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Introduction

Electroencephalography(EEG) has come a long way since 

its discovery 140 years ago by an English physician Rich-

ard Caton. In 1875, he obtained the first EEG from open 

brains of monkeys and rabbits. Almost 50  years later, in 

1924, Hans Berger made the first EEG recording on the 

human scalp, by using simple radio equipment in order to 

amplify the electrical activity of the brain, and obtained a 

written output on paper. He claimed that brain activity that 

is observed through the use of EEG can change in a con-

sistent, reliable and recognizable fashion when the state of 

the patient changes, such as going from relaxation to alert-

ness, sleep, lack of oxygen (Bronzino 1995). This break-

through gave rise for the research of the years to come and 

the varied applications of EEG use today.

The average human brain has about 86 billion neurons 

(Herculano-Houzel 2009), and the communication between 

them is the key brain activity. They are excitable cells with 

intrinsic electrical properties, and their activity results in 

magnetic as well as electrical fields, which can then be 

recorded with the use of recording electrodes. The EEG is 

the recording of the summed electrical activity of popula-

tions of neurons called pyramidal cells, measured with 

the use of electrodes placed on the scalp and graphed over 

time. It is an alternating current that fluctuates from posi-

tive to negative depending on a number of factors, includ-

ing changes in the permeability of the cell membrane that 

are induced by excitatory or inhibitory inputs from other 

neurons. There are two main types of neuronal activity: 

action potentials and postsynaptic potentials. Action poten-

tials are the result of the very rapid depolarization of a 

neuron mediated mainly by changes in permeability of the 

membrane to sodium and potassium ions. They occur when 

the cell depolarizes to a certain degree from its negative 
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resting state potential. Once that threshold is reached, there 

is a rapid firing of the action potential (about 1 ms.) from 

the beginning of the axon at the cell body down to the axon 

terminals. Postsynaptic potentials are mediated by a num-

ber of neurotransmitter systems and, as a result of synap-

tic activation, generally entail slower changes in membrane 

potentials (Lopes da Silva 2010). They are voltages pro-

duced when the neurotransmitters bind to the receptors on 

the membrane of the postsynaptic cell, making ion chan-

nels open or close. Reliably, EEG can only record postsyn-

aptic potentials. Due to action potentials being very rapid 

and brief, in addition to having to travel down the axon at a 

fixed rate, the electrodes placed on the scalp simply cannot 

detect them. Postsynaptic potentials, on the other hand, rep-

resent the change in electrical charge outside the membrane 

and this lasts in the extra-cellular space for up to 200 ms. 

The extra-cellular electrical charge, positive or negative, 

is what is measured with electrodes placed on the scalp. 

Pyramidal cells are like little batteries in that they have 

polarity—if one end of the dendrite is positive, the other is 

negative. Whether the charge outside the dendrite at the top 

of a pyramidal cell is positive or negative depends on two 

factors; first, whether an inhibitory or excitatory stimulus 

has come to the synaptic junction from the axon of another 

cell and, second, whether that synapse is proximal or dis-

tal to the cell body. For example, if an excitatory stimulus 

comes in near the distal end of the dendrite (near the sur-

face of the cortex) the change in permeability of the mem-

brane allows  Na+ to rush into the cell at that point leaving 

the extracellular space negative (since the pyramidal cell 

acts like a battery, the extra-cellular space at the proximal 

end of the dendrite will be positive). The EEG electrode 

on the scalp will record a negative extracellular potential 

if the same thing is happening at the same time to a large 

number of pyramidal cells in the same macro-column of 

cells that lies below the electrode. The EEG thus represents 

the algebraic sum of excitatory and inhibitory postsynaptic 

potentials.

EEG plays a crucial role in many aspects of today’s 

research. It is used in medicine, where monitoring brain 

activity (or the lack thereof) is useful in determining brain 

death in patients, areas of damage following a stroke or 

head trauma, epileptic activity, sleep disorders, and many 

others. In other research, it is useful in investigating various 

cognitive functions, such as memory or attention; it is also 

used in language and clinical research; for example, studies 

that investigate EEG patterns in individuals with aphasia.

