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Abstract

A simple construction of an orthonormal basis starting with a

so called mother wavelet, together with an efficient implementation

gained the wavelet decomposition easy acceptance and generated

a great research interest in its applications. An orthonormal basis

may not, however, always be a suitable representation of a signal,

particularly when time (or space) invariance is a required property.

The conventional way around this problem is to use a redundant

decomposition.

In this paper, we address the time invariance problem for orthonor-

mal wavelet transforms and propose an extension to wavelet packet

decompositions. We show that it is possible to achieve time invari-

ance and preserve the orthonormality. We subsequently propose

an efficient approach to obtain such a decomposition. We demon-

strate the importance of our method by considering some applica-

tion examples in signal reconstruction and time delay estimation.
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1 Introduction

While the Fourier transform remains a fundamental building block in

signal analysis, the increasing demands on signal processing techniques

in a variety of complex areas have uncovered many problems for which

the Fourier domain is not best adapted. One of the most challenging

problems, researchers have to contend with, is the processing of nonsta-

tionary signals in general and that of transients in particular. For this

reason, the research interest in the wavelet transform further grew over

the last five years.

Wavelet transforms can be classified as either redundant or nonredun-

dant (orthogonal). The continuous wavelet transform [6] and the frame

decomposition [4] belong to the first class, whereas orthogonal [3, 9] and

biorthogonal [1] wavelet decompositions are in the second class. Wavelet

packets are a generalization of wavelets and allow one to optimize the

representation of a signal. Wavelet packet transforms may also be de-

fined in a redundant [16] or a non redundant form [19, 2].

The non redundant transforms are appealing for several reasons. First-

ly, the compression ability of wavelet transforms is better preserved since

no additional components are added. Another appealing feature of these

transforms is the efficiency of implementation of the decomposition and

the corresponding reconstruction through decimated filter banks. In a

stochastic setting, a property which gives the orthogonal wavelet trans-

form a useful characteristic is the statistical decorrelation of the wavelet

coefficients of a white noise process representation.

The major drawback of non redundant transforms is their noninvari-

ance in time (or space) (i.e. the coefficients of a delayed signal are not

a time shifted version of those of the original signal). The time invari-

ance property is particularly important in statistical signal processing

applications, such as detection or parameter estimation of signals with

unknown arrival time. This noninvariance implies that if a detector is

designed in the wavelet coefficient domain, its performances will then de-

pend on the arrival time of the signal. To overcome this difficulty, one has

often preferred the use of redundant transforms in detection/estimation

problems [11].1 Other works have focussed on the design of alternative

representations [15, 12].

In this paper, we show that it is possible to build different orthogonal

wavelet representations of a signal while keeping the same analyzing

1Note that it allows also more flexibility in the choice of the analyzing wavelet.

2



wavelet. These decompositions differ in the way the time-scale plane

is sampled. By choosing the decomposition which best fits the time

localization of the signal, we obtain an improved representation which

is time invariant (in a sense which is subsequently discussed). We also

consider the extension of these properties to wavelet packets.

The paper is organized as follows. In Section 2, we give some back-

ground material together with the notational conventions. In Section

3, we discuss the reconstruction (or synthesis) problem starting with a

redundant decomposition and describe the generalized class of orthog-

onal wavelet representations proposed in this paper. In Section 4, we

develop an efficient algorithm for selecting the best wavelet decompo-

sition and subsequently show that it is time-invariant. We extend all

these results to wavelet packets, in Section 5. In Section 6, we show,

by way of specific application examples, that our approach can achieve

significant improvements over existing methods. We conclude with some

remarks in Section 7.

2 Background

2.1 Multiresolution Analysis

An orthogonal wavelet decomposition of a signal x(t) C L2(R) leads to

coefficients {W I(x)}(k,j)ez2 such that

Wj(x) -< x(t), 2 - k) > 2 x(t) *( - k)dt, (1)
2J/~ l 2'

where the function p(4.) is usually referred to as a mother wavelet and

* stands for the complex conjugation. The orthonormal wavelet ba-

sis {2-J/ 2 (t/2i - k),(k,j) E Z2} may be built from a multiresolution

analysis of L2(R) [9]. In this case, the approximation of the signal at

resolution 2-3 can be described by the coefficients

Ae(x) a< x(t), t - k) >, k E t c (2)

where 0(.) is the scaling function. The mother wavelet and the scaling

functions then satisfy the so called two-scale equations:

2- 2( - k) = h- 2 k X(t - 1), (3)

I=-oo

t °°
2- 2½(2- k)= 1 gl-2k 0(t - 1), (4)

2 1=-oo
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where {hk}kEz and {fk}kEz are respectively the impulse responses of

lowpass and highpass paraunitary Quadrature Mirror Filters (QMF)

[18]. If we consider the vector spaces Vo - Span{o(t/23 - k),k E Z}

and Oj - Span{f(t/2 j - k),k E 7}, it results from Eqs. (3) and

(4) that Vj+i = Vj · Oj.2 We then find that, for every jm E Z,

{2/(t/2 - k),k C 7,j < jm} U {2-jm/2 b0(t/2 jm - k),k E 7} is an

orthonormal basis of L2(R). The interest in the QMF filters lies in the

efficient computation of the orthogonal wavelet decomposition via a two-

channel filter bank structure [10]. The decomposition which is useful in

emphasizing the local features of a signal, presents however, a limita-

tion, namely its noninvariance in time (or space). This implies that

the wavelet coefficients of TE[x(t)] A x(t - r), T E R, are generally not

delayed versions of {0Wjk(z)}kez.

