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Abstract

Smart watches in future will have smart wristband. This work analyses properties of new

developed capacitive wristband sensor that measures ballistocardiogram (BCG) from single

point on the wrist. In addition, it considers applications of this sensor to monitoring heart

rate variability. Another application is in estimating changes (trend) in systolic blood

pressure continuously when combined with lead one electrocardiogram (ECG).

BP is one of the vital signs that indicates the health condition. It is commonly measured

by cuff-based monitor using either auscultatory or oscillometric method. Cuff-based BP

monitor is not portable and unable to measure BP continuously which means it is difficult to

attach BP monitoring function on a wearable device. Significant research is conducted in

estimating BP from pulse transit time (PTT) mathematically which would enable the cuffless

BP measurement.

In this work, a new time reference, RJ interval, which is the time delay between ECG and

BCG signal peaks was tested whether it can be used as a surrogate of PTT in cuffless BP

estimation. Based on the study done on 10 healthy people, it was shown that RJ intervals can

be useful in evaluating trends of systolic blood pressure.

Key words: cuffless blood pressure estimation; pulse transit time; RJ interval;
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Chapter 1

Introduction
1.1 Blood Pressure Monitoring

Blood pressure (BP) is the force of blood against the artery wall as it circulates through

the body. It is considered as one of the most important monitoring parameters in clinical

medicine. As reported in 2010, nearly one in five Canadians adults - about 4.6 million

people between ages of 20 and 79 has high blood pressure [1]. High BP can cause health

problem, and therefore it is important to measure BP frequently.

For years, the cuff-based sphygmomanometer and the arterial invasive line have been the

gold standards for care professionals to assess BP. During the past few decades, the wide

spread use of the oscillometry-based BP arm or wrist cuffs have made home-based BP

assessment more convenient and accessible. However, the discontinuous nature, the inability

to interface with mobile applications, high sensitivity to motion artifacts, and need for

calibration have rendered those BP oscilliometry devices inadequate for next-generation

healthcare infrastructure where integration and continuous data acquisition and

communication are required [2].

Recently, the indirect approach to obtain BP values has been intensively investigated,

where BP is mathematically derived through the “Time Delay” in propagation of pressure

waves in the vascular system. This holds the promise for the realization of cuffless and

continuous BP monitoring systems in both inpatient and outpatient settings [2].
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In this study, two time delays, RJ interval and pulse transit time (PTT), were employed to

estimate systolic blood pressure (SBP). PTT is the time delay between the ECG R peak and

maximum of the PPG pulse which we will call P peak. RJ interval is the time delay between

ECG R peak and BCG J peak. It has been reported that PTT is related to the arterial stiffness

and can be used to estimate the SBP [3]. In this thesis, we evaluated whether RJ interval can

be used as a surrogate of PTT in estimating SBP.

1.2 Aims of Thesis Work

The research presented in this thesis has the following aims:

 To validate the collected BCG with reference BCG using both morphology matching

analysis and wave occurrence time matching analysis

 To test if JJ interval of the BCG can be the surrogate of ECG RR series in heart rate

variability (HRV) analysis

 To find correlation between reference SBP and RJ interval and PTT, and assess if RJ

interval can be the surrogate of PTT in cuffless BP estimation.

In order to achieve these aims, the experimental data acquisition and sensor system

designed by Liodigital Corp, Toronto, Canada, were improved to achieve:

 ECG measurements on the wrists using a pair of dry electrodes

 BCG measurements on the left wrist using a capacitive electrode

 PPG measurements on the left wrist using an optical pulse sensor.
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For the purpose of this thesis we included dry lead I ECG electrodes and optical PPG

sensor in the data acquisition system and LabVIEW program for data acquisition and

MATLAB program for data analysis.

Fig 1-1 shows high level overview of the steps performed in the thesis. The red colored

blocks represent topics that this research work focused on.

Fig 1-1. Block diagram of the research methodology

The following two studies were performed:

 The study that involved 4 healthy subjects with the goal of collecting BCG and ECG

signals to validate BCG sensor and estimate heart rate variability.

 The study that involved 10 healthy subjects with the goal of collecting the BCG, PPG

and ECG signals as well as the reference continuous blood pressure signal to analyze

correlation between reference SBP and RJ interval and PTT.

The thesis work resulted in publication: S. He, et. al., “Detecting Cardiac Activity by

Capacitive Electrodes from a Single Point on the Arm,” EMBC 2018.

The research on the new developed capacitive BCG sensor: “Detecting Cardiac Activity by

Capacitive Electrodes from a Single Point on the Arm,” presented on MDII &CREATE-

BEST Poster Day.
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One other paper is in preparation: S. He, et. al., “Continuous tracking of changes in blood

pressure using BCG and ECG.”

1.3 Thesis Organization

This thesis is organized into the following chapters:

 Chapter 2 reviews the BP measurement methods, the origins of ECG, BCG and PPG

signals and their characteristic waveforms.

 Chapter 3 introduces the biomedical signal acquisition system. The system has three

parts, including sensors, hardware circuit and software programs that was developed

for signal process and analysis.

 Chapter 4 presents the signal denoising approaches, the conventional filter-based

denoising method and the EMD-based denoising method. The comparison of these

two methods is described in the end.

 Chapter 5 presents the recorded ECG, BCG and PPG waveforms. As the BCG

signals were collected using our new capacitive wrist band, the recorded capacitive

signals were validated in both morphology matching and wave occurrence time

matching methods. The BCG JJ series were tested if it can be the surrogate of ECG

RR series in HRV analysis.

 Chapter 6 describes the methodology of BP estimation using time intervals. The goal

of this study is to test the performance of SBP estimation using both PTT and RJ

intervals. For this study, 10 healthy subjects were recruited and the REB-approved

protocol was followed. The performances of both methods and the comparison are

presented in this chapter.
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 Finally, Chapter 7 concludes the work with a summary of contributions and items for

future work.
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Chapter 2

Literature Review
The goal of this study is to estimate the SBP cufflessly using time intervals extracted

from biomedical signals. PTT and RJ intervals were employed for SBP estimation, where

PTT is the time difference between ECG and PPG, RJ interval is the time difference between

ECG and BCG. In this chapter, the modern cuff-based BP measurement methods and the

physiological origins of ECG, PPG and BCG are reviewed.

2.1 Definition of Blood Pressure

The blood pressure (BP) is one of the vital signs of human beings and is defined as the

pressure of the blood within the arteries. It is produced primarily by the contraction of the

heart muscle. A BP reading consists of two numbers, the first (top) number is called the

systolic number that is the maximum pressure inside the arteries when the heart beats. The

second (bottom) number is called the diastolic number that is the minimum pressure between

beats. The BP can indicate the health condition of human, e.g., a high BP means too much

resistance inside the arteries and can cause arterial damage and increase the risk for stroke,

heart attack, heart failure and kidney failure. The BP waveform is shown in Fig 2-1.
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Fig 2-1. The BP waveform [4]

2.2 Review of Blood Pressure Measurement Methods

Currently, the most common non-invasive methods for measuring BP rely either on the

auscultatory method or on the oscillometric approach that require an inflatable cuff which

may cause discomfort and only provide intermittent BP readings.

2.2.1 Blood Pressure Measurement using Auscultatory Method

The auscultatory method uses a stethoscope and a sphygmomanometer. This

comprises an inflatable cuff placed around the upper arm at roughly the same vertical

height as the heart, attached to a mercury or aneroid manometer. The mercury

manometer, considered as the gold standard, measures the height of a column of

mercury, given an absolute result without need for calibration and, consequently, not

subject to the errors and drift of calibration which affect other methods. The use of

mercury manometers is often required in clinical trails and for the clinical measurement

of hypertension in high-risk patients.

A cuff of the appropriate size [5] is fitted smoothly and also snugly, then inflated

manually by repeatedly squeezing a rubber bulb until the artery is completely occluded.

It is important that the cuff size is correct: undersized cuffs record too high a pressure;



8

oversized cuffs may yield too low a pressure [6]. Usually three or four cuff sizes should

be available to allow measurement in arms of different size [6]. Listening with the

stethoscope to the brachial artery at the antecubital area of the elbow, the examiner

slowly releases the pressure in the cuff. When blood just starts to flow in the artery, the

turbulent flow creates a “whooshing” or pounding (first Korotkoff sound). The pressure

at which this sound is first heard is the systolic blood pressure. The cuff pressure is

further released until no sound can be heard (fifth Korotkoff sound), at the diastolic

arterial pressure. The auscultatory BP device and the methodology of auscultatory BP

measurement are shown in Fig 2-2.

Fig 2-2. The auscultatory BP device (left) [7] and the methodology of auscultatory BP measurement (right)
[8]

2.2.2 Blood Pressure Measurement using Oscillometric Method

The oscillometric method was first demonstrated in 1876 and involves the

observation of oscillations in the sphygmomanometer cuff pressure which are caused by

the oscillation of blood flow, i.e., the pulse. The electronic version of this method is

sometimes used in long-term measurements and general practice. It uses a
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sphygmomanometer cuff, an electronic pressure sensor to observe cuff pressure

oscillations, electronics to automatically interpret them, and automatic inflation and

deflation of the cuff. The pressure should be calibrated periodically to maintain accuracy

[9].

The cuff is inflated to a pressure initially in excess of the systolic arterial pressure

and then reduced to below diastolic pressure over a period about 30 seconds. When

blood flow is nil (cuff pressure exceeding systolic pressure) or unimpeded (cuff pressure

below diastolic pressure), cuff pressure will be essentially constant. When blood flow is

present, but restricted, the cuff pressure, which is monitored by the pressure sensor, will

vary periodically in synchrony with the cyclic expansion and contraction of the brachial

artery.

Over the deflation period, the recorded pressure waveform forms a signal known as

the cuff deflation curve. A bandpass filter is utilized to exact the oscillometric pulses

from the cuff deflation curve. Over the deflation period, the extracted oscillometric

pulses form a signal known as the oscillometric waveform (OMW). The amplitude of

the oscillometric pulses increases to a maximum and then decreases with further

deflation. A variety of analysis algorithms can be employed in order to estimate the

systolic, diastolic, and mean arterial pressure. The calculation of systolic, diastolic and

mean BP using oscillometric method is shown in Fig 2-3.
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Fig 2-3. The oscillometric BP device (left) [10] and the methodology of oscillometric BP measurement
(right) [11]

As shown in Fig 2-3, the pressure, Pm, at which the oscillations have the maximum

amplitude, Am, is the mean arterial pressure (MAP) as marked as the red point on the

OMW. Empirical and theoretical work has shown that the systolic and diastolic

pressures, Ps and Pd respectively, occur when the amplitudes of oscillation, As and Ad

respectively, are a certain fraction of Am. In [12], these fractions are computed as:

 Ps is the pressure above Pm at which As/Am = 0.55

 Pd is the pressure below Pm at which Ad/Am = 0.85

2.3 Review of Biomedical Signals

2.3.1 Electrocardiogram (ECG)

The electrocardiogram (ECG) is a measure of heart electrical activity. Augustus

Waller published the first human ECG using a capillary electrometer in 1887 [13]. In

1902, Willen Einthoven demonstrated the galvanometric measurement of the ECG from

the limbs dipped in saline solutions and began the use of the ECG as a clinical tool [14].
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Nowadays, ECG has been developed as an important non-invasive clinical technique to

monitor cardiac activities for human beings.