Event-Related Brain Potentials (ERPs)

For decades, EEG recording was of great use in research 

and clinical settings. However, it is very difficult, if not 

impossible, to use the raw, continuous recording to exam-

ine the specific neural activity as a function of certain cog-

nitive processes.

Event-related brain potentials are small parts of the con-

tinuous EEG recording, which are evoked in response to 

stimuli, such as viewing of pictures or words on the com-

puter screen. In cognitive neuroscience experiments, it is 

not very informative to just use a continuous EEG record-

ing. If we are interested in, for example, how the brain 

deals with language comprehension or production, we need 

the recording to reflect the modulation of brain activity by 

that particular task, in a precise moment in time. Therefore, 

it is necessary to look at the ERPs, rather than a continu-

ous EEG recording. ERPs are obtained by time-locking 

the stimuli so that we know at exactly which point in time 

the stimuli were presented and then we analyze the brain 

response to a particular stimulus, such as a sound, word, 

picture, and so on.

ERPs are used in a range of psychological experiments 

that aim to investigate various aspects of cognitive pro-

cesses, such as language comprehension and production, 

memory, attention, amongst many others. ERPs cannot 

be typically seen within the raw EEG recording, because 

of their very small amplitude (Teplan 2002). Therefore, 

they need to be singled out from the continuous record-

ing by creating an average of recording periods, known as 

epochs, which are time-locked to repeated presentations 

of the same stimulus. The spontaneous EEG fluctuations, 

unrelated to stimulus presentation, are averaged out, result-

ing in the ERP wave, which reflects only the activity per-

sistently related to the time-locked presentation of stimuli. 

Therefore, it can be said that the ERPs mirror the neuronal 

activity evoked by the repeated presentation of a stimulus.

How Does it Work?

Below is an example of an experimental setting used in 

ERP studies (Fig. 1).

The participant is presented, in this case, with a visual 

stimulus (a picture) on a computer screen. Each time it 

appears, it evokes a response by the brain, which is con-

tinuously recorded on the computer. This recording is 

then averaged, and individual ERPs, time-locked to the 

stimulus that was repeatedly presented, get extracted. 

EEG signal is obtained by recording the electrical activ-

ity, which is produced by the brain with the use of elec-

trodes set at different sites on scalp (see Fig.  2, below, 

for an example of the electrode array that is often used 

in EEG studies, showing 64 sites, evenly distributed 

according to the 10/20 convention, with a Cz electrode as 

the reference). The EEG measures the difference in elec-

trical potential between two sites (usually termed active 

and reference) measured over time. Eye-movements 
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and blinks can contaminate the EEG recording and are 

“the result of the intrinsic voltage gradient of the eye” 

(Luck 2005, p. 162). The EEG recording can be visually 

inspected for eye-blinks as these are distributed across 

the scalp but have the most power in the frontal region, 

and inverse potentials are often found over the parietal 

and occipital sites.

ERP Components

The point of extracting and analyzing ERP components 

from the continuous data in research is to average the 

Fig. 1  In an experimental 
setting, a number of electrodes, 
usually 32, 64, or 128, are 
placed on a participant’s head, 
which enables the electrical 
brain activity to be measured on 
the surface (scalp)

Fig. 2  An example of the electrode array frequently used in EEG 
studies

Fig. 3  Some of the most commonly studied ERP components in lan-
guage research. Solid line represents the basic perceptual components 
in an experiment involving any visual stimuli, such as words or pic-
tures. Two dashed lines represent additional components, which are 
elicited in certain experimental designs
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activity over a number of trials in each condition. Only 

the activity that is recurrent and time-locked will not be 

cancelled out and therefore has some meaning. The out-

put which is obtained, resembles a wave, with a number 

of positive and negative peaks. Those peaks are known 

as ‘components’ and labelled according to their polarity, 

with P standing for positive, and N for negative, and their 

approximate latency in milliseconds (for example, P100 

is the positive peak appearing around 100  ms after the 

onset of the stimulus). Negative going waves are associ-

ated with activation, whereas positive going waves with 

inhibition. Medical experts, such as neurologists, usually 

read EEG with negative up and positive down. There is 

some inconsistency amongst the ERP researchers, with 

some following the neurologists’ convention and others 

having positive up (as illustrated in Fig. 3, below). There 

are many known ERP components involved in language 

research. Figure  3, below, presents some of the most 

studied ERP components.

