
TimeMachine Computing:
A Timecentric Approach for the Information Environment

Jun Rekimoto
Interaction Laboratory

Sony Computer Science Laboratories, Inc.
31413, Higashigotanda, Shinagawaku, Tokyo 1410022 Japan

Phone: +81354484380
EMail: rekimoto@acm.org, http://www.csl.sony.co.jp/person/rekimoto.html

ABSTRACT

This paper describes the concept of TimeMachine Comput

ing (TMC), a timecentric approach to organizing information
on computers. A system based on TimeMachine Computing
allows a user to visit the past and the future states of com
puters. When a user needs to refer to a document that he/she
was working on at some other time, he/she can travel in the
time dimension and the system restores the computer state at
that time. Since the user’s activities on the system are auto
matically archived, the user’s daily workspace is seamlessly
integrated into the information archive. The combination of
spatial information management of the desktop metaphor and
time traveling allows a user to organize and archive informa
tion without being bothered by folder hierarchies or the file
classification problems that are common in today’s desktop
environments. TMC also provides a mechanism for link
ing multiple applications and external information sources
by exchanging time information. This paper describes the
key features of TMC, a timemachine desktop environmen
t called “TimeScape,” and several timeoriented application
integration examples.

KEYWORDS: Timemachine computing, time traveling,
desktop environment, document management, information
visualization, interapplication communication.

‘.... But you are wrong to say that we cannot move about

in Time. For instance, if I am recalling an incident very

vividly I go back to the instant of its occurrence: I become

absentminded, as you say. I jump back for a moment.’

H.G. Wells, “The Time Machine”

INTRODUCTION

Organizing electronic information on computers is one of the
central issues of concerning the design of user interfaces. We
regularly have difficulty in finding files, and it is painful and
often simply impossible to assign a suitable name to a newly

Figure 1: A snapshot of the author’s computer desktop.
As shown in this example, people often like to keep
many icons directly on their desktops.

created document and classify the document correctly when
putting it into a specific folder (many documents belong to
more than one category). The management of contextual data
(e.g., photographs or audio files) is even more problematic be
cause there is no easy way to search for them. In addition, we
use computers not only for document processing, but also for
managing our daily schedules, browsing online information,
and communicating with others by email. These activities
also create a large amount of data and, in a sense, represent
our personal history. We certainly need computer support to
managing them.

Malone et al. observed that people organize the documents on
their real desktops spatially [13], and Mander et al. developed
a ’Pile’ metaphor for the casual organization of information
represented as files piled on the computer desktop [14].

Many people prefer keeping document icons on the desktop
instead of storing them in document folders (Figure 1). The
popularity of this habit implies underlying difficulty in today’s
desktop environments. Directly placing objects looks more
intuitive than folder hierarchies, in particular for novice users.
Items are always there; people can access them immediately,
and can arrange them spatially to form implicit structures [6].
As well as document icons, digital PostIt notes on the desktop
are also used in managing daily schedules and as reminders.

The arrangement of these items often represents the context
of a user’s current activity. However, this simple method does
not scale; desktop space is not large enough to contain all the
items.

Freeman et al. argued that a timeordered approach to the
organizing and archiving of information is more suitable than
a spatial approach [4]. Their timeordered system, called
the “Lifestreams,” stores entire documents in streams, time
ordered 1D lists of information. We can also find similar
timeordered lists in some applications, such as an email list
or a web history list.

Since our personal activity is tightly coupled to the flow of
time, there are a number of reasons why timeordered systems
work. However, if we store all the information in a 1D list, we
give up many possible advantages of 2D graphical interfaces.
In many cases, what we need is not only to find files but also
to reconstruct the activity status (what we were doing at that
time). For this reason, timeordered lists are more suitable for
archiving data than for providing workspaces. In addition,
there can still be ambiguity for ordering. If the list is sorted
according to file creation date, a thesis you have been working
on for a year would be listed far from the current position of
the timeordered list.

Although there has been a debate on the relative merits of
these two approaches [3], we think they are not exclusive but
complementary. One of our ideas is to exploit the advantages
of both by combining a spatial arrangement of information
with a chronological navigation mechanism; in other words,
to create a time machine for the information environment.

