Time Lower Bounds for CREW-PRAM
Computation of Monotone Functions

Gianfranco Bilardi*
Abha Moitra**

TR 89-1012
May 1989

Department of Computer Science
Cornell University
lthaca, NY 14853-7501

*This research is supported in part by NSF grant MIP-02256 and by the Joint Services Electronics
Program under contract F49620-87-C0044.
“*The research was done at Cornell University and supported by NSF grant DCR-86-02307.

Time Lower Bounds For CREW-PRAM Computation
Of Monotone Functions

Gianfranco Bilardi!
Department of Computer Science
Comell University
Ithaca, New York 14853

Abha Moitra?
General Electric Research Laboratory
Schenectady, New York 12301

Abstract: It is shown that the time to compute a monotone boolean function depending upon n
variables on a CREW-PRAM satisfies the lower bound T = Q(log [+ (log n)/1), where [is the size
of the largest prime implicant. It is also shown that the bound is existentially tight by constructing a
family of monotone functions that can be computed in 7 = O (log ! + (log n)/1), even by an EREW-
PRAM. The same results hold if / is replaced by L, the size of the largest prime clause.

An intermediate result of independent interest is that S (n,1), the size of the largest minimal
vertex cover minimized over all (reduced) hypergraphs of n vertices and maximum hyperedge size /,
satisfies the bounds Q(n'') < S(n,)) < 0 Un'").

1Supported in part by the National Science Foundation under grant MIP-86-02256 and by the Joint Services Electronics Program
under contract F49620-87-C0044.

2Work done while at Comell University was supported in part by the National Science Foundation under grant DCR-86-02307

1 Introduction

Parallel Random Access Machines (PRAMs) play a central role in the study of parallel
computation and in the development of parallel algorithms. A PRAM is essentially a set of
processors connected to a large shared memory. To make the PRAM a precise model of
computation, a number of aspects need to be specified, including conventions for simultane-
ous memory access, the instruction set of individual processors, whether the control is based
on a single or a multiple instruction stream, the mechanism by which processors are
activated, and so on. Several variants with respect to these aspects have been considered in
the literature [FW 78, LPV 81, SV 81, Gol 82, BH 85, Sni 85] and various relations among
these variants have been investigated [Vis 83, FRW 84, FGRW 85, Sni 85, CDR 86]. PRAM
models do not capture all the aspects of computation determining algorithm performance on
technologically feasible multi-processors [Sny86]. However, PRAMs can be simulated by
more realistic models with a loss in performance upper bounded by a logarithmic factor,
probabilistically [Upf 84, KU 86, Ran 87], and by the square of a logarithmic factor, deter-

ministically [UW 84, AHMP 87, HB8S].

The interest in designing optimal PRAM algorithms motivates the development of
lower bound techniques for the PRAM model. In this work we concentrate on the computa-
tion of Boolean functions of n Boolean variables on PRAMs without simultaneous writes.
Lower bounds are derived for the concurrent-read exclusive-write (CREW) variant, while
upper bounds are established for the exclusive-read exclusive-write (EREW) variant of the

PRAM [Sni 85]. Therefore, all bounds are valid for both models.

Our starting point is a result of [CDR 86] (see also [PY 87]) stating the following lower
bound for the computation of a Boolean function f{x) of the n-tuple of Boolean variables x.

If f (y) # fix) for o(x) values of y that differ from x in exactly one variable, than the time to

2

compute f on a CREW-PRAM is Q(logo) where o=maxc(X) is called the critical complexity
of . The proof of this result is subtle, but the application to specific functions is usually
straightforward. For example, an Q(log n) lower bound is easily derived for the AND, OR,
and EXCLUSIVE OR of n variables [CDR 86]. However, proving a lower bound for the

quantity ¢ that applies to all functions in a given class is not necessarily easy.

An interesting application of the lower bound of [CRD 86] was made in [Sim 83]
where it was shown that if fis a non-degenerate function of n variables, then its critical com-
plexity is o=Q(ogn), and hence its CREW-PRAM computation time is T = Q(loglogn).
Examples of non-degenerate functions computable by a CREW-PRAM in T = O (loglogn)

time were also provided, showing that the lower bound is existentially tight.

In this paper we consider non-degenerate monotone functions. Since there are such
functions that are computable in O(loglogn) time [Weg 85], lower bounds stronger than the
general Q(loglogn) one can be obtained only under further assumptions. For example [Tur
84] and [Weg 85] consider the subset of monotone functions that can be interpreted as pro-
perties of monotone graphs. Here, we consider arbitrary monotone functions, but we assume
that either the length [of the largest prime implicant, or the length L of the largest prime
clause are known. Besides being natural parameters, / and L also determine the critical
complexity of a monotone function as o =max(/,L) [Weg 85]. Thus, our task is essentially
that of lower bounding L given [, or vice versa. For concreteness, in the remainder of this
paper we state all results in terms of /. By duality considerations on Boolean functions, it is

not difficult to see that all results hold if / is replaced by L.