Some, especially the early components (P100, N100, 

P200) are generally linked with basic, low-level perception 

and are thought to be automatic in nature. This means, that 

as long as a perceptual stimulus such as a word or a picture 

is presented, they should be elicited. Other components, 

which come later (usually after 250  ms.) represent con-

scious cognitive processing and can be elicited in certain 

experimental conditions. This distinction of early (auto-

matic) and late (more conscious) components is made just 

to illustrate the general idea of ERP components. This gen-

eralization may not be valid in all cases, and the functional 

significance of each peak is often task-dependent and the 

experimental paradigm should always be considered.

Components Most Commonly Implicated in Language 

Research

What Do You Mean? The N400

N400 is one of the best and most studied language compo-

nents. It was first reported by Kutas and Hillyard (1980). 

Over the last 30 years, it has been used as a dependent vari-

able in more than 1000 studies, with topics ranging from 

language comprehension, through semantic memory, pro-

cessing of faces and gestures, to clinical studies such as 

those that looked at developmental disorders. It was dis-

covered by accident, in a modified experiment aimed at 

eliciting a P3b response for language materials (Kutas and 

Hillyard 1980). Participants were presented word-by-word 

with sentences, which had either a congruent ending (75% 

of stimuli), such as ‘I shaved off my moustache and beard’, 

and 25% of sentenced which either had a strange ending 

(‘He planted string beans in his car’) or completely incor-

rect endings (‘I take my coffee with cream and dog’). As a 

result, a large negativity was elicited—largest for semanti-

cally anomalous sentences, but present also for those that 

had a strange, although theoretically possible, ending. It 

peaked around 400 ms after the onset of target word, and 

was labeled the N400 (Kutas and Federmeier 2011).

The N400 is found in a number of different experimental 

paradigms. Firstly, it has been well documented in lexical 

priming paradigms. The N400 effect (created by the differ-

ent waves of the congruent—incongruent stimuli) is found 

when the target word is unrelated (for example, semanti-

cally or categorically) to the proceeding word (prime). The 

unrelated pairs induce larger N400 amplitudes as opposed 

to the related ones. Secondly, it has been found in auditory 

word presentation (Bentin et  al. 1993). In those experi-

ments, the N400 appears slightly earlier than in the case of 

visual word presentation (but only in natural speech; when 

presented at a fixed rate, there is no shift in timing) and 

lasts longer. It also has a more frontal topography, less con-

centrated on the right (Holcomb and Anderson 1993).

It is important to note that the N400 is not elicited to 

just any unexpected language manipulations. For exam-

ple, it is not found in studies using capital letters for the 

target word when the rest of the sentence is in lower-cases 

(for example, ‘I shaved off my moustache and BEARD’) or 

those using simple grammatical violations, such as having 

a singular form of the noun when it should have been plural 

(for example, ‘All turtles have four leg’). The N400 effect 

is not elicited as a response to just any violation, linguistic 

or not, but rather is very closely linked with the process-

ing of meaning. It is especially powerful in language stud-

ies, however its application goes beyond that (Kutas and 

Federmeier 2011). The component’s sensitivity to mean-

ingful stimuli enabled a range of semantic investigations to 

take place, including those that focus on how the seman-

tic memory is stored and retrieved in the brain (commonly 

referred to as semantic memory).

