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Abstract 22 

Over the years, the utilization of in vitro fertilization (IVF) in bovine embryo production has increased 23 

globally to accelerate the selection of cows with high genetic values. The selection of embryos with high 24 

implantation potential is a critical factor in establishing pregnancy. Time-lapse monitoring (TLM) has 25 

emerged as a new technique that allows frequent and non-invasive imaging of developing embryos. 26 

TLM is considered to have several advantages over the conventional morphological evaluation of 27 

embryos, which has been widely used in bovine embryo production. Establishing a novel embryo 28 

selection algorithm specifically for bovine IVF embryos is a critical challenge, but information on the 29 

association between morphokinetic data obtained using TLM and the implantation potential of embryos 30 

is still limited. This review outlines the potential application of TLM technology to improve the fertility 31 

of bovine IVF embryos, focusing on the results of human and bovine TLM studies that can be applied 32 

to select bovine embryos with high implantation potential. First, the progress of the TLM technology in 33 

bovine embryo production is summarized. The association between kinetic and morphological 34 

parameters and the developmental and implantation potential of human and bovine embryos is outlined. 35 

Finally, the benefits of evaluating blastocyst collapse and re-expansion as indicators of bovine embryo 36 

viability and the possible application of TLM to detect chromosomal abnormalities and determine 37 

embryo sex will be discussed. 38 

  39 
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Introduction 40 

Over the past century, significant innovations in reproductive technology have revolutionized dairy 41 

and beef cattle production, thereby increasing the profitability of farms [1]. Embryo transfer has become 42 

an essential technique in bovine breeding, not only to improve the reproductive efficiency but also to 43 

accelerate genetic evolution by increasing the number of cattle with high genetic values [2, 3]. Genomic 44 

selection of superior cows has been further accelerated by the combination of embryo transfer and in 45 

vitro fertilization (IVF) [2, 4-6]. Globally, IVF embryo production has increased significantly over the 46 

years, with similar numbers of embryos produced in vivo and in vitro since 2014 [4]. In contrast, the 47 

pregnancy rate after the transfer of IVF embryos has been shown to be lower than that of in vivo-48 

produced embryos [7-9]. The selection of embryos with high implantation potential is a critical factor 49 

for the establishment of pregnancy [10, 11]. Traditionally, IVF embryos have been selected based on 50 

their morphology, developmental rate, and overall appearance at the end of culture [12]. This selection 51 

method is widely considered inadequate and subjective because of the possibility of overlooking critical 52 

events that are detrimental to embryo survival and the variability between and within observers [13-15]. 53 

The frequent evaluation of embryo development is believed to improve implantation rates, but is 54 

invasive owing to the frequent handling and exposure to changes in temperature and gas concentration 55 

[16, 17]; therefore, developing non-invasive and accurate methods for determining embryo quality is 56 

essential. 57 

Time-lapse monitoring (TLM) has emerged as a new technique that allows frequent and non-invasive 58 

imaging of developing embryos. It is considered to have several advantages over conventional 59 

morphological evaluation of embryos, which has been widely used in bovine embryo production. 60 

Continuous observation of embryo development with TLM allows accurate quantification of cellular 61 

dynamics and cell cycle length. Several human and bovine studies have suggested that a detailed analysis 62 

of the timing and pattern of the first post-fertilization cleavage may allow the selection of embryos with 63 

a high implantation potential [11, 18-22]. Furthermore, it has been postulated that TLM can predict the 64 

ploidy status of embryos because aneuploid embryos can present morphokinetic differences compared 65 
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to normal embryos during their development due to aberrant chromosome complement [23, 24]. Since 66 

aneuploidy is one of the critical causes of implantation failure and miscarriage [25-27], non-invasive 67 

determination of ploidy status using TLM would be beneficial. Clinical studies using human IVF 68 

embryos have shown that the evaluation of morphokinetics during the early cleavage stages improves 69 

pregnancy outcomes [28-32]. Therefore, applying TLM to the selection of bovine IVF embryos may 70 

also improve the pregnancy rate after embryo transfer.  71 

Because of these advantages, human laboratories of assisted reproductive technology (ART) have 72 

