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Time-lapse full-waveform inversion with ocean-bottom-cable data:
Application on Valhall field

Di Yang1, Faqi Liu2, Scott Morton2, Alison Malcolm3, and Michael Fehler4

ABSTRACT

Knowledge of changes in reservoir properties resulting

from extracting hydrocarbons or injecting fluid is critical

to future production planning. Full-waveform inversion

(FWI) of time-lapse seismic data provides a quantitative ap-

proach to characterize the changes by taking the difference

of the inverted baseline and monitor models. The baseline

and monitor data sets can be inverted either independently

or jointly. Time-lapse seismic data collected by ocean-bot-

tom cables (OBCs) in the Valhall field in the North Sea are

suitable for such time-lapse FWI practice because the ac-

quisitions are of a long offset, and the surveys are well-re-

peated. We have applied independent and joint FWI schemes

to two time-lapse Valhall OBC data sets, which were ac-

quired 28 months apart. The joint FWI scheme is double-

difference waveform inversion (DDWI), which inverts dif-

ferenced data (the monitor survey subtracted by the baseline

survey) for model changes. We have found that DDWI gave

a cleaner and more easily interpreted image of the reservoir

changes compared with that obtained with the independent

FWI schemes. A synthetic example is used to demonstrate

the advantage of DDWI in mitigating spurious estimates of

property changes and to provide cross validations for the

Valhall data results.

INTRODUCTION

Time-lapse seismic monitoring is widely used in reservoir man-

agement in the oil industry to obtain information about reservoir

changes caused by fluid injection and subsequent production.

The seismic responses change according to the fluid saturation

and pressure variations in the reservoir. The optimal goal of

time-lapse seismic is to track fluid flow in areas without well logs

(Lumley, 2001). Conventional analysis of time-lapse seismic data

gives either qualitative dynamic information, such as seismic am-

plitude, or indirect kinematic parameters, such as image shifts and

traveltime differences. This information needs to be transferred to

reservoir properties by reservoir modeling (Lumley and Behrens,

1998). Quantitative 4D techniques are used to estimate reservoir

compaction and velocity changes using time shift and time strain

in the data (Landrø and Stammeijer, 2004; Zadeh et al., 2011). Am-

plitude variation with offset (AVO) analysis inverts partial-angle

stacks for elastic impedance changes (Sarkar et al., 2003; Tatanova

and Hatchell, 2012). However, these methods assume simple sub-

surface structures, and often involve manual interpretation.

Full-waveform inversion (FWI) has the potential to estimate den-

sity and elastic parameters quantitatively (Tarantola, 1984; Mora,

1987; Virieux and Operto, 2009). Subsurface properties are updated

iteratively by fitting data with modeled waveforms, which are gen-

erated by solving wave equations. Ideally, by subtracting the models

inverted from each data set in a series of time-lapse surveys, the

geophysical property changes over time can be quantified. Instead

of analyzing small and large offsets separately as in Zadeh et al.

(2011), FWI naturally takes all types of waves into account, includ-

ing diving waves, supercritical reflections, and multiscattered

waves. The structural depth and velocity changes can be well-rep-

resented in FWI inverted models; therefore, separate analyses are

not necessary, as in conventional time-lapse methods (Landrø

and Stammeijer, 2004). In addition, FWI makes no assumption

about the subsurface structures and involves less manual interac-

tion. However, FWI at the current stage still needs a fairly good

starting model. Many ongoing studies focus on how to relax this
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constraint (AlTheyab and Schuster, 2015; Luo and Wu, 2015;

Warner and Guasch, 2015).

The most straightforward strategy of time-lapse FWI is to per-

form two independent inversions on each data set starting from

the same initial model. The subtraction between models would give

time-lapse model differences assuming the two inversions converge

to a similar level in a similar number of iterations (Zheng et al.,

2011; Routh et al., 2012). However, the convergence levels of wave-

form inversions for individual data sets are affected by data quality

and computational parameters used in the inversion, which may dif-

fer between surveys. Model differences caused by different local

minima between inversions may generate misleading time-lapse im-

ages. One way to mitigate the undesired deviation between models

is to use the final model inverted from the base data set as the initial

model for the monitor inversion. As discussed in Routh et al.

(2012), most parts of the models are already close and the inversion

mainly focuses on the time-lapse difference. However, this is only

true when the baseline FWI is so complete that no extra updates

would be generated through more iterations (Yang et al., 2015).

In practice, we cannot afford an infinite number of iterations,

and so the residuals due to the truncation might leak to the monitor

inversion and mix with the real time-lapse difference. Watanabe

et al. (2005) apply a differential waveform tomography in the fre-

quency domain for crosswell time-lapse data during gas production

and show that the results are more accurate for estimating velocity

changes in small regions than those obtained using the conventional

method. Onishi et al. (2009) apply a similar strategy to conduct dif-

ferential traveltime tomography using crosswell surveys. Denli and

Huang (2009) develop a double-difference waveform inversion

(DDWI) algorithm using time-lapse reflection data in the time do-

main and demonstrate, using synthetic data, that the method has the

potential to produce reliable estimates of reservoir changes. Similar

approaches are also reported by Zhang and Huang (2013) and

Zheng et al. (2011). Several publications have compared the perfor-

mance of the three different strategies with synthetic examples.

Raknes and Arntsen (2014) improve the convergence using a local

regularization term in all three schemes and apply them on a lim-

ited-offset data set. Maharramov and Biondi (2014) compare the

three schemes using frequency-domain solvers with synthetic ex-

amples and also propose using regularization to improve the results.

Asnaashari et al. (2015) conduct a similar comparison study using

synthetics and show that the prior model information makes the tar-

get-oriented time-lapse inversion more robust with the presence of

strong noise. Nonetheless, to our best knowledge, very few large

field data applications of DDWI have been reported.

A major obstruction to successful field data applications of FWI

and DDWI is data acquisition. To recover a model having a broad

wavenumber spectrum, low-frequency and long-offset data are re-

quired, but they are often not available in legacy seismic experi-

ments. Advanced technologies, such as wide-aperture and wide-

azimuth acquisitions, make FWI more feasible nowadays. However,

DDWI requires prestack data subtractions, which impose a higher

standard on time-lapse survey repeatability. One way to obtain such

data is with 4D ocean-bottom cable (OBC) acquisitions using

receiver cables installed on the seafloor. Source and receiver posi-

tioning discrepancies between surveys are significantly reduced

compared with streamer acquisitions. The signal quality is also im-

proved because of better receiver coupling. The repeatability of 4D

OBC acquisitions appears promising for DDWI application.