Imagine that your computer has a dial for timetraveling.
When you create a document you can simply leave it on the
desktop. You can also remove documents at any time. If you
later need to refer to the information in that document, you
can timetravel to the day when that document was on the
desktop. You might then also see related items that were on
the computer screen at the same time, and these items would
help you to recall the activity context at that time. We call
this timecentric approach “TimeMachine Computing,” or
TMC. The “everythingonthedesktop” approach (Figure 1)
now becomes a more attractive and practical because we
can deal with only a single desktop surface. Operations are
significantly simpler, and we do not have to be bothered with
folder hierarchies.

This paper describes the concept of TimeMachine Comput
ing and introduces two examples, a timemachine desktop
system called “TimeScape”and a timebased inter application
communication method called “time casting.”

TIMEMACHINE USER INTERFACES

The TimeMachine Computing is a new concept of user in
terfaces, allowing a user to visit past and future information
spaces. There are four key features that characterize this
concept:

Lifelong archival of information history

In principle, all the user activities performed on computers are
permanently archived. File creation and modification logs,
web visiting histories, and email sending/receiving histories
are examples of user activities. Some other external informa
tion sources, such as web news, can also be integrated in the
user’s history.

Timetraveling: chronological navigation over archived

information

Archived information can be used to reconstruct the state of
the computer (the user’s information space) at any specified
time. In other words, the system allows computer “time
traveling.” As a result, a user’s computer desktop can also
be an archive of information. A user creates a document and
places it directly on a desktop. All information is immediately
visible and the user can spatially arrange documents and other
desktop items (e.g., PostIt notes).

When the user feels that one of these documents is no longer
immediately needed, he/she can cleanup the desktop by sim
ply dragging that document to the trashcan. When he/she
again needs that document later, he/she specifies a time when
that document was on the desktop. The system adjusts time
accordingly , and the document appears again on the desktop.

There are various ways to specify time. The simplest one is
to directly say “go to January 1, 1999” but it is also possible
to say “go to when this file was created,” “go to when I
received this email,” or “go to when I attached a PostIt note
that contains the string project ABC.” It might also possible
to use external (physical) contexts, such as “go to when I was
in the meeting room.”

Visualizing time in various ways

In some cases, simply restoring the past state would not be
enough. We might want to view, from different perspectives,
what was happening during a week or a month or perhaps the
user’s whole lifetime. Thus TMC also provides multiple ways
to visualize the information space. Timeline and calendar
views are typical examples.

Timecasting: interapplication communication of time

It is also desirable to restores the application’s context as well
as the document states. For example, if a webbrowser can
restore its state at any specified time, we can easily access
the previously visited web pages. In many cases, it is also
useful if various applications can exchange time information
and change their states according to the time. Imagine that
an email browser and a desktop environment are exchanging
time information. When a user select an email on the mail
browser, its arrival time is transmitted to the desktop and
the desktop state at that time is reconstructed. As a result,
a user would find important notes he created on arrival of
that email. In this way, exchanging time information among
software applications and computers provides a new way of
integrating computer services. We call this kind of inter
application communication “timecasting.”

Although the ultimate version of TMC will record and re
cover the history of user’s activities perfectly, there are many

Navigation

Buttons

Time Travel DialSearch String Search Buttons

Current

Time Position

Figure 2: A screenshot of the TimeScape desktop.

intermediate levels of implementation. The following section
introduces a system called “TimeScape,” a desktop environ
ment based on TMC.1

TIMESCAPE: A TIMEMACHINE DESKTOP ENVIRONMEN

T

We built a first instantiation of the proposed TMC concept,
a desktop environment called “TimeScape.” It is a prototype
software system written in Java and is designed to be used
instead of native desktop environments (e.g., Windows GUI
/ Macintosh GUI). Figure 2 shows a typical screenshot of
the TimeScape desktop. There are no folders in this environ
ment. All the items (file icons, application icons, PostIt notes,
voice note icons and digital images) are placed directly on the
desktop. As with other desktop environment, a user can open
documents and launch applications by doubleclicking them.
Desktop items can also be spatially arranged to organize in
formation (e.g., related objects can be placed closer together
to form a group).

Time Traveling

TimeScape provides several ways to change the time of the
desktop. For example, when a user manipulates a timetravel
dial (topright part of the screen), the system restores the
state of the desktop to that of the designated time. The
system also provides “go back” and “go forward” buttons
(arrow buttons on the toolbar) for eventbased navigation.
For example, pressing the “go back” button brings the user
back to the time just before the most recent desktop change
(item creation, deletion, etc.). The user can also select one of
desktop objects and go to the time that item was created or

1A brief introduction of TimeScape can also be found in [17].

deleted. As described later, the user can also specify a time
point using text search.