Fig 2-4. Anatomy of the human heart [15]

The heart, which consists of right atrium, left atrium, right and left ventricles, is a

muscular organ that has the task of circulating blood throughout the body. As shown in

Fig 2-4, the top chambers (atrium) of the heart are responsible for accepting the blood

flow coming to the heart and the bottom chambers (ventricle) have the task of forcing

blood out of the heart. There are two nodes in the heart that are involved in ECG process.

Sino-atrial node (SA node) that is in the right atrium on the top, close to the vein then

carries impure blood to the heart. This node is the pacemaker and controls the heartbeat.

The second node is the atrioventricular node (AV node) that is on the other side of the

right atrium close to the valve between the right atrium and the right ventricle. A

collection of special muscle cells locate between the right and left part of the heart is

another part of the electrical conduction system of the heart in addition to the two nodes

mentioned above. The electrical conduction system of the heart is responsible for

creating ECG signals. A characteristic ECG waveform is shown in Fig 2-5.
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Fig 2-5. Schematic diagram of normal sinus rhythm for a human heart as seen on ECG [16]

As shown in Fig 2-5, the P wave signifies the depolarization of the atrium, the QRS

complex represents the depolarization of the ventricles, and the T wave signifies the

repolarization of the ventricles. This cycle repeats with every heartbeat and generates

the ECG. Many heart diseases modify the ECG waveform hence the ECG becomes a

very important factor in monitoring heart conditions [18]. The frequency of a standard

ECG signal ranges from 0.67 to 120 Hz, and 0.67 Hz is the frequency which is observed

when the pulse rate is 40 beats/min [18]. Low frequency components consist of the P

and T waves, 5-9 Hz [19,20]. While the QRS complex resides at high frequency.

Among all ECG collection methods, the 12-lead ECG is the one that is mostly used

in clinical applications. The 12-lead ECG system consists of 10 electrodes which form

both bipolar and unipolar leads (three bipolar limb leads, three unipolar limb leads, and

six unipolar leads). Fig 2-6 demonstrates the electrode placement of 12-lead ECG

system.
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Fig 2-6. Electrode placement diagram of 12-lead ECG [21]

2.3.2 Photoplethysmogram (PPG)

A photoplethysmogram (PPG) is a non-invasive signal related to the pulsatile volume

of blood in tissue and is typically collected using optical sensors. In the 1930s, the PPG

waveform was first discovered. Its importance in clinical medicine was greatly

increased from 1980s after the pulse oximeter was introduced into routine clinical care.

Nowadays, pulse sensor is widely used in smart watches and fitness band to monitor

heart rate and blood oxygen saturation by analyzing waveform.

The PPG is an optical technique for monitoring cardiovascular activity through the

measurement of local changes in blood volume. In its simplest form, a PPG sensor

consists of two components; a light source and a photodetector. The light source

transmits light through the microvascular bed of tissue. A portion of the transmitted

light is absorbed by the various constituents of the tissue, including blood, thereby

attenuating the light reaching the photodetector. Attenuation of the light through

absorption by the tissue is linked to the volume of blood locally present in the tissue.
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Changes in local blood volume therefore alter the intensity of the light reaching the

photodetector [22,23,24].

PPG sensor can be developed to operate in either transmission mode or reflection

mode based on the configuration of the light source and the photodetector, as shown in

Fig 2-7. In the transmission mode configuration, the light source and the photodetector

are located opposite to one another, with the finger placed between them. The light

travels from the light source, through the tissue, to the photodetector on the opposite

side. Transmission mode is typically used for thinner tissues such as fingertips or

earlobes. In the reflection mode configuration, the light source and the photodetector are

placed adjacent to one another. Reflection mode is preferred for thicker tissues, such as

wrists [22,23,24].

Fig 2-7. PPG sensors can be configured to operate in transmission (left) or reflection (right) modes, based
on the placement of the light source and the photodetector [25].

A characteristic PPG waveform is shown in Fig 2-8. The appearance of the PPG

pulse is commonly divided into two phases: the anacrotic phase is rising edge of the

pulse, whereas the catacrotic phase is the falling edge of the pulse as shown in Fig 2-8.

The first phase is primarily concerned with systole, and the second phase with diastole

and wave reflections from the periphery. A dicrotic phase of subjects with healthy

compliant arteries.
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Fig 2-8. A typical waveform of the PPG, the amplitude of systolic peaks is x while y is the amplitude of
the diastolic peak [26]

As shown in Fig 2-8, the systolic amplitude (x) is an indicator of the pulsatile

changes in blood volume caused by arterial blood flow around the measurement site

[27,28]. Systolic amplitude has been related to stroke volume [29]. Dorlas and Nijboer

found that systolic amplitude is directly proportional to local vascular distensibility over

a remarkably wide range of cardiac output [30]. It is also has been suggested that

systolic amplitude is potentially a more suitable measure than pulse arrival time for

estimating continuous blood pressure [31].

2.3.3 Ballistocardiogram (BCG)

The Ballistocardiogram (BCG) is a non-invasive method based on the measurement

of the body motion generated by the ejection of the blood at each cardiac cycle. It was

initially discovered in the late 19th century [32], has been the focus of intense research in

1940’s through the early 80’s, after which the method faded away. The disappearance of

this method can be traced to a few general factors: 1) a lack of standard measurement

techniques, with various methods leading to subtly different signals [33]; 2) a lack of

understanding of the exact physiologic origin of the BCG waveform, as well as clear

guidelines for interpretation of the results, leading to circumspection from the medical
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community; 3) a primary focus on clinical diagnostic (e.g., myocardial infraction,

angina pectoris, coronary heart disease [34,35]), which typically requires a high level of

specificity and reliability that the BCG had not reached [36]; 4) the dawn of ultrasound

and echocardiography techniques, which rapidly overtook BCG and related techniques

for non-invasive cardiac and hemodynamic diagnostic [37]. In the last decade or so,

BCG has been revisited and proved to be an effective and promising method for heart

monitoring and cardiovascular disease diagnose.

The first practical measurement method of BCG was invented by Starr in 1939 and

the setup has the subject fixed to a mechanical table (Fig 2-9(a)) that is laterally spring

loaded [38]. Since BCG is a mechanical signal, two measurement techniques are mainly

employed for BCG detection. One is pressure method and the other one is acceleration

method. Fig 2-9 (a) shows the traditional BCG measurement instrument and Fig 2-9 (b)-

Fig 2-9 (d) show the modern methods of BCG measurement. One method uses a

piezoelectric sensor pad to measure the BCG during sleep [39]. A second application is

a special chair with electromechanical film sensors or pressure sensors for BCG

monitoring [40, 41, 42]. A modified weight scale with embedded pressure sensor can

also measure the BCG in an upright posture [43].
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Fig 2-9. Traditional and modern BCG measurement methods: (a) the traditional Starr BCG table [38], (b)
the BCG pad [39], (c) the BCG chair [40], (d) the BCG scale [43].

BCG is a recording of the movements of the body due to the vibration when blood

flows in the arteries [44,45]. A healthy subject’s BCG is shown in Fig 2-10. A

corresponding blood flow diagram of the aorta is shown in Fig 2-11. The waveform of

BCG can be divided into three groups: pre-ejection, ejection and the diastolic portion of

the heart cycle [46]. Pre-ejection (GH) waves consist of the venous return to the heart,

atrial filling, and contraction. ‘H’ represents head-ward deflection, ‘I’ foot-ward

deflection (reflects the rapid acceleration of blood in the ascending aorta and pulmonary

arteries around the aortic arch and into the carotid arteries). The ejection phase J-wave

describes the acceleration of blood in the abdominal area and deceleration of blood in

the head-ward aorta. The peak of the J-wave corresponds to the end of rapid ejection of

both ventricles. I wave and J wave are of primary interest, I-J amplitude reflects the

force of contraction of the left ventricle and I-J period reflects contractility. The K and L

waves reflect the deceleration and cessation of blood flow and the closing of the aortic
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valve [46]. Diastolic waves (KL and MN) reflect the state of peripheral circulation. Also,

the influence of arteries wall stiffness and peripheral resistance has greater influence on

the diastolic waves [47].

Fig 2-10. A standard BCG with significant waves labeled [48]

Fig 2-11. Blood flow through the aorta with I-wave and J-wave occurrences labeled [49]
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Chapter 3

Biomedical Signal Acquisition System
The biomedical signal acquisition system was developed to collect physiological signals

consists of ECG, BCG and PPG sensors, signal processing hardware circuit, DAQ card and

signal analysis software. ECG, BCG and PPG can be recorded by their specific sensors. The

hardware circuit and the capacitive BCG sensor employed for this study were developed by

Liodigital Corp, Toronto, Canada. The dry lead I ECG electrodes, the LabVIEW and the

MATLAB programs were developed by myself for this research. The signal processing

circuit was designed to amplify the signals collected by sensors. The DAQ is an interface

between hardware and the software program which can digitize the continuous analog

signals into digital signals. The LabVIEW program was developed to display the signals in

real time and store them for analysis, MATLAB algorithms were developed for data analysis.

The framework of the biomedical signal acquisition system is shown in Fig 3-1.

Fig 3-1. Biomedical signal acquisition system framework
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3.1 ECG Sensor

In this research, lead I ECG configuration was employed, which collects ECG signal by

placing a pair of dry ECG electrodes on left and right arms. ECG electrodes are designed as

a pair of conductive dry metal pads that can be pressed by fingers or mounted on wrists by

tapes. The dimensions of the ECG electrodes are 1.2�0.2 cm (diameter� thickness). The
pictures of ECG metal electrodes and measurement position are shown in Fig 3-2(a) and Fig

3-2(b).

Fig 3-2. (a) Picture of dry ECG metal electrode (b) Developed ECG electrodes placed on the fingers.

3.2 PPG Sensor

In this research, a commercial PPG sensor (SparkFun Electronics SEN-11574) designed

for Arduino project was used for PPG measurement. This PPG sensor is configured to

operate in reflection mode, with a simple filter and amplifier circuit built on the sensor chip.

The dimensions of the PPG sensor are 2�0.3 cm (diameter�thickness), as shown in Fig 3-3.
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Fig 3-3. Picture of the PPG sensor

3.3 BCG Sensor

Recently, BCG has been revisited as a new approach in measuring cardiac activities. In

general, the BCG is measured using two methods, one of which uses accelerometry method

and another one uses pressure measurement method. In this research, a new capacitive

pressure sensor was developed to measure BCG signal from a single point on the arm.

Conductive fabric and rubber materials were used to build the new soft flexible BCG band

which can be wrapped on the upper arm, forearm and even on the wrist. This new sensor can

be modified and potentially developed into a wearable health monitoring device.