To circumvent this problem, one can resort to a redundant decompo-

sition of the signal x(t) effected as,

W2
0j(x) = < X(t), 12jl( 2) >' (5)

o a 1 t - 0
27(z) < x(t), 2/2- ( ) >, 0 E R,j E Z, (6)

This representation is time-invariant since the redundant wavelet and

approximation coefficients of 71[x(t)] are respectively T1[W (x)] and

%[A_2j(x)], j E E. Throughout the paper, we will consider redundant

wavelet decompositions using wavelets built from a multiresolution anal-

ysis.

2.2 Wavelet Packet Decomposition

The wavelet packet decomposition [19] is an extension of the wavelet

representation, which allows the best matched analysis to a signal. To

define wavelet packets, we first need to introduce functions of L2(R),

Wm(t), m E N, such that

J Vo(t)= 1, (7)

and, for all k E Z,

2-W 2m(t k) = h2k Wm(t- k), (8)

I=-oo

2 W2 m+( 2 - k)= gl- 2k Wm(t - k), (9)
2T he s uI1=-oc

2The symbol ED stands for the orthogonal sum of vector spaces.
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where {hk})ke and {k})kE7z are the previously defined impulse responses

of the QMF filters. If, for every j E Z, we define the vector space

Qj,m - Span{W,(t/2J - k),k E Z}, we can then show that

I

Qj3m - = Qj+1,2m ) Qj+1, 2m+l- (10)

As a result, if we denote by P a partition3 of R+ into intervals Ij, =

[2-3m,...,2-3(m + 1)[, j E Z and m E {0,...,23 - 1}, then

L2() = 2 Qj,m. (11)
(jm)/Ij,m EP

In an equivalent way, {2-j/2 Wm(2-it - k),k E Z7,(j,m)/Ij,m E P} is

an orthonormal basis of L2((R). Such a basis is called a wavelet packet.

The coefficients resulting from the decomposition of a signal x(t) in this

basis are

C4 m(x) =< x(t), 2 /2 Wm (2 - k) > . (12)

By varying the partition P, different choices of wavelet packets are

possible. For instance, a special wavelet packet is the orthonormal

wavelet basis such that 0(t) = Wo(t) and 0(t) = Wi(t). We have

then Vj = Qj,o and Oj = ji. Another particular case is the equal

subband analysis which is defined, at a given resolution level jm E Z,

by P = {Ijm,m,m E N}. Each possible choice corresponds to a differ-

ent structure of the filter bank used to implement the related wavelet

packet decomposition. This structure may also be described by a binary

tree whose nodes are indexed by (j, m) and whose leaves correspond to

the indices (j, m) such that Ij,m E P. Such a tree will subsequently

be referred to as a frequency tree. Fig. 1 shows the frequency trees

corresponding to an equal subband analysis.

Generally, a decomposition onto a basis is evaluated by its ability to

compress and provide a compact description of the useful information

in a signal. It is thus of interest to select the partition P for which

an optimized representation of the analyzed signal is obtained. Several

criteria have been proposed to evaluate the compactness of a represen-

tation [19, 2]. One of the best known measures is the entropy, which is

defined as

te({cak}kEz1) -- Pk ln(Pk), (13)
k

where

Pk = I -o 122 (14)

3
Recall that a partition P of a set B is a set of nonempty disjoints subsets whose

union is B.
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and {ak}keZ is the sequence of coefficients of the decomposition in a

given basis. A binary tree search method was developed by Wickerhauser

and Coifman [2] to find the wavelet packet which minimizes a given

criterion -((.). This algorithm requires the criterion to be additive in

the sense that

H(({ak}keZ U {ik}kEl) = '7 ({(ak}kEZ) + lt({/
3k}kEZ)* (15)

Note that the entropy criterion is not additive but, due to the orthonor-

mality of the considered decompositions, it can be shown to be tanta-

mount to using the additive criterion

7He({cak}kEZ) I - a k 12 ln( aik 12). (16)
k

The time noninvariance problem of orthonormal wavelet decomposi-

tions is also present in wavelet packet representations. We can simi-

larly obtain a redundant wavelet packet representation which is time-

invariant, as follows:

1 t-_

C20 ,m =< x(t), m( )>, 0 R,j E Z,m E N. (17)
2

3
,m '22 23

For ease of notation, we will omit the variable "(x)" in Ckm(x), Cj (x),

Wj(x), W 23j(x), A (x) and A2, (x) whenever there is no ambiguity.