In Section 2, we reformulate the result of [CDR 86] for monotone functions, exploiting

a natural correspondence between monotone functions and hypergraphs. We establish that

the CREW-PRAM time to compute a monotone function fis Q(max (log/, logS (n,1))), where
! is the size of the largest prime implicant for £, and S (n,!) is defined as the minimum size of
the largest minimal vertex cover in a hypergraph with n vertices and maximum hyperedge

size equal to L.

The quantity S(n,l) is investigated first in Section 3 for the more familiar setting of
graphs (/=2). It is shown that S(n,2)=|Vn| +|n/Vn] -2-8,, where 3, is either 0 or 1
(depending on n). As a consequence of this result and that of Section 2, we have that if a
monotone function f has a disjunctive normal form whose terms are either single terms or
product of two terms, then the reduced conjunctive normal form for f has a clause with
Q(\/;) terms. The general, and more difficult case of hypergraphs is considered in Section 4
where it is shown that Q(n!"') <S(n,0) < 0 (In'""). Although the exact determination of § (n,!)

remains an open problem of independent interest, our analysis is sufficient to obtain

(existentially) tight bounds on the computation time.

The main result of the paper is given in Section 5: the CREW-PRAM time to compute
a monotone function of n variables and with size of the largest prime implicant equal to /
satisfies the bound T = Q(log ! + (log n)/1). Since log ! + (log n)/l = Q(log log n), we have that
T = Q(log log n) for any monotone function, which is of course also a corollary of the bound
of [Sim 83] cited above. However if, say, [=0 (1), then one obtains T = Q(logn). It is also
shown that the derived lower bound is the best that can be formulated in terms of » and /, by
constructing (for each » and /) a monotone function computable in O (log ! + (log n)/!) time

by an EREW-PRAM.

2 Cook, Dwork, and Reischuk’s Lower Bound Reformulated for Monotone Func-

tions

Let y =f (x1,x3,...x,) be a binary function of n binary variables. We shall also write
y = f(X), where x = (x1,x5,....x,) and let C;x denote the binary vector that differs from x
exactly in the ith component. The following quantities play an important role:
ox)={i: f(Cx)#f)},
Op; =max{o(x): f (x)=0},
ojp =max{o(x):f(x)=1},
6 =max{cyp;, C10}-

The quantity o is called the critical complexity of f. With this notation we have:

Theorem 1 [CDR 86]. The computation time of a binary function f of » binary variables on

a CREW-PRAM satisfies the lower bound T = Q(log o).

Below we investigate the properties of the critical complexity of monotone functions.
Without loss of generality, we restrict our attention to positive functions. A function f is
positive if, for any x such that x; =0 and f (x) =1, £ (C;x) = 1. Any positive function admits a
unique reduced disjunctive normal form (RDNF) containing only positive literals, and with
no term containing all the factors of another term. Throughout this paper, unless the con-
trary is explicitly stated, we shall assume that f is truly dependent upon all of its variables,

that is, for every i = 1,2,...,n, there is an x such that f (x) # f (C;x).

More formally, if we let V ={x,x;5,..., x, | be the set of variables of f and, for e ¢V,

we denote by 7,(x) the term IT x;, then we can write
xece

=X IIx; = X ¢ ,
f(X) ecE zjeex" ecE (X) (1)

where E is a set of subsets of V none of which is a subset of another, and each x; belongs to

some ecE.

With any positive function f one can associate in a natural way an hypergraph
H=(V, E) whose vertices are identified with the variables and whose hyperedges
correspond to the terms of the RDNF. We shall say that H is reduced to indicate that each
vertex belongs to at least one hyperedge and that no hyperedge is contained in another one.

Note that funiquely determines H and vice versa.

In the following theorems, we study the dependence of ¢ not only upon the number of
variables n, but also upon the size of the largest prime implicant, (which is also the largest

term in the RDNF for f), denoted bylémax{ le| :eeE}.

Theorem 2 [Weg 85]. For a positive function f, 619 = 1.

A dual result to that of Theorem 2 is that, for a positive function f, 6y, =L, the size of
the longest prime clause of . Below, we develop an alternative hypergraph-theoretic char-

acterization of L, which will prove crucial in the derivation of our results.

A set A c V of vertices is called a vertex cover of an hypergraph H = (V, E) if every
hyperedge e € E contains at least one vertex of A. A vertex cover is minimal if none of its

proper subsets is a vertex cover.

Theorem 3. For a positive function f, oy, equals the size s of a largest minimal vertex cover

of the associated hypergraph H.

Proof. We show first that oy, 2 5. Let A be a largest minimal vertex cover of H, and let a

€ {0, 1}" be such that g; =0 if and only if x;e A. We have that f(a) =0, since in each term
there is at least one zero factor. For the same reason, if x; ¢ A, then f(C;a) =0. We also have
that, for all x;e A, f(C;a) = 1. Indeed, since A is minimal, for every x;e A, A—{x;} is not a ver-
tex cover, that is, there exists an ee E such that en A = {x;}. For such ¢, t,(C;a)=1. In con-

clusion, f (C;a) =1 if and only if x;€ A, so that 6y, > o(a) =s.