A capacitive sensor generally has the same structure of the capacitor which is composed

of two conducting plates separated by a non-conducting substance called dielectric ( �� )
[50,51]. The dielectric may be air, mica, ceramic, fuel, or other suitable insulting material

[51]. The structure of the capacitive BCG sensor is shown in Fig 3-4. The BCG wristband

consists of three layers, the inner and outer layers, which act as two capacitor plates, are

made by conductive fabric (4-5-CN3190, 3M). The mid layer is rubber (Insten

POTHOPTMOU12) which acts as electrolyte layer between two capacitor plates. The wires

are glued on the conductive fabric by conductive epoxy (8331s-15G, MG Chemicals). The
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dimensions of the electrode are 26�7�0.3 cm (length�width�thickness). The capacitance of
this electrode depends on the geometry of the conductors and not on an external source of

charge or potential difference [51, 52]. The space between the two plates of the capacitor is

covered with dielectric material. In general, the capacitance value is determined by the

dielectric material, distance between the plates, and the area of each plate. The capacitance

of this BCG electrode can be expressed in terms of its geometry and dielectric constant as

[53]:

� = �� �0�� (3-1)

Where C is the capacitance in Farads (F), �� is the dielectric constant of the material

between the plates, �0 is the permittivity of free space (8.85�10-12 F/m), d is the separation
between the plates.

Fig 3-4. Longitude section of capacitive BCG sensor worn on the wrist

Mechanical activity causes physical deformations of the sensor’s geometry, the distance

between two capacitor plates changes in this case. If the geometry of the soft electrodes

changes, their electrical charges move with respect to each other. These charge shifts are
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measured by the sensor electrodes, converted to a voltage signal, and subsequently displayed

as a BCG related signal [54].

The capacitive BCG electrode can measure good quality BCG signals from upper arm

and, forearm to wrist when subject is sitting still. Since the electrode is made of soft textile

and rubber, it has the potential to be developed into a wristband and makes the wearable

smartwatch monitor more detailed cardiac activities. The measurement position of this

research is shown in Fig 3-5.

Fig 3-5. The BCG signal is measured by a developed capacitive wristband on the left wrist

Fig 3-6. The wrist BCG front-end circuit
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The diagram of the wrist BCG front-end circuit is shown in Fig 3-6. The capacitive

electrodes have a capacitance to skin of approximately 1 pF. Therefore, to minimize signal

loss due to voltage division, the capacitive electrodes are connected to high impedance

buffers with IBIAS = 1 pA and with 6 GΩ bias resistors. The buffers provide active shields for

the electrodes, which prevent capacitive coupling away from the skin. As shown in Fig 3-6,

layer 1 and layer 3,are two capacitor plates separately, while layer 1 is the inner layer and

layer 3 is outer layer. Layer 2 is a reference pad using the same conductive fabric attached

on the inner capacitor layer which was designed to minimize the impact of common-mode

interference. After the output, the signal is filtered by a 3-25 Hz physical bandpass filter.

3.4 Signal Preprocessing Circuit

The signal preprocessing circuit includes three electrically isolated amplifier channels.

One channel is lead I ECG, another one is capacitive BCG channel and the other one is

optical PPG channel.

Each channel includes a pre-amplifier and a DAQ-amplifier. The pre-amplifier has an

instrument amplifier and a two-stage amplifier. The instrument amplifier amplifies the signal

collected by biomedical sensors. The BCG and ECG signals sometimes were too weak to be

observed, a two-stage amplifier was designed for either ECG, BCG and PPG channel with

first stage gain of 21 and second stage gain of 255. A DAQ-amplifier provides an interface

between the pre-amplifier and the data acquisition card. Independent isolated channels which

have their own isolated power supplier, ground, and signal amplifier are implemented in the

DAQ-amp.
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3.5 Data Acquisition Card (DAQ card)

After being amplified by the signal processing circuit, the analog voltage signal (ECG,

BCG and PPG) will be input into data acquisition card (DAQ card). DAQ samples input

analog signals and converts the resulting samples into digital numeric values that can be

manipulated by a computer. In this research, the analog ECG, BCG and PPG signal were

digitized using a portable DAQ card (National Instrument USB 6002, 16 bits, 8 analog input

channels). The digitized biomedical signals were transmitted to computer for further analysis

via USB communication mode.

3.6 Software Program

The software programs were designed to analyze the signals. The software programs

include a LabVIEW program (LabVIEW 2017, National Instruments) and a MATLAB

program (MATLAB 2018a, MathWorks).

The LabVIEW program was developed to receive digitized ECG, BCG and PPG signals

from the DAQ card, displays the signals in real time and stores them for analysis. The

signals were digitized at 2000 Hz.

The MATLAB programs were developed to denoise the original noisy signals acquired

by LabVIEW program. Other signal processing and analyzing algorithms, such as peak

detection algorithm, signal smoothing algorithm and curve fitting algorithm were also

developed in MATLAB program.
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Chapter 4

Signal Denoising Approach and Peak Detection
Algorithm

ECG, BCG and PPG signals collected using our data acquisition system are very noisy. In

this chapter, the signal denoising method using conventional filtering approach and EMD-

based denoising approach will be described and compared.

4.1 Noise Sources

As presented in Chapter 2, the main ECG frequency range is 0.5-20 Hz, the PPG

frequency range is 0.5-5 Hz and the BCG frequency range is 0.5-10 Hz. The different

kinds of noises residing in biomedical signals will be presented below.

4.1.1 High Frequency Interference

The high frequency noises include electromyogram noises (EMG), electromagnetic

interference (EMI), as well as power line interference.

The EMG signal is the electrical manifestation of the neuromuscular activation

associated with a contracting muscle. It is exceedingly complicated signal which is

affected by the anatomical and physiological properties of muscles, the control scheme

of the peripheral nervous system, as well as the characteristics of the instrumentation

that is used to detect and observe it [55]. The energy of the signal is limited to the 0-500

Hz frequency range, with dominant energy being in the 50-150 Hz range [56].
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Electromagnetic interference (EMI) is the disruption of an electronic device when it

is in the vicinity of an electromagnetic field in the radio frequency spectrum that is

caused by another electronic device. Nowadays, the wide usage of cell phone, wireless

internet as well as wireless devices makes the EMI become a more severe interference

in biomedical signal collection. The frequency range of EMI is within 2 kHz to 150 kHz

[57].

Power line interference consists of 60/50 Hz pickup and harmonics that can be

modeled as sinusoids and combination of sinusoids. According to a research on power

line interference on biomedical signals, the frequency content of this kind of noise is

60/50 Hz with harmonics and the amplitude is 50% of peak-to-peak ECG amplitude [58].

4.1.2 Low Frequency Interference

Motion artifacts (MA) are baseline changes which are caused by electrode movement

which is also being considered as the causes of baseline wander on biomedical signals.

In general, vibrations, movement, or respiration of the subject contribute to motion

artifacts. MA is caused by respiration (0.4-2 Hz) and subject movement (1-3 Hz).

The morphologies of different noises are shown in Fig 4-1.
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Fig 4-1. Effects of different noises on ECG signal: (a) EMG; (b) powerline noise; (c) EMI; (d) motion artifact

4.2 Signal Denoising using Filters

In digital signal processing, a filter is a process that removes the unwanted components or

features from a signal. As shown in Fig 4-1, different noise sources can interfere or change

the waveforms and features of the target signals. As each biomedical signal has its own

specific frequency range, three bandpass filters with different cut-off frequencies were

developed to remove both high and low frequency noises, a 60 Hz notch was also employed

to remove 60 Hz power line noise. The procedures of removing noises using filtering

approach are shown in Fig 4-2.

Fig 4-2. The implement of applying filters to remove noises from the signals.
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4.2.1 60 Hz Notch Filter Design

A notch filter is a filter that filters out a particular frequency component from a signal.

A 60 Hz notch filter was designed to remove the powerline noise from the biomedical

signals.

Fig 4-3. Frequency response of 60 Hz notch filter

As shown in Fig 4-3, there is a steep notch at 60 Hz in magnitude response which

means this filter can remove 60 Hz components from the signal waveform significantly.

This notch filter was first applied on ECG, BCG and PPG signals to remove powerline

interference.

4.2.2 Bandpass Filter Design

According to the particular frequency bands of different biomedical signals, bandpass

filters were developed and applied to remove noises. Two Type I bandpass filters with

different passbands were designed for denoising ECG, BCG and PPG signals. Type I
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filters have the property that they minimize the error between the idealized and the

actual filter characteristic over the range of the filter with ripples in the passband. A

Type I bandpass filter with passband of 0.5-25 Hz was applied on ECG and 0.5-15 Hz

for BCG signals, another bandpass filter with passband of 0.5-7 Hz was applied on PPG

signal. The magnitude response and phase response of the bandpass filters are shown in

Fig 4-4 to Fig 4-6.

Fig 4-4. Frequency response of 0.5-25 Hz Type I bandpass filter
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Fig 4-5. Frequency response of 0.5-15Hz Type I bandpass filter

Fig 4-6. Frequency response of 0.5-7 Hz Type I bandpass filter
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4.3 EMD-based Signal Denoising Method

Conventional filtering methods have difficulties in removing noise and interference from

the non-stationary signals. Therefore other methods are attempted.

4.3.1 Methodology of EMD

Empirical Mode Decomposition (EMD) is relatively new signal processing method

and has been extensively used in analysis of non-stationary signal [59]. The algorithm as

proposed by Huang is based on producing smooth envelopes defined by local maxima

and minima of a sequence and subsequent subtraction of the mean of these envelopes

from the initial sequence [60]. This requires the identification of all local extrema. The

procedure of plotting the envelopes is shown in Fig 4-7, EMD method could decompose

any time-varying data into a finite set of functions called “intrinsic mode functions”

(IMFs) [61]. The procedure of extracting an IMF is called sifting. Whether a function is

an IMF depends on whether it satisfies the following requirements: firstly, the number

of local extreme and the number of zero-crossings must either equal or differ at most by

one in the whole data set. Steps in sifting process are given below [62,63]:

Fig 4-7. Plotting the envelopes and their mean [60].
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(1) Find all the local extrema, including maxima and minima; then connecting all the

maxima and minima of signal x(t) using smooth cubic spline to get its upper

envelope ���th and lower envelope �1�th.
(2) Subtract mean of these two envelopes �1 = �� t � �1�th �2 from the signal:�1 t = � t − �1 t .
(3) Consider �1�th as the new data and repeating steps 1 and 2 until the resulting signal

meets the criteria of an IMF. Now �1 t = �1 t .
(4) The first IMF �1 t contains the highest frequency component of the signal. The

residual signal �1 t is given by �1 t = � t − �1 t .
(5) Consider �1�th as new data and repeating steps 1-4 until extracting all the IMFs.

The sifting procedure is terminated when the nth residue ���th becomes less than a
predetermined small number or becomes monotonic. A standard difference (SD) is

calculated from the two consecutive sifting results. When the value of SD resides

within a predefined range, the sifting process is determined. Hence the original data��th can be represented as the sum of the decomposed IMFs and the resulting ���th,� t = �=1� �� t � ���th� (4-1)

When n is the number of IMFs, �� t is the IMF at i level.

Various stopping criteria result in different IMF functions after EMD decomposition.

