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Existing techniques in correlation spectroscopy, such as coda wave interferometry and diffusing

acoustic wave spectroscopy, determine the average motion of scatterers or change in the propagation

velocity from the temporal change of multiply scattered sound. However, neither of them gives an

indication of the spatial extent of the change in the medium. This study is an extension of the

technique coda wave interferometry, where multiply scattered waves are used to determine the

change in the wave field due to a localized perturbation in the propagation velocity. Here, the

propagation of multiply scattered sound is described using the diffusion approximation, which

allows the cross-correlation function of the unperturbed and perturbed wave fields to be related to

the localized change in the propagation velocity. The technique is tested numerically for

two-dimensional �2D� acoustic waves using synthetic seismograms calculated using

finite-differences before and after a small perturbation in the propagation velocity has been

introduced. Despite the relatively small size and magnitude of the change, multiple scattering

greatly amplifies small perturbations, making changes in the phase or travel time of the wave field

visible in the later-arriving waveforms. Potential applications of this technique include

nondestructive evaluation of inhomogeneous materials and time-lapse monitoring of volcanoes and

highly heterogeneous reservoirs. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2000827�

PACS number�s�: 43.20.Fn, 43.28.Lv, 43.40.Ph �LLT� Pages: 1300–1310

I. INTRODUCTION

Most imaging techniques using scattered waves rely on

the single scattering approximation. Seismic imaging
1

mostly

uses primary reflected waves to obtain an image of the sub-

surface. In many physical problems, however, waves are

strongly scattered and the single scattering approximation is

not a valid model for the propagation of waves through the

medium. In such cases we have to use a model that accounts

for the multiple scattering of waves and the associated at-

tenuation. The diffusion model has been used with success to

characterize a wide range of wave phenomena in strongly

scattering media.
2–6

In this model, wave energy transport ac-

quires a diffusive character, e.g., wave energy is transported

in a process similar to heat diffusion. In medical imaging, for

example, diffusing near-infrared light has been used to image

localized heterogeneities of tissue.
7

In many practical applications the medium changes over

time, and therefore the image of the medium changes. We

then would like to obtain time-lapse measurements in order

to monitor temporal changes in the medium. Examples of

applications where detecting temporal changes may be useful

include the monitoring of volcanoes, oil reservoirs, radioac-

tive waste disposal sites, and fluidized suspensions. In reflec-

tion seismology, dynamic reservoir characterization provides

optimal management of a reservoir, which leads to increased

production. Time-lapse �4D� reflection seismic aims at infer-

ring changes from the medium from changes in the seismic

amplitudes and/or travel times from seismic reflection data

that have been acquired at two different times. As an ex-

ample, a 4D dataset recorded at Weyburn Field, Canada, has

been used to infer time-lapse changes in the oil reservoir

caused by a massive miscible CO2 flood to enhance oil

recovery.
8,9

The main goal of these 4D studies is to extract

information about local changes in the reservoir using

mainly the amplitude information.

The fine structure of strongly scattered waves can pro-

vide a wealth of new information in seismology, ultrasonics,

acoustics, and other fields that study wave propagation in

heterogeneous media.
10

Multiple scattering theory has been

used to determine the number and the scattering strength of

scatterers in motion inside a highly reflecting cavity, and

more specifically for fish counting in a tank.
11,12

In biophys-

ics and medical imaging, diffusing photons are now used to

view body function and structure after it was found that pho-

ton transport within tissues is dominated by scattering rather

than absorption.
7

Diffuse transmission spectroscopy
13

has

been used to probe the structure of opaque materials such as

colloids, foams, and sand, using multiply scattered photons.

Multiply scattered waves have also been used to study

the dynamics of complex media and turbulent fluids. Diffuse

light spectroscopy
7

has been used to measure the spatial

variations in the absorption and scattering of large tissue vol-

umes. Diffusing wave spectroscopy �DWS� is a technique in

which multiply scattered light is used to study the dynamics
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of colloidal suspensions;
14