rapidly and globally introduced TLM technology. As a result, considerable morphokinetic data has been 73 

collected, and embryo selection algorithms have been gradually established in human ART [33-36], 74 

although their application to improve pregnancy outcomes remains uncertain [33, 37-39]. Despite 75 

several TLM studies of bovine embryos, information on the association between morphokinetic data 76 

obtained using TLM and implantation potential is still limited; therefore, TLM has not yet been applied 77 

commercially in bovine embryo production. Few studies have reviewed the findings obtained from time-78 

lapse observations of bovine IVF embryos to improve fertility and production efficiency in cows. 79 

Therefore, this review outlines the potential applications of TLM technology to improve the fertility of 80 

bovine IVF embryos. This article focuses on the findings of human and bovine TLM studies that can be 81 

applied to select bovine embryos with high implantation potential. First, the progress of the TLM 82 

technology in bovine embryo production is summarized. Second, the association of kinetic parameters, 83 

such as the timing of cleavage, and morphological parameters, mainly focusing on abnormal cleavage 84 

obtained using time-lapse observation during the early cleavage stage, with the developmental and 85 

implantation potential of human and bovine embryos are outlined. This review describes the benefits of 86 

evaluating blastocyst collapse and re-expansion as indicators of viability of bovine embryos. Finally, 87 

the possible application of TLM to the detection of chromosomal abnormalities and embryo sexing is 88 

discussed. 89 

 90 

Progress of TLM technology in bovine embryo production 91 
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The milestones for the progress of TLM in bovine embryo assessment are summarized in Table 1. 92 

Time-lapse embryo observations began with studies using animal embryos produced in vivo. In 1929, 93 

Lewis and Gregory first applied cinematographic monitoring to the development of rabbit embryos 94 

collected from the oviduct, from the one-cell to the hatching stage [40]. In the early 1980s, bovine 95 

morulae collected from uterine horns were cultured in flat capillary tubes for five days to continuously 96 

monitor blastocyst formation and hatching [41, 42]. These studies revealed that bovine embryos actively 97 

hatch by escaping through a slit of the zona pellucida. The TLM of IVF embryos was first performed in 98 

1994 using bovine embryos that matured and fertilized in vitro [43]. Embryo culture was performed 99 

using a 4-well dish covered by an in vitro culture chamber and placed on an inverted microscope stage. 100 

The development of 130 embryos from the one-cell to the blastocyst stage was monitored for eight days 101 

using time-lapse cinematography, during which the timing of cleavage, duration of each cell cycle, and 102 

time to the morula/blastocyst stage were investigated. Grisart et al. (1994) revealed that the faster the 103 

embryos are cleaved in the early stages, the higher the ability to develop to the morula-blastocyst stage. 104 

In addition, the developmental arrest (‘lag-phase’) occurred at four to eight-cell stages, which is likely 105 

to be related to the developmental competence of embryos. In 1997, the first human TLM study using 106 

in vitro-produced embryos following intracytoplasmic sperm injection demonstrated the precise timing 107 

of fertilization, indicated by polar body extrusion and pronuclear formation [44]. In the late 1990s and 108 

the 2000s, several studies determined the developmental kinetics of bovine IVF embryos using a 109 

cinematographic chamber placed on an inverted microscope [45-51]. These studies provided the basis 110 

for time-lapse analysis of bovine IVF embryos by demonstrating that the timing of cleavage and cell 111 

cycle length during the early cleavage stage indicates the developmental potential of embryos. 112 

Commercial equipment for TLM, in which microscopes and cameras are built inside an incubator, 113 

became available and was introduced to many human ART laboratories worldwide around 2008 [34, 114 

