finding the midpoints of each line segmentvide range of temperatures; oil is then added whtindd,
that joins a cell center to its nearest neighbors; the perpematch that of the pattern forming experiments. Thermal im-
dicular bisectors at the midpoints intersect to form a closedges are then captured and used to measijpeand, there-
convex polygon that is associated with each cell center. Théore, determineAT as a function ofT,—T,. We apply this
boundaries of the Wigner—Seitz polygons are seen to faithtemperature calibration to our pattern forming experiments,
fully match the downflow boundaries from the shadowgraphwhere infrared imaging could not be used by assuming both
images(Fig. 2. We use the Wigner—Seitz representation to
determine the relative fraction and the average argafor
cells of a given symmetry. The average wavelengil ob-
tained fromA, assuming all cells of a given symmetry have
edges of equal length; in this case, the average wavelengtt
for squares i% = A, and the average wavelength for hexa-

gons iskp=+/y3A,/2.

TABLE |. Values at 25 °C of silicone oil and air physical properties for
surface-tension-driven ‘Bard convection experiments.

Qil density p 0.93gcm?

Oil kinematic viscosityy 0.070 cnis™* FIG. 2. Patterns obtained from Marangoni convection experiments are well
Oil thermal diffusivity « 8.6x10°* cnPs™! represented using a Wigner—Seitz unit cell construction. A pattern is shown
Oil thermal expansion coeftr 1.0x10°3 K* for d=0.0711 cm(a) The pattern planform is visualized using shadowgra-
Surface tension coeffda/dT]| 0.068 dyne cm'K™* phy; warm fluid wells up to the layer’s free surface in each cell's center
Oil thermal conductivityk 13.0x10° ergstcm 1K™t (dark region and flows back down into the layer at the cooler edges of each
Air thermal conductivityk, 2.6x10° ergstcm K ! cell (bright lineg. (b) A Wigner—Seitz constructiofblack lines is super-

imposed on the pattern in the original shadowgraph image shoua.in
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TABLE Ill. Coefficients for determining the Marangoni numbgr from
temperature calibrations using infrared imaging with measurements, of
andT, expressed aM ;opg:M =Cy+ C1Mong-

d (cm) Co Cy
7.11+0.04x 1072 24.34 0.6536
9.65+0.04x 1072 40.68 0.4900

experiments have the samd for a givenT,—T;; in Table
1, this is represented by expressiMy(<AT) as a function
of M¢ong (¢Tp,—T,), the Marangoni number based on

(c) ATEHII S0
PR
o"o'::oto’o’o.’o SN

ATeon=(To~T)-(1+B~ )L with the Biot numberB f‘r:o, :,:,0’0:0:0:«:;‘

=kgyd/kd, (see Fig. 3 Below the onset of convectior %%*%’0 :Q:Q:Q‘Q'J
describes the conductive heat transport across the oil—air in- & :.:.:i’:...',
terface and\T=AT.q. AbOve onset, however, the convec- SASSE 00‘000‘-

i i i : RCS0030505050555

tive flow in the oil enhances heat transport relative to pure ~.Q,’Q’0‘Q’Q ‘Q..Oo,i

9.
. &
conduction, SOAT<AT., Nevertheless, botiVl and ’JQQ:."%Q."'
. . . L
M ¢ong are well-defined control parameters with different ad-
vantages for describing flow above the onset of convectionsiG. 4. Shadowgraph images illustrate the secondary instability leading to
M ¢ong (unlike M) is independent of the flow struct@revhile square patterns in Marangoni convection wati 0.0711 cm. The convec-

; ; ; ; @ﬂl‘d’) tive pattern changes with increasiadrom hexagons a¢=1.61(a), through
M permits a comparison to previous experim ere the a mixed state a¢=3.90(b), to a square pattern a=7.22(c). As € is then

air layer is unbounded above aitl,ongis ill defined. For th_e decreased, hexagons reappear in the pattere=8/50 (d); note, however,
results presented here, we use the reduced Marangoni numnat the reappearing hexagons are larger tha@)isee the text For fixed

berse=(M—M_.)/M. and e;on=(Mcong— M)/ M., wWhere & all the patterns are time independent.
M. is the critical value of the Marangoni number determined
from linear stability theory.