Kutas and Federmeier (2011) point out that out of a 

range of different studies, two main streams of findings are 

prevalent. Firstly, there is a disparity between the behavio-

ral outcomes (reaction times) and the ERPs. That is, only 

rarely do those two behave in a similar pattern. This is per-

haps not surprising given that with behavioral measures 

such as RTs, a number of cognitive processes take place 

and get consolidated by the time the individual makes a 

response; whereas with the ERPs, the components of inter-

est reflect only a specific fraction of the whole process. 

Secondly, the results obtained through the ERP analysis 

often fail to fully support an existing theory, thus support-

ing different elements of various theoretical approaches.

The N400 has been reported across different modalities, 

such as speech production (Strijkers and Costa 2011) sign 

language (Kutas et al. 1987), and pseudowords (Leinonen 

et  al. 2009; Friedrich et  al. 2006), pictures (Nigam et  al. 
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1992; West and Holcomb 2002; McPherson and Holcomb 

1999), faces (Debruille et  al. 1996; Barrett and Rugg 

1989). However, it is important to mention that topogra-

phies of the N400 distributions can vary in each of those 

contexts (Kutas and Federmeier 2011). As the N400 effect 

has been found in studies that used different types of stim-

uli, such as words, pictures, and sounds, amongst others, 

Kutas and Federmeier (2011) argue that the N400 effect 

should be seen as “modality-dependent but not modality-

specific” (p. 9). That is, different types of stimuli can elicit 

the N400s, but those, although they have many broad simi-

larities (such as waveshape and timecourse), depend on 

the type of stimuli used and vary in terms of the specif-

ics (especially when it comes to topography). And so, for 

example, written words elicit the N400 which is strongest 

in centro-parietal region, whereas pictures are concentrated 

in the fronto-central regions. Furthermore, when compar-

ing within-participant differences, van Petten and Rhein-

felder (1995) found that when presented with visual/audi-

tory words and meaningful environmental sounds, either 

meaningfully related or not to the upcoming words, the 

N400 was more right hemisphere dominant in the case of 

words, but left hemisphere dominant in the case of envi-

ronmental sounds. Even though the N400 has been found 

in studies using sounds, the N400 effect does not reliably 

appear in classic music experiments. Instead, those consist-

ently elicit a P3b response (Besson and Macar 1987).

Looking at the wide range of studies that incorporate the 

N400 as a measurement, it is difficult not to conclude that 

our unique ability to see the meaning in the world around 

us, to which the N400 is susceptible, is underpinned by a 

number of cognitive processes, such as attention, memory, 

language, perception, amongst many others. The N400 

therefore seems to be a very reliable and solid compo-

nent with which we can study processes directly linked to 

semantic integration.

The Preceding Context Matters: The P600

P600 is a positive wave of activity occurring around 

500–800 ms after the onset of a target word. It is an index 

of processing syntactically incorrect or non-preferred sen-

tences (Osterhout and Holcomb 1992; Hagoort et al. 1993). 

Osterhout and colleagues (1994) argue that the P600 com-

ponent varies with the degree to which a syntactic con-

tinuation of a sentence is expected. That is, grammatically 

incorrect continuations result in a larger P600 than those 

that are grammatical but non- preferred. It has also been 

found to be sensitive to continuations which are more diffi-

cult to process even though they are grammatically correct 

and preferred, compared to a control condition (Kaan et al. 

2000). Additionally, recently the P600 has been linked with 

monitoring and re-evaluation processes (Kolk et  al. 2003; 

Kolk and Chwilla 2007; van de Meerendonk et al. 2010). 

Therefore, the P600 can reflect the ‘double- checking’ of 

the information that is expected in the processing of syntac-

tically abnormal sentences. In addition to syntax, the P600 

has been found to be elicited in some situations outside of 

the language context, such as violations in music (Besson 

and Macar 1987; Patel et al. 1998), mathematics (Lelekov 

et al. 2000), and sequencing (Lelekov et al. 2000; Núñez-

Pena and Honrubia-Serrano 2004). This implies that the 

P600 component is sensitive to a violation of any expected 

structure, whether linguistic or not.