More than seven kinds of IMF stopping criteria have appeared after the EMD algorithm

was proposed [64]. Practically, the resulting signal does not carry significant physical

information after a certain number of iterations, because a pure frequency modulating

the signal with constant amplitude would appear when it is sifted to an extreme. Usually,

SD is set between 0.2 and 0.3 to avoid the sifting condition mentioned above [65]. A
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segment of noisy ECG signal and resulting IMFs are presented in Fig 4-8. It reveals that

the lower order IMF show the fast and high-frequency oscillations and upper order IMFs

corresponds to slow or low-frequency oscillations.

Fig 4-8. Example of original noisy ECG signal and decomposed IMF components by applying EMD
algorithm

4.3.2 Signal Denoising using EMD Method

The high frequency noises include electromyogram (EMG), electromagnetic

interference (EMI) and powerline noise. As the 60 Hz powerline noise is the stationary

combination of sinusoids which can be removed by applying notch filter, in this section,

the methods of removing EMG and EMI only will be introduced. Signal denoising by
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EMD approach is performed by partial IMFs reconstruction based on the fact that the

high frequency noise components tend to appear in the first several IMFs and the low

frequency noise components tend to appear in the last few IMFs [66].

To perform this EMD-based signal denoising method, the frequency of each IMF

was calculated and the signal was reconstructed without first and last several IMFs.

4.4 Comparison of Filter and EMD Denoising Methods

To compare the performance of filter denoising method and EMD-based denoising, a

segment of ECG signal which contains both high and low frequency noise components was

employed for comparison. The 60 Hz notch filter was applied on the noisy signal first to

remove powerline noise from the signal. Then the bandpass filter and EMD-denoising

algorithm were applied on the filtered signal separately. The comparison of two methods

will be shown in both waveforms and signal quality index.

4.4.1 Comparison of Denoising Performances on Morphology

The performance of the filtering denoising method and the EMD-based denoising

method will be compared on morphology first. A segment of BCG signal contains

motion artifacts and high frequency noise was selected for this comparison. The result is

shown in Fig 4-9.
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Fig 4-9. Comparison of filtering and EMD denoising performance on a BCG segment

As shown in Fig 4-9, both filtering method and EMD denoising method can remove

noises from the BCG waveform significantly. However, EMD denoising method

performed better in removing motion artifacts than traditional filtering approaches.

4.4.2 Comparison of denoising performances based on signal quality index

To quantify the differences of traditional filter denoising method and EMD denoising

approach, the signal quality index was calculated for both approaches. The signal

quality of the filtered signal can be evaluated by its beat-to-beat morphology’s

repeatability. A clean signal with no artifacts typically has highly consistent beat

morphology, whereas motion artifacts and high frequency interferences such as EMG

will impact beat to beat morphology. To quantify the repeatability of the signal, a metric

that is based on the standard deviation between individual pulse to the ensemble average

will be introduced. This standard deviation is normalized to the ensemble’s peak

amplitude of biomedical signals to produce a metric called Normalized Standard
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Deviation from Ensemble (NSDE). NSDE is defined in equation (4-2), where M is the

number of samples per beat, N is the number of beats, Ensemble is the ensemble average

of N beats, and L is the ensemble average’s peak (e.g. RECG, JBCG, PPPG) amplitude. A

greater N reduces fluctuations in the ensemble waveform, it also masks any short-term

changes due to averaging. N� 20 should be chosen for the ensemble averages as it

produces sufficiently stable ensemble waveforms [49].
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To compare the denoising performance using signal quality index, 10 subjects (5

males and 5 females) were recruited for signal collection and NSDE values were

calculated. Subjects were asked to sit still and the capacitive BCG electrode was

wrapped on their left wrists. One minute of BCG signal collected from each subject

was chosen as an example to compare the performances of filter denoising method

and EMD-based signal denoising method. The raw signal recorded by BCG electrode

was firstly being denoised by 60 Hz notch filter, then NSDE of the denoised signal

using bandpass filter and EMD-based denoising approach was calculated respectively.

The information of these 10 subjects are shown in Table 6-1.

After obtaining the BCG signal from each subject, the NSDE values calculated for

each subject are shown in Table 4-1.
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Table 4-1. NSDE value calculated on 1 min BCG signals from 10 subjects
NSDE (60Hz) NSDE (bandpass) NSDE (EMD)

Subject 1 0.1504 0.1453 0.1116

Subject 2 0.3862 0.2300 0.1762

Subject 3 0.0756 0.0701 0.0728

Subject 4 0.1694 0.0870 0.0943

Subject 5 0.2438 0.0791 0.0684

Subject 6 0.1849 0.1101 0.0943

Subject 7 0.2219 0.1555 0.1211

Subject 8 1.5243 0.2067 0.1830

Subject 9 0.5942 0.2564 0.2848

Subject 10 0.1562 0.1024 0.1011

In this case, a smaller NSDE value means every individual pulse has a higher

similarity with the ensemble averaged pulse template or there were fewer motion

artifacts exist in the waveform. As shown in Table 4-1, the average NSDE value of

applying bandpass filter method is 0.1443±0.0666, while the average NSDE value of

applying EMD-based signal denoising approach is 0.1308±0.0665. This comparison of
signal quality index shows that the EMD-based signal denoising approach performs

better than traditional bandpass filter method.

4.5 Peak Detection Algorithm

The purpose of this study is to track SBP using time intervals extracted from biomedical

signals. PTT is the time difference between ECG R peak and PPG P peak, and RJ interval is

the time difference between ECG R peak and BCG J peak, which means it is important to
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locate peaks accurately and therefore ensure the accuracy of tracking SBP using time

intervals.

In this study, ECG R peak and T wave, PPG P peak (systolic peak) and BCG J peak, H

wave and K notch need to be located. As shown in Fig 4-10, the BCG signal is sensitive to

motion artifacts and it will add noise and impact the BCG morphology, therefore will cause

wrong detection on BCG J peaks. The ECG and PPG signals are stable and only have small

distortions when subjects are moving.

Fig 4-10. Examples of wrong peak detection due to motion artifacts. (a) several ripples occur on BCG J
peak, (b) Wrong peak detection due to motion artifacts

In order to detect accurate peak locations on interfered BCG waveforms, an

improved peak detection algorithm based on estimated BCG J peak occurrence interval

was developed. The PPG and ECG peaks are detected first, ECG R peaks and PPG P

peaks were detected by a simple peak detection algorithm which is based on finding

local maxima. The signal waveform is split into individual pulses based on an estimated

pulse length, the ECG and PPG peaks are defined as the maxima of each individual

pulse segment. ECG T waves can be detected by finding the maxima with a 0.3-0.5s

window behind ECG R peaks. As described in [37], the peak of J wave usually occurs
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between 0.22 and 0.26 seconds after the onset of the QRS complex of the ECG. Then

ECG R peak acts as an indicator to locate BCG J peak [67], a time interval of 0.2-0.4s

behind each ECG R peak is set for the approximate BCG J peak occurrence, BCG peak

is detected as the maxima of this time interval. After detecting the BCG J peaks, BCG H

waves are located by finding the local maxima within a 0.15-0.3s window ahead of

BCG J peaks and BCG K notches are detected by finding local minima within a 0.2-0.4s

window behind BCG J peaks. Fig 4-11 demonstrates the improved peak detected

algorithm.

Fig 4-11. Morphology demonstration of improved peak detection algorithm

4.6 Summary of the Chapter

In this chapter, both high and low frequency noise sources were introduced first. The

interferences were removed using filter-based denoising method and EMD-based denoising

approach. The EMD-based denoising approach performed better in both morphology

enhancement and signal quality improvement in comparison with the filtering method. An
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improved peak detection algorithm using ECG R peak as an indicator can improve the

accuracy of BCG J peak detection in noisy signal segments.
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Chapter 5

Waveforms, Signal Validation and HRVAnalysis
In this chapter, the waveform and frequency spectrum of the filtered ECG, PPG and BCG

using EMD-based denoising approach are presented. As the BCG sensor used in this

research is a new design, the signal detected from the wrist using this sensor needs to be

validated. The signal was validated by both morphology matching analysis and wave

occurrence time matching analysis to show that it is indeed BCG signal. In the end, the HRV

analyses were performed on both ECG signal and BCG signal to determine if BCG JJ series

can be the surrogate of ECG RR series in HRV analysis.

5.1 Lead I ECG

5.1.1 Waveform of Lead I ECG

A standard ECG waveform with its QRS complex and T waves is shown in Fig 2-5.

The collected original ECG waveform contains power line interference and motion

artifacts. After applying filtering approaches, the denoised ECG signal can provide more

details for analysis. The noisy and denoised ECG waveforms detected from wrists using

dry metal electrodes are shown in Fig 5-1.
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Fig 5-1. Original noisy ECG waveform (top); denoised ECG waveform (bottom).

5.1.2 Frequency Range of Wrist ECG

Fig 5-2 shows the denoised lead I ECG’s power spectral density (PSD) of a sample

wrist ECG measured over 5 minutes. Most of the signal power resides in the range of

0.5Hz – 20Hz. This is consistent with the previous ECG works, which state that the

majority of the ECG’s frequency content is less than 20Hz [68].

Fig 5-2. PSD of lead I ECG signal
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5.2 Wrist PPG

5.2.1 Waveform of Wrist PPG

A standard PPG waveform should have clear systolic peak which is labeled as P peak

in this study, as shown in Fig 2-8. The recorded original PPG waveform contains power

line interference and motion artifacts. After applying filtering approaches, the denoised

PPG waveform can provide more details for analysis. The noisy and denoised PPG

waveforms detected from left wrist using optical pulse sensor are shown in Fig 5-3.

Fig 5-3. Original noisy PPG waveform (top); denoised PPG waveform (bottom).

5.2.2 Frequency Range of Wrist PPG

Fig 5-4 shows the denoised wrist PPG power spectral density (PSD) of a sample

wrist PPG measured over 5 minutes. Most of the total signal power resides in the range

of 0.5Hz – 5Hz. This is consistent with the previous PPG works, which state that the

majority of the PPG’s frequency content is less than 5Hz [69].
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Fig 5-4. The PSD of the wrist PPG

5.3 Wrist BCG

In this section, the waveform of the recorded BCG and its frequency range will be

illustrated first. Then, two signal validation methods, morphology matching analysis and

wave occurrence time matching analysis will be conducted to validate that detected signal is

the actually the BCG signal.

5.3.1 Waveform of Wrist BCG

The signal detected from left wrist using the new capacitive wrist band is shown in

Fig 5-5. The waveform has significant waves as shown in Fig 2-10. However, a

comprehensive signal validation process is necessary to determine whether this

capacitive signal is indeed BCG.
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Fig 5-5. Original noisy BCG signal (top); denoised BCG signal (bottom).

5.3.2 Frequency Range of Wrist BCG

Fig 5-6 shows the denoised wrist BCG’s power spectral density of a wrist BCG

sample measured over 5 minutes. Most of the signal power resides in the range of

0.5Hz-10Hz. This is consistent with the previous BCG works, which state that the

majority of the BCG’s frequency component is less than 10Hz [49].