Since 1998, OBC data have been collected in the Valhall field in

the North Sea (Hall et al., 2005). A permanent OBC system was

installed in 2003 to enable frequently repeated time-lapse surveys

to help manage the field. Due to the wide aperture and high quality

of the surveys, numerous studies on 2D and 3D FWI use Valhall

data (e.g., Sirgue et al., 2009; Prieux et al., 2011, 2013; Liu et al.,

2013; Schiemenz and Igel, 2013). Barkved et al. (2010) discuss the

potential business impact of FWI and time-lapse FWI on Valhall,

but technical details and comparisons between time-lapse FWI ap-

proaches were not presented.

In this paper, we first introduce three time-lapse inversion

schemes: (1) using the same initial model for baseline and time-lapse

inversions; (2) using the final model from a baseline inversion as the

starting model for time-lapse inversion; and (3) DDWI, which uses

the data difference to invert for model changes, starting from the final

baseline inversion model. A 2D synthetic example using the Mar-

mousi model is used to demonstrate how DDWI can improve the

inversion quality by suppressing spurious model perturbations. We

then apply all three schemes to two Valhall data sets collected 28

months apart, one as a baseline and the other as monitor. We compare

the results obtained from all schemes, and we show that DDWI pro-

duces a cleaner and more interpretable image of the reservoir

changes. The mechanism causing the differences between the results

of different inversion schemes is discussed for the synthetic and real

data. Cross validations between synthetic studies and the Valhall ap-

plication enhance the credibility of the DDWI result.

THEORY

The FWI for individual surveys minimizes a cost function of the

difference between the modeled data u and the observed data d

EðmÞ ¼
1

2
jd − uðmÞj2; (1)

where m is the model parameter (e.g., density, P-, and S-wave

velocities) to be recovered. Gradient-based methods, such as non-

linear conjugate gradient and the Gauss-Newton method have been

adopted in many studies to solve this optimization problem effi-

ciently (Mora, 1989; Pratt et al., 1998; Virieux and Operto, 2009).

The most straightforward manner for time-lapse FWI is to repeat

this process on each individual data set. One can choose the same

starting model for each of the individual inversions. For example, a

smooth velocity model derived from tomography or an intermediate

velocity model after a few iterations of baseline FWI can be used for

the inversions of the baseline and monitor data sets. The differences

between the final models are considered as time-lapse changes. We

label this scheme I. It is also reasonable to choose the final model of

the baseline inversion as the starting model for inverting monitor

data sets to achieve faster convergence. The differences between

the final monitor model and the starting monitor model (which

is also the final baseline model) are considered as time-lapse

changes. This is labeled scheme II. We remark here that schemes

I and II are using conventional FWI, while the only difference is the

starting model for the monitor inversion.

Other than applying conventional FWI, the data sets can be in-

verted jointly. An efficient way to do a joint inversion is to apply

DDWI. Similar to scheme II described above, DDWI starts from a

model obtained from the baseline inversion. To include both data

sets, the cost function is modified to
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EðmÞ ¼
1

2
jðdmonitor − dbaselineÞ − ðumonitorðmÞ − ubaselineðm0ÞÞj

2;

(2)

where dmonitor and dbaseline are the monitor and baseline data, respec-

tively, and umonitor is the synthetic data calculated from the model m

that is updated in every iteration. We denote by ubaseline, the syn-

thetic data calculated from the DDWI starting model m0, which

is the final model from the baseline inversion. Because m0 is not

updated in DDWI, ubaseline does not change throughout the inversion

process. Equation 2 can be rewritten as

EðmÞ ¼
1

2
jumonitor − dsynj

2; (3)

where dsyn ¼ ubaseline þ ðdmonitor − dbaselineÞ. DDWI looks for the

changes in the model that can explain the waveform changes be-

tween time-lapse data sets. It reduces the effects of uncertainties

in the baseline model. The mechanism and implementation of

the method are well-explained by Zhang and Huang (2013) and

Yang et al. (2015).

From a computational point of view, scheme I seems to be the

most expensive method because it is twice as costly as a regular

FWI. Scheme II starts from a much closer model, and so requires

a smaller number of iterations to converge. The cost of DDWI is

similar to that of scheme II because of the closer starting point.

The only extra step is to prepare the data dsyn, which includes

one batch of forward simulations using the final FWI model from

the baseline inversion and data subtraction.

EXAMPLE USING SYNTHETIC DATA

In this section, we use the Marmousi model to illustrate the differ-

ent behaviors of the inversion schemes introduced above and to pro-

vide context for interpreting our real data results in later sections.

Figure 1a shows the true baseline P-wave velocity model. In the

time-lapse velocity model, a thin layer of P-wave velocity increase

is placed in the second anticline under the salt layers (bright

wedges) to simulate a hardening reservoir as shown in Figure 1b.

The maximum magnitude of velocity change is 200 m∕s. We use

five shots, marked by white stars in Figure 1a, on the water surface

and 400 receivers evenly spaced at the water bottom to cover the

entire area. The same source and receiver geometry is used for base-

line and monitor surveys to mimic a time-lapse OBC acquisition.

Synthetic baseline and monitor data are generated with a finite-dif-

ference acoustic-wave equation solver. The source time function is a

standard Ricker wavelet centered at 6 Hz.

We use a Gaussian window (radius of 600 m) to blur the Mar-

mousi model (Figure 2a) to obtain a smoothed version as the start-

ing model for the baseline inversion. A time-domain FWI solver is

adopted, and the true source function is used as the input wavelet to

invert for all available frequencies (2–10 Hz) at once. The raw shot

gathers are used with all offsets and wave events included (i.e., no

data windowing). The conjugate gradient method is used to invert

for the P-wave velocity model. After 90 iterations, we obtain the

recovered baseline model shown in Figure 2b. It is slightly blurred

compared with the true model due to the limited resolution of the

data, but the long-wavelength components are fairly accurate. The

dominant features of the structures are well-recovered, whereas

some of the deeper layers underneath the salt are less resolved be-

cause of lower energy penetration.

Following scheme I, we can invert the monitor data set using the

same initial model (Figure 2a) for the same number of iterations.