All modifications of a desktop are archived automatically.
When the user feels some documents are not immediately
necessary, the user can simply remove them from the desktop
by dragging them to the trashcan. This action looks like
the file deletion on ordinary desktop systems, but the file
is still maintained in the TimeScape archive. 2 The user
can always retrieve removed data by traveling to the “past”
of the desktop. This capability supports the effective usage
of the desktop real estate; the user can keep the number of
desktop objects organized by removing unnecessary items.
This feature is particularly suitable for maintaining “Todo”
items on the desktop. It is also possible to determine the
duration of attached objects: at a specified time, these objects
automatically disappear from the desktop.

There is a notable difference between our 2D+ time approach
and other 1D timeordered systems. We can keep many
items on the TimeScape desktop simultaneously, while in
Lifestreams everything is stored in a onedimensional stream.
The spatial arrangement of items gives a user a more concrete
work context and helps the user recall his/her activity when
he/she revisits a state by time traveling. When a user is
working on a document, he/she can place supporting material
(related documents, URLs, diagrams, PostIt notes) around
the document, as we do on realworld desktops. The user
can also spatially arrange and make groups of such items on
the desktop in order to represent multiple activities. These
objects might be put apart on a timeordered list because their

2TimeScape also provides, mainly for maintenance purposes, a command

for permanent deletion of objects.

(a)

(b)

(c)

Figure 3: Visualization techniques used on the
TimeScape desktop: (a) PostIt notes gradually fade
over time, (b) recently removed objects are still slightly
visible from the current desktop, and (c) objects close
to the left edge show their durations.

Figure 4: The timeline view.

creation dates are often quite different.

Like Lifestreams, TimeScape also supports timetravel to the
future part of the desktop. When you travel to the future and
create a PostIt note, it becomes a reminder. This scheduled
object appears on the desktop automatically at the arrival
of the appointed time. The system also provides reminding
objects, such as “chime” or “blink.” When a specified time
arrives, these objects are activated to make a sound or to flash
the screen.

Visualization techniques

To support browsing along the time dimension, TimeScape
provides several views of the information space. The curren
t implementation of the system provides desktop, timeline,
and calendar views. The desktop view is basically the same
as that in ordinary desktop environments bat has some en
hancements for visualizing time information (Figure 3). For
example, color of PostIt notes attached to the desktop gradu
ally changes over time to subtlety indicate its passing of time
(Figure 3a). And the background color of desktop surface
changes to indicate whether the system is in the current, past,
or future mode. The transparency level of the background is
also controllable, so that past (or future) information can be

Figure 5: Animated transition shows connection be
tween desktop and timeline views.

dimly seen from the current time (Figure 3b). The left and
right edges of the desktop respectively indicate the current
time and date. When a desktop item is placed near these
edges, its duration appears on a timeband (Figure 3c). Us
ing this feature, a user can use PostIt notes to represent daily
schedules.

In the timeline view (Figure 4), desktop items are visualized
as horizontal lines on a timeline diagram. The left and right
endpoints of these lines respectively represent object creation
and deletion dates. The current desktop is visualized as a
semitransparent slanted rectangle in the middle of the screen,
and the left and right parts visualize the past and future of

Figure 6: The calendar view provides a familiar per
spective on the information space.

search string found object

Figure 7: The result of a search for “kyoto.” When
the system stops at a PostIt containing “Kyoto,”, the
user also sees a picture of Kyoto temple.

Figure 8: Using dynamic filtering to incrementally vi
sualize objects containing search keywords. Note that
semitransparent gray bands appear on the timeline in
dicating the density of the number of found objects.

the desktop. The user can use “zoomin” and “zoomout”
commands to change the timeline scale and thus browse
activities from a day, a week, a month, or an entire lifetime.
To maintain a constant level of complexity on the screen, the
labels of objects that have shorter durations fade away when
the screen is zoomed out.

The calendar view displays items in a calendar format (Fig
ure 6). Each cell contains items created on the date of the cell.
This view is suitable for browsing a schedule and appoint
ments in a way familiar to many schedulesoftware users.

These views are switched with a smooth animation to show
the relationships between them (Figure 5), and the combina
tion of these views helps a user recall the contexts of past
activities. For example, a user travels with a desktop view
to the specific time , then switches to a timeline or calendar
view in order to see what the user was doing around that time.