sistatically and repeatedly increasing and decreasinger
IIl. EXPERIMENTAL RESULTS some range. Beginning with the onset of convection, a hex-
agonal pattern with a few nonhexagonal defects arises and
ersists for a range af[Fig. 4a)]. As €is increased further,
ome hexagons transform into pentagons and squ&igs
4(b)]. With e sufficiently large, the pattern exhibits mostly
square cells, with nonsquare cells limited to the periphery of

. . _ 2 .
whe_re time s scaled by, =d"« (Table I). We typ!cally the apparatus to accommodate the pattern within the circular
begin experimental runs at low valuesgfwhere stationary lateral boundaryFig. 4(c)]. In this range of, the interior of

hexagons are stable and cycle the control parameter by AUe pattern sometimes consists of a single domain of squares,

as shown in Fig. &), or may contain multiplétypically two
10 . . or threg domains with differing orientation of the square
L pattern; the selection between square patterns of either single
€ e or multiple domains depends on the initial conditions of the
. experiment. Ase is then decreased, the square pattern loses
gl e i stability; patterns of mixed symmetry like in Fig(b} reap-
e pear; a planform dominated by hexagonal cells reappears
. with e sufficiently small[Fig. 4(d)].
7 Further insight into the transition can be obtained by
4k P | describing the change to a localized region of the pattern in
. terms of elementary topological processes by which two-
L dimensional patterns may be modified. For each convection
e cell in a hexagonal pattern, downflow boundaries form the
0z l , six edges of each cell and three edges intersect to form a
12 vertex[Fig. 5@)]. The topology of hexagonal networks can
S be modified when an edge shrinks to zero length and the two
cond . .
vertices that terminate the edge approach one another and
FIG. 3. A calibration curve for determining the reduced Marangoni numbercoalesce to form the intersection of four edggSompare,
e for d=0.0711 cm. For each data poisolid squares econqis determined  for example, the left edge of cell number 4 in Fig$a)s

from T, andT,, assuming conductive heat transport, whiles determined 5(d) ] In manv hexaaonal networks. the four edaes will
from a direct measurement by infrared imaging of the average temperaturg™ ™" y 9 ! 9

at the liquid—gas interface. The solid line represents a linear least-squares fieWap neighbors” as_the intersection of the four edges splits
to the data; the dashed line corresponds+0esyng up into two new vertices that are separated by a new edge;

An overview of the transition from hexagons and
squares is illustrated in Fig. 4. We investigate the transitior£
by slowly ramping e over a range sufficient to induce
changes in the pattern; for our studida/dt~3x10 4,
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(P s
SIS AAIOAXO
b".’& &ﬁm ‘."4“‘ FIG. 6. The very weak time dependence of the atterns is illustrated by

FIG. 5. The transition from hexagons to squares for a localized region of theuperimposed images of the convective flow wdtk0.0965 cm.(a) Two
pattern with increasing is shown by a sequence of shadowgraph images.images of stationary square patterns separated by @most four days
Initially, the pattern is a nearly perfect hexagonal lattice=all.61 (a) [the are shown foe=6.0. The downflow boundaries of the initial pattern and the
lower right corner in Fig. &)]. Cell edges then disappear via an elementary final pattern are shown in white and black, respectivédy Two images of
topological processa modified T1 process; see the feats e is increased;  stationary patterns of mixed symmetry separated by, 186 h) are shown
(b) €=2.68, (c) €=2.98,(d) €=3.30, (e) €=3.89, (f) e=4.15,(g) e=4.28. for e=4.5.

Eventually, all cells(locally) become squareth) e=4.56.

3
5
£

pends crucially on the lateral sidewall boundary conditions;
this topological transformation is known as a “T1 proceSs.” in experiments where a nonuniformity in temperature or pin-
However, for hexagonal patterns with increasiagn Ma-  ning is known to exist, we observe that cells at the lateral
rangoni convection, this T1 process is arrested; as the vertidewall may move parallel to the boundary and induce mo-
ces coalesce, the angles between adjacent edges changes throughout the entire pattern. Even in well-controlled
from 120° to 90° and the intersection of four edges becomeexperiments, small changes in the patterns under fixed con-
stable. Each such arrested T1 process causes two cells to lodions can often be attributed to motion of the cells at the
an edge; thus, this process initially leads to the formation ofateral boundarye.g., the slight shifting of cells on the left
pentagons$e.g., cells 1 and 4 in Fig.(8)]; with increasinge,  side of Fig. &a)].
further arrested T1 processes lead to the formation of squares The transition between hexagons and squares depends
[Figs. 5e)-5(g)]. The occurrence of this process in a givenstrongly on the initial conditions and the previous history of
cell tends to induce it in neighboring cells; thus, the forma-the pattern. We first consider the case wheisincreased up
tion of vertices with four-fold coordination occurs in chains to a value where square cells are just beginning to dominate,
[e.g., the left and right edges of cells 4 and 7 in Figs)5  i.e., the relative number fraction of square cellshas just
5(f)]. Moreover, distorted cells near the boundary tend toexceeded; [Figs. 4b) and 7. The transition appears to be
induce this process; thus, pentagons and squares frequengybcritical since the number fraction exhibits hysteresis; a
first appear near the lateral boundaries of the pattern. By this
process, square cells become predominant as most vertices