Figure 3a shows the model difference between these final time-

lapse and baseline models. The reservoir change is recovered to

some extent; however, model differences also exist almost every-

where outside of the reservoir layer. Some of the false changes

(e.g., in the salt layers) are as strong as the real changes. The non-

linear behavior of the inversion makes it difficult to avoid such false

differences between two inversions. The model subtraction is not

able to differentiate between the differences caused by time-lapse

effects and the differences caused by these false changes.
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Figure 1. (a) True P-wave velocity baseline model. The reservoir is
located in the anticline below the salt layers (white wedges) that
have the highest velocities. Five stars mark the source locations that
are used in the baseline and monitor acquisitions. (b) True time-
lapse P-wave velocity changes. The layer is located in the reservoir
and has a uniform velocity increase of 200 m∕s, simulating a hard-
ening effect when the reservoir is compacting.
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Figure 2. (a) The starting velocity model for FWI. The model is
obtained by smoothing the true velocity model with a Gaussian win-
dow. (b) The velocity model obtained after 90 iterations of FWI.
Details of the layers are significantly improved. The color scales
in both figures are the same.
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We can also choose to invert the monitor data set starting from the

recovered baseline model (Figure 2b) as described in scheme II.

Figure 3b shows the model difference between the final time-lapse

and the baseline models of Figure 2b. The nonreservoir related

differences are stronger than those in Figure 3a because effectively

more iterations are applied to update these parameters. Therefore,

parameters that are less well-estimated in the previous baseline in-

version would exhibit larger magnitudes in the model difference.

This explains why the real changes in the reservoir layer are satu-

rated by the strong updates nearby in Figure 3b.

Starting from the same baseline model of Figure 2b, DDWI

(scheme III) is applied to find the time-lapse changes. Figure 3c

shows the time-lapse changes recovered by subtracting the baseline

model from this final time-lapse model. The image is almost free of

contamination. The clearest feature is the velocity increase within

the reservoir layer. The shape and magnitude of the velocity

changes are well-recovered. Neither the coherent structures in

the shallow part nor the salt layers have any footprint in the image.

This is because, as we stated in the “Theory” section, DDWI only

finds the velocity perturbations that caused the data differences.

Therefore, the parameters that are not completely recovered from

the baseline inversion are not updated at all in DDWI.

Comparing the three images in Figure 3, it is easier to make an

interpretation with the DDWI result. Without the interference from

background structures, tracking the locations of changes is easier. In

addition, because the magnitude of the changes is more accurately

recovered, the reservoir properties inferred from this information

are more reliable.

It is the imperfect nature of inversion that causes the difference

between these methods. Even though the initial model we used here

is not too far from the true model, the parameter estimation would

still not be 100% accurate. The model differences between individ-

ual inversions come from the partially, but not equally, recovered

parameters. Scheme I does not force the consistency of these par-

tially estimated parameters, whereas scheme II lumps the time-lapse

effects and the extra baseline updates together. DDWI removes such

ambiguity by only inverting the data differences and leaving the

imperfectly estimated parameters as it is. Generalizing the interpre-

tation of these acoustic, constant density results to the viscoelastic

field data case are discussed further in the “Discussion” section.

TIME-LAPSE FWI ON VALHALL

The Valhall field sits in the southern part of the Norwegian North

Sea and has been producing hydrocarbons since 1982. Recently,

approved plans could potentially extend its life to 2048 (van Gestel

et al., 2008). The reservoir layer is at a depth of approximately

2400 m, and its thickness ranges from 10 to 70 m. The reservoir

formation consists primarily of high porosity and low permeability

Cretaceous chalk. Pressure depletion of the highly porous rocks

leads to significant reservoir compaction, which drives the produc-

tion and induces the subsidence of the overburden structures

(Barkved and Kristiansen, 2005). Significant 4D seismic time shifts

due to reservoir compaction have been observed in a previous study

by crossmatching of 3D streamer data collected in 1992 and 3D

OBC data collected in 1998 (Hall et al., 2005). Acoustic impedance

changes that reflect the depletion of the reservoir have been derived

from amplitude differences by comparing marine streamer surveys

in 2002 and 1992 (Barkved and Kristiansen, 2005).

To allow for more detailed and frequent analyses of induced 4D

seismic changes, a permanent array, life of field seismic (LoFS),

was installed in 2003 (Barkved and Kristiansen, 2005; van Gestel

et al., 2008). The 4D images produced with the LoFS data provide a

structural framework for identifying undrained areas, managing

existing wells, and analyzing geohazard potentials (Røste al.,

2007; van Gestel et al., 2008). Integrated with reservoir modeling,

LoFS system reduces the uncertainties in reservoir performance pre-

dictions (van Gestel et al., 2011). We expect the constraints on the

reservoir model to be improved by extracting quantitative 4D

changes from the LoFS data with time-lapse FWI (Barkved et al.,

2010). Because FWI includes information on structure and proper-

ties from all the data in the surveys, individual analyses on over-

burden changes, reservoir compaction, and reservoir property

changes are naturally integrated in time-lapse FWI.

Acquisition, repeatability, and preprocessing

As shown in Figure 4, an area of 15 × 8 km is densely covered by

50,000 shots (white points) on a 50 × 50 m grid. The missing shots

in the middle of the acquisition are due to the center platform. Ap-

proximately 2400 receivers are placed a meter into the seafloor

comprising 39 km2 of coverage. The distance between the receivers

along the cable is 50 m, and the distance between the cables is

300 m. To reduce the computation in our FWI practice, only

one of every five receivers is used (spacing of 250 m along the ca-
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Figure 3. Time-lapse velocity changes recovered by schemes (a) I,
(b) II, and (c) III (DDWI). The differences are obtained by sub-
tracting the final baseline inversion models from the final time-lapse
inversion models for each scheme. The final baseline inversion
models are the same model that is recovered by the baseline inver-
sion. Panels (a) and (b) contain strong artifacts, whereas panel (c) is
clean and localized.
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ble). Only the receivers that are used in both surveys are kept in our

computation; in the end, 380 receivers are used in FWI (blue dots in

Figure 4). The seismic experiment is repeated approximately every

six months. The pressure and displacements are recorded, but only

the pressure data are used in our inversion. The data sets used in this

study are LoFS 10 and LoFS 12, which are 28 months apart.