Information search over time and space

Combining the above features, TimeScape can be seen as a
spacetime continuum of the user’s information space. The
system also provides a text search on this continuum. For
example, when a user enters keywords in the keyword entry
box (on the navigation bar) and presses a “search forward”

or a “search backward” button, the system travels to the past
or to the future until an object is found. Then the user looks
at objects nearby (in terms of space and time) by switching
view types (e.g., desktop and timeline).

Figure 7 shows the result of a search “kyoto.” Thanks to
the attached PostIt note containing the word “kyoto,” the user
can also find a picture of the temple even though the system
does not understand image contents. As demonstrated in this
example, items appearing on the desktop simultaneously can
be used as an index to the activity history when a user at
taches/detaches PostIt notes according to the user’s activities.
This information is not only useful for representing daily to

do items, but also acts as bookmarks for later information
retrieval.

In timeline and calendar views, the system can also enable a
“dynamic filtering” mode, a variation of dynamic query tech
niques [1]. In this mode, the system dynamically filters out
items that do not contain the specified keywords (Figure 8).

TIMECASTING: INTERAPPLICATION EXCHANGE OF TIME

INFORMATION

Many software applications other than TimeScape also have
a notion of “time.” For example, an email browser could
have a “currenttime” state if we define “currenttime” as the
arrival time of a currently selected email message. In this
case, an email browser that has a timeordered list of mails
would accept a timetravel command and select the email
message whose arrival time is closest to the specified time.
Similarly, a photograph browser would display a photograph
whose creation data is closest to the specified time. In this
way, many software applications could change their states
(e.g., displayed information, appearances according to the
specified time information. Even though these actions would
not strictly be “timetraveling,” they would still be quite help
ful by making it easier for a user to recall the activity status
at that moment.

Furthermore, if these applications were used together, com
bined information would be even more helpful. For example,
suppose that a user selects a portrait of someone in a pho
tograph browser. The user remembers that this picture was
taken at a meeting but cannot recall the name of the person in
the picture. If other applications, such as the email browser
or the desktop, could also change their states according to
the time that picture was taken, the user could find the name
of the person on the desktop schedule. Similarly, the user
could more easily to recover the activity context if the photo
graph browser automatically selected a photograph according
to the arrival date of a selected email message. We call such
interapplication communication of time “timecasting.”

The essence of timecasting is summarized by the following
three features:

� Each software system (application) has the notion of
“currenttime.”

� When the “currenttime” of one application is changed ac
cording to user interactions or for some other reasons, the
application notifies the other applications of this changed
time.

(c) History Browser

(b) TimeScape(a) Photo Browser

(d) E-Mail Browser

Figure 9: Timecasting: linking multiple applications by exchanging time information. A photo browser (a), the TimeScape
desktop (b), the web history browser (c), and an email browser (d) are exchanging time information. Any application can
be used and others change their “currenttime” according to the transmitted time. This example shows a snapshot when
the user selected a photograph showing a person in the photo browser. The user may find the name of the person, on
the TimeScape. The history browser and the email browser also help to user recall his/her activities at that time.

� The other applications change their “currenttime” states
according to this information.

Figure 9 shows several usages of timecasting. In this exam
ple, a photo browser (b) and the TimeScape desktop (a) are
exchanging time information. When the user travels time on
the TimeScape environment, the photo browser automatical
ly changes a picture displayed to correspond to the desktop’s
“current time.” Conversely, the user can also flip through the
photo browser, and the TimeScape desktop changes accord
ing to the date the displayed photograph was taken. Although
PostIt notes on the desktop are created independent of the ac
tual photography capturing, they often act as captions for the
photograph (e.g., portrait picture at a meeting and a meeting
agenda on the desktop).

We also have developed a texteditor compatible with time
casting. This text editor remembers the creation time of each
character: when the user enters text, characters of the text
are assigned a timestamp. Like a font attribute or textcolor
attribute, this time attribute is saved with the text. When the
user opens the text and puts the cursor on any character in it,
the texteditor propagates the creation time of the character.
As a result, the user can see what the user was doing when
he/she created this text (more precisely, when creating the
particular sentence containing the document).

Connecting to other information sources

Other possible combination includes automatic recording of
user’s activities and other external events. Figure 9 also shows
then interaction of a web history browser (c) and TimeScape
(a). This web history browser automatically records the us
er’s webvisiting history, and displays a list of URLs that
were visited around the specified time. 3 For example, when
a user needs to reopen a web site that was first visited at a
meeting room, he/she first searches for the time of meeting
by timetraveling on TimeScape and then finds that the URL
link needed is available from the history browser. The web
history browser also periodically retrieves information from
other online sources (e.g., Web newspapers or weather re
ports). Such additional information can serve as a context for
reconstructing the user’s activity state and can also be used
to search for information on other applications.