this technique was adapted later

to acoustic waves.
15

This technique estimates the average

motion of the scatterers from the temporal fluctuations of

multiply scattered sound. In this technique, the propagation

of multiply scattered sound is described using the diffusion

equation, which makes it possible to relate the temporal field

fluctuations with the dynamics of the multiple scattering me-

dium. Recently, coda waves have been used to study the

temperature dependence of the seismic velocity in granite
16

and in a reverberant three-dimensional cavity
17

using a tech-

nique called coda wave interferometry. In this technique,

multiply scattered waves are used to detect temporal changes

in a medium by using the scattering medium as an interfer-

ometer. For small changes in the medium, estimates of this

perturbation can be obtained from multiply scattered waves

by a cross correlation in the time domain.
16

For larger

changes, the decay of the correlation of the diffuse field is

related to distortion and is an interesting system-dependent

quantity.
17

Coda wave interferometry has also been used to

determine the relative location of earthquakes for scattered

waves.
18

In none of those approaches has an attempt been made

to determine the spatial extent of the change or local pertur-

bation in the medium. When the random multiple scattering

medium changes over time, changes in the diffuse field are

related to changes in the medium. The sensitivity to pertur-

bations in the medium enhances as the scattering order in-

creases and thus becomes an interesting tool to detect the

appearance of a very small defect in a multiple scattering

sample.
19

In this study we develop a technique that relates

the localized changes in the propagation velocity of the me-

dium to the travel time change of the multiply scattered

waves. As in diffuse wave spectroscopy, this technique relies

on the diffusion approximation of the intensity in strongly

scattering media. Therefore, we can model the mean travel

time change of waves with propagation time t before and

after a small and localized change in the propagation velocity

has been introduced in the medium. This work is an exten-

sion of coda wave interferometry in the sense that it accounts

for localized changes in the propagation velocity of the scat-

tering medium. Thus, we are able to model the fluctuation in

the phase of the multiply scattered wave field for a given

localized time-lapse velocity perturbation of the multiple

scattering medium. We assess the validity of our theory using

finite-difference simulations of multiple scattering of acous-

tic waves in 2D media.

The paper is divided into five parts. Section II explains

how the diffusion approximation is used to describe energy

transport in strongly scattering media and its relation with a

random walk process. Section III introduces coda wave in-

terferometry and how it can be used to obtain an estimator

for the mean travel time change of scattered waves. In Sec.

IV we derive theoretically an expression for the mean travel

time change of multiply scattered waves by using the anal-

ogy between a diffusion process and random walks. The

main result of this work is the expression that relates the

mean travel time change of multiply scattered waves with the

localized perturbation in the propagation velocity of the me-

dium. In Sec. V we validate the theory with numerical ex-

amples using finite-difference synthetic seismograms. We

found good agreement between our theory and results from

the finite-difference seismograms, despite some fluctuations

that are analyzed in Sec. VI. Finally, we discuss applications

and limitations of the technique in Sec. VII.

II. DIFFUSION ENERGY TRANSPORT AND RANDOM
WALKS

The transport of energy through a strongly scattering

medium has attracted considerable attention in numerous

fields of physics, such as astrophysics, optics, acoustics,

solid-state physics, and heat conduction. In any of these

fields, one studies a pulse of energy that propagates through

the medium with an intensity P�r , t�. The diffusion equation

describes the propagation of the average intensity in a mul-

tiple scattering medium.
20

In a two-dimensional medium of

infinite extent, constant scattering properties, without intrin-

sic attenuation, and in the long-time limit,
21

the average in-

tensity at r can be approximated by the solution of the dif-

fusion equation

P�r,t� =
1

4�Dt
exp�− r2

4Dt
� , �1�

where r is the distance to the source and D is the diffusion

constant. Equation �1� describes the temporal evolution of

the average intensity after the waves have scattered multiple

times from small-scale heterogeneities. Figure 1 shows the

average intensity for receivers located 500, 1500, 2500, and

3500 m away from the source. The actual mean intensities

were calculated after averaging over 100 different receiver

locations after propagating a seismic wave field through a

medium with random velocity fluctuations using finite

differences as described in Sec. V. Figure 2 shows one of

the seismograms calculated for a source–receiver distance

of 2500 m. Despite the random appearance of the indi-

vidual seismogram, an ensemble of such seismograms

yields an average intensity that obeys the diffusion equa-

tion. The mean intensities from the finite-difference simu-

lations are shown as solid curves, whereas the best diffu-

FIG. 1. Actual averaged intensities �solid line� versus best diffusion fit

�dashed line� for receivers at 500, 1500, 2500, and 3500 m. The estimated

value of the diffusion constant is 5.78�105 m2 / s.
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sion fits �Eq. �1�� are shown as dashed lines. Notice the

good agreement between the diffusion curves and the av-

erage intensities.

Given a seismogram such as the one shown in Fig. 2, it

is extremely difficult to determine if a specific trajectory

gives rise to an energy impulse at a specific time t. The

problem is simplified if, instead of considering one specific

trajectory, we consider the average wave field obtained after

summing the contributions of all possible trajectories arriv-

ing at the receiver at time t. When scattering is strong and

waves follow infinitely many trajectories, wave propagation

can be considered as a random walk process. This simplifies

the problem because a random walk process can on average

be described with the solution of the diffusion equation. This

provides us with the advantage of a simple physical picture

where the diffusively scattered wave field is represented as

the sum of partial waves traveling along various diffuse

paths.
22

The multiply scattered waves travel through the medium

in a random walk process that is characterized in n-D �where

n is the number of dimensions� by the transport mean free

path l*, the energy velocity ve, and the diffusion coefficient

D=vel
* /n.