3 Reconstruction from Redundant Wavelet Co-

efficients

Time invariance is important in many applications and may, as previ-

ously mentioned, be achieved by way of a redundant wavelet decom-

position. It is often of interest in signal processing applications to re-

construct/retrieve a signal from its perturbed4 wavelet representation.

An obvious way to do so would be to select the subset of coefficients

{W)0, (k,j) E Z2} from the set of redundant wavelet coefficients and re-

construct the signal from its orthonormal wavelet representation. There

exist, however, many different ways to achieve this reconstruction. In

particular, we will see that we can extract different orthonormal bases

from the wavelet family {2-J/2a[(t - 0)/2J], E R,j E Z}.

4 This pertubation is generally caused by some addition of noise or some coarse

quantization process.
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Proposition 1 Let two vector spaces be defined as

A t -23
Vjp Span{q( 2tp k), k E Z4, (18)

Ojp - Span{C( tp - k) kE C }, (19)

for j E N and p E {0,...,2J -1}. It follows that

I I

Vj,p = IVj+l,p Oj+l,p = Vj+l,p+2 ED Oj+l,p+23, (20)

{2-j/20[(t - p)/2j - k], k E Z} and {2-J/2 0[(t - p)/2 j - k], k E Z} being

respectively orthonormal bases of l/l,p and Oj,p.

Proof: By using (3)-(4), we can write

j+1 :-f i -
2- 2 2.+-k) 2= hE 2T ( 2 - 1), (21)

I=-00oo

22- + 2 k) = 1-2k 2 2 -( p (22)

2iJ±+l I=-oo

and thereby establish the same relationships between {f[(t - p)/2 j -

k],k c 7}, {q5[(t - p)/2 +Il - k],k c Z} and {¢[(t - p)/2J+l - k],k E

Z} as those between {f(t/2 j - k),k E Z}, {¢(t/2 j +1 - k),k E 7} and

{fb(t/2 j+l - k), k E Z}. The property is therefore satisfied for the index

p. Similarly, Eqs. (3)-(4) straightforwardly lead to

_+_ (t-p2 - 2) 2 ( - I
2- +( - k) = E h1- 2k2 2- ), (23)

I=-oo

2- - k) = 91-2k 2 2 - (24)

where h' A hk-_ and g' = gkl satisfy exactly the same paraunitary

conditions as the filters with impulse responses hk and gk. The desired

property thus holds for the index p + 23. U

The previous proposition states that two different orthonormal bases

are possible for decomposing the space Vj,p at the next lower resolution

2 - j -1 . These two decompositions differ in the time-localization of the

basis functions. A binary tree can be used to describe the different

possible choices at each resolution level j (see Fig. 2). Each node of this

tree is indexed by parameters (j,p). The redundant wavelet coefficients

{W2j}kE, j > 1, may be structured according to this tree by associating
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to the node (j,p), p C {0, ... ,2j- 1, the set {W23 k+P}ke. If we assume

that the multiscale decomposition is performed on jm levels, it is easy

to check by Relation (20) that the set of functions {2-J/2 p[(t - pj)/2j -

k],k E Z,1 < j < m} U {2-jm/2 [(t - pjm)/ 2 jm
- k],k k 7 } is an

orthonormal basis of VO, where for each Pjm E {0,...,2 m - 1}, pj is

the number corresponding to the j least significant bits (LSBs) in the

binary representation of Pjm. It is clear that 23m different bases can be

generated, each one being graphically represented by a path from the

root to a leaf of the tree.

The above results show that there exist (at least) 23m different ways

of reconstructing a given signal. According to Eqs. (21) and (22),

the coefficients {A2k+ P}keZ, p E {0,...,2j - 1}, may be calculated

from coefficients {A2J+Ilk+P}keZ and {W2J+l P}keZ, in the same way
from coefficients tAi~:~:k+"d2(123 + 1

as coefficients {Ajk}kez are obtained from coefficients {Aj+l}kez and

{W) +l }keZ. Namely, this reconstruction may be recursively achieved by

using the following relation:

co co

23k+p hk-21 2i+l+ k-21 V2+ (25)

I=-oo l=-oo

The well-known corresponding synthesis filter bank is given by Fig. 3.