Minimum preprocessing including denoising and low-pass filter-

ing up to 7 Hz was applied to the raw shot gathers before input to

FWI. No crossmatching was applied between surveys. The diving

waves and reflections were kept in the shot gathers; i.e., no mute

was applied. The positions of the receivers are unchanged between

surveys except several cables were offline in LoFS 12. Shot posi-

tioning is very accurate in both surveys. Here, we use the distance

from the actual shot location to its predesigned position as a mea-

sure of the positioning error. The error distributions are very similar

between LoFS 10 and LoFS 12; 50% of the shots have errors less

than 1.5 m, and 90% are less than 4 m. Because the data residual

needs to be injected on regular grids in finite-difference modeling,

we adopt the method of Hicks (2002) to interpolate and resample

the LoFS 10 and LoFS 12 surveys to the same regular grids.

To demonstrate the excellent survey repeatability, we show ex-

ample trace pairs in Figure 5. Both pairs are from the same common

receiver gather. Traces in Figure 5a are from the same near-offset

shot. Not only do the early arrivals fit each other well, but the coda

waves are also very similar. Traces in Figure 5b are from the same

far-offset shot. Despite having traveled for more than 10 km in off-

set, the early arrivals are still very close in phase and amplitude.

Inversion setup

In this study, the software we use is implemented in the time do-

main. As a result, CPU runtime is linearly depen-

dent on the number of sources simulated in each

iteration. Therefore, reciprocity is applied to use

receiver gathers as FWI input instead of shot

gathers.

A few assumptions are made in the process.

First, only the pressure data are used, and the

acoustic-wave equation is solved to simulate

the wavefield. The acoustic modeling would take

care of the P-wave traveltime and the amplitudes

of the near reflection angles. The P-wave AVO

effect caused by the S-wave velocities would

not be properly handled. However, it would

not be a significant issue because for the baseline

FWI, we mainly use the P-wave phase informa-

tion to build the model, and no class IIp type of

AVO (polarity change) is observed in the data.

For the time-lapse inversion, we do not expect

a strong rock matrix change within 28 months

when the field was under water flooding opera-

tion. The dominant effect is fluid saturation,

which would not be reflected by S-wave velocity

changes. Second, only the isotropic P-wave

velocity is used in the inversion. The density

model is derived from the Gardner et al.

(1974) equation with the updated velocity model

in each iteration. It is very difficult to separate the

density and VP effects on P-wave amplitudes

completely. As long as the amplitude information

is somewhat used, the inversion is effectively inverting for acoustic

impedances. Regarding time lapse, if a VP anomaly and a density

anomaly are present at the same time, it is very difficult to separate

them due to their similar scattering pattern within limited offsets.

Whether using the Gardener equation or doing a separate density

inversion, one would not be inverting for the real density rather than

Figure 4. Layout of the LoFS survey. The white points denote the
positions of shots used in the acquisitions in LoFS10 and LoFS12.
The blue dots denote the positions of every five receivers. The miss-
ing shot lines are those with low quality in either survey. The irregu-
lar holes in the shot map are the locations of the platforms.

a)

b)

Far offset

Near offset

Figure 5. Traces from LoFS 10 (white line) and LoFS 12 (yellow line) are plotted to-
gether to show their similarity. All traces are from the same receiver. The pair from a
near-offset shot is plotted in panel (a), and the pair from a far-offset shot is plotted in
panel (b). The strong phases like the diving waves and direct waves, and the coda waves
match well between surveys.
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using it as an amplitude absorber. Third, attenu-

ation is not included in the modeling. Instead, a

trace-by-trace energy scaling strategy is used to

mitigate amplitude differences (Liu et al., 2012).

The impact of the energy scaling on our 4D in-

version is very limited because the 4D signals are

generally weak and would not contribute much

to the trace energy.

The data frequencies we used range from 3 to

7 Hz. The maximum update in depth is approx-

imately 4 km. We extracted the source wavelet

from a raw near-offset trace. Because it is re-

corded on the seafloor, the first event is a mixture

of source side ghosts, direct waves, and water

bottom reflections. An effective wavelet is de-

rived after the removal of multiples and ghosts

and the application of a low-pass filter. Its quality

is confirmed by carefully comparing a synthetic

shot gather with the recorded data before FWI

(Liu et al., 2012). A free-surface boundary con-

dition is used to correctly model the free-surface-

related multiples and the ghost effect.

Initial velocity model

It is difficult in practice to use only FWI to

invert for a good quality model starting from a

poor initial guess. Several studies about FWI ap-

plications on Valhall use tomographic models as

initial models (Sirgue et al., 2009; Prieux et al.,

2011, 2013; Liu et al., 2013; Schiemenz and Igel,

2013). Because this study focuses on the time-lapse application, it is

not necessary to start from a very simple model. Liu et al. (2012)

present a Valhall velocity model using FWI combined with ray-

based tomography. The final model was quality controlled by

the data fit and the common image gather flatness especially for

the layers under the gas cloud. Here, we use a smoothed version

of that model as shown in Figure 6a, to avoid the elaborate process

of initial model building. The smoothing process removed most of

the structures in the model, but we left the kinematics accurate

enough to avoid cycle skipping. Details about how we handle

the initial model building and obtain the model in Figure 6a can

be found in Liu et al. (2012, 2013).

Baseline inversion result

We run acoustic FWI for the baseline survey data (LoFS 10) start-

ing from the model in Figure 6a. A frequency continuation strategy

is used to invert the data from 3 to 7 Hz by filtering the source wave-

let and the data with a low-pass filter. The source is not reestimated

at each iteration. All data are used at once without time windowing

and offset muting. After 200 iterations, the baseline inversion is

considered converged because the cost function has been signifi-

cantly reduced; the resulting model is shown in Figure 6b. The geo-

logic structures are recovered with high resolution. The image of the

gas cloud (marked by the black arrow in x-z slice in Figure 6b) is

much improved. The thin layer under the gas cloud (pointed by the

dashed black arrow) that is not visible in the starting model is re-

solved remarkably well. The differences between the field data and

the synthetics before and after the inversion are shown in Figure 7

Figure 6. (a) Initial model for baseline FWI obtained by smoothing the model built by
Liu et al. (2012) using a combination of FWI and tomography. (b) Baseline model ob-
tained after 200 iterations starting from panel (a). The shallow structures are improved
with higher resolution. The solid black arrow points to the gas cloud area. The low-
velocity layer (pointed by the dashed black arrow) beneath the gas cloud, that is not
visible in the starting model, is recovered.

a)

b)

Figure 7. Data residuals of one receiver gather (a) before the base-
line inversion and (b) after the baseline inversion are shown on the
same color scale to show the convergence of FWI. The traces are
ordered by the shot index. Residuals in far-offset diving waves
(marked by the dashed white circles) and near-offset reflected
waves (marked by the dashed black circles) are reduced signifi-
cantly.
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for one common receiver gather. The residuals of the long-offset

diving waves (white circle) and the near-offset reflections (black

circle) are greatly minimized by FWI.