Fig 5-6. PSD of wrist BCG
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5.4 Signal Validation for Capacitive Electrode

There are already several researches on BCG measurement using capacitive sensors, but

none of them collect BCG signal on the wrists. Because of this, the signal validation process

is important for this study. After applying both morphology matching and wave occurrence

time matching analyses, the signals collected by the specially developed capacitive wrist

band were finally validated as BCG.

5.4.1 Methodology of BCG Validation Based on Morphology Matching

There are several significant waves in the BCG signal which are defined as H, I, J

and K waves. The origin and physiological significance of the waves are described

below.

H Wave (Presphygmic Wave)

The H wave is the first wave associated with contraction of the heart. This wave is

an upward deflection and is normally relatively small. However, in heart disease, it

may become large in amplitude even surpassing the height of the J wave [67].

 I and J Waves (Ventricular Ejection)

The onset of ejection is marked by a sharp negative wave, the I wave, which

represents the footward recoil of body from acceleration of blood upwards in the

pulmonary artery and ascending arch of the aorta [67].
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The J wave normally is the dominant wave of the BCG. The peak of J wave usually

occurs between 0.22 and 0.26 seconds after the onset of the QRS complex of the

ECG [67].

K Wave (Aortic Deceleration)

The K wave is a footward wave starting at the peak of the J and extending in

relatively steep slope to a deep trough at a level of the I wave or slightly beyond the

depth of the I wave [67].

To validate the signal in morphology matching approach, the average waveform

templates were calculated for each subject. The ensemble average of a signal is defined

by a fiducial time for each beat, creating the ensemble of the time varying signals

referenced to that time and then averaging across this ensemble at every time throughout

the duration of the individual beats. After obtaining the averaged templates of the

signals recorded by the capacitive wrist band from each subject, the morphology of

individual template will be compared with the standard BCG waveform visually and the

individual wave characteristics will be checked if they are as described above.

5.4.2 Methodology of BCG Validation Based on Temporal Matching

The physiological time intervals corresponding to the sequence of mechanical cardiac

events within the whole beat were defined in [70]. In the first stage, QRS complexes, T

waves and systolic BCG waves (H, I, J, K) wave detected by a wave detection algorithm,

as described in Section 4.5. H, J and K time intervals were set for BCG signal validation

associated with simultaneous ECG waves. The defined locations and time intervals are

shown in Fig 5-7.
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Fig 5-7. Definition of main waves and intervals of ECG and BCG signals.

The definitions of time interval are described in [70] and are shown below:

 J wave is the maximum of the BCG signal XBCG(n) in the range defined as a time

interval around T wave occurrence:

��� = argmaxn ���h � ,

� � ��� − 1 9�� ���1 ���� � 1 9�� ���1 (5-1)

Where, n represents every sample of the signal, iT
n is the location of T waves, i is the

number of pulses.

H wave is defined as the maximum of the BCG signal between the Rpeak and Tonset:

��� = 晦�m�晦�� ���h � ,

� � ��� � 1 20 �� ���1 ���t�� − 1 20 �� ���1 (5-2)
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Where, n represents every sample of the signal, Hin is the location of T waves, Rin is

the location of ECG R peaks, i is the number of pulses.
iTonn is defined as the location of

the start point of T wave.

K wave is searched for in an interval starting at J wave:

�K� = argmin� ���h � ,

� � �J� ��J� � 1 5�� ���1 (5-3)

Where, n represents every sample of the signal, Kin is the location of K waves, Jin is

the location of BCG J peaks, i is the number of pulses.

The percentages of waves occurred in the defined time intervals will be calculated for

each subject and a high percentage shows the recorded signal has a high consistency

with the standard BCG signal.

5.4.3 Experimental Design

To validate the signal collected by the new capacitive electrode is the actual BCG

signal four healthy subjects (2 males and 2 females) were recruited for signal validation

experiments. Each subject was asked to sit still on the chair to collect 10-min BCG

signal using the new capacitive wrist band and simultaneous ECG using dry electrodes.

The study population characteristics are presented in Table 5-1. These collected data

were also used for HRV analysis in the next section.
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Table 5-1. Study population characteristics (mean±std)
Age Weight Height BMI

25.75±2.75 years 65.50±17.15 Kg 172±7.2 cm 21.8±4.08 Kg/m2

5.4.4 Results and Conclusion

Both morphology matching and wave occurrence time matching analyses were

performed on the capacitive signals measured from 4 subjects.

Fig 5-8. Average morphological template of signals measured by capacitive electrode for 4 subjects.

To validate that the signals detected by the capacitive electrode is the BCG, the

average wave templates of different subjects were extracted as shown in Fig 5-8. After

visually comparing the morphology of the average template with the morphology of

several reference BCG signals and the definition of H, I, J and K waves, the signal
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detected by capacitive electrode can be considered as BCG signal based on

morphological feature matching.

Table 5-2. Percentage of waves that occurred in defined time interval
J wave H wave K wave

Subject 1 97.56% 96.77% 100%

Subject 2 100% 94.44% 96%

Subject 3 94.88% 92.76% 100%

Subject 4 100% 92.42% 100%

As shown in Table 5-2, the average percentage of the detected waves derived from 4

subjects within the defined time interval is 96.2%. This consistency in the occurrence of

the BCG waves based on time interval matching method from [70] provides us with the

validation that the acquired signal is indeed BCG signal.

5.5 HRV Analysis

Heart rate variability (HRV) is one of the indicators of cardiac health. The HRV is the

variation in the time between each heart beat. Having a high HRV means the body can

efficiently change your heart rate depending on the activities. Currently, HRV is mostly

measured at the doctor’s office with an ECG test that records the electrical activity of the

heart. HRV is defined as beat-to-beat variation in either heart rate or the duration of the ECG

R-R interval [71]. Comparing with ECG measurement, BCG measurement has several

advantages, the device is relatively simple and portable which means the HRV analysis can

be performed in wearable devices or in home health care monitors.
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In this section, the BCG JJ (J-J interval) series will be tested if it can be the surrogate of

ECG RR (R-R interval) series in HRV analysis.

5.5.1 Experimental Design

4 subjects (2 males, 2 females) were recruited for simultaneous ECG and BCG signal

collection. Subjects were suggested to sit still during a 5-min signal collection, ECG

signals were collected by lead 1ECG electrodes and BCG signals were collected by

capacitive wrist band. The information of these 4 subjects is shown in Table 5-1.

5.5.2 Statistical Analysis

Classical time and frequency-domain indices from both B-HRV (BCG-HRV) and E-

HRV (ECG-HRV) were estimated for all 5-min recordings collected from 4 subjects,

where stationary of the signal is assumed [71]. Bland-Altman plots are presented to

show the agreement between ECG RR series and BCG JJ series.

Mean normal to normal interval (NN) is defined as RR interval when analyzing ECG

signals and JJ interval for BCG signals. Standard deviation of NN intervals (SDNN) and

root mean square of successive differences of adjacent NN intervals (RMSSD) were

calculated for each signal acquired from every subject. The normalized power in the low

(0.05-0.14 Hz) and high ( � 0.15 Hz) frequency bands (PLFn and PHFn) which are

associated with sympathetic and parasympathetic response [71] was computed in

frequency domain. Linear correlation and Bland-Altman analyses were performed on

beat-to-beat measurements to determine whether JJ interval is an appropriate surrogate

of the RR series extracted from ECG.
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Table 5-3. Results of HRV analysis in time domain (NN: the average value of intervals with min-max
value in bracket; SDNN: standard deviation of intervals; RMSSD: root mean squared standard deviation
of intervals; PLFn: percentage of low frequency components of intervals; PHFn: percentage of high
frequency components of intervals).

Subject1 Subject2 Subject3 Subject4

RR JJ RR JJ RR JJ RR JJ

NN 854ms

(770-

918)

854ms

(758-

924)

878ms

(750-

940)

878ms

(748-

980)

757ms

(696-

840)

757ms

(692-

860)

848ms

(744-

940)

848ms

(730-

940)

SDNN 31ms 33ms 30ms 34ms 23ms 24ms 31ms 49ms

RMSSD 33ms 36ms 26ms 36ms 17ms 18ms 31ms 49ms

PLFn 0.28 0.28 0.35 0.32 0.53 0.52 0.35 0.29

PHFn 0.72 0.72 0.65 0.68 0.47 0.48 0.65 0.71

Table 5-4. Correlation results for comparison of BCG JJ series with RR series. (R2 ≤ 0.01. CI: mean
difference− 1.96SD ≤ difference ≤ mean difference +1.96SD, 95% confidence).

Subject1 Subject2 Subject3 Subject4

R2 CI (ms) R2 CI (ms) R2 CI (ms) R2 CI (ms)

JJ 0.91 ±20 0.79 ±30 0.87 ±20 0.74 ±40
5.5.3 Results

Table 5-3 shows the results of time and frequency analysis of HRV derived from

ECG and BCG signals for each subject. Table 5-4 and Fig 5-9 show the result of Bland-

Altman analysis of BCG JJ series and ECG RR series. The squared Pearson R value

varies from 0.74 to 0.91. The average squared Pearson R value of 0.8533 indicates that

JJ series extracted from BCG has the potential to be the surrogate of ECG RR series for

HRV analysis.
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Fig 5-9. Bland-Altman plots for JJ and RR series of 4 subjects. (red dashed lines correspond to the limits

of agreement)

5.6 Summary of the Chapter

In this chapter, the filtered biomedical signal waveforms and the frequency spectra were

compared with the reference. The signal collected by the new designed capacitive wrist band

was validated as the BCG by applying both morphology matching and wave occurrence time

matching approaches. In the end, the BCG JJ series were indicated to be a surrogate of ECG

RR series in HRV analysis.
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Chapter 6

Time-interval based Blood Pressure Measurement
Blood pressure (BP) is one of the most important vital signs which can indicate the health

of the cardiovascular system. It is recommended that BP to be monitored frequently for

health care, and it is especially important for people of advanced age and who have, or are at

a high risk of develop, heart disease [72]. BP varies continuously due to physical activity,

medication, emotion and stress. Different oscillometric methods, such as stethoscopes and

phonocardiograms are conventional non-invasive techniques to measure blood pressure [73].

However, these cuff-based methods have several disadvantages, which limit the uses in

certain clinic or home care settings, especially during certain physical activity in which the

cardiac output increases. A continuous BP cannot be measured using cuff-based methods

because a pause of at least 1-2 minutes between two BP measurements is necessary to reduce

errors in the measurement. Further, the patient may be disturbed by the inflation of the cuff

and this disturbance may cause a sudden elevation of the BP [3]. A continuous cuff-free BP

measurement is desirable in a multitude of clinical and home settings. In chapter, the cuffless

BP measurement using gold standard pulse transit time (PTT) and another time-interval

extracted from ECG and BCG will be described.
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6.1 Introduction on Cuffless Blood Pressure Measurement

6.1.1 Development of PTT-based Cuffless BP Estimation

There were several continuous cuffless BP measurement methods over the last

decade and most of them employed the pulse transit time (PTT). PTT-based BP

measurement has already been considered as the gold standard of cuffless BP

measurement.