Now we show that o5 <s. We write a=b if g;2b; for i=1,.,n. If a 2 b and
f@)=f(b)=0, then o(a) > o(b). In fact, a>b implies C;a = C;b and, due to the positivity of
£, f(C:;a) 2 f (C;b), so that f(C;a) =1 at least for as many i’s as f (C;b)=1. We can then con-
sider a maximal a such that f(a) =0, o(a) =og,;, and f(b)=1 for all b > a. Since C;a > a if
and .only if a; =0, we have that 65; =c(a)=|A |, where A = {x; : g; =0}. We claim that A is a
minimal vertex cover of H.

Since f(a) =0, t,(@)=0 for all ecE. Then, each e contains at least one variable that is
set to zero in a, which implies that A is a vertex cover. Since, for each x;e A4, f (C;a) =1, there
must be at least one term #,(C;a) = 1. All the variables in e must be set to one, implying that
none of them belongs to A, except for x;. Thus, A—{x;} is not a vertex cover and hence 4 is
minimal. In conclusion, G5 =c(a)=|A| <s, where the last inequality follows from the

assumption that the size of a largest minimal vertex cover of Hiss. [

We find it convenient to introduce the class H,; of the reduced hypergraphs with n ver-

tices and maximum hyperedge size I/, where n 21 and 1 </ < n, and to define the function

S (n,1) =min {size of largest minimal vertex cover of H : HeH,,}. 2)

The following result is a simple consequence of Theorems 1, 2, and 3.

Corollary 1. Let f be a positive function of n variables, and let / be the size of the largest
prime implicant of f. Then, the time T to compute f on a CREW-PRAM satisfies the lower

bound T = Q(max(log [, log S (n,1))).
We develop lower bounds on the function S (#,/) in the next two sections.

3 Largest Minimal Vertex Cover in Graphs
We begin by investigating the size of largest minimal vertex covers for H, ,. We shall
derive an almost exact expression for S (n,2) by giving matching lower and upper bounds.

Treating this special case will help in developing some intuition about the general case.

Theorem 4. Let G =(V, E) be a graph with n = |V | non isolated vertices, and let AcV be a

largest minimal vertex cover of G. Then s = |A | 2[2Va+2-3].

Proof. For xeA, let N(x)={y : (x, y)eE, yeV-A}. Clearly B=A — {x} UN(x) is a vertex
cover of G and hence a suitable subset A” — B will be a minimal vertex cover of G. Since it
must be that N(x) c A” to cover the edges (x, y) with ye N(x), we have that B—A’ c A. By
premise |A’| < |A], thatis

A7l =[A]| + |N@x)|-1-|B-A"| < |A],
implying |B—A’| + 12 |[N(x)|. Defining C (x)=(B-A") U {x}, we have |C(x)| = |[N(x)]|.

We now choose x € A so as to maximize k= [N (x)|. Since each vertex in V — (4 UN(x)) 18

connected to at least one vertex in A — C (x), the average of |N(z)| for ze A — C (x) is at least

[V-(AUNG)I| (n=s—k)
[A-Cx)| (k)

, where we have used the fact that |C(x)| = [N(x)| = k. Since

IN(z)| < |N(x)| =k for all ze A, we have

(n—s—k)

k=2
(s—k)
Solving for s we obtain
2
§> k“—k+n
k+1

Choosing k= (Nn+2 — 1) so as to minimize the right hand side of the last inequality and

considering that s is an integer, we obtain s >[2Va +2 - 3]. O

Corollary 2. Let H=(V, E)e H, ; and let A c V be a largest minimal vertex cover of H.

Then,s = |[A | 2[2Vn+2 —3].

Proof. Let V; be the set of vertices x such that {x}eE, and let E; = {{x} : xeV}. Since H is
reduced, no edge in E — E contains vertices from V. Therefore, we have that A=V; U A’,

where A’ is a largest minimal vertex cover of (V-V;, E—E;). In conclusion,
Al =|Vi|+ 1A 2|V | +[2\n=V | +2 -3] 2[2vh+2 =3]. O

For each n 22, we define a graph G, = (V, E) of n vertices whose largest minimal ver-
tex cover has a size almost matching the lower bound of Theorem 4. Informally, G, is
formed by m =|Vn| star-shaped graphs of approximately equal size with the centers of the
stars connected as a clique. Formally, we let p =[(n-m)/m|, V = {1,2,...,n}, Vo = {1,2,...,m},
(the <centers of the star); Vi={m+@-p+j:j=12,.,p}, for 1<i<m-1,
Va={m+m-Dp+1,.,n}, (for i21, V; is the set of spokes of the i-th star);
Eo={@,j):1<i <j<m}, (the clique edges); E; = {(i,j) : jeV; }, (the edges of the i-th star),
fori=1,..,m; and E=EyUE U - - UE,. Next, we compute the size of the largest minimal

vertex cover of G,,.

Theorem 5. The size of a largest minimal vertex cover of G, is[n/|Va]] + [Va] - 2.