Time-lapse inversion result

As in the synthetic examples, three schemes are applied to the

time-lapse data set (LoFS 12). For scheme I, we start from the

smooth model in Figure 6a and run the same number of iterations

to invert LoFS 12 data for the time-lapse model. We choose the

number of iterations as the stopping criteria because there is no ab-

solute convergence for the real data inversion, and we can only af-

ford a finite-compute time. Stopping at the same cost function value

does not make sense because the two inversions have different cost

functions (different data sets). The P-wave velocity model differ-

ence is shown in Figure 8a. In the shallow part, the differences

are relatively weak, whereas the differences in the deeper part

are stronger and spread out. The changes in the middle of the model

show limited conformity to the geologic structures in the baseline

model. For scheme II, the model in Figure 6b is used as the starting

model. Figure 8b shows the model difference. Compared with

scheme I, the magnitude of the difference is generally stronger.

In the shallow part (around the gas cloud) and in the deep part (be-

low the gas cloud), we find distinct velocity changes. However, the

strong amplitude does not seem to be very credible for 4D changes

within 2.5 years of production. The area of changes is also much

wider than normally observed. For scheme III (DDWI), starting

from the model in Figure 6b, we invert the data differences (LoFS

12 minus LoFS 10) for the velocity differences. As shown in Fig-

ure 8c, the velocity changes found by DDWI are much more local-

ized than the results from schemes I and II. More importantly, the

location of the changes is right at the reservoir level.

Figure 8. Three-dimensional view of time-lapse
P-wave velocity changes resolved by schemes
(a) I, (b) II, and (c) III (DDWI). The slices are
at the same coordinates as those in Figure 6.
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To better visualize and compare the results, we plot the 2D slices

in Figures 9 and 10. Depth slices at the location of the maximum

time-lapse velocity changes are shown in Figure 9. The three black

squares mark the holes in the survey (Figure 4). Although there are

some common features among the three images in Figure 9, the

velocity changes from schemes I and II cover a much bigger area

than the changes from DDWI. It is unusual to expect such broad 4D

changes throughout the model. The changes in scheme I exhibit

stronger amplitude to the left edge of the model, where no major

production activities took place. The distribution of changes in

scheme II is more consistent with the platform locations. However,

it is difficult to make an interpretation from such a widespread

model difference. In particular, the color scale in scheme II is

two times those in schemes I and III. If shown in the same color

scale, the changes in scheme II would be even broader. In contrast,

the result of scheme III is confined in a reasonable area, which is

also geologically meaningful.

In the cross-sectional views in Figure 10, the same velocity

change volume is shown in the x-z axis. The model changes have

completely different patterns. In schemes I and II, the velocity

changes spread horizontally over most of the area in the deeper part

of the model. Interestingly, the scheme I result shows weak changes

in the production zone, but strong values on the edges. It implies

that the two inversions diverged a little bit, and the model

differences mainly come from the effect of different local minimum.

Although the result of scheme II focuses more on the center part, the

reservoir layer and the bottom of the model exhibit strong

differences, which indicates that true time-lapse changes are mixed

with the background model updates. In addition, some strong

changes are also found in the shallow parts in schemes I and II.

In contrast, in the DDWI case, the dominant change is localized

in the center of the model beneath the gas cloud (dashed black

circle). The changes in other parts are much weaker, and no evident

changes are found in the shallow part of the model.

DISCUSSION

The synthetic examples and the Valhall data results exhibit sim-

ilar behaviors. The nonlinearity of the inversion makes scheme I

generate spurious model differences. For real data, noise is different

from shot to shot, and subsurface is not evenly illuminated by the

acquisition. The initial model is not equally accurate for all subsur-

face locations. Therefore, it is more difficult to control the conver-

gence for velocities at all positions in practice. For example,

because deeper reflections have lower signal-to-noise ratio and ac-

quisition, velocities at greater depths are less well-constrained and

so differ more between independent inversions, which explains why

the magnitude of changes increases with depth.

The model differences in scheme II are strongly contaminated by

the extra updates to the background model (i.e., model parts without

time-lapse changes) because we try to reduce the data residuals with

velocity perturbations that are not related to time-lapse changes.

The residuals left after the baseline inversion are much stronger than

the time-lapse signals for the real data case, which explains the sig-

Figure 9. The x-y slice at the depth where the maximum time-lapse changes occur. Time-lapse P-wave velocity changes resolved by schemes
(a) I, (b) II, and (c) III are compared. Note that the color scale in panel (b) is larger than those in panels (a) and (c) meaning stronger magnitudes.
The black squares show the locations of the platforms. Note the better focusing of time-lapse changes with scheme III. The unit of the colorbar
is m∕s.
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nificant model differences in Figure 10b. In addition, the deeper part

is less resolved than the shallow part in the baseline inversion. Con-

sequently, we observe more updates to the deeper part in the time-

lapse inversion in scheme II. One might argue that the situation

would be improved by running the same number of “extra” FWI

iterations on the baseline data (LoFS 10) as those run on the monitor

data, and then subtracting these two models. In other words, if we

run N iterations to get the baseline model, and another N to go from

baseline to monitor, then baseline should have another N iterations

to equally resolve unchanging structures. In fact, this reduces to

scheme I with a better starting model. We conducted this practice;

however, no remarkable improvements were achieved.

The DDWI gives localized results in the synthetic and real data

case studied here. Because only the velocity perturbations that can

explain the data differences are used to update the model, it is easy

to understand why the synthetic noise-free DDWI result in Figure 3c

is so clean. One might feel uncomfortable about subtracting real

data sets when there are so many uncertainties between surveys.