PTT-based BP estimation has been extensively studied ever since 2000, when SBP

was estimated using pulse arrival time (PAT) which is the time difference between ECG

R peak and PPG diastolic wave with intermittent calibration and showed that the

estimated SBP was highly correlated with reference SBP (r =0.97±0.02) [74]. In 2005,
BP was estimated using PTT with initial calibration, and an accuracy of 0.6±9.8 and

0.9±5.6 mmHg for SBP and DBP was achieved and this research also found a non-

linear approach was better than linear one in BP estimation [75]. The definition of PAT

is shown in Fig 6-1.

6.1.2 Definition of PTT

Pulse transit time (PTT) is the time delay for the pressure wave to travel between two

arterial sites. In general, PTT is defined as the time interval between the R wave peak of

electrocardiogram (ECG) and a characteristic point of photoplethysmogram (PPG)

which is considered as a gold standard to conduct cuffless blood pressure measurement.

The definition of PTT is shown in Fig 6-1. The fundamental principle of the PTT-based

method is based upon the Moens-Korteweg (M-K) equation.
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Fig 6-1. Morphological definition of PTT, PAT, RJ interval and JP interval

In this research, the time interval between BCG and ECG signal will be investigated

for cuffless BP measurement and the performances will be compared with PTT-based

BP measurement. As shown in Fig 6-1. The RJ interval is defined as the time interval

between the ECG R peak and BCG J peak, the JP interval is defined as the time interval

between the BCG J peak and PPG P peak (maximum of PPG). According to the

definition of PTT, RJ interval and JP interval, PTT can be represented as the sum of RJ

and JP intervals (��� = �� � ��).
6.1.3 Moens-Korteweg (M-K) Equation

PTT is related to pulse wave velocity (PWV) which is further related to blood

pressure. In biomechanics, the M-K equation models the relationship between wave

speed or PWV and the incremental elastic modulus of the arterial wall or its

distensibility. The equation was derived independently by Adriaan Isebree Moens [76,

77] and Diederik Korteweg [78].
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Firstly, assume blood is non-viscous flowing liquid which flows inside complete

elastic cylindrical tube, and then blood vessel is as infinite segment with same axial

velocity named as v. The process of M-K equation is described in [79].

To analyze hemodynamics, the liquid’s segment is dx, the pressure wave takes dt to

pass dx, the pressure varying quantity is dp, and the corresponding radius displacement

is dRi, the thickness of arterial wall is h, as shown in Fig 6-2.

Fig 6-2. Segment of vessel wall and radius expansion

Then the equation for pulse wave velocity (PWV) is:

� = ���t (6-1)

By applying Newton Second Law:

dx
AdP

dx
PdA

dx
APd

dx
dF


)( (6-2)

Where P is blood pressure, A is the cross-section area of vessel. Since A is not related

to x, equation (6-2) can be expressed as:
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dx
AdP

dx
dF

 (6-3)

The equation of cross-section area is:

� = ���2 (6-4)

Blood volume is dxRi
2 within region dx, and axial acceleration is dv/dt. Equation

(6-5) can be deduced based on Newton Second Law:

� = 晦� = ���2 − �� = ����2 � �� � ���t (6-5)

Combining the equations shown above, the relationship between blood pressure and

flowing velocity can be indicated as:

− ���� = � ���t (6-6)

Secondly, we will use continuity equations to describe the relationship between PWV

and Young’s modulus. Although outflow velocity is smaller than inflow velocity, based

on conservation of mass, volume change dV/dt is equal to difference between inflow

volume and outflow volume expressed as dQ. Then

− �耀�� = �t�t�� = 2���������t�� = 2�������t (6-7)

Volume rate can also be expressed as multiplication of cross section area and instant

rate.

− �耀�� = − � ���� = − ���2���� (6-8)
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After solving these two equations, the relationship between the change of vessel wall.

thickness and flowing velocity can be expressed as:

− ����t = ����2�� (6-9)

Young’s modulus (E) is a measurement of the stiffness of an isotropic elastic material.

It is defined as the ratio of the uniaxial stress F/S (ratio between force and the area it

affects) over the uniaxial strain ���� (ratio between varied size and original size) in the
stress in which Hooke’s Law holds.

� = �t�g�� � 1�t�晦�� = �� �h �� � =�� ��� (6-10)

Therefore, the expression for stress is:

�t�g�� = �� = � ��−� 2�����2−� ��−� 2 = � ��−� 2���� 2��−� (6-11)

Since radius of vessel wall is much larger than thickness of vessel wall, that is hRi  ,

equation (6-11) can be further transformed as:

�t�g�� = ����2� (6-12)

Deduce expression for strain:

�t�晦�� = ��� = ����� (6-13)

Consequently, using the definition, combining equation (6-12) and equation (6-13),

deduce the expression of idR as:

��� = ��2� � ��2� (6-14)
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Combining equation (6-6) and equation (6-14), deduce the relationship between

blood pressure and flowing velocity:

− ���t = ���� � ���� (6-15)

Calculate the derivative of x for equation (6-6), and also calculate the derivative of t

for equation (6-15):

− �2���2 = � �2�����t− �2��t2 = ���� � �2�����t (6-16)

The relationship between PWV and Young’s modulus can be extracted from equation

(6-16):

R
hEPWV

2


 (6-17)

Accordingly, the PWV along the arterial wall depends on:

1) the biomechanics properties of the arterial wall: and in particular its stiffness E or

Young’s modulus,

2) the geometry of the wall, and in particular its thickness h and radius R,

3) and the density of blood.

Even though the derivation of the Moens-Korteweg model relies on several

simplifications, it provides an intuitive insight on the propagation phenomenon in

arteries predicting that the stiffer the artery (increased E) the faster a pressure pulse will

propagate along it. Therefore, for large elastic arteries such the aorta where the thickness
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to radius ratio is almost invariable, PWV is expected to carry relevant information

related to arterial stiffness [79]. The relationship between BP and PWV will be

described in Section 6.4.

6.2 Experimental Design

The goal of this research is to test the performance of PTT-based BP measurement as well

as RJ-interval based BP measurement. Specific experimental protocols were designed for

this study.

6.2.1 Study Population

10 healthy subjects (5 males and 5 females) without cardiovascular diseases and

hypertension were recruited for time-interval based blood pressure measurement

experiments. All the subjects volunteered to participate and gave their informed consent

before taking part in this study. The study was approved by the Office of Research

Ethics and Integrity of University of Ottawa and conducted according to Declaration of

Helsinki ethical principles for medical research on human subjects. Subjects with

implantable cardiac devices including permanent pacemakers, cardiac-resynchronization

therapy or defibrillator, pregnancy and unable to sign informed consent were excluded.

The subject characteristics are illustrated in Table 6-1.

Table 6-1. Study population characteristics (mean±std).
Age (years) Height (cm) Weight (Kg) BMI (kg/m2) Mean SBP

(mmHg)

Mean ± std 28.3±8.25 168.56±8.14 68.8±15.05 23.82±3.85 117.7±13.13
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6.2.2 Experiment Device

The simultaneous ECG, BCG, PPG were recorded by the biomedical signal

acquisition system which was described in Chapter 3. The Lead I ECG electrodes were

mounted on left and right index fingers separately. The PPG sensor was placed on the

left wrist above the main artery. The BCG wristband was wrapped on the left wrist.

Body lotion or electrode gel has been employed for BCG signal acquisition to improve

signal quality.

The beat-to-beat BP were collected by a continuous blood pressure monitor

Finometer PRO (Finapres Medical System BV, The Netherland). The Finometer Pro is a

stand-alone solution for accurate non-invasive beat-to beat blood pressure monitoring. It

can also provide hemodynamic parameters such as stroke volume, total peripheral

resistance and cardiac output as well as pulse rate (variability). For different subjects,

recommended cuff sizes were chosen, a finger cuff was wrapped on the middle phalanx

of the right middle finger to measure the blood pressure within the finger using volume-

clamp method, an arm cuff was also wrapped above right elbow which was used for

calibration. Finometer PRO has also been shown to be stable and reliable in ambulatory

recordings.

The locations of the ECG, BCG, PPG sensors and the reference continuous blood

pressure cuffs for this study are shown in Fig 6-3.
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Fig 6-3. Locations of BCG, ECG, PPG and reference BP cuffs

6.2.3 Data Collection Protocol

For each subject, ECG, BCG, PPG and continuous BP were recorded simultaneously

for 15 mins. The performance of cuffless BP measurement was validated with subjects

at rest state and with subjects undergoing various Valsalva maneuvers (VM) which are

assumed to induce dynamic BP changes. The VM is performed by moderately forceful

attempted exhalation against a closed airway, usually done by closing one’s nose shut

while pressing out as if blowing up a balloon [80]. The blood pressure responses to the

VM can be measured invasively with an intra-arterial line, or noninvasively using blood

pressure cuff or commercially available devices. The VM has four phases, and a normal

response is sinusoidal in appearance as shown in Fig 6-4. In a normal response,

Korotkoff sounds are audible only during phases I and IV, because the systolic pressure

normally rises at the onset and release of the strain phase.
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Fig 6-4. Normal Valsalva response: (a) typical blood pressure response during a VM (b) systolic blood
pressure trace demonstrating phases of the Valsalva [81]

As shown in Fig 6-4, phase 1 represents the increase in systolic pressure with initial

strain due to increase in intrathoracic pressure. Phase 2 represents the decrease in stroke

volume and pulse pressure and reflex tachycardia with continued strain due to decrease

in venous return and increase in vascular resistance. Phase 3 indicates the sudden

decrease in systolic pressure due to sudden decrease in intrathoracic pressure. Phase 4

represents the overshoot of systolic pressure and reflex bradycardia due to increased

venous return and decreased systemic vascular resistance [81].

The experimental protocol involves acquiring ECG, BCG, PPG and continuous BP

simultaneously for 15 mins with subject sitting still on a chair with their arms placed on

soft cushions on the table. The subjects were suggested to perform one VM every 2

minutes which means there were 7-8 VM performed during 15 min data collection.
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6.3 Preprocessing Data Set

After obtaining 15-min simultaneous BCG, ECG, PPG and continuous BP signals, the

ECG R peak, BCG J peak and PPG P peak are located by using the improved peak detection

algorithm as described in Section 4.5, and the RJ interval and PTT are calculated. There are

still inaccurate RJ interval calculation due to wrong J peak detection within noisy segments.

Therefore, a signal process approach is needed to preprocess the time intervals and SBP data

before SBP estimation.

As BCG is extremely susceptible to motion artifacts (MA), BCG peaks still can be

located inaccurately and thus impact RJ interval calculation by using the advanced peak

detection as described above. Therefore, outlier removal or data smoothing approaches need

to be applied on the time intervals and SBP data.

Mahalanobis outlier detection approach was considered first. Mahalanobis outlier

detection approach based on Mahalanobis distance is suitable for multivariate model which

also takes the shape of the observations into account [82]. The Mahalanobis distance is a

measure of the distance between a point P and a distribution D. It represents a multi-

dimensional generalization of the idea of measuring how many standard deviations away P is

from the mean of D. The distance is zero if P is at the mean of D, and grows as P moves

away from the mean along each principal component axis [83]. The point P will be

considered as an outlier if the number of standard deviations from the P to the mean of D is

greater than the setted threshold. However this approach locates some good points as outliers

and impact the shape of the model. Then a simple median filter was taken into consideration.