Proof. Let A be a minimal vertex cover of G,. Then, {Vy—A| <1. In fact, if two vertices

of Vy were not in A, the edge joining them would not be covered. Let us consider two cases.

(1) |Vyg—-A]|=0. Clearly Vo c A. We claim that A =V,. Indeed, every edge of E has at
least one vertex in Vy, so that if |[A —V,| >0, then A is not minimal, against the

hypothesis.

(2) |Vo—-A|=1. LetVg—A = {i}. Then, V; C A, or otherwise some edge in E; would be
uncovered. Since every edge of E has at least one vertex in Vo—{i} UV, and A is

minimal, itmustbe A =V, - (i} LUV,
~ From the above analysis, it follows that the minimal vertex covers of G, are Vo and
Vo= {i}uV, fori=1,2,.,m A largest minimal vertex cover is then Vo — {1} U V; whose
sizeism—1+p =[Vn] + [n/[\Nn]1=2. O
From Theorem 5 and Corollary 2, with some manipulations, we obtain the tight bound

S(n,2)=|Vn| +[n/\Vn]] =2 -38,, where 0< §, < 1.

4 Largest Minimal Vertex Cover in Hypergraphs

We shall derive lower and upper bounds for $(n,/). These bounds will be non-trivial
roughly for / <log n. The range !/ >log n is less interesting for our purposes since, as we
shall see, in this range the bound on computation time of Corollary 1 is determined by the
term log I. The upper bound on S (n,/) gives an indication on the quality of the lower bound.
Moreover, the hypergraphs on which the upper bound is based will be crucial in the defini-
tion of boolean functions whose computation time matches the lower bound to be derived in

Section 5.

10

4.1 Lower Bound

The main result of this section is a lower bound to the size of the largest minimal ver-
tex cover of a hypergraph H in terms of the number of vertices that belong to hyperedges of
a given size. To formulate the result precisely we introduce, for i=1,2,..,/, the set
E; g {eeE : |e | =i} of the hyperedges of size i, and the set V; & {xeV :JeeE; (xee)} of
the vertices that belong to hyperedges of size i. We observe that E, E,,...,E, partition E and

that V; UV, -+ LUV, =V, assuming no isolated vertices. We have:

Theorem 6. Let H=(V,E)eH,,. Let E,,...E; and V,,..,V, defined as above, and let
A . ..
m=|Vil. If AcV is a largest minimal vertex cover of H, then, for each

. A ;
i=12,..0, s=]|A|=c n} wherec=1In (3/2).

In the proof of Theorem 6 we shall use two lemmas, which contain some of the key
ideas. Given a hypergraph H =(V,E), a vertex cover AcV of H, and a set X c A, let
H(X)=(V(X), E (X)) be the hypergraph formed by taking all the hyperedges of H that are not
covered by A-X, and by eliminating from them any vertex of X. Formally,
E(X) £ {e-A :ecE, enA c X} and V(X)é{x :JdeeE(X) (xee)}. When A is a largest

minimal vertex cover of H, hypergraph H(X) has the following property.

Lemma 1. Let H = (V,E) be a hypergraph and A ¢ V a largest minimal vertex cover of H. If
no hyperedge ee E is completely contained in X c A, then the size of any minimal vertex

cover B of H (X) satisfies the bound |B| < |A |.

Proof. All hyperedges in E have some vertex in A. Moreover, since no hyperedge is com-

pletely included in X, if e€ E has no vertex in A—X, then e—X, and hence ¢, has some vertex in

11

B. Therefore, (A-X) U B is a vertex cover of H and a suitable A’'c(A—X) U B is a minimal
vertex cover of H. Since B is minimal in H (X) and no hyperedge covered by B is covered by
A-X, we have that BcA’. In conclusion, |B | < |A"| £ |A |, where the last inequality follows

from A being a largest minimal vertex cover of H. [

Observing that if HeH, ; then H (X)e H, ,, with ¢ < I, we can see how Lemma 1 can be
used in an inductive proof of Theorem 6, as long as X can be chosen so that H (X) contains a
sufficient number of vertices in hyperedges of a given size. For this purpose, we shall need
the following classification of hyperedges and vertices of H.

For j=1.2,..,i-1, we let E; 2 {e :e€E;, lenA | =/},
V;jé{x :xeV-A, JeUE;; (xee)}, and nl-jé [Vijl. Clearly, Vi UVip L -+ UV, =V —A4,
sothatnjy +ni2+ -+ +miop 20 —s.

Next, we let n,-j(X)é |Vi;(X)|, where V,~j(X)Lé {(x :xeV-A, deeEj(end =X, xee)}.
(Since ecE;j implies |enA | = j, the set V;(X) is empty whenever |X | # j.) We observe that
V;;i(X) is a subset of the vertices of H (X) that belong to hyperedges in E (X) of size i~j. This

fact motivates the interest in the following lower bound for #;;(X) in terms of n;;.