Intercomputer timecasting

The area of timecasting is not limited to a single computer.
Figure 10 shows the interaction of a desktop computer and
a schedule browser on a handheld computer (Palm Pilot).
In this case, when the user selects a particular appointment
on the PalmPilot, it transmits the appointment time to other
computers. 4 Upon receiving this information, TimeScape
on the desktop automatically changes to that time to show the

3This information is obtained by modifying a web proxy server.
4We are currently using a serial cable between Pilot and computer for

timecasting, but this could be done by using infrared communication.

Figure 10: Timecasting between desktop and palmtop
computers.

CCD Camera PHS modem

Figure 11: A notebook PC with a camera and a PHS
wireless modem. The PHS modem can also be used
to identify the current physical location.

user’s activity context.

Pictures that are close to the current location

PHS station IDs

(representing location) captured time

Figure 12: Linking time and location with a position
sensitive photobrowser.

Another use of intercomputer timecasting is the linking
of portable computers and installed computers (such as a
digital whiteboard). A user in a meeting room, for exam
ple, could timetravel on his/her portable computer to the
previousmeeting , and this information would be timecasted
to the digital whiteboard. Then diagrams created during the
previous meeting would appear on the whiteboard.

Linking physical contexts and time

Timecasting also makes it possible to incorporate physical
contexts, such as locations, into a timecasting environment.
Suppose you have a small position sensor that automatically
records your physical location and the time. Then all other
applications would be able to use this information by linking
time and locations (instead of specifying an exact time, you
can say “go to when I was visiting Kyoto”).

Figure 11 shows a portablePC equipped with a miniature
camera and positioning system. A user can take a photo
graph at any time by pressing a shutterbutton on a computer,
and the picture is assigned the current location information
as well as the captured time. We use a personal handyphone
system (PHS) modem as the locationsensing device. Since
the PHS uses small radio cells for wireless communication,
it is possible to identify the user’s current location with rea
sonable precision by using the stationID of the cell the user
is in. When a user later selects a photograph on the browser
(Figure 12), pictures that were taken near the time the selected
photograph was taken are also listed in the thumbnail area.

Since the photograph browser is also “timecasting aware,”
we can link physical locations and time. For example, sup
pose that a user took a photograph in a meeting room. Later
when the user attends the same meeting (room). He first starts
the photograph browser, and the system lists photographs that
were taken in the same room. Then he selects a photograph
of previous meeting and he would also see the information
related to the previous meeting on the TimeScape desktop,
by traveling to the time of previous meeting.

SYSTEM ARCHITECTURE

All the above examples described in the earlier sections of
this paper, except for the PalmPilot one described in the pre
vious section, are written in Java and should run on any
Javaenabled platform. We also implemented a dragand
drop function that makes easy to exchange files and PostIt
notes between TimeScape and native desktop environments.

Each object on the TimeScape desktop maintains duration
(e.g., creation and deletion times), history of location on
the desktop, references to external resources (e.g., path
name, URL), and some other attributes (e.g., labels for Pos
tIt notes). This information is recorded automatically when
a user changes the desktop state. Internally, these objects
are linked from two timeordered lists (one sorted by cre
ation time and the other by deletion time), for rapidly re
constructing desktop states at a specified time.

TmSamba: a timeaware file system

The TimeScape desktop works on top of either an ordinary
file system or a special timeaware file server. With a normal

file system, TimeScape simply maintains pathnames of files
and users always see the latest contents of files (even when
they are traveling to the past). When it is used with a time
aware file system, a user can access either the latest content
or the version of a file at any specified time.