The median filter is a nonlinear digital filtering technique which is often used to remove
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impulse noise from an image or signal. The inaccurately located peaks due to motion

artifacts cause spikes on the waveform segment which can be considered as noises. The

median filter works by moving through the waveform sample by sample and replacing each

value with the median value of neighboring samples. This method will preserve the same

number of samples after filtering and smoothing the data set.

6.4 RJ-BP Model and PTT-BP Model

The processed time interval data and the simultaneous SBP data were used to establish

the time interval to SBP model. In this study, both linear regression and the exponential

regression approaches were employed.

6.4.1 RJ-BP Model and PTT-BP Model based on Linear Regression

The relation between BP and PTT is derived from the relation between BP and pulse

wave velocity (PWV), which is the velocity with which the pulse propagates. The linear

model used for BP tracking using PTT is described in a reported study [84]. In equation

(6-18), the relation between PWV and BP is:

�tt = t����h��t = 1����−�� (6-18)

Where ��� is the change in BP, � is the blood density, V is the blood volume, �t is

the change in blood volume and c is a normalising constant. The relation between PWV

and PTT is:

PTT
ZP 

WV (6-19)
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Where Z represents the distance that the blood has to travel. A resulting relation is

found when combining equations (6-18) and (6-19):

PTTBABPcBPcZPTT 





 

4
(6-20)

The relation showed in equation (6-20) describes how PTT is linearly related to BP.

The constants, A and B, can be determined through linear regression.

6.4.2 RJ-BP Model and PTT-BP Model based on Nonlinear Regression

Besides the linear relationship of PTT and BP, the relationship between BP and PTT

can be expressed in exponential model as well [85]. The exponential relationship

between modulus of elasticity and BP is:

BPeEE  
0 (6-21)

Where E0 is the modulus of elasticity when pressure is zero, BP is the blood pressure ,

 is a cnstant that depends on the vessel. Thus, the relation between PWV and BP can

be expressed as:
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eEhPWV
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0

(6-22)

Thus, the blood pressure can be expressed as:
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(6-23)
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As the PWV was defined in equation (6-19),
PTT
ZPWV 

 , where Z is the distance

between two measurement points. It can be assumed that Z and 0E remain constant

and  , r and h show only small changes [86], and the relation between blood pressure

and PTT can be expressed as:

)ln(2ln1ln1 2

0

2
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(6-24)

As shown in equation (6-20) and equation (6-24), the relation between BP and PTT

can be expressed in both linear and exponential model. In this research, the PTT shown

in equation (6-20) and equation (6-24) can be replaced by RJ interval to represent the

relation between RJ interval and BP.

6.5 Statistical Analysis

After obtaining the simultaneous RJ interval, PTT and SBP from the data acquisition, the

median filter was applied for data smoothing. Then the beat-to-beat SBP and SBP trend were

tracked using beat-to-beat RJ interval and PTT, and averaged RJ interval and PTT

respectively. The SBP trend is defined as the 40 beats moving averaged beat-to-beat SBP

and it was estimated by the 40 beats moving averaged RJ interval and PTT. The strategy of

statistical analysis is shown in Fig 6-5.
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Fig 6-5. The strategy of SBP tracking using RJ interval and PTT

The performance of estimating systolic blood pressure (SBP) using RJ-interval and PTT

will be shown in this section. The correlation coefficients between the reference SBP and the

estimated SBP using both PTT and RJ intervals were calculated, and the estimation

performances were compared for both linear model and exponential model. Beside, the

estimation performances were also compared for both beat-to-beat data and 40 beats

averaged data, the mean absolute difference (MAD) and root mean standard deviation

(RMSD) are employed to measure the differences between the estimated SBP and the

reference SBP.

The individual differences such as arterial stiffness and blood density will require models

to be personalized. In this thesis, the SBP of each subject was estimated using both PTT and

RJ interval. The SBP estimation method is shown below:

 Plot the time interval (RJ & PTT) and reference SBP using MATLAB, the curve fitting

toolbox was applied to obtain the coefficients A and B of the linear model and

coefficients C and D of the exponential model. The time interval and the reference SBP

plot with the estimated linear model are shown in Fig 6-6.
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Fig 6-6. The beat-to-beat RJ and reference SBP pairs (black dots) and the estimated linear model (blue
line)

 The SBP was estimated using both linear and exponential model,

PTTBASBPest  and  2ln PTTDCSBPest  . The SBP was also be tracked using

RJ interval.

 The correlation coefficient r between the reference SBP refSBP and the estimated SBP

estSBP was calculated for each subject, and the mean absolute difference (MAD) and the

root mean square deviation (RMSD) were calculated to assess the difference between

the reference and the estimation, the definition of MAD and RMSD are shown in

equation (6-25) and equation (6-26):

nSBPSBPMAD
n

i
refest ii









 

1
(6-25)

 
n

SBPSBP
RMSD
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i refest ii 


 1
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(6-26)
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The individual differences such as arterial stiffness and blood density will not lead to a

uniform relationship for all subjects, the relationship between the time intervals and SBP

was optimized for each subject.

6.5.1 Beat-to-beat SBP Estimation using RJ-interval and PTT

The RJ interval and PTT extracted from every individual beat were used to estimate

the SBP values, the estimated SBP values were compared with reference SBP values

collected from each subject. Linear correlation analysis was performed on beat-to-beat

data to assess the performance of SBP estimation using RJ interval and PTT.

 Linear Model

The correlation coefficients and the confidence intervals (CI) between the

reference SBP and the estimated SBP using linear model were calculated as shown

in Table 6-2.

Table 6-2. Correlation results for comparison of estimated SBP with reference SBP. ( 01.0R . CI: mean
difference− 1.96SD ≤ difference ≤ mean difference +1.96SD, 95% confidence).

RJ-SBP PTT-SBP

R CI (mmHg) R CI (mmHg)

Subject 1 0.6564 ±9.81 0.5508 ±10.89
Subject 2 0.4412 ±7.95 0.3502 ±8.21
Subject 3 0.6146 ±13.63 0.4141 ±15.73
Subject 4 0.4314 ±11.78 0.4688 ±11.52
Subject 5 0.5682 ±7.93 0.2076 ±9.05
Subject 6 0.3758 ±13.40 0.5991 ±11.51
Subject 7 0.5800 ±8.82 0.4743 ±9.57
Subject 8 0.3866 ±13.38 0.5133 ±12.47
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Subject 9 0.3939 ±14.68 0.4678 ±14.12
Subject 10 0.5059 ±12.80 0.4592 ±13.18
Mean ± std 0.4954±0.1 __ 0.4505±0.1 __

 Exponential Model

The correlation coefficients and the confidence intervals between the reference

SBP and the estimated SBP using exponential model were calculated as shown in

Table 6-3.

Table 6-3. Correlation results for comparison of estimated SBP with reference SBP using exponential
model. ( 01.0R . CI: mean difference− 1.96SD ≤ difference ≤ mean difference +1.96SD, 95%

confidence).
RJ-SBP PTT-SBP

R CI (mmHg) R CI (mmHg)

Subject 1 0.6294 ±16.82 0.3154 ±3.79
Subject 2 0.4650 ±7.81 0.3514 ±8.28
Subject 3 0.6171 ±13.68 0.4179 ±15.76
Subject 4 0.4294 ±11.78 0.4713 ±11.47
Subject 5 0.5329 ±8.30 0.2076 ±9.08
Subject 6 0.3711 ±13.32 0.5984 ±11.55
Subject 7 0.5731 ±8.84 0.4696 ±9.54
Subject 8 0.3863 ±13.31 0.5147 ±12.43
Subject 9 0.3941 ±14.68 0.4673 ±14.13
Subject 10 0.5038 ±12.79 0.4581 ±13.19
Mean ± std 0.4902±0.1 __ 0.4272±0.1 __

The MAD between the reference beat-to-beat SBP trend and the estimated SBP of

both linear and exponential model is shown in Table 6-4.
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Table 6-4. MAD between reference beat -to-beat SBP and estimated SBP using both linear model and
exponential model (unit: mmHg)

Linear Model Exponential Model

MAD (RJ-SBP) MAD (PTT-SBP) MAD (RJ-SBP) MAD (PTT-SBP)

Subject 1 3.96 �.36 3.97 �.36
Subject 2 3.19 3.30 3.14 3.30
Subject 3 5.57 6.48 5.56 6.47
Subject 4 4.76 �.66 4.77 �.65
Subject 5 1.41 2.68 1.42 2.67
Subject 6 5.54 �.86 5.55 �.86
Subject 7 3.43 3.53 3.45 3.52
Subject 8 4.59 3.33 4.57 3.33
Subject 9 5.96 5.56 5.95 5.56
Subject 10 5.17 5.59 5.18 5.59
Mean ± std 4.358±1.39 4.435±1.22 4.356±1.39 4.431±1.22
The RMSD between the reference beat-to-beat SBP and the estimated SBP of both

linear model and exponential model is shown in Table 6-5.

Table 6-5. RMSD between reference beat -to-beat SBP and estimated SBP using both linear model and
exponential model (unit: mmHg)

Linear Model Exponential Model

RMSD

(RJ-SBP)

RMSD

(PTT-SBP)

RMSD

(RJ-SBP)

RMSD

(PTT-SBP)

Subject 1 5.023 5.557 5.083 5.563

Subject 2 4.042 4.219 3.987 4.217

Subject 3 6.973 8.045 6.955 8.030

Subject 4 5.371 5.312 5.377 5.303

Subject 5 3.151 4.634 3.163 4.634
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Subject 6 6.820 5.893 6.834 5.896

Subject 7 4.492 4.855 4.519 4.869

Subject 8 5.695 5.226 5.688 5.218

Subject 9 7.501 7.213 7.501 7.215

Subject 10 5.431 4.661 5.343 4.663

Mean ± std 5.450±1.37 5.562±1.21 5.517±1.37 5.561±1.21

6.5.2 Averaged SBP Trend Tracking using RJ interval and PTT

Although beat-to-beat SBP can provide detailed information on the continuous BP

variability and cardiovascular conditions, it requires complicated algorithm to improve

the estimation precision. The averaged BP over a certain period is enough for daily

health care monitoring which can indicate the BP trends. In this study, the SBP, PTT

and RJ interval were averaged using moving average approach with the window length

of 40 beats. The averaged SBP trend and the beat-to-beat SBP waveform were shown in

Fig 6-7.

Fig 6-7. The beat-to-beat SBP waveform and the moving averaged SBP waveform (subject 1)
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As shown in Fig 6-7, the averaged SBP using moving average method with window

length of 40 beats can represent the continuous SBP trend over 15 minutes.

 Linear Model

The correlation coefficients and confidence intervals between the reference SBP

and the estimated SBP using linear model were calculated as shown in Table 6-6.

Table 6-6. Correlation results for comparison of estimated SBP with reference SBP using linear model.
( 01.0R . CI: mean difference− 1.96SD ≤ difference ≤ mean difference +1.96SD, 95% confidence).