Lemma 2. Let H=(V,E) e H,; and let A c V be a largest minimal vertex cover of H of size
A .)

s=]|A|. Then, for each i =1,2,..,/ and j=1,2,...,i—1, there exists an XcA, with |X | =},

s
such that n;(X) 2 n;;/ H . Moreover, no hyperedge ee E is completely contained in X.

Proof. If n;; =0, then let X be the empty set. Otherwise, let X be chosen so as to maximize

n;j(Y), among the sets Y c A of size |Y | = j. We first establish that

z) n,-j(Y)Zn;j .
YCA (Y| =)

12

Indeed, each xe V;; belongs to some V;;(Y) because, by definition of V;;, xe e for some e

R
with |e| =iand |enA | = . Then, xeV;; (enA). Since there are [j] terms in the above sum-

S
mation, the average of n;; (Y) is at least n;;/ H Clearly, n;;(X) is no smaller than this aver-

age.

It remains to show that for no ee E we have e c X. This is obvious if n; =0. If n;; > 0,

s

then n;;(X) 21, since n;; (X) 2 ny;/ [j] , and n;;(X) is an integer. By definition of V;;(X), there is

an ¢'e E such that ¢nA =X, hence Xce’. Thus, e € X would imply e c ¢, a contradiction

since H is reduced. [

Proof of Theorem 6. We proceed by induction on /. The base case, / =1, is obvious since
the only vertex cover of a hypergraph HeH, ; is the set of all vertices V, so that

S=n=ny>¢cn,.

We now assume the theorem true for H, ;,...,H,;_; and prove it for H, ;. We let

H =(V,E)eH,, and let A be a largest minimal vertex cover of size s. Foreachi=1,2,..,/ and
s
j=12,.,i-1, we let X C A to be chosen as in Lemma 2 so that n;;(X) 2 n;;/ H As already

observed, H(X)eH,,, with ¢ <!/, and contains at least n;(X) vertices that belong to

hyperedges of size i—j. Thus, by the inductive hypothesis, the largest minimal vertex cover
. S|

B of H(X) has size |B| Zc(n;j(X))l/(‘—f)Zc(n‘-j/[j])“(‘_f). Moreover, from Lemma 1,

s=]A|2|B|. Summarizing, we have that, for i=12,.,/ and j=1.2,.,i-1,

sl s .
s 2c(n;;/ [j})“ @=)_ Straightforward manipulations and use of the inequality u <s//j! yield

13

(s/eY (1) 2 ny. Summing over j=1,2,..,i-1, using the inequality

-1 oo
(/< Y(c!/jh=e°-1, and recalling that n; +.+n;2nm—-s we obtain
j=1 j=1

(s/c) (e°~1) = m;—s. Since ¢ =1In (3/2), e°~1=1/2, and the latter bound can be rewritten as
(s/c) 22(n;—s). Since we can assume s < n;/2, (otherwise s > n;/2 > cn’* and the theorem is

true anyway), we have that 2(n;—s) 2 n;. Thus (s/c) = n;, from which the thesis follows

immediately. [

As a consequence of Theorem 6 we have the following lower bound on S (n,1).
Theorem 7. Letc =1n(3/2). Then, S(n,0) 2 (c/2)n''".

Proof. If I >1log n/log (2/c), then (¢c/2)n'"! <1, and the theorem holds trivially. It remains to
consider the case when [<log n/log (2/c¢). From the definition of S(n,/) (Section 2) and
i

Theorem 6, it follows that S(n,/)2max {cn;”* :i=1,2,..,l}, where n;=|V;|. As already

observed, Vi UV, U --- UV, =V, hence n; +ny + - - +n; 2 n. Then, if we let

e

min max{n}:i=1.2,..,1} ,

ny+.tnm2n

z
where the n;’s are allowed to range over the reals, we clearly have S(n,l) 2cz. It is easy to

. / .
show that z is obtained when n; = nj/’, and ¥ n; =n. In this case, n; =z, and z + 2% +..+z' =n.

i=1
It is not possible that z<2, as it would imply 2+2%+.2' >n, which is impossible for
I <log n/log(2/c). For z >2, we have 2z >z +2%4..+z' =n, hence z > n!/2V > nV! /2. In

conclusion, S(n,{)=cz > (c/2)n"'. O

14

4.2 Upper Bound

For each n, I and m, with [-1 <m < n, we define a hypergraph H,; ,,< H, ; for which we
can evaluate the size of a largest minimal vertex cover. A suitable choice of m as a function
of n and [will yield an upper bound on S (n,/). The constructions of this section generalize

those of Section 3.

We begin by introducing the (p,l)-star, a hypergraph with p +[-1 vertices and p
hyperedges of size /. A subset of /-1 distinguished vertices, called the center of the star, is
part of every hyperedge. Each of the remaining p vertices, called the spokes, is part of

exactly one hyperedge.

Informally, H,;,, can be described as follows. There is a kernel of m vertices where

m
each subset of / vertices forms a hyperedge. Each of the k= L_l} subsets of vertices of the

kernel of size /-1 is the center of either a (p,/)-star or a (p—1,/)-star whose spokes are ver-

tices not in the kernel, where p =[(n-m)/k]. Different stars have no common spokes.