In this figure, the operator 2 T is an interpolator by a factor 2, i.e. its

inputs {ek}kEz and its output {S}ke7e are such that

{ ek if k is even
Sk =0 if k is odd. (26)

According to Eqs. (23) and (24), ,{A2jk+P}ke, p E {0,. .. , 2 - 1}, may
t2i

~
1 k~p+2i -2-' k+p+2J ' '

just as well be obtained via SA2i+2k+P+21 keZ and {l2J+3k+P+2 }keZ-

This is achieved by carrying out the following recursion,

2
3ik+p = / 2i+l 

+
p+2

j
I 2+ 1/+p+2 ( 27

X2Jq-P = E 
p -

k-21 A2J+ + E 9k-21 23 + 2 (27)

1=-oo l=-oo

Due to the simple relation between {h/}keZ, {g)}kEZ, and {hk}keZ,

{gk}keZ, we obtain the synthesis filter bank of Fig. 4. The only dif-
ference with Fig. 3 is that the operator 2 T has been replaced by the

operator 2 t' whose input {ek}k)e and output {sk}kez are such that

ek-, if k is odd
Sk 2. (28)

0 if k is even

Note that the filter banks of Figs. 3 and 4 may be associated to dual

analysis filter banks. The corresponding decimator by a factor 2, 2 .
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(resp. 2 .'), is such that its output {sk}kez is obtained from its input

{ek}kez by

Sk = e2k (resp. Sk = e2k+1)- (29)

Retaining the even samples amounts to the decimation commonly used

in any orthonormal wavelet decomposition. The above discussion, how-

ever, shows that it is always possible to keep the odd samples and still

satisfy the perfect reconstruction property, by a proper modification of

the interpolation scheme. This remark allows us to give Relation (20),

a simple digital filtering interpretation. Having two possible choices at

each resolution level (even or odd decimation), particularly clarifies the

total number of orthonormal bases, 2jm.

4 Best Non Redundant Set of Wavelet Coeffi-

cients

4.1 Algorithm

In the previous section, it was proved that the original signal may be

reconstructed from its redundant wavelet decomposition by selecting dif-

ferent sets of orthonormal coefficients. The question which quite natu-

rally arises is how to carry out the selection. This necessitates choosing

a criterion such as those discussed in Section 2.2 (e.g. the entropy),

which would reflect the matching properties of a given representation

to a signal. Upon selecting a criterion, the solution lies in devising an

efficient implementation of its optimization (minimization with our con-

ventions). To reduce the complexity of the procedure, we further impose

that the criterion satisfy the additivity property given by Eq. (15).

For the sake of efficiency, we recursively evaluate the criterion AH(.)

for each sequence of coefficients at a given resolution. By associating a

variable Hj,p - 1({W2 2[k+Pl}kEZ,l<l<j) to each node (j,p) of the tree of
Fig. 2, where pi is the number corresponding to the I LSBs of p, and

using the additivity of 7-(.), the following can be deduced:

Hj=+l,p = j,p + 1({W2j+1 }kez), (30)

j+l,p+23 ++,p+ ({ }k+p+23} kz), (31)

for j > 1 and p E {0,...,2j - 1} (with K1o,o - 0). If the number of

operations in computing this criterion is assumed proportional to the

data length K, the complexity of the direct approach is of the order

2
j

m eK, for a coarsest resolution level jm, while for the recursive technique,

it is proportional to 2K/2 + 4K/4 + ... + 2Jm(K/2 jm + K/2 jm ) = (jm +

9



1)K.5 The recursive solution thus prevents an exponential growth in

the computational cost of K-(.).

The 2jm comparisons of all 17-j,p account for the rest of the computa-

tional burden. A reasonable choice of jm thus results in a rather limited

complexity.

4.2 Time-Invariance Properties

The selection of the best representation, as described in the previous

section, results in a time-invariance. As will be shown below, the time-

invariance property of the redundant wavelet transform (5) can thus be

preserved for the orthonormal one, if one adequately chooses the basis.

Let x(t) E Vo be a signal analyzed on jm resolution levels and let

{2a +PJ (X)}kEZX,1l<j<m U {A2 j
m 3pm (X)}kEz be one of its orthonormal

representation, where pj is the number corresponding to the j LSBs of

pjm. If another signal y(t) is such that y(t) = 'T[x(t)], r E Z,6 it follows

from the time-invariance of the redundant wavelet decomposition that

2ip (y) )1 2 3 k+PJ -r(X) j C { 1,... ,Jm}, (32)

A2Jm (y) _A2jm -7 (). (33)

Proposition 2 By writing

pj -r = -2Jrj + qj, rj E Z,qj E {O,...,2 _ 1}) , (34)

the wavelet decomposition of y(t) = T%[x(t)], r E Z, results in

{W23 (Y)}ke = )r;[{W2± 3(X)}kEz], j E 11 ... ,jm}(35)

{A2m k+Pm (y)}ke z = rjm [{A2r+m (X)}kEZ], (36)

where qj corresponds to the j LSBs of qjm.

Proof: We use a downward induction to prove the proposition. We

assume that for index j + 1, we have

qj+l = 2, (37)
1=0

5For simplicity, it is assumed that the number of samples at resolution 2- 5

is exactly K/2 j , without taking into account the boundary effects of the wavelet

decomposition.
6 The restriction to integer values of the time delay is not a problem in practice

as it is due to the arbitrary choice of the resolution level 0 as the highest resolution

level.
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where ej E {0,1}, j E {0,...,j m }, is the (j + 1)St LSB in the binary

representation of qj,. By using Eq. (34), we then obtain, for j E

{1,...,j *- 1},

pj - = pj - Pj+l - 2i+lrj+l + qj+l

j-1

= -2j(2rj+l + rj - ej) + e 12
1 , (38)

1=0

where r/j = (pj+ -pj)/23 is the (j+l)St LSB in the binary representation

of Pjm. Since rj and qj are defined in a unique way by Eq. (34), we can

conclude that
j-1

qj = E el2 z, (39)
1=0

which ends the proof. ·

In light of the above result, we see that the pjmth orthonormal rep-

resentation of a translated signal y(t) is the qj th representation of the

original signal up to some shifts rj of the wavelet coefficients, at each

resolution level j. It is clear that, by using a time-invariant optimization

criterion7 , the best representation for y(t) is obtained by some shift (at

each scale) of the coefficients of the best representation for x(t).

5 Extension to Wavelet Packets

5.1 A Class of Orthonormal Representations

Given the importance of the time invariance in signal processing prob-

lems, together with the fact that wavelet packet bases are a generaliza-

tion of wavelet bases, it is natural to explore the extendibility of the

results in the previous sections.

Our approach here, is similar to that for wavelets, in the sense that

we will proceed to show that there exist many possible orthonormal

wavelet packet representations of a signal which can be extracted from

its redundant wavelet packet decomposition. These representations are

characterized by different time-localizations of the functions which form

the corresponding wavelet packet basis.

Proposition 3 Let a vector space be defined as

Qj,m,p - Span{Wm(t 2 k), k E }), (40)

7A criterion is said to be time-invariant when it is not sensitive to any translation

of the coefficients. Note that the entropy is a time-invariant criterion.
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for j E N, (m,p) E {0,...,2J - 1}2, we have

Qj,m,p -= Qj+1,2m,p D Q'j+1,2m+l,p

= 3j+1,2m,p+2J3 ( -j+1,2m+l,p+2j (41)

and {2-J/2/V,m[(t - p)/2 j - k],k E Z} is an orthonormal basis of Qj,m,p.

Proof: The proposition follows from Eqs. (8)-(9), which lead to

2- 2 W2m( t -p 2 Wm( - 1) (42)

2_1 I2 t -p
2- 2 W2m+l( 2 k) - k 2 2 Wm( - 1), (43)

23
1=-co

and

2- 2 W 2m(2 - k) = s - 22 Wm -1)(44)

I=-oo

2_+1 t - p - 23 J t - P
2- 2 W2 m+i( - k) = E gl-2k 2 Wm( t - 1)( 45)

23+1 2=3
l=-oo

As a consequence, let P be a partition of [0,1[ in intervals Ij,m,

{2-J/2Wm[(t - pj,m)/2 j - k],k E Z,(j, m)/Ij,m E P} is an orthonormal

basis of Qo,o if

Po,o = 0, (46)

j-1

Pj,m = 5 r1h,L2L-mJ 2] 1 1, L21-3mj C {0, 1}, (47)
1=0

where L[J denotes the greatest integer lower than its argument.8 The pre-

vious condition is easily obtained, by recalling that at any node (j, m),

for j > 0 and m E {0,...,2j+1 - 1}, we have

Pj+l,m = Pj,L[m/2J + 7rj+l,Lm/2]
2 j' (48)

The latter result may also be interpreted as the possibility of choosing

either even or odd decimations in the filter bank implementation of

the usual wavelet packet decomposition. It is clear that for a given

filter bank structure, we can generate 2' different orthonormal bases,

r, being the number of nodes in the frequency tree characterizing the

8 The above equation implies that pj,2m = P3,2m+1, for j > 1 and m E

{ o 0,... , 2j-1 - 1}.12
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wavelet packet decomposition considered. It follows that the maximal

number of possibilities is 22J -1, which corresponds to an equal subband

analysis. Note that, unlike the wavelet case, the different orthonormal

bases cannot generally be represented by a binary tree, because of the

additional flexibility in the analysis provided by the parameter m.

5.2 Optimization of the Representation

As in the case of orthonormal wavelet decompositions, the goal is to

reconstruct in the best way possible a signal from its complete decompo-

sition (i.e. find the optimal (j, m,p) triplets). A direct approach would

be prohibitive and result in an impractical solution. In what follows

we proceed by (i) determining the best filter bank structure for a given

signal, then (ii) obtaining the optimal time-localization parameters.

In the first step of the algorithm, we proceed very similarly to Wick-

erhauser's method to find the wavelet packet best matched to the an-

alyzed signal. Let '-((.) be an additive criterion to be minimized. If

Klj,m A H({C jm}kEZ) and P denotes the optimal partition of [0, 1[, the

algorithm may be summarized as follows:

* Vrm E {0,...,2 m - 1}, -jmm - -jm,m;

V E {jm- 1, ... ,0},

Vm E{O,...,2 j - l}
,

if /j,,m < (j+1,2m + '7j+l,2m+1)

Pj,m {Ijm}

otherwise

Pjm Pj+l1,2m U Pj+1,2m+1i

3j,rm -l(ji+1,2m + ?Nj+1,2m+l);

P = 0, 0.

The only difference with Wickerhauser's algorithm lies in the use of a

redundant wavelet packet decomposition which is also reflected by the

1/2 scaling factor. This variation on the algorithm can be seen to be

equivalent to averaging Ht((C23, I}kEZ ) over p E {0,.. . 23 - 1}, for each

j E N and m E {0,... ,2 - 1},
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Following the optimization in the structure, we proceed to obtain the

time-localization parameters of the basis functions. As a result we have

to compare the 2
' different orthonormal representations, (, being the

number of nodes in the frequency tree corresponding to the partition

P). This entails computing

/y ({'2Jk+PJm},m

(j,m)/I3,m EP

for all sets of integers Pj,m which can be expressed in the the form of

Eqs. (46)-(47). Because of the generality of the tree structure, it is un-

fortunately difficult to obtain a recursion to reduce the computational

complexity. This says that for a data length Ki, we have 2IK opera-

tions to compute the criterion and 2K - 1 comparisons to make. The

computational burden may rise quite rapidly unless jm is reasonable.

5.3 Time-Invariance

Much like orthonormal wavelet decompositions, a time-invariance prop-

erty may be derived for wavelet packet decompositions.

Proposition 4 Let x(t) and y(t) be two continuous time signals such

that

Cok,O(y) = T[Cok,O(X)], k E Z, (49)

and r E 7, we then have, for all j E N andm C {E 0,...,2 j - 1),

2'22k3 k'r (5 0
C2k+pj,m(y) = Tjm[C2 j "( )], k Zk (50)

where the integers pj,m satisfy Eqs. (46)-(47) and the integers qj,m are

defined as follows:

qo,o = 0, (51)

and
j-1

qj,m ei2l-jmJ2X elL2L-jmr G {0,1}, (52)
1=0

when j > 1, whereas the integers rj,m are such that

Pj,m - r = -2 rj,m + qj,m. (53)

Proof: First, note that there exist unique rj,m and qj,m E {0,..., 2. - 1}

satisfying Eq. (53). One can further note that Eq. (50) is equivalent to

C2j,m (y) = C2 j,m r (), (54)

by recalling the time-invariance of the redundant wavelet packet decom-

position. To complete the proof, we will show by induction that qj,m

14



may be expressed as in Eqs. (51)-(52). The property is obviously sat-

isfied when j = m = 0. We proceed to prove that the property being

satisfied for the indices (j, m), implies that it is also satisfied for the

indices (j + 1,2m) and (j + 1,2m + 1). We use Eq. (53) to write

Pj+l,2m -T = 2 (lrj,m - rj,m) + qj,m

- +1 2m + EI-jmJ 21, (55)
1=0

where the integers r'+1,2m and ej,m are defined by

Tj,- j,m - -2r+l, 2 ra + j,m, ¢j,m {0, 1}. (56)

Due to the uniqueness of representation (53), we can conclude that

J

qj+1,2m 
= S eI,L21-JmJ

2 '
(57)

1=0

The property is also satisfied for indices (j + 1, 2m + 1) as a result of the

equality of Pj+1,2m and Pj+1,2m+l which implies that rj+l,2m+l = rj+1,2m

and qj+l,2m+l = qj+l,2m. [

The above results clearly show that, by using a time-invariant criterion

(e.g. entropy), one can generate a time-invariant wavelet packet repre-

sentation. This is to say that the optimal representation corresponding

to a time-shifted signal is derived from the optimal representation of

the original signal by translating each set of wavelet packet coefficients

corresponding to the indices (j, m) by rj,m.

6 Applications

6.1 Estimation of Noisy Transients

In the same way as signal subspace approximation is used in spectral

estimation [17], thresholding of the wavelet coefficients has been pro-

posed in the literature [5, 13, 8, 14, 7] as a means to enhance estimation

of an unknown signal in noise. The key idea in fact lies in the ability

of wavelet transforms to compress most of the useful information of the

signal and spread that of the noise. The compact representation of the

signal information then plays a key role in discriminating against the

noise, so long as the energy of the latter does not overwhelm the signal

components.
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In this section, we demonstrate the importance of the time-invariance

property of a multiscale representation and its effect on estimation prob-

lems. We assume an observed signal y(t) C O as the sum of a signal

x(t) CE R to be estimated and of a stationary, zero-mean normal noise

b(t). Without loss of generality, we will assume that the power spectral

density (PSD) of the noise is 1. Because of the linearity of the considered

transforms, we also have an additive noise model for the wavelet packet

coefficients:

23-k+p,m(y) 2J k+p, _b) O_ J _
C2Jm +p0m ) _< C2 +p"m(X)+Ck+pjm(b) O < < j, O < an < 2

j
1,

(58)

where jm designates the coarsest resolution level of decomposition and

the pj,m's are integers satisfying Eqs. (46)-(47). 9 Since the represen-

tations of interest are furthermore orthonormal, the random variables
-

2
3 k+pj rt

{(C2j,m ' (b)}ke,(j,m)/imep are i.i.d. N(0,1), for any partition P of

[0, 1[ in intervals Ij,m. Note that the mean square estimation error of

x(t) integrated over time, is equal to the sum of the mean square es-

timation errors of all its wavelet packet components, because of the

orthonormality.

The coefficients of the signal x(t) are nonlinearly estimated by using

a thresholding technique, as follows:

-2 3k+p -2- r~~Jk+pi~m(y) l> 

C2+j,m (x) 2,mf I 2
) (59)

CO~ .0 otherwise

where ( > 0 denotes the threshold level. Note that the method may

appear as an extension of the matched filtering approach allowing one

to cope with the case where the signal of interest is unknown. The

difficulty is then to select an adequate threshold (. This choice is the

result of a trade-off between

* a good reduction of the noise,

* the preservation of the main signal components.

A problem which also arizes when dealing with noisy signals, is the

evaluation of the criterion used to find the best basis. As described in

the Appendix, it is possible to modify the entropy criterion to avoid the

overwhelming effect of the noise.

9The wavelet formulation results straightforwardly as it is a special case of that of

the wavelet packet.
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We provide two simulation examples of noisy signals to substantiate

the foredescribed nonlinear estimation procedure. In both cases, the

signal to noise ratio and the normalized mean square estimation error

are defined respectively as

K 1 2 -1

SNR -= V {A(b) = I 4(X)2 (60)

Z-'f-lr[A f(X ) _k(2x)
NMSE = -k=O (61)

-k=0 Aok(x) 2

where {Ak(x)}0o<k<K designate the estimates of {Aok(X)}o<k<K and ,K is

the number of samples.1" In our simulations, K = 256 and the threshold

level ~ is equal to 4. Daubechies filters [3] with 8 coefficients (4 vanishing

moments) are used to construct the wavelet and wavelet packet decom-

positions. The signal is analyzed on 4 resolution levels (jm = 4).

Example 1 The signal of interest is the sum of two wavelet packets:

15 1 t - 63 1 t-191
x(t) = -[( )2 - + -W 2( 8 )1 (62)

This signal corresponds to a somewhat ideal case for the wavelet packet

representation."1 Fig. 5 shows the original signal and the noisy signal

with an SNR = -3.571 dB as well as the temporal estimate which cor-

responds to the direct thresholding of the signal samples. Fig. 6 shows

the estimates obtained by using the usual wavelet and wavelet packet

decompositions and the time-invariant wavelet and wavelet packet rep-

resentations. The gain in performance which appears in this example is

confirmed by a Monte Carlo study involving 500 different realizations of

the noise. The results are summarized in Table 1.

Example 2 The signal to be estimated is such that

Aok() = 8.5 exp(-0.072 I k - 123 D) cos(t I k - 123 I), (63)

and the SNR is now 3.537 dB. Table 1 illustrates the improvement re-

sulting from the use of the time invariant representations.

6.2 Time Delay Estimation

The time-invariance property may also be useful in time delay estimation

problems. We address the problem of estimating a time delay r E Z from

10As is common in the pratice of wavelet decompositions, the signal x(t) is assumed

to belong to V0.

1"Such a transient is clearly unrealistic in most applications unless we have the

ability to choose the signal.
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two observed processes, which may be assumed to be measurements of

two sensors:

yn(t) A xn(t) + bn(t), n E {1, 2}, (64)

where xi(t) is an unknow signal, x 2(t) a xi(t - r) is its delayed version

and bl(t) and b2(t) are two uncorrelated stationary, zero-mean Gaussian

noise processes.

In this case, we use a wavelet decomposition to illustrate this ap-

plication. As was explained in the previous section, estimates of the

wavelet coefficients of xl(t) and x 2(t) are obtained, by finding the best

wavelet representations of these signals (from yl(t) and y2 (t)) and using

a thresholding technique. It is then possible to estimate 7 by making

use of Relation (34).12 In light of (34), the parameters rj corresponds

to the shift between the wavelet coefficients of x1 (t) and x 2(t), for a

given resolution level j, and may therefore be determined by a classi-

cal correlation method (by finding the maximum absolute value of the

correlation sequence). In this way, Eq. (34) allows us to calculate an

estimate rj of 7, for each resolution level. We then proceed to compute

a global estimate of T as a weighted average of these estimates. The

weighting factors are defined as the sum of the energies of the estimated

wavelet coefficients of xi(t) and x2 (t) at each resolution level.1 3 It is

worth noting that this approach does not require the reconstruction of

the signals from their wavelet coefficients. So, the computational load

remains low.

Example 3 The reference signal is (in Vo) such that

A() = 4.3exp[-0.019(k - 128 cos[(k- 128)], (65)

and the delay is T = 10. The PSDs of the noises are normalized to

1. Daubechies filter with 8 coefficients are used to carry out wavelet

decompositions on 3 resolution levels. The estimates of the delay ob-

tained by the proposed method are graphically represented in Fig. 7.