RJ-SBP PTT-SBP

R CI (mmHg) R CI (mmHg)

Subject 1 0.7607 ±5.66 0.6955 ± 6.34

Subject 2 0.4629 ±4.95 0.2314 ±5.50
Subject 3 0.6837 ±7.53 0.5217 ±8.85
Subject 4 0.6150 ±7.37 0.4642 ±8.25
Subject 5 0.8535 ±3.47 0.3018 ±6.33
Subject 6 0.4247 ±9.32 0.8203 ±5.88
Subject 7 0.6604 ±4.65 0.5042 ±5.28
Subject 8 0.4906 ±10.67 0.6492 ±9.29
Subject 9 0.6324 ±7.43 0.7080 ±6.81
Subject 10 0.6824 ±6.74 0.6242 ±7.16
Mean ± std 0.6266±0.13 __ 0.5521±0.19 __

 Exponential Model

The correlation coefficients and confidence intervals between the reference SBP

and the estimated SBP using exponential model were calculated as shown in Table 6-

7.
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Table 6-7. Correlation results for comparison of estimated SBP with reference SBP using linear model.
( 01.0R . CI: mean difference− 1.96SD ≤ difference ≤ mean difference +1.96SD, 95% confidence).

RJ-SBP PTT-SBP

R CI (mmHg) R CI (mmHg)

Subject 1 0.7588 ± 5.76 0.6945 ± 6.27

Subject 2 0.4775 ±4.96 0.2315 ±5.49
Subject 3 0.6830 ±7.56 0.5203 ±8.80
Subject 4 0.6126 ±7.34 0.4669 ±8.29
Subject 5 0.8526 ±3.52 0.3008 ±6.36
Subject 6 0.4249 ±9.29 0.8222 ±5.86
Subject 7 0.6559 ±4.63 0.5039 ±5.31
Subject 8 0.4924 ±10.60 0.6503 ±9.27
Subject 9 0.6311 ±7.49 0.7077 ±6.75
Subject 10 0.6801 ±6.71 0.6229 ±7.17
Mean ± std 0.6269±0.13 __ 0.5521±0.19 __

The MAD between the reference averaged SBP trend and the estimated SBP of both

linear and exponential model is shown in Table 6-8.

Table 6-8. MAD between reference beat -to-beat SBP and estimated SBP using both linear model and
exponential model (unit: mmHg)

Linear Model Exponential Model

MAD (RJ-SBP) MAD (PTT-SBP) MAD (RJ-SBP) MAD (PTT-SBP)

Subject 1 2.33 2.69 2.34 2.70

Subject 2 2.13 2.33 2.11 2.33

Subject 3 3.07 3.45 3.07 3.45

Subject 4 2.97 3.15 2.98 3.16

Subject 5 1.83 2.82 1.83 2.82

Subject 6 3.79 2.31 3.79 2.30
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Subject 7 1.91 2.08 1.92 2.08

Subject 8 4.59 3.14 4.59 3.14

Subject 9 2.98 2.85 2.97 2.85

Subject 10 2.59 2.99 2.59 2.99

Mean ± std 2.819±0.87 2.781±0.43 2.819±0.87 2.782±0.44
The RMSD between the reference averaged SBP and the estimated SBP of both

linear model and exponential model is shown in Table 6-9.

Table 6-9. RMSD between reference beat -to-beat SBP and estimated SBP using both linear model and
exponential model (unit: mmHg)

Linear Model Exponential Model

RMSD

(RJ-SBP)

RMSD

(PTT-SBP)

RMSD

(RJ-SBP)

RMSD

(PTT-SBP)

Subject 1 2.900 3.211 2.910 3.215

Subject 2 2.553 2.803 2.531 2.803

Subject 3 3.853 4.505 3.857 4.509

Subject 4 3.755 4.218 3.764 4.211

Subject 5 1.767 3.234 1.772 3.235

Subject 6 4.756 3.004 4.775 2.990

Subject 7 2.357 2.711 2.370 2.711

Subject 8 5.428 4.737 5.421 4.732

Subject 9 3.801 3.465 3.806 3.466

Subject 10 3.421 3.656 3.431 3.661

Mean ± std 3.460±1.11 3.554±0.71 3.464±1.11 3.553±0.71
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6.6 Results

As demonstrated in this chapter, the continuous RJ-interval and PTT were used to

estimate and track SBP using both linear and nonlinear method, and the averaged SBP trend

was estimated using averaged RJ-interval and averaged PTT.

As shown in Table 6-2 to Table 6-5, the mean correlation coefficient between the

reference beat-to-beat SBP and the estimated SBP using linear model for RJ-interval is

0.4954 and for PTT is 0.4505. The mean correlation coefficient between the reference beat-

to-beat SBP and the estimated SBP using exponential model for RJ-interval is 0.4902 and

for PTT is 0.4272 The averaged MAD between the reference beat-to-beat SBP and the

estimated SBP is 4.357 mmHg for RJ-interval and 4.433 mmHg for PTT. The average

RMSD between the reference beat-to-beat SBP and estimated SBP is 5.5 mmHg for RJ-

interval and 5.54 mmHg for PTT which means the RJ-interval performed better than PTT in

estimating SBP using both linear and exponential model. In addition, the results did not

show significant difference between linear and exponential model in estimating SBP.

The performance of estimating averaged SBP trend using moving averaged RJ-interval

and PTT is better than beat-to-beat estimation. The correlation coefficient of averaged SBP

trend using RJ-interval is 0.627 compare to the correlation coefficient of 0.49 in estimating

beat-to-beat SBP. The correlation coefficient of averaged SBP trend using PTT is 0.552

compare to the correlation coefficient of 0.44 in estimating beat-to-beat SBP.

There are other researches reported that estimated SBP using PTT is highly correlated

with the reference SBP. As described in [75], 20 patients from a cardiopulmonary unit were

enrolled into the study and all subjects underwent a maximal cardiopulmonary exercise
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testing on a semi-recumbent cycle ergometer. The blood pressure was measured every 2 min

by a cuff-based BP monitor, and the single channel ECG and finger PPG was collected to

calculate PTT. Both linear and non-linear models between PTT and SBP were employed to

evaluate the performance of SBP tracking using PTT. The correlation coefficient between

estimated SBP and reference SBP ranges from 0.93-0.99 using linear regression and similar

for using non-linear regression.

Although the correlation coefficient of SBP estimating using RJ interval and PTT is not

as great as other reported researches, the estimated SBP waveforms shown in Fig 6-8 and

Fig 6-9 can indicate that RJ interval and PTT can track SBP trend over a long period. Also

the performance of SBP tracking using RJ interval is similar as using PTT, which means RJ

interval has the potential to be the surrogate of PTT in cuffless SBP tracking.

According to IEEE standard for wearable, cuffless blood pressure measuring devices, the

MAD is employed to assess the accuracy level of a cuffless BP device [87]. As shown in

Table 6-10, the device will be graded as Grade A if the MAD between the estimation and the

reference is less than 5 mmHg. As shown in Table 6-4 and Table 6-8, the mean MAD of

beat-to-beat SBP tracking for 10 subjects is 4.395 mmHg and the mean MAD of SBP trend

tracking for 10 subjects is 2.8 mmHg which means the results of SBP tracking using RJ-

interval and PTT are encouraging.

Table 6-10. IEEE standard for wearable, cuffless blood pressure measuring device [88]
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Fig 6-8. Reference and estimated beat-to-beat SBP waveform using RJ interval and PTT
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Fig 6-9. Reference and estimated averaged SBP trend using RJ interval and PTT
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6.7 Summary of the Chapter

In this chapter, the methodology of blood pressure estimation using time intervals were

described at the beginning. The SBP estimation using PTT and RJ intervals extracted from

BCG and ECG were compared. The estimation accuracy of estimation needs improvement

and but this method can show the SBP trend, as shown in Fig 6-7 and Fig 6-8. However,

there are also some limitations of time-interval based BP estimation.

Although PTT has been proved as a promising surrogate of BP and could become the

most widely used technique for non-invasive continuous BP monitoring in the future [74,

88], there are still several problems to be solved before its widespread application. First,

some PTT-BP models could only provide one BP parameter, e.g., exclusively SBP [89,90,

91], DBP [92], or mean BP (MBP) [93], but SBP, DBP and MBP all have clinical

significance. Second, a calibration procedure is required to map PTT to BP. However,

recalibration at intermittent intervals is often necessary for accurate estimation, potentially

owing to the inadequacy of PTT to track BP variation over a long period. Last and most

importantly, the accuracy of PTT based BP estimation is unsatisfactory. The possible

reasons are the influences of the vascular or vasomotor tone and the pre-ejection period

(PEP). Regarding PEP issue, impedance cardiogram, phonocardiogram, ballistocardiogram,

or two peripheral PPG have been adopted to eliminate the effect of PEP.
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Chapter 7

Conclusion
7.1 Summary and Contributions

In summary, this work presents a wearable blood pressure monitor that uses pulse transit

time and RJ intervals extracted from the physiological signals to estimate systolic blood

pressure mathematically.

Physiologically, the wrists location are shown to provide BCG, ECG and PPG signals.

Mechanically, the wrist is the perfect location for smart watches, wrist bands which means

monitoring vital signs on the wrist is a promising wearable technology.

Comparing with other different BCG sensors, such as accelerometer or force sensors, the

new developed capacitive BCG electrodes using soft conductive fabric and rubber can

collect BCG signal from a single point on the wrist. After validating the signal collected by

the capacitive BCG electrode using both morphology matching and occurrence time interval

matching, the detected signal was validated as the actual BCG signal. ECG RR series are

generally used in HRV analysis nowadays. In this research, the JJ intervals extracted from

successive BCG J peaks are proved to be the surrogate of ECG RR series in HRV analysis.

This work also demonstrates the signal denoising performances of both filtering method

and EMD-based denoising approach. Comparing with traditional filtering method, EMD-

based denoising method performed better in both high and low frequency noise elimination.
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The time-interval based cuffless blood pressure estimation approach has been proved to

be a promising BP measurement method. Comparing with tradition cuff-based BP

measurement, this new approach can continuously monitor BP and doesn’t have the

uncomfortability caused by pressure cuff during the measurement. In this study, two time

intervals, pulse transit time and RJ interval are employed to estimate and track systolic blood

pressure mathematically. Two mathematical models, linear regression and exponential

regression are applied to estimate SBP. The results indicate that the estimation accuracy is

not good as traditional cuff-based methods, but it shows this cuffless method can track the

BP changing trend.

7.2 Future Work

This work has indicated that time-interval based cuffless blood pressure estimation

approach is a promising BP measurement method. The future works will explore the

following directions:

 The BCG sensor will be properly evaluated to determine its sensitivity, linearity and

other parameters.

 An integrated 2-in-1 wristband which can measure ECG and BCG using soft fabric will

be developed which can save the space on the wearable device.

 The cuffless blood pressure estimation research will include collecting more data from a

wider and larger study population, and machine learning algorithm will be applied to

improve the accuracy and make the model be patient-specific.
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 A true single arm BP monitor device using JP interval (BCG & PPG) will also be

developed and tested.
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