Nonrepeatability issues, such as random noise, source wavelet dis-

crepancy, source position error, and overburden changes, can gen-

erate significant data differences that may overwhelm the real time-

lapse signals. These nonrepeatability effects are discussed and

tested in detail in Yang et al. (2015), which concludes that DDWI

is robust to random noise, and mild nonrepeatabilities. For the LoFS

10 and LoFS 12 surveys, the standard deviation of the source posi-

tioning error is less than 5 m. Source wavelets are well-repeated in

the frequency range used in FWI, and any water velocity changes do

not have a huge impact because it is a shallow water environment.

Overburden changes are expected to be small because the two sur-

Figure 10. The x-z slice at the location where
maximum time-lapse changes occur along the
x-axis. Time-lapse P-wave velocity changes re-
solved by schemes (a) I, (b) II, and (c) III are com-
pared. (a) The scheme I result shows changes of
similar magnitude at shallow and deep locations.
(b) The scheme II result has fewer shallow
changes but contains strong and broad changes
in the deeper part. (c) The scheme III result shows
localized changes in the layer underneath the gas
cloud. The gas cloud region is marked with a
dashed black circle. The unit of the colorbar is
m∕s.

Figure 11. The decomposition of the monitor data set. The monitor
data can be separated into two branches by the modeling capability.
The parts that can be simulated by the modeling engine are consid-
ered as signal, whereas the rest is treated as noise. In the signal
branch, part of the baseline signal cannot be explained by the cur-
rent baseline model due to the imperfection of the baseline inver-
sion. This part (the black block) would generate artificial time-lapse
changes in schemes I and II, but will be canceled in DDWI. In the
noise branch, these nonrepeatable components will remain in all
schemes, but the repeatable components (the gray block) will be
canceled in DDWI.
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veys are only 28 months apart. All the issues are within the range

where DDWI is tested to be robust.

If we take the field data results at face value, DDWI is definitely

finding a time-lapse velocity change that is cleaner and easier to

interpret. But to understand why this is the case, and thus to increase

our confidence in our interpretation, we need to describe what we

are fitting in DDWI and how this contrasts with traditional FWI. To

this end, Figure 11 summarizes the various effects that we expect to

see in the time-lapse data, showing those that are suppressed with

DDWI as compared with standard FWI in black and gray. The data

can be decomposed into two parts as shown in Figure 11: signal and

noise. Within the signal branch, all the information is related to real

changes in earth properties. The signal can be simulated given the

true model. Due to either underfitting the data or being caught in a

local minima, the inverted model can only explain part of the signal.

The rest is residual signal (black in Figure 11) that we expect to

cancel in DDWI and not in schemes I and II. In the noise branch,

we classify noise as either coherent or random. The random com-

ponent will contribute relatively little to the final image because of

stacking. Coherent noise should lead to changes throughout the

model, if it is constructively interfering and significant enough.

Nonrepeatibilities can introduce coherent noise but are less likely

to be modeled in the simulation, which is why DDWI is robust to

them (Yang et al., 2015). For example, the weak variations in the

shallow part of our DDWI result are likely caused by the data

differences from nonrepeatibilities. These data differences are not

subsurface related, but will be projected into the model. However,

they could not be coherently explained by subsurface perturbations.

Therefore, the resulting model changes are relatively weak. The sig-

nal that is not modeled due to incomplete physics (gray in Figure 11)

in the model equations are considered as noise and has a second-

order effect on the velocity change. For example, the common back-

ground anisotropy and attenuation effects are subtracted out in

DDWI, and those induced by reservoir changes are relatively weak

and localized. Because the model change in the DDWI example is

clean and localized, it is credible that the recovered velocity change

is actually the reservoir change rather than simply the movement

into a different local minimum of the objective function, or simply

the change one might expect if the inversion were to be continued to

additional iterations.

CONCLUSION

Advanced acquisition technologies such as OBC provide the op-

portunity to use high-resolution imaging methods to monitor sub-

surface changes. We applied DDWI on two time-lapse data sets

from the Valhall field, and resolved cleaner and more interpretable

time-lapse velocity changes compared with those from independent

inversion schemes. The results are supported by previous studies

and the synthetic tests included in this work. The nonrepeatabilities

of the two surveys are mild and allow DDWI to invert for credible

time-lapse P-wave velocity changes.

ACKNOWLEDGMENTS

This work was supported by the MIT Earth Resources Labora-

tory Founding Members Consortium and Hess Corporation. We

thank the partners of the Valhall field (BP Norge and Hess Norge)

for use of the LoFS data and for permission to publish the results in

this paper. We also thank M. Warner from Imperial College for pro-

viding the original FWI code.

REFERENCES

AlTheyab, A., and G. T. Schuster, 2015, Inverting reflections using full-
waveform inversion with inaccurate starting models: 85th Annual
International Meeting, SEG, Expanded Abstracts, 1148–1153.

Asnaashari, A., R. Brossier, S. Garambois, F. Audebert, P. Thore, and J.
Virieux, 2015, Time-lapse seismic imaging using regularized full-wave-
form inversion with a prior model: Which strategy?: Geophysical Pro-
specting, 63, 78–98, doi: 10.1111/gpr.2015.63.issue-1.

Barkved, O., P. Heavey, J. Kommedal, J. van Gestel, R. Synnve, H. Pet-
tersen, C. Kent, and U. Albertin, 2010, Business impact of full waveform
inversion at Valhall: 80th Annual International Meeting, SEG, Expanded
Abstracts, 925–929.

Barkved, O., and T. Kristiansen, 2005, Seismic time-lapse effects and stress
changes: Examples from a compacting reservoir: The Leading Edge, 24,
1244–1248, doi: 10.1190/1.2149636.

Denli, H., and L. Huang, 2009, Double-difference elastic waveform tomog-
raphy in the time domain: 79th Annual International Meeting, SEG, Ex-
panded Abstracts, 2302–2306.

Gardner, G., L. Gardner, and A. Gregory, 1974, Formation velocity and den-
sity— The diagnostic basics for stratigraphic traps: Geophysics, 39, 770–
780, doi: 10.1190/1.1440465.

Hall, S., C. MacBeth, O. Barkved, and P. Wild, 2005, Cross-matching with
interpreted warping of 3D streamer and 3D ocean-bottom-cable data at
Valhall for time-lapse assessment: Geophysical Prospecting, 53, 283–
297, doi: 10.1111/gpr.2005.53.issue-2.