become fourfold Fig. 5(h)] with € sufficiently large. Ase is 0.75 (a)
decreased, the time-reversed version of this arrested T1 pro- A W
cess occurs as fourfold vertices split into two threefold ver- S 0.0} o ng i
tices with the appearance of a new edge; this, in turn, leads to o
the formation of pentagons from squares and, then, hexagons 0.25¢ lDU:' ol |
from pentagons. The hexagonal planform returnsefeuffi- 0.00 2 ﬂn £
ciently small.

All patterns are time independent for fixed conditions in
the range ofe we explored(Fig. 6). Qualitatively, the time >\ >\ 3.3 (b)
evolution of pattern topology behaves in a relaxational 59/ 'h - Y
“stick-slip” or *“avalanche” fashion as e is slowly T W
ramped—time periods of no pattern activity are interspersed 3T ‘ﬁ%. )
with periods when one or several arrested T1 processes occur
in bursts lasting several tens ef. If the ramping ofe is 2.9
halted at any stage in the transition between the two ideal 1 9 3 4 6 5

planformg[Figs. 4a) and 4c)], then the pattern may undergo
significant changes within=200r, after the ramping ofe FIG. 7. The relative fraction of squares (a) and wavelengtfa of squares

. . . . nd hexagongb) as a function ofe for transition between small hexagons
ceases; thereafter, the patterns typically remain static. Iﬁnd squares fai—0.0711 cmiFigs. 4a) and 4b)]. Closed symbols corre-

. e . S
terms of the horizontal diffusion time,=I"“7,=1.7 h, We  gpond to increasing quasistatically while open symbols correspond to de-
have observed steady square patterns for fixémt as long  creasinge quasistatically; symbol shape indicates cell symmeay With

as 54, (almost four daysand steady mixed patterns for as two complete cycles of increasing and decreasing, exhibits a repeatable

long as 15, (26 h); in both cases, the observation periodshystere5|s loop(b) The average wavelengths Qf both hexagokg) (and _
squares X) are nearly identical, are reproducible for each cycle, and in-

were "mi_ted only because was Changed_ 10 new parameter ¢rease with increasing The wavelengths are nondimensionalizectbfor
values (Fig. 6). The observation of stationary patterns de-comparisonz=3.14 at the onset of hexagonal convection.
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peated cycling ofe (ramps 3 and 4 in Fig.)8causes the
pattern to range between large squares and large hexagons
[Figs. 4c) and 4d)] with approximately the same wave-
length; the transition once again exhibits hysteresisidn

with an onset that has increasecdete=5. The pattern may be
returned to a transition like that observed in Fig. 7 by de-
creasinge to sufficiently small values such that a pattern of
small hexagons returns.

4.0 (b)
IV. COMPARISON WITH PREVIOUS WORK

Our results support several findings of the experiments
of Eckert (nee Nitschké and Thes$ (ET), the numerical
simulations of Bestehotfi (B), and the combined experi-
ments and simulations of Eckert, Bestehorn and Thess
40 ey (EBT). ET, B, and EBT find that hexagonal patterns lose
o stability to square patterns farsufficiently large. Both ET

&W0 and EBT observed the transmon. to squares tglappear gradu-
3.51-¢® - ally over a range ofe and describe the transition between
- hexagons and squares as being “mediated” by pentagons.
= ET and EBT also observe hysteresis in the relative number