36]. This has led to several studies on the relationship between morphokinetics and the developmental 115 

or implantation potential of in vitro-produced embryos, mostly using human embryos. In 2010, Somfai 116 

et al. [19] performed the first bovine TLM study using a commercial time-lapse imaging system and 117 
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demonstrated that the duration of the cell cycle and cleavage pattern during the early cleavage stage 118 

indicate the developmental ability to reach the blastocyst stage. In the same year, Sugimura et al. [52] 119 

developed a well-of-the-well system that allowed tracking and time-lapse observation of individual 120 

bovine embryos throughout the culture period. These studies provide an essential foundation for the 121 

progress of TLM in bovine IVF embryos. Subsequently, several studies have validated the association 122 

of morphokinetic and morphological parameters of bovine IVF embryos with developmental ability and 123 

implantation potential after transfer [11, 53-58]. However, this information is limited compared to that 124 

of humans, and commercial and practical applications have not yet been achieved. 125 

 126 

Embryo selection by quantitative parameters 127 

Recent information on human embryo selection algorithms has been summarized in several 128 

systematic reviews [33, 34, 36, 59]. Several human studies have indicated that blastocyst formation can 129 

be predicted by several quantitative parameters, such as the duration of the second cleavage [28, 32, 60], 130 

the duration of the second synchronization (time between 3-cells to the 4-cells stage) [31, 32, 61], the 131 

time to 2-cell [61, 62], and the time to 5-cells [60, 61]. Similarly, in bovine IVF embryos, it has been 132 

shown that the duration of the first, second, and third cell cycles of viable embryos that developed to the 133 

compact morula or blastocyst stage were shorter than those of non-viable embryos [19, 48, 63]. 134 

Furthermore, embryos that developed slowly during early cleavage showed increased expression of 135 

apoptosis- and cellular stress-related genes around the time of genome activation (112 h post-136 

fertilization) compared to fast-developing embryos [63]. These human and bovine findings indicate that 137 

quantitative parameters obtained by kinetic analysis with TLM can predict embryo transfer outcomes. 138 

Mesenguer et al. (2011) proposed the first embryo selection algorithm as a predictor of implantation 139 

after transfer of embryos produced by intracytoplasmic sperm injection [30]. This study presented an 140 

optimal range of morphokinetic parameters and showed that embryos that develop too early or too late 141 

have a low implantation rate. Subsequently, several studies have reported that implantation potential can 142 

be predicted by the duration of the second cleavage [30, 60, 64-66] and times to 5-cells [30, 60, 65, 66], 143 
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blastulation [60], and expanded blastocysts [67]. In general, early cleaving embryos may have a higher 144 

implantation potential [33, 59]. The association between morphokinetic parameters and implantation 145 

ability has been demonstrated in bovine IVF embryos and is consistent with human studies [11, 68]. A 146 

logistic regression analysis revealed that morphokinetic parameters, such as the timing of the first 147 

cleavage (within 27 h post-fertilization), cell number at the end of the first cleavage (2-cell), and cell 148 

number at the beginning of the lag phase (6 to16-cell), are indicative of successful pregnancy outcomes 149 

after embryo transfer [68]. In these studies, the authors concluded that combining several quantitative 150 

and qualitative parameters could successfully predict pregnancy (Table 1).  151 

 152 

Embryo selection by qualitative parameters 153 

Accumulating evidence suggests that abnormalities in qualitative parameters during the early 154 

cleavage stage, such as abnormal cleavage, fragment formation, unequal cleavage, and multinucleation, 155 

are useful for de-selecting human and bovine embryos because of their association with poor growth 156 

and implantation potential [11, 19, 21, 22, 33, 34, 36, 53, 69, 70]. The most common abnormal cleavage 157 

events are reverse cleavage (RC), blastomere fusion post-cleavage [65], and direct cleavage (DC),  158 

cleavage of one blastomere into more than three daughter cells (Fig. 1) [21]. Although the mechanisms 159 

underlying abnormal cleavage are not fully understood, it has been hypothesized that the causes include 160 

sperm quality or DNA damage, chromosomal abnormalities, multipolar spindles, and aberrant 161 

centrosomes [19, 22, 24, 71]. The prevalence of RC has been reported to be 0.4%–27.4% [22, 69, 72, 162 

73] in humans and 7.6–17.2% in cattle [53, 57]. For DC, the reported prevalence in different studies 163 

varies from 4.4–26.1% in humans [30, 69, 73-76] and 14.1–28.7% in cattle [19, 53, 57]. Human studies 164 

have shown that abnormal cleavage is associated with reduced blastocyst development, implantation 165 

potential, or live birth rate [21, 22, 69, 73-77]. Similarly, our previous study using bovine IVF embryos 166 

demonstrated that at eight days post-insemination, embryos presenting RC or DC had a lower proportion 167 

of blastocysts with good morphology than normally cleaved embryos, although the overall blastocyst 168 

rate was only reduced in the RC groups [53]. On the other hand, some abnormally cleaved embryos 169 
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developed into blastocysts of the same quality as normally cleaved embryos (Fig. 2), indicating that 170 

conventional morphological embryo selection may result in the transfer of embryos experiencing 171 

abnormal cleavage. Morphokinetic evaluation revealed that bovine IVF embryos that presented RC and 172 

DC developed more slowly than normally cleaved embryos with prolonged time to first cleavage, onset 173 

of lag-phase, morula formation, blastulation, and hatching. The prolonged time to first cleavage in DC 174 

embryos was consistent with another bovine TLM study [19]. A recent bovine metabolome analysis 175 

revealed differences in several metabolic pathways between normal and DC embryos, mainly involving 176 

pyruvic acid, and an increased level of pyruvate acid in DC embryos, possibly indicating a disturbance 177 

in the switch from lipid to glucose metabolism [57].  178 

 179 

Blastocyst collapse and hatching 180 

Continuous morphological observation of embryos using TLM enabled dynamic investigation of 181 

blastocyst collapse, re-expansion, and hatching (Fig. 3). Hatching, a protrusion of blastocysts from the 182 

zona pellucida with continuous expansion of the blastocoele, is an essential process for successful 183 

implantation. Spontaneous and transient collapse and re-expansion are frequently repeated before 184 

hatching, although these processes are not a prerequisite for hatching [70]. Blastocyst collapse occurs 185 

due to the loosening of cellular connections in the trophectoderm, causing an efflux of blastocoel fluid 186 

and embryo contraction. Subsequently, the gradual accumulation of fluid in the blastocoel via the 187 

sodium pump causes the re-expansion of embryos [78, 79]. A previous study using mouse embryos 188 

suggested that weak contractions play an essential role in hatching, whereas strong collapse has an 189 

inhibitory effect [80]. Human studies have revealed that collapsed blastocysts have a lower implantation 190 

rate compared to non-collapsed blastocysts [78, 81]. The mechanisms underlying the detrimental effect 191 

of embryo collapse on implantation are primarily unknown but are presumably related to mechanical 192 

pressure, damage to the gap junctions in the trophectoderm, or excessive energy consumption for re-193 

expansion, which may negatively affect subsequent embryonic development [82]. Our previous study 194 

using bovine IVF embryos demonstrated that RC embryos presented an increased number of blastocyst 195 
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collapses or re-expansions and lower hatchability than normally cleaved embryos [53] (Table 1). In 196 

contrast, the hatching rate was reduced in DC embryos compared to embryos with normal cleavage, 197 

without an increase in the number of collapses before hatching. Therefore, although reduced hatchability 198 

in embryos presenting abnormal cleavage suggests impaired implantation ability, different mechanisms 199 

may be involved in reducing hatchability in RC and DC embryos. Although the mechanism of impaired 200 

hatchability in embryos with abnormal cleavage has not yet been fully elucidated, it is hypothesized that 201 

the reduced embryo viability caused by poor oocyte or sperm quality or unsuitable culture conditions 202 

may be involved. Therefore, it is recommended to prioritize the transfer of embryos that do not show 203 

strong blastocyst collapse to increase the implantation rate in bovine embryo transfer. 204 