15
Figure 3 shows three realizations of random

walk in 2D calculated numerically using D=3.45

�105 m2 / s and ve=5300 m/s. The random walks were cal-

culated until a maximum elapsed time t=3 s. If we calculate

many realizations, the distribution of distances r traveled

from the origin at a given time t is given by Eq. �1�. This is

shown in Fig. 4, were we show the distribution of distances

traveled for the random walk particles for 5000 different re-

alizations of random walks starting from the origin with total

elapsed time t=3 s. In Sec. IV we use the random walk

approximation to multiple scattering to derive an expression

for the mean travel time of waves in a strongly scattering

medium.

III. CODA WAVE INTERFEROMETRY

When a strongly scattering medium changes, the speckle

pattern of multiply scattered waves changes, which reflects

the changes that occur in the interference of waves traveling

with different scattering paths through the sample. Multiply

scattered waves are useful in such situations, because they

are increasingly sensitive with time to the perturbations in

scatterer locations or perturbations in the propagation veloc-

ity of the medium. This increased sensitivity is due to the

fact that waves bounce more often among scatterers as time

increases, and as a result, small changes in the medium are

amplified through multiple scattering.

For a small perturbation in the propagation velocity, an

estimate of this perturbation can be obtained by a time-

windowed cross correlation of the unperturbed and perturbed

scattered waves.
23

The unperturbed wave field uunp�t� can be

written as a summation of waves over all possible trajecto-

ries T
24

uunp�t� = �
T

AT�t� , �2�

where a trajectory T is defined by the sequence of scatterers

that a particular multiple scattering wave encounters, and

AT�t� is the corresponding waveform. For diffusive wave

propagation the trajectories T can be thought of as a collec-

tion of random walks.

FIG. 2. Example of a finite-difference seismogram for a source–receiver

distance of 2500 m after propagating a finite-bandwidth pulse through a

medium with random velocity fluctuations.

FIG. 3. Three realizations of the random walk characterized by D=3.45

�105 m2 / s and ve=5300 m/s.

FIG. 4. Observed distribution of distances for the 5000 realizations of ran-

dom walks �open circles� versus the diffusion curve �solid line� for t=3 s.
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When we introduce a small perturbation of the propaga-

tion velocity, the dominant effect on the multiple scattering

waveform is a travel time perturbation �T of the wave that

travels along the trajectory T

uper�t� = �
T

AT�t − �T� . �3�

We can characterize the change in the wave field using the

time-windowed cross-correlation function
23

Cup
�t,tw��ts� = �

t−tw

t+tw

uunp�t��uper�t� + ts�dt�, �4�

where t denotes the center of a time window of length 2tw,

and ts is the lag time for the correlation. When Eqs. �2� and

�3� are inserted into Eq. �4�, double sums �TT�
appear. We

assume that in these double sums, the cross terms related to

different trajectories �T�T�� are incoherent and average out

to zero when the mean of the source signal vanishes. The

contribution of the cross terms is estimated in Ref. 25. A

dimensionless measure of the change of the wave field is

given by the time-windowed correlation coefficient, which is

given by

R�t,tw��ts� =

�
t−tw

t+tw

uunp�t��uper�t� + ts�dt�

	�
t−tw

t+tw

uunp
2 �t��dt��

t−tw

t+tw

uper
2 �t��dt�
1/2

. �5�

For time shifts ts much smaller than the dominant period

of the wave, a second-order Taylor expansion of the AT�t�
+ ts−�T� in �T gives

23

R�t,tw��ts� = 1 −
1

2 �̄
2��� − ts�

2��t,tw�, �6�

where �̄ is the dominant frequency of the wave. In this ex-

pression �. . .��t,tw� denotes the average over all waves that

arrive in the time window �t− tw , t+ tw� with a weight factor

that is equal to the intensity of the waves.
23

Thus, averages

are taken with a weight factor that is given by the intensity of

each wave. This means that in this work, the average travel

time change ����t,tw� is given by an average of the travel time

change of individual waves with different trajectories T ar-

riving on the time window �t− tw , t+ tw�, i.e.,

����t,tw� =
�T

wT�t,tw��T�t,tw�

�T
wT�t,tw�

, �7�

where the weighting factor wT�t , tw� is given by the intensity

for the diffuse waves arriving on the time window �t− tw , t

+ tw�.