30 , , , fraction of square cells as is cycled over the transition

3 5 7 € range. The simulations of B suggest that the observation of
FIG. 8. Relative fraction of squareg (a) and wavelength of squaregb) squares requ,lree to be not too large; this may explain why
and hexagongc) as a function ofe for transition between large hexagons OUr observations aP =81 and those of ET and EBT &
and squares fod=0.0711 cm.(a) The beginning with a mixed pattern of =100 differ from observations of a disordering transition in
sn|1all gells[Fig. 4b)]; eis inIlcheased until Iarg:;e squ?res zatr[ie:lg_]t. 4t(c)% experiments aP~ 10002
exagondopen Sauares, down arton @i decreasing. Subsequentin- _The time independence of the patterns we observe dif-
creases ire (closed diamonds, up arrow &nd decreases ia (open dia- €S from the experimental observations of EBT, but in
monds, down arrow Mlead to transitions between large hexagons andagreement with the simulations of EBT. After hexagons lose
squares for the range efshown_.(_b) Wavelength for squares in the range of stability, the experiments of EBT &=100 andl’'=32 ex-
fa%%r;esfeogg:ei;%;Z?nr;":;pj]:?aﬁ)bs(c;]\é\i‘éﬂsggtﬁg hexagonsinthe s patterns that continually evolve over slow time scales

~ 7, this evolution occurs even for patterns wiig=0.55,

the largest relative fraction of squares observed in their ex-
periments. The simulations of EBT at=11.5, however,
suggest that both square and mixed patterns are time inde-
ing the transition to occur a; corresponding tmg=0.5 for ~ pendent forP>40. EBT suggest that largét in the experi-
the pattern, we haves~3.8. The wavelengtha for both  ments yields mean flow effects that are sufficiently strong to
hexagons and squares are nearly equal and increase with idrve time-dependent flow; however, our experimental re-
creasinge [Fig. 4b)]. In this range ofe it is noteworthy that  sults at comparablE suggest that the mean flow effects are
the wavelength’s dependence ois “reversible;” the wave-  not sufficiently strong to induce time dependence. Buoyant
length for both squares and hexagons takes on a unique valeéfects are stronger in the experiments of EBT and may ac-
aseis cycled and displays little evidence of hysteresis that iscount for the differences in observations; thickem EBT
present fom,. yield M/R~3, smaller than in our experimen(Fable II),

Both ng and\ exhibit different behavior if the range @f  while the simulations of EBT neglect buoyancy. Finally, our
is increased so that the experiment obtains a nearly perfeabservations of time dependence induced by the motion of
pattern of squarefFigs. 4c¢) and 8. In this regime, experi- cells near the lateral boundary suggest that nonuniformity at
ments begin also with a pattern of hexagons like in Fig);4 the lateral boundary could drive cell motion in the experi-
however, instead of decreasie@fterng just exceeds 0.5, as ments of EBT, which, in turn, may induce time dependence
in Fig. 7, € is further increased untihg approaches unity throughout the entire pattern. Future simulations at large
[ramp 1 in Fig. 8a)]. The wavelength for square patterns is M/R and largel’ should shed some light on this issue.
observed to increase significanfliyig. 8(b)] in this process; The results of ET and EBT suggest a well-defined mean
the increase in square size is readily visible by comparing and\ for the appearance of square patterns while our re-
Figs. 4b) and 4c). If € is then decreasefamp 2 in Fig. sults show that the transition is strongly dependent on the
8(a)], ng exhibits seemingly little hysteresis as squares losénistory of the pattern. The experimental results of EBT are
stability to hexagons; however, the square wavelength mainconsistent with a transition like that shown in Fig. 7, where
tains its increased valugFig. 8b)] and induces hexagons the pattern ranges between a nearly perfect hexagonal array
with a substantially increased wavelengg. 8c)], as can at low € and a mixed symmetry planform with squares in the
be seen by comparing Figs(a} and 4d). Thereafter, re- bare majority (g slightly larger than 0.bat highe. In this

3.0

M

substantial number of squares occurs at lower valueSaf
decreasings as compared to increasing[Fig. 4(a)]. Defin-
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regime, both our experiments and EBT experiments show An open experimental issue is the nature of instability of
that A of both hexagonal and square cells increase with insquare patterns favl sufficiently large. Our preliminary ob-
creasinge; moreover,\(e) exhibits virtually no hysteresis. servations indicate that squares are transformed into disor-
However, for transitions wheneg approaches unity, we ob- dered polygonal patterns at the onset of time dependence; the
serve bothh andng can exhibit hysteresis and the onset of cell size continually increases with increasivig We plan to
squares ah,= 0.5 is shifted to larger values ef The simu-  explore these phenomena in detall in future experiments.
lations of EBT do not address the effectobn the transition
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