The mean square estimation error evaluated with 150 realizations is

E{(f--T) 2 } = 1.207. If the delay is estimated by simply picking the max-

imum value of the correlation function of yi(t) and y2(t), poorer results

are obtained as illustrated in Fig. 7. We then have E{(T - T)2
} = 4.947.

12The last statement holds provided that a unique best representation exists for

both xi(t) and x2(t).
13 When the energy of either xi(t) or x2 (t) vanishes, the corresponding resolution

level is not taken into account.
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7 Conclusion

In this paper, we have shown that a class of orthonormal wavelet/wavelet

packet decompositions may be obtained by varying the time localizations

of the basis functions. By selecting the set which minimizes a proper en-

ergy concentration criterion (e. g. the entropy), we obtain an optimized

representation of the analyzed signal. The appeal of this approach lies

in the resulting time (space) invariance of the orthonormal decomposi-

tion of a given p;,,cess. As illustrated in the examples, a substantial

performance improvement in estimation/detection problems involving

noisy transients may be achieved. This is obtained at the expense of an

increased computational complexity.
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Appendix: Optimal Representation in the Pres-

ence of Noise

To simplify the discussion of the thresholding procedure, we reformulate

the problem of signal estimation as follows: we want to estimate an un-

known deterministic sequence {ak)l1<k<K from observations {Y7k)l<k<K

such that,

Ik -= Ok + 13k (66)

where {1
3
k)l<k<z are i.i.d. N(0,1) random variables.l 4 We further have

Ok #4 0 iffk E {k1,...,kL}, (67)

where {kl})1<l<K is a sequence obtained by reindexing {1,...,K} and

L E {1,...,K). In our case, these last quantities are also unknown.

When dealing with noisy signals, it must be kept in mind that our goal

is to optimize the representation of the signal to be estimated. Consider-

ing the (non normalized) entropy criterion, directly calculated from the

observed signal, we obtain

L K

He({^(k}1<k<K) = Z 'e(kOl + 3-kl) + E He(k:l).- (68)

1=1 l=L+1

If the noise tends to be dominant (i.e. K > L), it is clear that the

second element in the above equation may swamp out the first and

thereby perturb the optimal search. Note that the definition of the

entropy in this context is a random variable in contrast to that given

in an information theoretic setting. Expressions of the mean and the

variance of the noise term of the entropy may be found in [7].

It is therefore useful to find a criterion which is less sensitive to noise.

This can be achieved by first noting that thresholding the observed data

by ~ > 1 is in fact equivalent to minimizing the criterion

1(0) - 0, (69)
M

J({kl})l<l<AJ) -e(?lTk) + M21ln(~2 ), (70)
1=1

defined for every M E {1,...,K} and every sequence {kl}l<l<M ex-

tracted from {1, ... , K}. The minimal value of J(-) is indeed, obtained

for the set of integers ' = {k E {1,...,K/ k > 15 We then

14 A finite number Ki of variables was obtained, by assuming that the signal is

observed during a finite time.

15The property follows from the fact that K-e(Yk) + 21 n(~2) < 0 iff I Yk I> E,

provided that ~ > 1.
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propose to use the minimal value of J(.) as a criterion to compare the

different representations of the noisy signal:

Hn({hk}1<k<K) - ) - E e(7ek) ( I)2 ln(62 ), (71)

where /u(£) denotes the cardinality of Q£. The first term in the right

member of Eq. (70) is the entropy of the thresholded sequence, whereas

the second term may be interpreted as a regularization term favoring a

small number of selected components. It is also useful to note that the

criterion 7-n(.) is additive and time-invariant.
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temporal wavelets time inv. wav. pack. time inv.

wavelets wav. pack.

example 1 0.6037 0.6887 0.1720 0.6096 0.0875

example 2 0.3346 0.2854 0.2404 0.2150 0.1501

Table 1: NMSE in the estimation of noisy transients averaged on 500

realizations.
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Figure 1: Frequency tree of a 3 resolution level equal subband decom-

position. (Nodes are indexed by parameters (j, m).)

25



(0,0)

(1,0) (1,1)

(2,0) (2,2) (2,1) (2,3)

(3,0) (3,4) (3,2) (3,6) (3,1) (3,5) (3,3) (3,7)

Figure 2: Time-localization tree for a 3 resolution level wavelet analysis.

(Nodes are indexed by parameters (j,p).)
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Figure 3: Synthesis filter bank for signal reconstruction from its wavelet
coefficients, when 0 < p < 2J.
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Figure 4: Synthesis filter bank for signal reconstruction from its wavelet
coefficients, when 2 <_ p < 2j+1.
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Figure 5: First example of noisy transients (SNR = -3.571 dB).
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Figure 6: Estimation of the signal in Fig. 5.
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Figure 7: Delay estimates using a time invariant wavelet representation

and a classical correlation method.
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