IV. MEAN TRAVEL TIME CHANGE IN THE DIFFUSION
REGIME

A. Random walk probabilities

Each random walk from the source to the receiver has an

associated probability which depends on the diffusion of the

intensities in the strongly scattering medium. Recalling Eq.

�7�, and considering waves arriving on the time window �t

− tw , t+ tw�, the average or mean travel time change ��� is a

weighted average of the travel time changes of the individual

trajectories T, i.e.,

��� =
�T

IT�T

�T
IT

, �8�

where IT is the intensity or probability associated with the

trajectory T, which can be calculated using the solution to the

diffusion equation. In the following, we show how to derive

an expression for this intensity for a given source and re-

ceiver location.

Let us assume that the seismic energy transport can be

described as a diffusion process. Thus, the space and time

evolution of the diffusive intensity in the medium due to an

intensity impulse at the origin at time t=0 is given by P�r , t�,
as defined in Eq. �1�. In multiple scattering of waves, this

diffusive energy corresponds to the ensemble averaged or

mean intensity �I�.
We can interpret P�r , t� in a different way, regarding

diffusion as a random walk process. In random walk theory,

the product P�dV represents the probability of a particle on

a random walk of visiting a volume element dV at location r

at a given time t.
26

If, at time t=0, a normalized intensity

impulse is generated at the source, the total energy within

some region V at some later time is given by the integral

W�V,t� = �
V

P�r,t�dV�r� . �9�

Integration over all space gives the total energy of the sys-

tem, which by the normalization is W�t�=1. The quantity

W�V , t� is equal to the probability of a particle on a random

walk of visiting the volume region V at a time t.

We now consider the probability that a random walk

particle leaves a source at s at time t=0, visits a volume

element dV at r� at time t�, and arrives at r at time t as

depicted in Fig. 5. Assuming that the two paths, from source

to the volume element, and from the volume element to the

receiver, are independent, this probability is equal to the

product of two probabilities: the probability of the particle of

going from s to r� in a time t�, and the probability of going

from r� to r in a time t− t�, i.e.,

FIG. 5. A random walk particle going from source s at the origin to volume

element dV at r� on time t�, and then to receiver at r on time t− t�.
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P�r�,r,s,t�,t� = P�r�,s,t��P�r,r�,t − t�� , �10�

where P�r� ,r ,s , t� , t� stands for the probability of all the

trajectories visiting the volume element at location r� at time

t� given that the walk started at the source location s and

ended at the receiver location r at time t.

The probability of a particle to travel from the source to

the receiver is given by the solution to the diffusion equation

for homogeneous medium given in Eq. �1�. This solution

also gives the time-dependent intensity P�r ,s , t� at the re-

ceiver location due to a unit intensity impulse at the source.

This intensity is obtained by summing the contributions to

the intensity of all waves traveling with all possible diffuse

trajectories going from the source to the receiver, i.e., inte-

grating Eq. �10� over all possible volume elements dV�r��

P�r,s,t� = �
V

P�r�,r,s,t�,t�dV�r��

= �
V

P�r,r�,t − t��P�r�,s,t��dV�r�� . �11�

The integrand P�r� ,r ,s , t� , t� contains the contributions to

the intensity of all paths which are initiated at the source

location s, visit the location r�, and end at the receiver lo-

cated at r. By integrating over all the volume where scatter-

ing occurs, we are summing the contributions over all pos-

sible trajectories from the source to the receiver. Note that in

Eq. �11� no integration over t� is performed. Equation �11� is

a restatement of the Chapman–Kolmogorov equation
26

�
V

P�r,r�,t�P�r�,s,t��dV�r�� = P�r,s,t + t�� , �12�

which states that a random walk process starting at t=0 at

location s reaches r at t via one of the possible values r� at a

intermediate time t�.

The quantity P�r� ,s , t�� in Eq. �11� is the diffuse inten-

sity at a time t� at r� due to an impulse source at s activated

at time t=0, and P�r ,r� , t− t�� is the intensity at r at time t

due to an impulse source at r� on a time t− t�. Equation �11�
holds for all times 0� t�� t.

26
If we integrate both sides of

Eq. �11� over time t� over the interval 0� t�� t, we obtain

tP�r,s,t� = �
V

�
0

t

P�r,r�,t − t��P�r�,s,t��dt� dV�r�� ,

�13�

where we can identify the time integral 
0
t P�r ,r� , t

− t��P�r� ,s , t��dt� as the time convolution of the two intensi-

ties: one at location r� due to an impulse intensity at s and

the other at location r due to an impulse intensity at r�. If we

divide both sides of Eq. �13� by P�r ,s , t�, we arrive at the

following integral representation for the travel time of the

diffuse wave field:

t =
1

P�r,s,t�
�

V

�
0

t

P�r,r�,t − t��P�r�,s,t��dt� dV�r�� .