 205 

Prediction of embryo chromosome status using TLM 206 

Both quantitative and qualitative evaluations of embryos during the early developmental stage may 207 

be applicable to detect aneuploidy. A recent systematic review in humans reported that the times to 8-208 

cells, 9-cells, blastulation, and expanded blastocyst were prolonged in aneuploid embryos, indicating 209 

that these morphokinetic variables have prognostic potential [24]. Similarly, a bovine IVF study 210 

revealed that slowly cleaving embryos had an increased proportion of chromosomal abnormalities 211 

compared with rapidly cleaving embryos [11]. Therefore, morphokinetic evaluation can be applied to 212 

select bovine embryos with high implantation potential. 213 

Fragmentation, abnormal cleavage, contraction, and multinucleation have been postulated as 214 

qualitative parameters for screening embryo ploidy status. A human meta-analysis showed that RC is 215 

associated with euploidy, whereas DC is not associated with chromosomal abnormality [24]. However, 216 

the authors cautioned that further validation is needed because RC is frequently associated with 217 

compromised embryo quality and inferior implantation rates [24]. Bovine studies have demonstrated 218 

that RC and DC embryos have an increased proportion of blastomeres with abnormal chromosomes, as 219 

determined by karyotyping [19, 53]. Therefore, the association between abnormal cleavage and embryo 220 

ploidy requires further elucidation in large-scale studies. Human studies have shown that embryos 221 
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presenting abnormal cleavage, which presumably have abnormal chromosomes, were able to develop 222 

into euploid blastocysts [73, 74], suggesting that abnormal cleavage may have a potential role in the 223 

process of “self-correction” to avoid an aberrant chromosomal complement. This is supported by human 224 

and bovine studies revealing that abnormal cleavages are associated with partial compaction, in which 225 

embryos exclude several blastomeres at the morula stage [55, 70, 74, 83]. These excluded blastomeres 226 

showed significantly higher abnormal chromosome content than the corresponding embryos. 227 

Furthermore, the incidence of RC and DC was higher in embryos with partial compaction than in fully 228 

compacted embryos, indicating the possible role of partial compaction in rescuing chromosomal 229 

aberrations associated with abnormal cleavage [55, 74, 83].  230 

Recent bovine studies have demonstrated that live-cell imaging using confocal laser microscopy 231 

enables long-term and noninvasive observation of embryo chromosomal dynamics, including 232 

chromosomal segregation, which is thought to be a critical indicator of embryo viability [84, 85]. The 233 

authors reported that abnormal chromosome segregation was associated with delayed first cleavage and 234 

reduced developmental potential, with a much lower blastocyst formation rate than in normal embryos. 235 

Furthermore, the dynamics of pronuclei in bovine embryos, which have been considered difficult to 236 

observe owing to the lipid-rich dark cytoplasm, could be observed using live-cell imaging, and multiple 237 

pronuclei were correlated with DC [84]. More practically, analysis of pronuclear number and dynamics 238 

has also been achieved by combining lipid removal from embryos by centrifugation with time-lapse 239 

observation [56]. These novel techniques can potentially provide new predictive tools for implantation 240 

of bovine IVF embryos. 241 

 242 

Possible application of TLM for embryo sexing 243 

In dairy and beef cattle breeding, pre-selection of calf sex has significant economic advantages and 244 

a major impact on management strategies. Sex-sorted semen has been used for in vitro embryo 245 

production to control the sex of offspring, significantly improve breeding programs, and shorten 246 

generation intervals. In vitro production of female embryos using X-sorted semen has been shown to 247 
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reduce the cost of producing female offspring in dairy cows [5]. Despite these advantages, many studies 248 

have reported that using sex-selected semen in IVF reduces embryonic viability and pregnancy rates [54, 249 

86-93]. Our recent TLM study that determined the developmental kinetics of bovine IVF embryos 250 

revealed that embryos fertilized with X-sorted semen developed slower than embryos fertilized with 251 

unsorted semen [54]. Furthermore, the incidence of RC during the early cleavage stage increased in 252 

embryos produced with X-sorted semen, whereas the incidence of DC did not differ between the groups. 253 

These findings indicate that slower growth and high prevalence of abnormal cleavage are likely to 254 

contribute to the low viability and implantation potential of embryos produced with sex-sorted semen. 255 