Some investigators took advantage of the fact that some 

syntactic violations can impact semantics, and investigated 

the processing of less clear-cut psycholinguistic aspects, 

such as the gender agreement between a pronoun (her) and 

its antecedent (the boy). In this example, such processing 

could be argued to be syntactic (constrained by an indi-

vidual’s grammar) or semantic (part of the word’s mean-

ing and how those words are used in speech). The results 

of such experiments clearly show that similar violations 

only modulate the P600 (and possibly LAN) rather than 

the N400, suggesting that they were perceived as syntactic 

rather than lexico-semantic (Osterhout and Mobley 1995).

Left Anterior Negativity (LAN)

Another component, known to also index syntactic process-

ing, is the left-anterior negativity (LAN). It is a negative 

wave of activity, peaking around 300–500 ms window on 

the frontal part of the left side of the scalp. However, this 

location has not been found to be consistent across studies 

(Hagoort et  al. 2003). It is elicited by grammatical viola-

tions (Kutas and Hillyard 1983; Friederici et al. 1993) and 

garden path sentences (Kaan and Swaab 2003), albeit less 

frequently. A distinction can be made between an early 

LAN (ELAN), elicited around 100–200 ms after stimulus 

onset, and LAN appearing in the 300–500 ms window. 

The ELAN has been implicated in automatic process-

ing of phrase structure information and is elicited when 

phrase structure or word category is violated, such as when 

a passive participle (not a noun) follows a determiner (for 

example, the stolen car) (Neville et  al. 1991; Friederici 

et al. 1993). The later component, LAN, has been initially 

implied by Friederici and colleagues (2002) to be elicited 

by problems with morpho-syntactic agreement process, but 

later this interpretation has been questioned. Hagoort and 

colleagues (2003) elicited it for phrase structure violations, 

and Deutsch and Bentin (2001) found it to be an early index 

for agreement violations. There is a debate about the lan-

guage specificity of the LAN, with some researchers claim-

ing that it reflects processes specific to syntax, whilst others 

argue that it is a more general index of working memory 

load (Kluender and Kutas 1993a, b; Coulson et al. 1998).
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In the literature, it is common to find (E)LAN 

component(s) followed by the P600, with the P600 

thought to reflect post-hoc integration of various streams 

of information and the repair of anomalies involving sen-

tence structure, and possible semantic inconsistencies.

Mismatch Negativity (MMN)

This component reflects auditory deviance, and therefore 

is used in speech perception research. It is a negative 

deflection, peaking around 160–220ms after stimulus 

onset (Luck 2005). It is elicited in an auditory oddball 

paradigm, in which one ‘standard’ sound is presented 

frequently, whist another, ‘deviant’ (which differs in 

pitch, duration, and other acoustic/phonetic properties 

from the standard) is presented randomly and infre-

quently. MMN is observed if the difference between the 

standards and deviants has been registered. MMN has 

been suggested to act at the pre-attentional level, since 

it can be elicited in coma individuals (Näätänen 2003). 

It can also be elicited when listening to music, watch-

ing a movie, reading a book, or sleeping, and individu-

als do not have to engage in a specific activity. MMN is 

believed to be a result of an automatic process, which 

compares actively incoming stimuli (sounds) to a sen-

sory memory trace of previous sounds (Luck 2005). 

MMN has been used extensively in first language acqui-

sition research with neonates and infants. Typically, 

behavioral research on speech perception in babies 

focuses on preferential looking or sucking rate (Voulou-

manos et  al. 2010; Werker et  al. 1998). However, such 

methods are sometimes difficult to quantify and their 

interpretation has, at times, caused controversy (Cheour 

et  al. 1998). An example of research using ERPs and 

the MMN is looking at how children’s perception of 

phonological categories changes with age and develop-

ment. Initial behavioral reports indicated that until about 

1 year of age, infants are sensitive to all kinds of phone-

mic distinctions, whether they are present in their native 

language or not (Werker and Tees 1994). Research 

involving ERPs has replicated those findings. In adults, 

a smaller MMN is elicited to vowel categories, which 

are not present in their native language (Näätänen et al. 