�14�

We have obtained in Eq. �14� a representation for the

time t at r in terms of the diffuse intensity due to an impulse

source at s. The time t corresponds to the time of propagation

of the diffuse intensity. If we define the kernel K�r� ,r ,s , t� as

K�r�,r,s,t� =
1

P�r,s,t�
�

0

t

P�r,r�,t − t��P�r�,s,t��dt�,

�15�

we can express the travel time t as the following volume

integral:

t = �
V

K�r�,r,s,t�dV�r�� , �16�

where K�r� ,r ,s , t� represents the time of flight distribution

of multiply scattered waves started at the source at location s,

visiting location r� and detected on a receiver at location r.

Figure 6 shows a plot of the sensitivity kernel calculated for

a source and receiver separated 3000 m, t=1 s, and D=5.8

�105 m2 / s. Note that the kernel vanishes outside the area

of an ellipse with foci at the source and receiver location.

B. Integral representation for the mean travel time
change of the diffuse wave field

When the scatterers in a multiple scattering material

move, or when the propagation velocity of the medium

changes, the diffuse wave field changes. In diffusing acoustic

wave spectroscopy,
15

the fluctuations of the multiply scat-

tered wave field are measured and analyzed to provide a

sensitive technique for probing the dynamics of the scatter-

ers. Here, we use a similar approach, considering the phase

changes in the diffuse wave field which arise due to a spa-

tially localized change in the propagation velocity.

We perturb the slowness in a finite region of the medium

as shown in Fig. 7. We work under the assumption that the

perturbation is weak so that the scattering coefficient does

not change, and the waveform for each scattering path stays

approximately the same. Also, the scattering paths remain

unchanged so that the only difference between the unper-

turbed and the perturbed field is a small travel time pertur-

bation, �T. If the mean slowness of the medium is denoted by

FIG. 6. �Color online� Sensitivity kernel K in 2D for source �asterisk� and

receiver �triangle� separated 3000 m and t=2 s. The diffusion constant is

5.8�105 m2 / s.
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s, we calculate the mean length �L�t�� of the multiple scat-

tering paths at time t by dividing Eq. �16� by s

�L�t�� = �
V

1

s
K�r�,t�dV�r�� , �17�

where we have placed s inside the integral since it is as-

sumed to be independent of location. For notation simplicity

we have removed the explicit dependence of K on the source

and receiver location. A perturbation in the slowness gives

rise to a perturbation in the travel time or phase of the wave

field, i.e.,

t + �t = �
V

K�r�,t�
�s + �s�

s
�r��dV�r�� , �18�

where �s is the perturbation in the background slowness.

Since in the integral in Eq. �18� we are averaging the contri-

bution to the travel time perturbation of all volume elements,

�t becomes the average or mean travel time change that we

define as ���t��. We have assumed that the perturbation in the

slowness is small ��s /s�1� so that the travel time perturba-

tion depends only linearly on the slowness perturbation. The

average or mean travel time change for the multiple scatter-

ing paths with path length L is then

���t�� = �
V

K�r�,t�
�s

s
�r��dV�r�� , �19�

where ���t�� is the mean travel time change of the multiply

scattering waves with travel time t and path length �L�t�� due

to the relative slowness perturbation �s /s. Note that this av-

erage is weighted by the intensity, since the integration ker-

nel K�r� , t� represents the intensity of diffuse trajectories go-

ing through location r� with total travel time t, as needed in

the averaging in Eq. �8�.
To calculate the mean travel time change for a particular

source and receiver configuration, we need to integrate the

kernel K weighted by the slowness perturbation �s /s over

the volume where scattering takes place. The kernel K is

given by the time convolution in Eq. �15�. For a source and

receiver at different locations, this time convolution does in

general not have an analytical solution so it must be evalu-

ated numerically. For the special case of coincident source

and receiver, an analytical solution for this convolution can

be obtained. In the Appendix we calculate the kernel K for

coincident source and receiver for two- and three-

dimensional media. In 3D, the kernel K is given by

K3D�r,t� =
1

2�Dr
exp�− r2

Dt
� . �20�

From Eq. �20� we see that the main contributions to the

travel time change come from paths located close to the co-

incident source and receiver location. Also, we can see that

for a fixed distance r the integration kernel K increases with

time t. In multiple scattering, the effective distance traveled

by diffuse waves is proportional to the square root of dis-

tance �r��4Dt�. For smaller value of the diffusion coef-

ficient, the stronger the scattering is and the smaller the

effective distance traveled by diffuse waves �wave paths

become more localized around the source and receiver

location�. Thus, with increased time, diffuse waves sample

the same region multiple times and consequently the

travel time change increases with time.