Hicks, G. J., 2002, Arbitrary source and receiver positioning in finite-differ-
ence schemes using kaiser windowed sinc functions: Geophysics, 67,
156–165, doi: 10.1190/1.1451454.

Landrø, M., and J. Stammeijer, 2004, Quantitative estimation of compaction
and velocity changes using 4D impedance and traveltime changes: Geo-
physics, 69, 949–957, doi: 10.1190/1.1778238.

Liu, F., L. Guasch, S. A. Morton, M. Warner, A. Umpleby, Z. Meng, S.
Fairhead, and S. Checkles, 2012, 3-D time-domain full waveform inver-
sion of a Valhall OBC dataset: 82nd Annual International Meeting, SEG,
Expanded Abstracts, doi: 10.1190/segam2012-1105.1.

Liu, F., S. Morton, X. Ma, and S. Checkles, 2013, Some key factors for the
successful application of full-waveform inversion: The Leading Edge, 32,
1124–1129, doi: 10.1190/tle32091124.1.

Lumley, D., and R. Behrens, 1998, Practical issues of 4D seismic reservoir
monitoring: What an engineer needs to know: SPE Reservoir Evaluation
& Engineering, 1, 528–538, doi: 10.2118/53004-PA.

Lumley, D. E., 2001, Time-lapse seismic reservoir monitoring: Geophysics,
66, 50–53, doi: 10.1190/1.1444921.

Luo, J., and R.-S. Wu, 2015, Initial model construction for elastic full wave-
form inversion using envelope inversion method: 85th Annual
International Meeting, SEG, Expanded Abstracts, 1420–1424.

Maharramov, M., and B. Biondi, 2014, Joint full-waveform inversion of
time-lapse seismic data sets: 84th Annual International Meeting, SEG,
Expanded Abstracts, 954–959.

Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset
seismic data: Geophysics, 52, 1211–1228, doi: 10.1190/1.1442384.

Mora, P., 1989, Inversion = migration + tomography: Parallel Computing,
1988, 78–101.

Onishi, K., T. Ueyama, T. Matsuoka, D. Nobuoka, H. Saito, H. Azuma, and
Z. Xue, 2009, Application of crosswell seismic tomography using differ-
ence analysis with data normalization to monitor CO2 flooding in an aqui-
fer: International Journal of Greenhouse Gas Control, 3, 311–321, doi: 10
.1016/j.ijggc.2008.08.003.

Pratt, R. G., C. Shin, and G. Hick, 1998, Gauss-Newton and full Newton
methods in frequency-space seismic waveform inversion: Geophysical
Journal International, 133, 341–362, doi: 10.1046/j.1365-246X.1998
.00498.x.

Prieux, V., R. Brossier, Y. Gholami, S. Operto, J. Virieux, O. I. Barkved, and
J. H. Kommedal, 2011, On the footprint of anisotropy on isotropic full
waveform inversion: The Valhall case study: Geophysical Journal
International, 187, 1495–1515, doi: 10.1111/gji.2011.187.issue-3.

Prieux, V., R. Brossier, S. Operto, and J. Virieux, 2013, Multiparameter full
waveform inversion of multicomponent ocean-bottom-cable data from the
Valhall field. Part 1: Imaging compressional wave speed, density and at-
tenuation: Geophysical Journal International, 194, 1640–1664, doi: 10
.1093/gji/ggt177.

Raknes, E. B., and B. Arntsen, 2014, Time-lapse full-waveform inversion of
limited-offset seismic data using a local migration regularization: Geo-
physics, 79, no. 3, WA117–WA128, doi: 10.1190/geo2013-0369.1.

Røste, T., M. Landrø, and P. Hatchell, 2007, Monitoring overburden layer
changes and fault movements from time-lapse seismic data on the Valhall

R234 Yang et al.

D
o
w

n
lo

ad
ed

 0
7
/1

1
/1

6
 t

o
 1

8
.5

1
.1

.8
8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1111/gpr.2015.63.issue-1
http://dx.doi.org/10.1111/gpr.2015.63.issue-1
http://dx.doi.org/10.1111/gpr.2015.63.issue-1
http://dx.doi.org/10.1111/gpr.2015.63.issue-1
http://dx.doi.org/10.1111/gpr.2015.63.issue-1
http://dx.doi.org/10.1190/1.2149636
http://dx.doi.org/10.1190/1.2149636
http://dx.doi.org/10.1190/1.2149636
http://dx.doi.org/10.1190/1.1440465
http://dx.doi.org/10.1190/1.1440465
http://dx.doi.org/10.1190/1.1440465
http://dx.doi.org/10.1111/gpr.2005.53.issue-2
http://dx.doi.org/10.1111/gpr.2005.53.issue-2
http://dx.doi.org/10.1111/gpr.2005.53.issue-2
http://dx.doi.org/10.1111/gpr.2005.53.issue-2
http://dx.doi.org/10.1111/gpr.2005.53.issue-2
http://dx.doi.org/10.1190/1.1451454
http://dx.doi.org/10.1190/1.1451454
http://dx.doi.org/10.1190/1.1451454
http://dx.doi.org/10.1190/1.1778238
http://dx.doi.org/10.1190/1.1778238
http://dx.doi.org/10.1190/1.1778238
http://dx.doi.org/10.1190/segam2012-1105.1
http://dx.doi.org/10.1190/segam2012-1105.1
http://dx.doi.org/10.1190/segam2012-1105.1
http://dx.doi.org/10.1190/tle32091124.1
http://dx.doi.org/10.1190/tle32091124.1
http://dx.doi.org/10.1190/tle32091124.1
http://dx.doi.org/10.2118/53004-PA
http://dx.doi.org/10.2118/53004-PA
http://dx.doi.org/10.1190/1.1444921
http://dx.doi.org/10.1190/1.1444921
http://dx.doi.org/10.1190/1.1444921
http://dx.doi.org/10.1190/1.1442384
http://dx.doi.org/10.1190/1.1442384
http://dx.doi.org/10.1190/1.1442384
http://dx.doi.org/10.1016/j.ijggc.2008.08.003
http://dx.doi.org/10.1016/j.ijggc.2008.08.003
http://dx.doi.org/10.1016/j.ijggc.2008.08.003
http://dx.doi.org/10.1016/j.ijggc.2008.08.003
http://dx.doi.org/10.1016/j.ijggc.2008.08.003
http://dx.doi.org/10.1016/j.ijggc.2008.08.003
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1111/gji.2011.187.issue-3
http://dx.doi.org/10.1111/gji.2011.187.issue-3
http://dx.doi.org/10.1111/gji.2011.187.issue-3
http://dx.doi.org/10.1111/gji.2011.187.issue-3
http://dx.doi.org/10.1111/gji.2011.187.issue-3
http://dx.doi.org/10.1093/gji/ggt177
http://dx.doi.org/10.1093/gji/ggt177
http://dx.doi.org/10.1190/geo2013-0369.1
http://dx.doi.org/10.1190/geo2013-0369.1
http://dx.doi.org/10.1190/geo2013-0369.1


field: Geophysical Journal International, 170, 1100–1118, doi: 10.1111/
gji.2007.170.issue-3.