1997). When comparing Finnish babies, they showed a 

larger MMN to /õ/ found in Estonian language at the age 

of 7 months, than at the age of 11 months (Cheour et al. 

1998). Additionally, the MMN elicited by the 11 month 

old babies to the Estonian /õ/ was smaller than the 

MMN elicited by their peers for whom Estonian was a 

native language. Therefore, a conclusion can be drawn 

that infants become less sensitive to their non-native 

phonemic distinction as they grow. This example illus-

trates how ERPs can be used in language research with 

infants.

Pros and Cons of Using ERPs in Language Research

Advantages

ERPs, because of their good temporal resolution, are use-

ful in language research because language processing 

happens at a very fast pace. Individual words are recog-

nized in much less than half a second, and a difference 

between a /d/ and a /t/ can be recognized in just a few 

milliseconds because it comes down to a difference in 

voicing onset (Kaan 2007). Only a method with an excel-

lent temporal resolution can provide some insight into 

how language processing unfolds over time.

ERPs are particularly useful when working with 

clinical populations, such as individuals with aphasia, 

or infants and children. It is a technique that enables 

researchers to present the stimuli in spoken form, rather 

than in writing. Additionally, participants are not required 

to perform an extra task, again making it particularly use-

ful when testing special populations. For example, in 

studies involving language comprehension, it is possible 

to assess the processing of a particular word, which might 

appear in the middle of the sentence. In classic behavio-

ral experiments, it is necessary to wait until the sentence 

is fully presented for participants to make a response, 

thus relying on their memory. By that time, a number of 

cognitive processes are involved and it is not possible to 

accurately determine their effect. In experiments where 

an overt response by participants is needed, it is possi-

ble to establish which stage of processing is affected by a 

particular experimental manipulation, from the stimulus 

presentation to the response.

This technique allows for the collection of continuous 

data, with very good temporal resolution. In many language 

experiments, the sampling rate (defined as the rate at which 

the waveform data is sampled so that it can be changed to 

a numerical format) is between 250 and 512 Hz (samples 

every second), which is in line with a rate of language com-

prehension and therefore enables the continuous online 

processing.

The ERPs are multidimensional, allowing researchers 

to draw conclusions about the type of processes involved 

and their relationship. An example might include studies 

involving the RTs and self-paced reading. In those cases, 

we do not know why people might struggle with reading, 

whereas with the ERPs we can say whether they are strug-

gling with, for example, the semantics or syntax, as those 

are different components responsible for different processes 

and they are easily distinguishable in the ERPs.
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Another advantage is that the effects can be seen almost 

immediately upon presenting participants with a particular, 

for example semantic, manipulation. Additionally, every 

single stimulus, not just targets, can be time locked in ERP 

research, thus providing not only instantaneous, but also 

continuous look at language processing.

Finally, the cost of ERPs is important. ERPs are rather 

inexpensive, compared to other techniques. Whilst the cost 

of testing a single participant in the fMRI experiment was 

valued to be up to $800, the ERP session for each person 

was at $1–3 (Luck 2005).

Disadvantages

One of the main drawbacks of EEG research is the number 

of trials needed in an experiment. It is essential to have a 

large number of stimuli in each condition presented to par-

ticipants, usually at least 40, because an individual ERP 

signal is such a small part of the continuous EEG record-

ing that we need a larger sample size in a number of par-

ticipants for meaningful interpretations. The exact number 

depends on a number of things, but typically in sentence 

processing studies involving 20 participants, a minimum of 

40 trials is needed in each condition (Kaan 2007). This in 

itself can create a number of further problems. Firstly, the 

time it takes to prepare the stimuli. Stimuli used in experi-

ments have to be closely matched on a number of charac-

teristics, such as word length, familiarity, imageability, 

amongst many others. Creating a set of such stimuli will 

take time, especially given that it is advisable that no stim-

ulus is presented more than once to the same participant. 