For the special case of 2D wave propagation the integra-

tion kernel K is for coincident source and receiver �see the

Appendix for derivation�

K2D�r,t� =
1

2�D
exp�− r2

2Dt
�K0� r2

2Dt
� , �21�

where K0 is the modified Bessel function of the second kind.

If we insert Eq. �21� into Eq. �19� and integrate over area

instead of volume, we obtain

���t�� =
1

2�D
�

A

exp�− r2

2Dt
�K0� r2

2Dt
��s

s
�r�dA�r� , �22�

where r is the distance from the slowness perturbation

�s /s�r� element to the coincident source and receiver loca-

tion. In Eq. �22�, we have obtained an explicit expression

relating the mean travel time change ��� of the diffuse waves

to the localized slowness perturbation ��s /s�r�� in a multiple

scattering medium for coincident source and receiver. In

general, for a given perturbation in slowness, we can predict

the mean travel time change ��� for any source and receiver

configuration by numerically calculating the convolution in

Eq. �19�.

V. TRAVEL TIME CHANGE FROM FINITE-DIFFERENCE
SYNTHETICS

To generate synthetic seismograms for our study of mul-

tiple scattering, we use a fourth-order 2D acoustic finite-

difference code that propagates a finite-duration pulse

through a specified velocity field. Following Ref. 27, we

model the 2D velocity field as a constant-background model

with added random velocity fluctuations that constitute the

scatterers �see Fig. 8�. The total velocity field can be decom-

posed as

v�r� = v0 + vr�r� , �23�

where v0 is the background velocity and vr are the random

velocity fluctuations. The velocity fluctuations are character-

ized by a Gaussian autocorrelation function with correlation

FIG. 7. Multiple scattering paths and a localized perturbation. After the

perturbation the paths remain the same. The source location is represented

by an asterisk and the receiver by a triangle.
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distance a, with zero mean and standard deviation � �see Fig.

8 for a realization of the velocity model�. The autocorrelation

function of the velocity fluctuations vr has the form

�vr�r��vr�r + r��� = �
2 exp�− r2

a2 � . �24�

The synthetic seismograms were created by transmitting a

bandlimited pulse with a dominant wavelength of 240 m.

The grid size used was 20 m and the autocorrelation a

length was set to 40 m, which is much smaller than the

wavelength. The mean velocity v0 is equal to 6000 m/s.

To ensure strong scattering, we created a velocity field

with a relative standard deviation of 25% about the mean

velocity value. To test the validity of the diffusion ap-

proximation for our numerical model, we performed a nu-

merical experiment where we placed a source in the

middle of the model and recorded the seismograms on an

array of receivers around the source. Figure 9 shows 100

synthetic seismograms computed at a distance of 250 m

�left� and 3000 m �right� from the source. Note the

strength of the multiple scattered arrivals after the highly

attenuated ballistic arrival, especially for a distance of

3000 m from the source. The average intensity �which was

shown in Fig. 1� was obtained by averaging the squared

envelope of all calculated waveforms at a given distance

to the source.

We test our theory with the finite-difference simulations

of acoustic waves in the multiple scattering regime before

and after a localized slowness perturbation has been intro-

duced in the model. We perturb the random velocity model

which represents the unperturbed medium by adding a local-

ized slowness perturbation as shown in Fig. 10. The value of

the relative slowness perturbation is �s /s=0.005.

We first analyze the unperturbed and perturbed synthetic

seismograms for the receiver R1 located on the perturbed

region of our model 2000 m away from the source. Figure 11

shows both the unperturbed and perturbed seismograms for

receiver R1. The waveforms consist of diffuse or multiply

scattered waves that have followed a multitude of paths from

the source to the receiver. Notice the strength of the coda

waves for late times. At first sight there seems to be no

substantial difference between the wave field before and after

the perturbation. However, zooming at around 2 s �see Fig.

FIG. 8. 2D velocity model with random velocity fluctuations added to it.

The correlation length of the velocity fluctuations is 40 m.

FIG. 9. Seismograms recorded at 250 m �left� and 3000 m �right� from the source.

FIG. 10. Slowness perturbation added to the initial velocity model to create

the perturbed velocity model. The side length of the square is 3000 m and

the magnitude of the perturbation is �s /s=0.005. The source is shown as a

star and the receivers as triangles.
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12� we see that the unperturbed seismogram lags in time

with respect to the perturbed seismogram. More careful in-

spection indicates that the behavior of the time lags with

travel time is systematic, i.e., the lag is increasing with travel

time t.

We calculate the theoretical mean travel time change

using Eq. �19� for receiver R1 at several propagation times t

and compare the result with the mean travel time change

estimated from the synthetic seismograms using the time-

windowed cross-correlation technique. Figure 13 shows

good agreement between the theoretical and the measured

mean travel time change ����t�.
We also calculated the mean travel time changes for the

receivers R2 and R3 located 5500 m away from the source.