Therefore, TLM may improve the implantation potential of IVF embryos derived from sex-sorted semen 256 

by de-selecting the embryos that exhibit abnormal developmental kinetics. 257 

Several bovine and human studies have attempted to determine the association of time-lapse 258 

parameters with embryo sex, with contradictory results. In early bovine studies without TLM, some 259 

have reported that early developing embryos were more prone to be male, suggesting that male embryos 260 

are likely to develop faster than female embryos [94, 95]. In contrast, other studies failed to find any 261 

effect of embryo sex on the timing of bovine embryo cleavage [96-98]. Consequently, although 262 

morphokinetic evaluations using TLM have been applied to verify the developmental differences in 263 

bovine male and female embryos, the effect of embryo sex on cleavage timing remains controversial. 264 

Holm et al. (1998) and Sugimura et al. (2012) failed to find any relationship between developmental 265 

kinetics and bovine embryo sex [11, 45]. On the other hand, Peippo et al. (2001) reported that bovine 266 

embryo sex is related to time-lapse parameters during the early cleavage stage, which are affected by 267 

glucose concentration in the culture medium [47]. When glucose was supplemented into the culture 268 

media, male embryos cleaved faster than female embryos, whereas in the absence of glucose, female 269 

embryos cleaved faster than male embryos [47]. This is supported by early bovine and human studies 270 

suggesting distinct metabolic demands and utilization efficiencies between male and female embryos 271 

[99, 100]. These findings suggest that one reason for the discrepancy in the association of morphokinetic 272 

parameters with embryo sex between studies may be variations in culture conditions among laboratories. 273 
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Therefore, further large-scale studies are necessary to determine the possible application of TLM for 274 

pre-selection of embryos of the required sex. 275 

 276 

Future perspectives 277 

This review outlines the application of TLM technology as a novel method for selecting embryos to 278 

achieve improved pregnancy outcomes in bovine IVF embryo transfer. TLM enables the prediction of 279 

the growth and developmental potential of the bovine embryo through morphokinetic parameters, such 280 

as the timing of cleavage and morphological dynamics, to detect abnormal cleavage patterns or 281 

blastocyst collapse. Furthermore, the possible utilization of TLM to detect chromosomal status or 282 

embryo sex would be of practical value in breeding and management strategies. However, very few 283 

trials have attempted to transfer TLM embryos into cattle to assess implantation ability, and the 284 

usefulness of time-lapse analysis of bovine embryos has rarely been validated. Only one large-scale 285 

study has determined the pregnancy rate after the transfer of embryos, which were continuously 286 

monitored using time-lapse cinematography [11]. The developmental kinetics of embryos vary greatly 287 

among laboratories and culture conditions; therefore, the establishment of bovine embryo selection 288 

criteria that can be applied in various culture systems is a critical issue to be resolved for the commercial 289 

utilization of TLM for bovine embryo production. Another issue for the practical application of TLM in 290 

bovine embryos is the enormous amount of time required to analyze the images. Quantitative and 291 

qualitative parameters during the early cleavage stage or contraction and re-expansion of embryos 292 

during the blastocyst stage are likely to contribute to the implantation ability of embryos; therefore, an 293 

intensive analysis focusing on several critical points may solve this issue. Alternatively, automatic image 294 

analysis using artificial intelligence (AI) is an attractive new technology. The usefulness of embryo 295 

analysis platforms based on automated algorithms, such as EEVATM, is under investigation in human 296 

ART laboratories [28, 101]. The use of machine learning for embryo selection requires solving problems, 297 

such as database quality improvement and the difficulty of making clinical decisions during the learning 298 

phase. However, the potential application of AI technology as a predictive tool is a promising approach 299 
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for the commercial application of TLM for bovine IVF embryos, where large-scale embryo production 300 

is desired. It is evident that the global agricultural industry will benefit from incorporating novel 301 

technologies into its management practices to achieve sustainability of livestock production worldwide. 302 

The application of TLM in bovine embryo production to improve the pregnancy outcomes of IVF 303 

embryos is a key innovation for supporting a growing world population. Therefore, establishing an 304 

embryo selection algorithm based on quantitative and qualitative parameters obtained using TLM for 305 

embryos, specifically for bovine IVF embryos, is a critical challenge. 306 
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Table 1. Milestones for the progress of time-lapse monitoring (TLM) of bovine embryos. 606 

 607 

Authors  Species Monitoring 
system 

Embryo 
monitoring 

Embryo 
production Start point End point Culture 

period Main findings 

Lewis 
and 
Gregory 
(1929) [40] 

Rabbit 
Glass slides 
sealed with 
paraffin  

No 
information 

Collected 
from the 
oviduct 

One-cell Hatching No 
information 

The cleavage and 
hatching of 
mammalian embryos 
were observed for the 
first time 

Massip 
and 
Mulnard 
(1980) [41] 

Bovine Flat capillary 
tube  

No 
information 

Collected 
from the 
uterine 
horns 

Morulae 
and  
frozen-
thawed 
blastocysts 

Hatching 5 days 

Embryos were hatched 
actively by escaping 
through a slit of the 
zona pellucida 

Grisart et 
al. (1994) 

[43] 
Bovine 

Four-well dish 
covered by 
incubation 
chamber  

50 embryos 
per a 
droplet 

IVF One-cell Blastocyst 8 days 

The kinetics of early 
cleavage and the 
occurrence of a lag-
phase were related to 
the developmental 
ability to morulae-
blastocysts 

Somfai et 
al. (2010) 

[19] 
Bovine Commercial 

equipment 

15 to 25 
embryos 
per a 
droplet 

IVF One-cell Blastocyst 175 h 

The duration of the cell 
cycle and the cleavage 
pattern during the early 
cleavage stage indicate 
the blastulation ability 

Sugimura 
et al. 
(2010) [52] 

Bovine Commercial 
equipment Individual  IVF One-cell 

Blastocyst 
Pregnancy 
rate  

168 h 

The well-of-the-well 
system that allows 
tracking and TLM of 
individual embryos 
was developed 

         

Sugimura 
et al. 
(2012) [11] 

Bovine Commercial 
equipment Individual  IVF One-cell 

Blastocyst 
Pregnancy 
rate  

168 h 

A combination of 
several quantitative 
and qualitative 
parameters can 
successfully predict 
pregnancy 

         

Yao et al. 
(2018) [84] Bovine 

A confocal 
laser 
microscope 
with a stable 
incubation 
chamber 

Individual  IVF One-cell Blastocyst 8 days 

Multiple pronuclei 
were observed using 
3D live-cell imaging 
and associated with 
abnormal cleavage 

 608 
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Figure legends 610 

Fig. 1. Morphological classification of embryos at the first cleavage. (A) The cleavage of one 611 

blastomere into two blastomeres of the same size, without fragmentation (normal cleavage). (B) The 612 

blastomere fusion post cleavage (reverse cleavage). (C) The cleavage of one blastomere into more 613 

than three daughter cells (direct cleavage). Numbers in the upper-left corner represent time (h: min) 614 

after fertilization (the beginning of incubation with sperm = 0:00). Scale bars = 50 µm. Modified from 615 

Magata et al. (2019) [53]. 616 

 617 

Fig. 2. Photomicrographs of representative blastocysts with good morphology at 8 days post in vitro 618 

fertilization. Blastocyst presented (A) normal cleavage and (B) reverse cleavage during the first 619 

cleavage. Notably, some abnormally cleaving embryos developed into blastocysts of the same quality 620 

as normally cleaving embryos. Scale bars = 50 µm. 621 

 622 

Fig. 3. Photomicrograph of representative blastocyst (A) before collapse and blastocyst presenting (B) 623 

collapse, (C) re-expansion, and (D) hatching. Numbers in the upper-left corner represent time (h: min) 624 

after fertilization (the beginning of incubation with sperm = 0:00). Scale bars = 50 µm. 625 

 626 

Fig. 4. Time-lapse monitoring of bovine embryos has revealed quantitative and qualitative parameters 627 

that may be associated with successful blastocyst formation and pregnancy. hpi, hours post-628 

insemination; RC, reverse cleavage; DC, direct cleavage. 629 

 630 
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