Instead, different sets of items are created, and these are 

counterbalanced across participants to ensure that all ver-

sions of the stimuli are presented the same amount of time 

throughout the experiment, but no participant is presented 

with the same version of a stimulus more than once. It can 

be very time consuming, especially in experiments that 

have a number of different conditions. Kaan (2007) sug-

gests that in a study with four different conditions, it can 

take over a year to prepare a well-matched set of stimuli. 

Secondly, the large number of trials means longer experi-

ments, especially if more conditions are needed, and that 

leads to tired participants. This in turn leads to a number of 

difficulties, such as possible alpha waves, participants pay-

ing less attention to the task, poor concentration, employ-

ing different processing and coping strategies, more missed 

trials, and so on. It is important to remember that poor 

quality data leads to more noise, which in turn leads to 

more trials that might need to be rejected. Another impor-

tant aspect is the human factor. Participants can often get 

tired and fed-up with long, monotonous studies. That is 

why frequent breaks are advisable. It is thought that blocks 

lasting 5–7  min, separated by a short break, are optimal 

(Luck 2005). Thirdly, a large number of trials often lead to 

more artefacts and more trials that will have to be removed. 

Eye blinks, muscle movements, accidental head turns, even 

swallowing can create artefacts which will affect the ERPs. 

Some researchers choose to give specific instructions to 

participants, such as asking them to blink only at specified 

times, for example, after they have made a response and 

never during, whilst others choose to refrain from such spe-

cific instructions because it can affect participant’s atten-

tion and quickly lead them to be fatigued. A mathematical 

method, such as that proposed by Gratton and colleagues 

(1983) can be applied to the data in order to correct for the 

distortion of eye blinks, which can be especially useful in 

special populations, where specific instructions often can-

not be given. However, using such method also has some 

drawbacks (Luck 2005). A large number of trials make it 

impractical for the ERPs to be used in certain experiments, 

such as those in which each participant can only receive 

one trial in each condition (Luck 2005).

Another possible disadvantage of using ERPs is the 

poor spatial resolution. ERPs show a good temporal 

resolution, but it is difficult to say where in the brain the 

activity occurs. Poor spatial resolution could be a result 

of limited spatial sampling or contamination of the ref-

erence electrode. Furthermore, ERPs only provide infor-

mation about surface cortical sites, whereas other neuro-

imaging techniques, such as MRI, can go deeper in the 

cortex, or even subcortical, when looking at the activa-

tion patterns.

In sentence processing experiments involving visual 

presentation of stimuli, it is not advisable to present the 

whole sentence on the screen at once because of the eye 

movements. Also, because it would not be possible to time 

lock the ERPs to our target stimuli, sentences are usually 

presented on a word-by-word basis. This leads to a rela-

tively slow stimuli presentation rate, usually of 500  ms 

interval from the presentation of one stimulus to the pres-

entation of another. This is different from typical reading 

and can therefore add some load to working memory and 

may introduce a confound (Kaan 2007). However, results 

from experiments investigating natural speech are compa-

rable with those using visual presentation of stimuli (Grat-

ton et al. 1983).

In comparison with classic behavioral studies, the inter-

pretation of ERPs is less clear and requires much more 

inferences. For example, in behavioral experiment in which 

participants took 30 ms longer to press the button in con-

dition 1 than in condition 2, it is reasonable to say that 

the time to process and perform an action takes this much 

longer in condition 1 than 2. However, in ERPs when peak 

latency is later in condition 1 in comparison to condition 

2, it is difficult to draw a conclusion without making many 

assumptions and inferences (Luck 2005).
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Despite those possible limitations, using ERPs in lan-

guage research has proven to be popular and valuable and 

has added a great depth of knowledge to how language is 

processed in the human brain in real time.

Conclusions

Although not without some limitations, EEG has been suc-

cessfully used in cognitive psychology research. In particu-

lar, thanks to its ability to directly measure real-time brain 

activity, especially without the need for an additional task, 

it has been extensively applied in the language domain. It 

is clear that ERPs can highlight the temporal unfolding of 

neural activity associated with different cognitive aspects 

of language comprehension and production.
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