Even though the distance to the source is the same for these

receivers, their locations with respect to the perturbation is

different and therefore the mean travel time change is differ-

ent for the two receivers. The theoretical travel time change

for receiver R2 is almost twice the travel time change for

receiver R3 �see Fig. 14�. Also note that we have obtained a

good agreement between the theoretical and estimated mean

travel time change. This sensitivity of the mean travel time

change to the relative source and receiver locations with re-

spect to the perturbation can be exploited in an inversion

scheme to estimate the propagation velocity change from

measurements of the mean travel time change at different

receiver locations. Notice also that for all receivers there are

fluctuations of the measured travel time change about the

theoretical value. We explore the origin of these fluctuations

and how to minimize them in the following.

VI. FLUCTUATIONS OF THE MEAN TRAVEL TIME
CHANGE

We measured the mean travel time change from the syn-

thetic seismograms using a time-windowed cross-correlation

technique. The measured mean travel time change measured

in this way is approximately an average of the time lags for

the many scattering events on that time window. The fluc-

tuations seen on the estimated mean travel time change are

due to a number of factors, of which the most important is

the size of the time window. We measure time lags of a

continuous signal. Special care must be taken not to choose

too small a time window to ensure stability of the estimation

in the time-windowed cross correlation. The larger the time

FIG. 11. Unperturbed �solid� and perturbed �dashed� synthetic seismograms

recorded at the receiver R1 located 2000 m away from the source.

FIG. 12. Zoom of the unperturbed �solid curve� and perturbed �dashed

curve� synthetic seismograms recorded at the receiver R1 located 2000 m

away from the source. Note the time lags between the unperturbed and

perturbed seismograms at different times.

FIG. 13. �Color online� Theoretical versus measured mean travel time

change for receiver R1 located 2000 m away from the source.

FIG. 14. Theoretical versus measured mean travel time change for receivers

R2 and R3 located 5500 m away from the source.
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window the more averaging of travel time perturbations oc-

curs. Thus, choosing a larger window may help minimize the

fluctuations of the observed mean travel time change.

We can reduce the fluctuations of the estimated mean

travel time change ����t� by choosing a larger time window

length 2tw on the time-windowed cross correlation. Refer-

ence 25 shows that increasing the time window length de-

creases the magnitude of the cross terms on the average in-

tensity �I�, and therefore the fluctuations of the time lags

measured in the cross correlation. Larger contributions from

the cross terms to the average intensity imply larger depar-

tures from the diffusive behavior.

The decrease of the fluctuations with the increase of the

time window length 2tw can be appreciated in Fig. 15, where

we plot the measured mean travel time change �circles� ver-

sus the theoretical mean travel time change �solid line� using

different window lengths on the time-windowed cross corre-

lation for the receiver R1 of example 1 of the previous sec-

tion. We see that the fluctuations of the measured travel time

change decrease with increasing window length 2tw. For this

synthetic example, the dominant period Tdom is 40 ms. The

length of the time window in Fig. 15 varies from

70 to 420 ms.

VII. CONCLUSIONS

We have developed a technique that relates the mean

travel time changes to the local changes in the propagation

velocity of the medium. The theory is formulated by means

of the diffusion approximation of the multiple scattering

wave field. The sensitivity kernel K�r , t� describes the depen-

dence of the mean travel time change with the source and

receiver location, the relative slowness perturbation, and the

diffusion constant of the medium.

Equation �19� relates the mean travel time change ���
��t� at time t with a localized slowness perturbation �s /s�r�.

Note that this equation can be used as the basis of a standard

linear inverse problem, as there is a linearized relation be-

tween the data �mean travel time change for different times t,

and different source/receiver pairs� and the unknown param-

eters of the medium �localized slowness perturbation� which

we want to retrieve. In the previous section we showed that

the mean travel time change is a function of time and of the

source and receiver locations. This dependence of the mean

travel time change on the relative source and receiver loca-

tion with respect to the localized slowness perturbation can

be exploited in the inversion scheme for the spatial location

of the slowness change.

We have developed our technique for homogeneous me-

dia. In practice, detectors will most likely need to be placed

on the surface of the medium, so that boundary conditions

will have to be taken into account. Also, the medium may

contain layers, so we will have to account for heterogeneity

as well. The problem of analyzing the precise effect of a

contrast of wave velocities and/or scattering strengths be-

tween them will arise. Under the assumption of an almost

isotropic scattering field
28

we determined the boundary con-

ditions for the diffusion and radiative transfer equations for

layered media. Undoubtedly all this will make our kernels

more complicated.