Formally, we let Vg={1,2,..,m}, (the wvertices in the kernel), and
Eo={e:ecVy, |e| =1}, (the hyperedges within the kernel). Letting & én—m -k (p-1) (so
that 0 < & <k and hp + (k—h) (p—1) = n—m), the set of the spokes of the i-th star is defined as
Vi={m+(@@-Dp+j:j=12,.,p} for 1<i<h and
Vi={m+hp +({-h-1)p-1)+j:j=12,..p-1} for h+1<i<k It is convenient to intro-
duce the notation r; for the i-th smallest positive integer with exactly /-1 bits equal to 1 in its
binary representation, and to denote by ,(j) the coefficient of 2/ in the binary expansion of
integer r;. Then, for 1<i <k, we define C(r))={j+1:0<j<m, r(j)=1}, (the center of
the i-th star), and E; = {C (r;) U {x} : xe V;}, (the hyperedges of the i-th star). Finally, we let
Hp, 1= (V,E), where VEVoUV U - W= (1,2,0n) andEZE, UE,U -+ UE,.

15

Theorem 8. If A is a largest minimal vertex cover of H,;,, then

m
|A| =m—~(1-1)+[(n-m)/ [1_1].\.

Proof. Let A be a minimal vertex cover of H,;,,. Then, |Vo—A| < /. In fact, if [vertices
of V were not in A, the hyperedge joining them would not be covered. Let us consider two

cascs.

(1) |Vg—A] <I-1. First, we claim that AcV,. Indeed, every hyperedge of E has at least
1-1 vertices in Vo and hence at least one in AnVy. Thus, ANV is a vertex cover and
if A were different from ANV,, it would not be minimal. Next, we claim that
|A | =m—(-1)+ 1. Indeed, it is easily seen that every subset of V of size larger than
m—(l-1) is a vertex cover. Therefore, any subset of V of size larger than m—(I-1) + 1

properly contains a vertex cover and is not minimal.
. m .
(2) |Vo—-A|=I-1. Forsomei, with1<i< 11| we have Vo —A =C(r;). We claim that

A=Vy-C(@rp)uV; Infact, all the hyperedges have at least one vertex in Vo — C (ry),

except for those in E;. To cover the latter, each vertex of V; must be in A. In conclu-

m
sion, the size of A will be |A|=m-(-1)+ |V;] Sm—(l—1)+|'(n—m)/[l_l}1, where

m
equality holds for 1 <i < h, with h = "_m_(p_l){l—l} , as in the definition of H, ; .

The thesis is finally obtained by comparing the size of the minimal vertex covers in

m
cases (1) and (2) and observing that, since n > m, [(n—-m)/ {1_1}7 >1. O

16

Choosing m =1-2+1[n'"] and applying Theorem 8 yields (after several manipula-

tions) |4 | < I[nV] +n' <(+1)[n'""]. From this and Theorem 7 we conclude:

Theorem 9. Q'Y< S, 1)< 0Un'h.

Although a more accurate analysis of S(n,/) would be of independent interest, the
bounds of Theorem 9 are sufficient for our purposes. In fact, they imply that
max(log /, log S (n,0)) = ®(log [+ (logn)/!), and hence provide an asymptotically tight bound

on the quantity that lower bounds computation time according to Corollary 1.

5 . Time Lower Bounds

We shall combine the results of Sections 2 and 4 to obtain a lower bound on the com-
putation time of a positive function on a CREW-PRAM. The lower bound will be expressed
in terms of n, the number of variables, and /, the size of the largest prime implicant of the
function. As a simple corollary, we shall also obtain a lower bound formulated solely in
terms of n, which is of the same order as that of [Sim 83]. We shall also show that the lower
bounds obtained are existentially tight, in the sense that, for each n and /, there exists a posi-

tive function whose computation time is within a constant factor of the lower bound.

Theorem 10. Let f be a positive function of » variables, and let / be the size of the largest
prime implicant of . Then, the time to compute f on a CREW-PRAM satisfies the lower

bound T = Q(max(log I, (log n)/1)).

Proof. This follows from Corollary 1 and the lower bound for S (n,/) of Theorem 7. [J

Theorem 11. The time to compute a positive function of n variables on a CREW-PRAM

satisfies the lower bound T = Q(log log n).

17

Proof. From Theorem 10, if [>log n/loglogn, then T =Q(og!)=Qdoglogn) and, if

{ <log n/log log n, then T = Q((log n)/1) = Q(log log n). [

Using the correspondence between positive functions and reduced hypergraphs intro-
duced in Section 2, we define the function f, ;,, associated with the hypergraph H,;,, con-
structed in Section 4.2. (Throughout the remainder of this section, we shall use the notation

and the terminology related to H,, ,, introduced in Section 4.2.) It is convenient to express

m
faim as the sum of k+1= {l—l} + 1 functions, one corresponding to the hyperedges in the

kernel, and the others corresponding to the hyperedges of the & stars:

ko
fn,l,m x)= Z fﬁ:,)l,m (x), (6)
i=0
fakm ()= Z i) 7

The following lemma states a useful property of f,, ; .