To restore the past contents of files, we developed a file server
based on “Samba” [20], an opensource file server system for
PCs that runs on Unix platforms. This modified Samba,
called “TmSamba,” records all the modification logs to an
internal database. TmSamba reconstructs the contents of a
file when it is accessed by a pathname containing a special
“time prefix” such as:

T:\@924247906550\My Documents\uist99.doc

T:\@1999.4.20\My Documents\uist99.doc

In the first example, digits before the real pathname represent
a time position (in seconds since 1 January 1970). The second
example means a version of file “uist99.doc” on April,
20, 1999. This convention is also useful for nonGUI users,
especially software developers. Without explicitly using a
file versioning system, one can easily compare versions of
file such as:

diff T:\@1999.1.1.12:30\App.java T:\App.java

Timecasting using UDP multicast

When an application changes its currenttime, it sends time
information to a specific UDP multicast group on the network.
Multicasting allows information to be exchanged without ex
plicitly using any central servers. Each timecastingenabled
software simply joins the multicast group and receives updat
ed time information from other applications. For applications
written in Java, we also provide the TimeListener inter
face following the Java event delegation and listener mod
el [7]. Using this interface, application programmers can
treat timecasting as a kind of Java input event:

public void timeHasChanged(TimeEvent event) {

long time = event.getTime();

// ... application specific actions ...

}

DISCUSSIONS

User Experience

TimeScape and other timeaware applications have been used
experimentally by the members of the authors’ group. Al
though a formal evaluation is still in preparation, informal
observations revealed several issues.

PostIt notes based on time are turned out to be quite effec
tive. People could quickly select text from web browsers or
text editors and drag it to the TimeScape desktop to make a
PostIt. The time history of PostIt creation/deletion represent
ed a user’s activity patterns, and many users simply enjoyed
playing them back to recall the past events. And the multiple

views connected by animation were effective in helping users
understand the internal semantic model of TimeScape.

Timecasting between a photo browser and a desktop also
worked quite well. Since most of the trial users had a note
book computer with an integrated camera (Figure 11), they
often take pictures as memos or as parts of a visual diary.
Many of then thus had a large number of chronologically
sorted photographs reflecting their daily activities. Schedul
ing or appointment PostIts managed on a TimeScape desktop
served as “captions” for these photographs.

We initially intended that application icons could, as in con
ventional desktop environments, also be placed and managed
on a TimeScape desktop. We soon realized, however, that
applications themselves are not closely related to the user’s
personal history. Only a few application icons were managed
on the desktop and people launched applications in various
other ways (e.g., by opening a document, or from a “start”
menu),

Initially, we made the past state readonly; the user was not al
lowed to alter the past. Many users, however, often wished to
create or attach data to the past, not to alter the past version of
document but to add annotations describing the past contexts.
The current system therefore provides a way to “unlock” the
past state. The past versions of documents, though, are still
immutable. If a user wishes to modify the past version, he/she
first copies that document to the “current” desktop and then
works on the copy.

Some users found it difficult to decide to remove objects from
the desktop. Unless there is a clear boundary event (e.g., a
conference is over), people tend to keep objects until there
is no space for new ones. We are currently considering the
automatic removing or shrinking of longunaccessed objects.

Application Domains

We think our TMC approach is particularly suitable for per
sonal information management because information process
ing and personal history are tightly coupled in that domain.
In many cases, PostIt notes can be used both for daily sched
ule management and as bookmarks for information search.
For application domains in which there are a large number of
wellnamed files, on the other hand, such as software develop
ment, hierarchical file management might be more suitable.

We also expect TMC to work quite well on small mobile com
puters. The small screen of these computers make dealing
with multiple folders cumbersome, and TimeScape’s single
desktop approach should thus be particularly advantageous.
It would also be possible to timetravel with a small jogdial,
an input device popular in recent mobile devices (e.g., cel
lular phones, palmsized computers). TMC should also be
quite useful on home computers. TimeScape displays on the
wall in the living room or on the refrigerator door could be
used to keep records of daily housekeeping information as
well as family’s history.

As described in the previous section, timecasting between
desktop and mobile devices allows a user to integrate different

types of computers. For example, one can create a voice
memo when reading an email on a mail browser; later he/she
can link these two different items based on time.

Archival Overhead

Some readers may concerned about the storage cost of life
long archival. We think that as long as the system deals
only with texts, this is no longer a problem, thanks to the
recent progress of storage technologies. There are several ap
proaches to deal with “heavy” multimedia information, and
the easiest would be to keep only the latest version. Another
approach would be to regard a local storage a “cache” for the
entire archive; only documents created (accessed, modified)
recently would be stored on a local storage, and the complete
data would be maintained on a networked server. If we can
assume temporal locality of information access (i.e., a docu
ment created a week ago is more likely to be accessed than
one created years ago), the timebased organization of infor
mation should be more advantageous than the conventional
methods using file hierarchies.

There is also a tradeoff between the granularity of history in
formation and the cost of information retrieval. Even though
it is possible to record literally all the keystrokes or mouse op
erations, finding useful information in such a huge amount of
data is a daunting prospect. A text search of the user’s entire
keyinput history might result in an information overflow.

RELATED WORK

As describe in the introductory section, Lifestreams is one
of the first timeordered information management system
s [4]. It archives documents in a timeordered list called
“streams.” It should also be noted that before Lifestreams
appeared, Noguchi developed a similar timebased method
– called the “hyper organization method” (choseiri hou) –
for organizing realworld documents [16]. This well known
method (a guidebook on this method became a best seller
in Japan) uses labeled envelopes as document folders and
sorts them chronologically in a bookshelf. Noguchi also
suggested that electronic documents be organized by storing
them on dated folders. The hyper organization method and
Lifestreams share many concepts for organizing information;
document archiving without categorization, a single store for
all documents, and the use of time as the basis for ordering
information. Although these systems stimulate our work, we
are more concerned with restoring the workspace than with
sorting documents in a onedimensional list.

Forgetmenot [10] is a mobile information assistance system
that continuously captures the user’s physical context (e.g.,
locations), as well as document transmission histories (e.g.,
beaming a document to the printer). Temporally threaded
workspaces [5] allow a user to make a snapshot consisting of
anchors to documents. Later, the user can revisit one of these
snapshots.

Chimera [9] records a history of graphical drawing opera
tions, and Timewarp [2] allows users to browse and manipu
late document modification histories as a part of collaboration
support. Flatland [15], which is a digital whiteboard system,
also provides a method of “snapping” handdrawn diagrams

to an interesting point in time. While these systems focus
on the history of a single document, our work additionally
deals with the history of work contexts consisting of multiple
documents.

The author’s previous research on wearable user interfaces,
called “Augmentable Reality,” also uses the timemachine
concept [18]. This system allows a user to create digital
information (e.g., voice memos and photographs) and attach
to physical contexts (e.g., locations, things). It also supports
time traveling in the sense that the user can view information
that was attached a week ago as well as currently attached
data. Experience with this system led us to generalize an idea
of “computer as a timemachine” which became a background
of the work described in this paper.

Using time to link multiple data is a common idea in
videoediting and videologging systems. Professional video
recording systems often use “timecodes” to synchronize mul
tiple videotapes and audio tapes. Some notetaking systems,
such as [21, 19] also use time to link voice data and other kind
s of logging information. Our contribution to this area is to
provide a mechanism for more generalized interapplication
domain. As a result, not only closed systems but also many
independently developed applications can be integrated by
exchanging times. Another interesting idea is to combine the
timeoriented method with other interapplication methods,
such as those used in CyberDesk [22]. For example, when a
user select a text segment ‘4/1/1999’ on a word processor and
the system automatically recognizes it as a date and causes
timecasting.

There have been a number of systems visualizing “time” on
computers. Many of them use 3D graphics, animation, and
other visual effects such as semitransparent rendering. The
Perspective Wall [11] is one of the first using 3D+ animation.
Spiral Calendar [12] combines several levels of calendars in
one spiral view, and Dynamic Timelines [8] extensively uses
3D, zooming, and semitransparency in visualizing the history
of photographers. Our TimeScape design also provides three
different types of views (desktop, timeline, and a calendar)
that are connected by smooth animations. Unlike the Spiral
Calendar, we use only one view at a time, considering more
efficient screen space usage. We also use semitransparency to
make past and future objects visible from the current desktop,
and use zooming to change the timescale.

CONCLUSIONS AND FUTURE DIRECTIONS

This paper described the concept of TimeMachine comput
ing (TMC), which let people easily navigate the past and
future states of computers. We think this metaphor is inter
esting alternative to traditional folderoriented desktops. We
are particularly quite interested in applying this technique to
the personal and home computing domains.

There are several ways to enhance TMC. One is to improve
the visualization of time. We are currently use animation,
zooming, and semitransparency, but there are many other
techniques such as 3D and nonlinear (i.e., fisheye) zooming
that can be used to visualize the spacetime continuum.

Another direction is to understand the implicit spatial
temporal structure of information space. For example, if
a user were to put several PostIt notes close to each other for
some period of time, the system might regard them a group.

Another, and perhaps more interesting, direction is to inte
grate timemachine computing with realworld information,
such as real PostIt notes on the office bulletin boards, books
and notebooks on a real desktop, or user operations on sev
eral devices (e.g., operation history of VCR decks). If we
could also use recognition technologies such as OCR and
voice recognition, the information they provide would serve
as bookmarks for our activities, even though their recognition
accuracy is not perfect.

ACKNOWLEDGMENTS

We thank Toshiyuki Masui, Yoshifumi Ueno, and Tota
Hasegara for early exploration of timemachine computing
ideas. Shigeki Nakamura contributed to the implementation
the system. We are also indebted to Mario Tokoro and Toshi
Doi for their continuing support of our research.

REFERENCES

1. Christopher Alhlberg, Christopher Williamson, and Ben
Shneiderman. Dynamic queries for information explo
ration: an implementation and evaluation. In CHI’92,
pages 619–626, 1992.

2. W. Keith Edwards and Elizabeth D. Mynatt. Timewarp:
Techniques for autonmous collaboration. In CHI’97

Proceedings, pages 218–225, 1997.

3. Scott Fertig, Eric Freemand, and David Gelernter. "find
ing and reminding" reconsidered. ACM SIGCHI Bul
letin, 28, January 1996.

4. E. Freeman and D. Gelernter. Lifestreams: A stor
age model for personal data. ACM SIGMOD Bulletin,
March 1996.

5. K. Hayashi, T. Nomura, T. Hazama, M. Takeoka,
S. Hashimoto, and S. Gudmundson. Temporally thread
ed workspace: A model for providing activitybased
perspectives on document spaces. In Hypertext’98,
1998.

6. Frank M. Shipman III, Catherine C. Marshall, and
Thomas P. Moran. Finding and using implicit struc
ture in humanorganized spatial layouts of information.
In CHI’95 Conference, pages 346–353, 1995.

7. Sun Microsystems Inc. Java foundation classes.
http://www.javasoft.com/products/jfc/.

8. Robin L. Kullberg. Dynamic Timelines: visualizing the
history of photography. In CHI’96 Conference Com

panion, pages 386–387, 1996.

9. David Kurlander and Steven Feiner. A historybased
macro by example system. In Proceedings of UIST’92,
pages 99–106, 1992.

10. Mik Lamming and Mike Flynn. Forgetmenot: In
timate computing in support of human memory. In
FRIEND21 ’94 International Symposium on Next Gen
eration Human Interfaces, 1994.

11. Jock D. Mackinlay, George G. Robertson, and Stuart K.
Card. The perspective wall: detail and context smoothly
integrated. In Proceedings of ACM CHI ’91, pages 173–
179, 1991.

12. Jock D. Mackinlay, George G. Robertson, and Robert
DeLine. Developing calendar visualizers for the in
formation visualizer. In Proceedings of UIST’94, ACM

Symposium on User Interface Software and Technology,
pages 109–118, November 1994.

13. Thomas W. Malone. How do people organize their
desks? implications for the design of office information
systems. ACM Trans. On Office Systems, 1(1):99–112,
1983.

14. Richard Mander, Gitta Salomon, and Yin Yin Wong. A
’pile’ metaphor for supporting casual organization of
information. In CHI’92, pages 627–634, 1992.

15. Elizabeth D. Mynatt, Takeo Igarashi, W. Keith Edwards,
and Antony LaMarca. Flatland: New dimensions in
office whiteboards. In CHI’99 Proceedings, pages 346–
353, 1999.

16. Yukio Noguchi. "ChoSeiri Hou" (the hyper organiza

tion system). Chuokouron publishing, 1993.

17. Jun Rekimoto. TimeScape: A timemachine for the
desktop environment. In Proceedings of ACM CHI’99

Extended Abstracts, pages 180–181, 1999.

18. Jun Rekimoto, Yuji Ayatsuka, and Kazuteru Hayashi.
Augmentable Reality: situated communication
through physical and digital spaces. In Proc. of the

Second international symposium on wearable comput

ers (IEEE ISWC’98), pages 68–75, 1998.

19. Lisa J. Stifelman. Augmenting realworld objects: A
paperbased audio notebook. In CHI’96 companion,
pages 199–120, 1996.

20. The Samba team. SAMBA: opening windows to a wider
world. http://www.samba.org.

21. Karon Weber and Alex Poon. Marquee: a tool for real
time video logging. In Proceedings of CHI’94, pages
85–64, 1994.

22. Andy Wood, Anind K. Dey, and Gregory D. Abowd.
Cyberdesk: Automated integration of desktop and net
work services. In CHI’97 Technical Note, pages 552–3,
1997.