Routh, P., G. Palacharla, I. Chikichev, and S. Lazaratos, 2012, Full wavefield
inversion of time-lapse data for improved imaging and reservoir charac-
terization: 82nd Annual International Meeting, SEG, Expanded Abstracts,
doi:10.1190/segam2012-1043.1.

Sarkar, S., W. P. Gouveia, and D. H. Johnston, 2003, On the inversion of
time-lapse seismic data: 73rd Annual International Meeting, SEG, Ex-
panded Abstracts, 1489–1492.

Schiemenz, A., and H. Igel, 2013, Accelerated 3-D full-waveform inversion
using simultaneously encoded sources in the time domain: Application to
Valhall ocean-bottom cable data: Geophysical Journal International, 195,
1970–1988, doi: 10.1093/gji/ggt362.

Sirgue, L., O. Barkved, J. Van Gestel, O. Askim, and J. Kommedal, 2009,
3D waveform inversion on Valhall wide-azimuth OBC: 71st Annual
International Conference and Exhibition, EAGE, Extended Abstracts,
U038.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic
approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.

Tatanova, M., and P. Hatchell, 2012, Time-lapse AVO on deepwater OBN
seismic at the Mars field: 82nd Annual International Meeting, SEG, Ex-
panded Abstracts, doi: 10.1190/segam2012-1259.1.

van Gestel, J.-P., K. D. Best, O. I. Barkved, and J. H. Kommedal, 2011,
Integration of the life of field seismic data with the reservoir model at
the Valhall field: Geophysical Prospecting, 59, 673–681, doi: 10.1111/
gpr.2011.59.issue-4.

van Gestel, J.-P., J. H. Kommedal, O. I. Barkved, I. Mundal, R. Bakke, and
K. D. Best, 2008, Continuous seismic surveillance of Valhall field: The
Leading Edge, 27, 1616–1621, doi: 10.1190/1.3036964.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in
exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10
.1190/1.3238367.

Warner, M., and L. Guasch, 2015, Robust adaptive waveform inversion:
85th Annual International Meeting, SEG, Expanded Abstracts, 1059–
1063.

Watanabe, T., S. Shimizu, E. Asakawa, and T. Matsuoka, 2004, Differential
waveform tomography for time-lapse crosswell seismic data with appli-
cation to gas hydrate production monitoring: 74th Annual International
Meeting, SEG, Expanded Abstracts, 2323–2326.

Yang, D., M. Meadows, P. Inderwiesen, J. Landa, A. Malcolm, and M. Feh-
ler, 2015, Double-difference waveform inversion: Feasibility and robust-
ness study with pressure data: Geophysics, 80, no. 6, M129–M141, doi:
10.1190/geo2014-0489.1.

Zadeh, H., M. Landrø, and O. Barkved, 2011, Long-offset time-lapse seis-
mic: Tested on the Valhall lofs data: Geophysics, 76, no. 2, O1–O13, doi:
10.1190/1.3536640.

Zhang, Z., and L. Huang, 2013, Double-difference elastic-waveform inver-
sion with prior information for time-lapse monitoring: Geophysics, 78,
no. 6, R259–R273, doi: 10.1190/geo2012-0527.1.

Zheng, Y., P. Barton, and S. Singh, 2011, Strategies for elastic full waveform
inversion of timelapse ocean bottom cable (OBC) seismic data: 81st An-
nual International Meeting, SEG, Expanded Abstracts, 4195–4200.

Time-lapse FWI R235

D
o
w

n
lo

ad
ed

 0
7
/1

1
/1

6
 t

o
 1

8
.5

1
.1

.8
8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1111/gji.2007.170.issue-3
http://dx.doi.org/10.1111/gji.2007.170.issue-3
http://dx.doi.org/10.1111/gji.2007.170.issue-3
http://dx.doi.org/10.1111/gji.2007.170.issue-3
http://dx.doi.org/10.1111/gji.2007.170.issue-3
http://dx.doi.org/10.1111/gji.2007.170.issue-3
http://dx.doi.org/10.1190/segam2012-1043.1
http://dx.doi.org/10.1190/segam2012-1043.1
http://dx.doi.org/10.1190/segam2012-1043.1
http://dx.doi.org/10.1093/gji/ggt362
http://dx.doi.org/10.1093/gji/ggt362
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/segam2012-1259.1
http://dx.doi.org/10.1190/segam2012-1259.1
http://dx.doi.org/10.1190/segam2012-1259.1
http://dx.doi.org/10.1111/gpr.2011.59.issue-4
http://dx.doi.org/10.1111/gpr.2011.59.issue-4
http://dx.doi.org/10.1111/gpr.2011.59.issue-4
http://dx.doi.org/10.1111/gpr.2011.59.issue-4
http://dx.doi.org/10.1111/gpr.2011.59.issue-4
http://dx.doi.org/10.1111/gpr.2011.59.issue-4
http://dx.doi.org/10.1190/1.3036964
http://dx.doi.org/10.1190/1.3036964
http://dx.doi.org/10.1190/1.3036964
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/geo2014-0489.1
http://dx.doi.org/10.1190/geo2014-0489.1
http://dx.doi.org/10.1190/geo2014-0489.1
http://dx.doi.org/10.1190/1.3536640
http://dx.doi.org/10.1190/1.3536640
http://dx.doi.org/10.1190/1.3536640
http://dx.doi.org/10.1190/geo2012-0527.1
http://dx.doi.org/10.1190/geo2012-0527.1
http://dx.doi.org/10.1190/geo2012-0527.1