Lemma 3. Let x € {0, 1}, and let ¢ £ [{jeVy:x;=1}| be the number of variables associ-
ated with vertices of the kernel of H,; ,, that have value 1in x. If ¢ > [-1, then f,;,, (x) =1.

If ¢ <1-1, then f,; » (x)=0. If ¢ ={-1, then f,;,, (x)= ¥ x;, where i is the unique integer
jeV;

such that C(r;)) = {je Vo : x;=1}.

Proof. If ¢ > I-1, there are at least / kernel variables equal to one. Since each /-tuple of

kernel variables forms a term in £} ., we have that 0}, (x) = 1, hence that f, ; ,(x) = 1.

If ¢ <i-1, we argue that all terms of f, ,, are null and hence f, ., (x)=0. Indeed,
since each ee E contains at least /-1 kernel vertices, the corresponding term ¢, (x) contains

at least /-1 kernel variables, at least one of which has value 0 in x.

18

Finally, if ¢ =11, let C(r;)) = {jeV(: x; =1}. Clearly, all the terms containing a vari-
able x; with je (Vo — C(r;)) have value 0. The remaining terms are exactly those correspond-
ing to hyperedges in E;. Since the kernel variables in these terms have value one, each term

simplifies to just the spoke variable. [

The next result provides us with an expression for the computation of the index i of set

C(r)) in the previous lemma.

Lemma 4. Letr; =2’ +2/*! +_+2/* be the i-th smallest integer with exactly A bits equal to

one in its binary representation. Then,
n (Jn
i=Y nl+ 1. (8)
h=1

Proof. We proceed by induction on A. The base case, A =1, is easily verified. In general,
for an integer z < r; with exactly A bits equal to one, we can distinguish two cases.
(@) z<2™*. In this case, z has A bits equal to one in any of the j, least significant posi-

Ja
tions. Thus, there are {7»] such z’s.

(b) 2*<z<r. Then, z—2"* has A—1 bits equal to one, and is smaller than

h

. . . A1 [Jn
ri—2'* =2/*' +_+2/'. By the inductive assumption, there are 3 {] such z’s.
h=1

Combining the contributions of cases (a) and (b), we obtain the number of z’s smaller than

r;. Adding 1 to account for ; itself, we obtain (8). O

We now outline an EREW-PRAM algorithm for the computation of f,;,,. We assume

that, initially, the input variable x; is stored in memory cell , for i = 1,2,...,n. The output will

19

be stored in cell 0.

First, ¢ = [{jeVo:x;=1}| is computed. Recalling (from Section 4.2) that
Vo={1,2,...m}, q is the integer sum of x,x,,...,.x,,, and can be obtained in O (log m) time by

standard methods, using m processors.

Second, a distinguished processor, say P, examines q. Based on Lemma 3, if ¢ > /-1
then P, writes 1 in memory cell 0, and if ¢ < /-1 then P writes 0 in memory cell 0. In the

remaining case, ¢ = /-1, the computation proceeds as follows to determine Y’ x;.
jev;

The quantities (1!, 2!,...,m!) are obtained as the prefixes of the sequence (1, 2,...,m) by
standard parallel prefix techniques [LF 80, KRS 85], in O(logm) time, by processors
Py, Py,....P,. Similarly, the same processors compute the quantities (yy, y2,....ym) Where y;

is defined as the integer sum of xi, x,,..,x;. With additional constant work, processor P;

J

} if x; = 1, and to zero oth-
j

o . : J
computes the binomial coefficient { } and sets a variable z; to {y

erwise. Finally, using Lemma 4, i can be obtained as i=z; +z; +.+z,+ 1, again in
O (log m) time by m processors.
At this point a processor, say P, computes the value v =min {j : je V;} — 1 using a con-

ceptually straightforward procedure based on the definition of V; (Section 4.2). Then, the

m
value of v is broadcast to Py, P,,...P,. As in Section 4.2, p =[(n-m)/ [1_1}[, so that

p-1<|V;| <p. The broadcast takes O (log p) time.

Finally, for j =1,2,...,|V;], processor P; fetches x,,; and then participates to a computa-

tion that yields Y x,,;= Y x;, which is the value of f, ,, in the present case. Again,
1Sj<1Vi jeVi

O (log p) time is sufficient for these operations. We conclude:

20

Theorem 12. The positive function f,;,, defined in this section can be computed by an

EREW-PRAM in time T = O (log m +log p), with O (n + p) processors.

We now consider the class of functions g,; obtained from f,;,, as when

m=1-2+1[n""], and obtain the following upper bound.

Theorem 13. The positive function g,; can be computed by a EREW-PRAM in time

T =0 (log | + (log n)/1) with O (I n'"") processors.

m
Proof. Since m=1-2+1[n""], clearly logm = 0 (og! + (logn)/1). Since p ={(n-m)/ {l—l]]

m
and, as seen in the proof of Theorem 9, {l—l} >ndD1 we have p=0(n""), hence

log p = O ((log n)/1). These bounds on m and p, used in Theorem 12, give the desired results.

a

Since g, is a positive function of m variables and maximum term length /, the upper
bound on T given by Theorem 13 matches with the lower bound given by Theorem 10.
Similarly, for ! =log n/loglog n, the time to compute g, ; is O (log log n), matching the lower

bound of Theorem 11.