Future work includes developing an inversion scheme to

obtain the shape and magnitude of the slowness perturbation

from the measured travel time changes at different receiver

locations. This is similar to the transmission tomography

problem, with the added complication that we are not only

taking first or minimum time arrival but all multiple arrivals

due to the interference of multiply scattered waves. The

problem is simplified due to the fact that we are not using

explicitly the paths as in transmission tomography but rather

using the average wave field obtained with the diffusion ap-

proximation. Instead of calculating the travel time change

with infinitely many line integrals, we calculate the mean

travel time change using a much simpler volume integral that

FIG. 16. �Color online� Schematic view of the tomographic problem in

matrix form. The sensitivity kernel K relates linearly the unknown param-

eters �s /s with the measured traveltime change ����t�. Each row in the

matrix operator corresponds to a different receiver location.

FIG. 15. Mean travel time change ����t� estimated from the synthetic seis-

mograms for receiver R1 using different window lengths on the cross cor-

relation. The mean travel time change is in milliseconds. Note the reduction

in the fluctuations of the measured mean travel time change �circles� around

the theoretical value �solid line� for larger window lengths. The dominant

period is 40 ms. The window length is shown in the upper-left corner of

each plot.
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contains the contributions of all possible paths. For a given

time t and for a fixed source location we can set up the

inverse problem in matrix form using different receivers as is

shown in Fig. 16. The matrix operator �calculated from the

time of flight distribution K� which multiplies the unknown

parameter vector �slowness perturbation �s /s�r� as a func-

tion of position� generates the data �mean travel time change

for different receiver locations�. Each row in the matrix cor-

responds to an observation of mean travel time change for a

specific source–receiver pair at a discrete number of times t.

This technique can be used to detect temporal changes in

highly heterogeneous material or reservoirs given that the

diffusion approximation of the intensities is valid.
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APPENDIX A: SENSITIVITY KERNEL K FOR
COINCIDENT SOURCE AND RECEIVER

We start from the expression

K�r�,s,r,t� = �
0

t
P�r,r�,t − t��P�r�,s,t��

P�r,t�
dt�, �A1�

where P�r , t� is the intensity at the receiver located at r due

to a normalized impulse source at the origin at time t=0, and

is given by Eq. �1�. For homogeneous media it depends only

on time and on the distance r between source and receiver. In

2D it is equal to

P�r,t� =
1

4�Dt
exp�− r2

4Dt
� . �A2�

The time convolution is given by

P��r� − s�� � P��r − r��� = �
0

t

P��r� − s�,t��P��r − r��,t

− t��dt�. �A3�

Substituting Eq. �A2� into Eq. �A3� gives for coincident

source and receiver �r=s=0�

P�r�,t� = �
0

t exp�− r�2

4Dt�
�

4�Dt�

exp� − r�2

4D�t − t��
�

4�D�t − t��
dt�. �A4�

As there is symmetry around t /2, we can write after

renaming r� as r

P�r,t� =
2

�4�D�2�
0

t/2 exp�− r2

4D

t

t��t − t��
�dt�

t��t − t��
. �A5�

We apply the following changes of variables: 	

=1/ �t��t− t��� and then 
=r2t�	− �4/ t2�� to obtain

P�r,t� =
2

�4�D�2
e�−r2/t��

0

�
e−
d


�

2 +


r2

Dt

. �A6�

This integral can be calculated identifying it as a integral

of the type

�
0

�
e−pxdx

�x�x + a�
= eap/2K0	ap

2

 , �A7�

for a�0 and p�0. The solution to the integral in Eq. �A7�
can be found in Ref. 29. Setting p=1 and a=r2 /Dt, expres-

sion �A7� becomes

�P � P��r,t� =
2

�4�D�2t
exp�− r2

2Dt
�K0� r2

2Dt
� , �A8�

where K0 is the modified Bessel function of the second kind.

Substituting Eqs. �A4� and �A2� into Eq. �A1�, we arrive at

the expression for the kernel K�r , t� in two dimensions for

coincident source and receiver

K2D�r,t� =
1

2�D
exp�− r2

2Dt
�K0� r2

2Dt
� . �A9�

To obtain the sensitivity kernel K in three-dimensional

media, we substitute Eq. �A2� with the Green’s function for

the diffusion equation in 3D

P�r,t� =
1

�4�Dt�3/2
exp�− r2

4Dt
� . �A10�

Solving the integral defined in Eq. �A1� using the same

changes of variables as in the 2D case, we obtain the expres-

sion for the kernel K�r , t� in three dimensions for coincident

source and receiver

K3D�r,t� =
1

2�Dr
exp�− r2

Dt
� . �A11�
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