6 Conclusions

We have proved time lower bounds for the CREW-PRAM computation of monotone
functions. An important role in our techniques is played by the correspondence between
monotone functions and hypergraphs. It would be of interest to extend the approach to arbi-

trary boolean functions.

21

[AHMP 87]
[BH 85]

[CDR 86]
[FHRW 85]
[FRW 84]

[FW 78]
[Gol 82]

[HB 88]

[KRS 85]

[KU 86]

[LF 80]
[LPV 81]

[PU 87]

[Ran 87]

[Sim 83]

[Sni 85]
[Sny 86]

References

H. Alt, T. Hagerup, K. Melhorn and F.P. Preparata, Simulation of idealized parallel
computers on more realistic ones, SIAM J. Comput., 16 (1987), pp.808-835.

A. Borodin, and J.E. Hopcroft, Routing, merging, and sorting on parallel models of
computation, J. of Computer and System Sciences, 30 (1985), pp. 130-145.

S. Cook, C. Dwork and R. Reischuk, Upper and lower time bounds for parallel ran-
dom access machines without simultaneous writes, SIAM J. Comput., 15 (1986),
pp. 87-97.

F.E. Fich, F. M. auf der Heide, P. Ragde, and A. Wigderson, One, two, three...
infinity: lower bounds for parallel computation, Proc. 17th Annual ACM Sympo-
sium on Theory of Computing, 1985, pp. 48-58.

F.E. Rich, P.L. Ragde, and A. Wigderson, Relations between concurrent - write
models of parallel computation, Proc. 3rd Annual ACM Symposium on Principles
of Distributed Computing, 1984, pp. 179-189.

S. Fortune, and J. Wyllie, Parallelism in random access machines, Proc. {0th ACM
Symposium on Theory of Computing, 1978, pp. 114-118.

L.M. Goldschlager, A universal interconnection pattern for parallel computers, J.
Assoc. Comput. Mach., 29 (1982), pp. 1073-1086.

K. Herley and G. Bilardi, Deterministic simulations of PRAMs on bounded degree
networks, Proceedings of the 26th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, llinois, September 1988.

C.P. Kruskal, L. Rudolph, and M. Snir, The power of parallel prefix, I[EEE Trans.
on Computers, C-34 (1985), pp. 965-968.

A. Karlin, and E. Upfal, Parallel hashing - an efficient implementation of shared
memory, Proc. 18th Annual ACM Symposium on Theory of Computing, 1986, pp.
160-168.

R.E. Ladner, and M.J. Fischer, Parallel prefix computation, J. Assoc. Comput.
Mach., 27 (1980), pp. 831-838.

G. Lev, N. Pippenger, and L.G. Valiant, A fast parallel algorithm for routing in per-
mutation networks, IEEE Trans. on computers, C-30 (1981), pp. 93-100.

I.Parberry and P.Y. Yan, Improved upper and lower time bounds for parallel ran-
dom access machines without simultaneous writes, The Pensylvania State Univer-
sity, TR CS-87-30, October 1987.

A.G. Ranade, How to emulate shared memory, Proc. 28th Annual IEEE Sympo-
sium on Foundations of Computer Science, 1987, pp. 185-194.

H.U. Simon, A tight Q®oglogn)-bound on the time for parallel RAMs to compute
nondegenerate boolean functions, Proceedings of 1983 FCT, Lecture Notes in
Computer Science 158, pp.439-444.

M. Snir, On parallel searching, STAM J. Comput., 14 (1985), pp. 688-708.

L. Snyder, Type architectures, shared memory and the corollary of modest poten-
tial, Annual Review of Computer Science, 1(1986), pp. 289-317.

22

[SV 81]

[Tur 84]

[Upf 84]

[UW 87]

[Vis 83]

[Weg 85]

Y. Shiloach, and U. Vishkin, Finding the maximum, merging and sorting in a
parallel computation model, J. of Algorithms, 2 (1981), pp. 88-102.

G. Turan, The critical complexity of graph properties, Information Processing
Letters, 18 (1984), pp. 151-153.

E. Upfal, A probabilistic relation between desirable and feasible models of parallel
computation, Proc. of the 16th Annual ACM Symposium on Theory of Computing,
1984, pp. 258-265.

E. Upfal and A. Wigderson, How to share memory in a distributed system, J. of
Association of Computing Machinery, 34 (1987), pp. 116-127.

U. Vishkin, Implementation of simultaneous memory access in models that forbid
it, J. Algorithms, 4 (1983), pp. 45-50.

I. Wegener, The critical complexity of all (monotone) boolean functions and mono-
tone graph properties, /nformation and Control, 67 (1985), pp. 212-222.

23

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif

