
Time Management in the High Level Architecture
Richard M. Fujimoto
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280
fujimoto@cc.gatech.edu

Keywords: Architecture, Interoperability, Simulation Time, Synchronization

ABSTRACT
Time management is required in simulations to ensure temporal aspects of the system
under investigation are correctly reproduced by the simulation model. This paper
describes the time management services that have been defined in the High Level
Architecture. The need for time management services is discussed, as well as design
rationales that lead to the current definition of the HLA time management services.
These services are described, highlighting information that must flow between federates
and the Runtime Infrastructure (RTI) software in order to efficiently implement time
management algorithms.

1. Introduction

The Defense Modeling and Simulation Office (DMSO), through its High Level
Architecture (HLA) initiative, is addressing the continuing need for interoperability
between new and existing simulations within the U. S. Department of Defense. The
HLA builds upon and generalizes the results of the Distributed Interactive Simulation
(DIS) effort (DIS Steering Committee 1994) and related activities such as the Aggregate
Level Simulation Protocol (ALSP)(Wilson and Weatherly 1994). The HLA activity
began in March 1995. It was approved by the Under Secretary of Defense (Acquisition
and Technology) as the common technical architecture for modeling and simulation in
the U.S. Department of Defense in September 1996. At the time of this writing the HLA
is undergoing standardization through the IEEE.

The HLA consists of (1) the rules that define the basic principles underlying the HLA,
(2) the object model template (OMT) that provides a standard format for describing
information of common interest to more than one simulator (federate), and (3) the
interface specification (I/F Spec) that defines the interface to the Run Time Infrastructure
(RTI) that provides the means for simulators to coordinate the execution and exchange of
information. An HLA simulation typically consists of a collection of simulators (e.g.,
vehicle simulators) interconnected through the RTI. Each simulator is referred to as a
federate. The collection of federates interacting through the RTI is referred to as a
federation.

The RTI can be viewed as a special purpose distributed operating system that provides a
set of services used to interconnect simulations. The I/F Spec defines a set of services

invoked by simulations or by the Run-Time Infrastructure during a federation execution.
HLA runtime services fall into the following categories:
• Federation management. This includes services to create and delete federation

executions, to allow simulations to join or resign from existing federations, and to
pause, checkpoint, and resume an execution.

• Declaration management. These services provide the means for simulations to
establish their intent to publish object attributes and interactions, and to subscribe to
updates and interactions produced by other simulations.

• Object management. These services allow simulations to create and delete object
instances, and to produce and receive individual attribute updates and interactions.

• Ownership management. These services enable the transfer of ownership of object
attributes (and the right to modify the value of these attributes) during the federation
execution.

• Time management. These services coordinate the advancement of logical time, and
its relationship to wallclock time during the federation execution.

• Data distribution management. These services allow large federations to improve the
efficiency of the data distribution mechanisms by reducing the amount of data that is
sent between federates.

This article is concerned with the time management services and message ordering
aspects of the object management services. Fundamental concepts and design rationales
underlying the time management services are first discussed. This is followed by a
discussion of principal time management services from the perspective of a federate,
focusing on how one would use them. Finally, additional aspects of the time
management services are discussed, focusing on the information and functionality that
must be provided in the interface to the RTI to realize an efficient implementation of
time management algorithms, or to support certain capabilities such as optimistic event
processing.

2. Time

One of the most common points of confusion when discussing time management
concerns what is meant by time. This is because there are three different types of time
that are important in distributed simulations:

• Physical time refers to time in the physical system, i.e., the system being modeled by
the simulation. For example, in a simulation of the attack on Pearl Harbor, physical
time might extend from midnight until 6 o’clock in the afternoon on December 7,
1941.

• Simulation time refers to the simulator’s representation of time. In the Pearl Harbor
simulation, simulation time might be represented as a double precision floating point
value that can hold values in the interval [0.0, 18.0] where a unit of simulation time
corresponds to an hour of physical time.

• Wallclock time refers to time when the simulator is executed. For example, the Pearl
Harbor simulator might require three and a half hours to execute. If it were executed

in the afternoon of September 10, 1996, wallclock time might extends from 1330
until 1700 on that day.

It is important to keep these different notions of time distinct when discussing time
management. Here, we are primarily concerned with simulation time. For example,
later event time stamps will be discussed. These time stamps refer to points in simulation
time. In the HLA, simulation time is represented as points along a global federation time
axis. At any instant during the execution, a federate will be at a specific point along this
axis referred to as its federate time. For example, a federate time of 4.0, might indicate
that federate has simulated the first four hours of the battle.

In some cases, advances in simulation time are paced to be in synchrony with advances in
wallclock time. For example, a training simulation where humans are embedded into a
computer generated virtual environment must be paced so that the environment appears
realistic to the trainees. Simulations designed to operate in this fashion are often called
real-time simulations. A variation on this approach are so-called scaled real-time
simulations where simulation time is paced to run at some agreed upon factor relative to
wallclock time, e.g., the simulator may run twice the speed of wallclock time. In either
case, durations in simulation time have a linear relationship with durations in wallclock
time, i.e.,

∆T = S * ∆W

where ∆W is a duration in wallclock time, S is a scale factor, and ∆T is the
corresponding duration in simulation time.

On the other hand, in as-fast-as-possible simulations one attempts to complete the
simulation as quickly as possible, so execution is not paced to have a direct relationship
to wallclock time. For example, the simulator may run faster-than-wallclock time early
in the execution, and slower-than-wallclock time during other parts of the execution.
Analytic wargame simulations often fall into this category. The HLA is intended to
support both real-time and as-fast-as-possible simulators and simulation executions.

3. Why do we need time management?

At first glance, it may not be clear why there is a need for time management. Why not
just “hook together the simulators” and have them send messages to each other whenever
one simulator performs some action of interest to another. This can lead to problems as
will be seen momentarily.

Consider a real-time simulation consisting of three simulators (federates): a federate
modeling a tank, one modeling a target, and a third modeling observers. Suppose the
tank federate fires upon the target and destroys it, while the observers monitor this
exchange. Figure 1 illustrates the execution of the federation during this interchange.
The tank federate first generates a message indicating it has fired. This message is
received by the target federate that models the target being destroyed and generates a

message indicating this fact. The observer federate receives both messages, but the
message containing the tank firing event has been delayed in the network, causing the
target destroyed event to be received first. Thus, the observer sees the target being
destroyed before it has been fired upon!

The basic problem stems from the fact that the simulated world may not correctly
reproduce temporal aspects of the real world that is being modeling. For example, delays
in the real world depend on quantities such as the speed of light. In the simulated world,
delays depend upon quantities having nothing to do with the simulation model, e.g., the
delay encountered by a message as it travels through the network. This can lead to
anomalies such as the cause appearing to happen after the effect.

Further, if no precautions are taken, it is possible different simulators will receive
messages for the same set of events in different orders. If a second observer is added to
the federation depicted in Figure 1, it may receive messages for the fire and target
destroyed events in the correct order. If the behavior of each simulator depends on the
ordering of events this can lead to other inconsistencies in the simulation execution.

Another problem is that repeated executions of the simulation with the same initial state
and external inputs may produce entirely different results. One reason for this is the
order that messages are delivered to each federate depends on properties such as
communication delays in the network that may change from one execution to the next. It
is sometimes important that repeated executions of the simulation yield the same results.
For example, in defense simulations, the results produced by the simulator may be used
to make acquisition decisions. Simulation results may be audited by the General
Accounting Office, which may require the simulations to be repeated, e.g., to verify their
authenticity.

Figure 1 Scenario illustrating the need for time management. The observer
simulator receives the "target destroyed" message before the "fire" message.

wallclock time

Simulator A
(tank)

Simulator B
(target)

fire event

target
destroyed event

Simulator C
(observer)

event

message

The importance of correctly reproducing temporal relationships in the simulation model
depends on the simulation application. This is often very important in analytic
simulations because impossible event ordering may not have been anticipated by the
model developers, and could cause a simulator to fail. Further, variations in event
timings because of network latency may introduce bias in the statistics computed by the
simulation. On the other hand, in a training application non-causal ordering of events
such as that shown in Figure 1 may not be perceptible to human participants if they
occur in rapid succession. Even if they are perceptible, they may not compromise the
training objectives of the exercise, or they may happen so infrequently that they can be
tolerated. Moreover, if the computational overheads necessary to prevent such anomalies
preclude real-time performance, there may be little alternative other than to accept that
they may occur and design around them.

In the HLA, as is the case in most simulation applications, temporal anomalies are
eliminated by assigning a time stamp (in simulation time) to each event, and ensuring
that events are delivered to the federate in time stamp order. Because the “cause” will
always be assigned a smaller time stamp than any “effect”, this guarantees that causal
relationships such as that shown in Figure 1 will be correctly reproduced by the
simulation model. In particular, the RTI will delay delivery of the target-destroyed event
until after the fire event (that has a smaller time stamp) has been delivered. In addition,
the time management services ensure a federate will not receive an event in its past, i.e.,
an event with time stamp less than its current federate time. Both time stamp order and
the constraint that no events are delivered in a federate’s past can be relaxed by federates
not requiring this capability.

4. Design Rationale

A key goal of the HLA is to foster interoperability and reuse of simulations. To facilitate
reuse, the time management services must be sufficiently flexible to accommodate the
wide variety of internal time management mechanisms commonly used in defense
simulations today. To support interoperability, the time management services must allow
simulations using different internal time management mechanisms to be combined in a
single federation execution.

An important design principal that is used to foster interoperability is time management
transparency. This means the local time management mechanism used within each
federate must not be visible to other federates. For example, a federate using an event
oriented time flow mechanism need not know the federate with which it is interacting is
using an event-oriented or a time stepped mechanism. Federates do not explicitly
indicate to the RTI the local time management mechanism being used.

The principal types of time management mechanisms used for defense simulations are
enumerated below. These cover a broad spectrum of applications including analysis,
training, and test and evaluation (T&E). The requirements of these simulations drove the
design of the HLA time management services.

• Event driven. The federate processes local events and those generated by other
federates in time stamp order; federate time typically advances to the time stamp of
each event as it is processed. Process-oriented simulation constructs that are often
found in modern simulation languages are included in this category because they are
typically built on top of an event execution mechanism.

• Time stepped. Each time advance made by the federate is of some fixed duration of
simulation time, called a time step. The simulator does not advance to the next time
step until all simulation activities associated with the current time step have been
completed. Activity scanning, another time flow mechanism sometimes used in
discrete event simulation, is essentially a variation on the time stepped mechanism.

• Parallel discrete event simulation. Federates executing on multiprocessor systems
must be synchronized internally using a conservative or an optimistic synchronization
protocol. In a conservative protocol, each logical process within the federate must
process its events in time stamp order. Logical processes may have to wait until this
condition can be guaranteed. Optimistic synchronization protocols allow logical
processes to process events out of time stamp order, but provide a means to recover
from such errors, typically through the use of a rollback mechanism.

• Wallclock time driven. Here we are referring to simulators that derive their current
simulation time directly from wallclock time, as was described earlier. This is in
contract to simulators using one of the other time flow mechanisms described above
that pace their execution to advance in synchrony with wallclock time. Wallclock
time driven federates do not necessarily require that events be processed in time
stamp order. These simulations usually have hard and/or soft real-time constraints so
that interactions with humans and/or physical devices occur in a timely fashion.

 Time management in any federation must be realized jointly by the federates and the
RTI. Thus a key question is: What functionality should be implemented within the RTI,
and what should be realized within individual federates?

 Because event driven federates must process both internal events and those generated by
other federates in time stamp order, the federate must, in effect, merge the stream of
events generated by other federates with local events to produce one stream of time
stamp ordered events. Further, precautions must be taken to ensure the federate does not
receive events in its past, i.e., events with time stamp less than the simulator’s current
federate time. These tasks are accomplished in the HLA time management services by:
• a time stamp order (TSO) message delivery service, and
• a protocol where federates explicitly request advances in their federate time, and the

RTI provides a grant of this request when it can guarantee no events will later arrive
containing a smaller time stamp.

 Time stepped federates must be able to determine when all events in the current time step
that are produced by other federates have been received. Only then can it complete the
computation for the current time step, and advance to the next time step. This
requirement is satisfied in the HLA with a variation on the protocol described above for
advancing federate time.

 Parallel discrete event simulations using conservative synchronization have similar
requirements as event driven federates. A modest amount of additional functionality is
required to support parallel simulators using optimistic time management. More will be
said about this later.

 Time management based on wallclock time is commonly used in virtual simulators used
for training (e.g., vehicle simulators) and hardware-in-the-loop T&E applications. These
simulators typically use an entirely different approach to time management than that
described above. Commonly used mechanisms include:

• Clock synchronization algorithms are required to ensure that hardware clocks
generating wallclock time values in different, possibly geographically distributed
processors are properly synchronized. This is needed because hardware clocks in
different computers drift relative to each other. This can lead to serious problems in
the distributed simulation if the differences become large.

• Real-time scheduling is often used to guarantee that computations are completed by
certain deadlines in order to ensure timely interactions with hardware devices and/or
human participants. Task deadlines and laxities are often used to schedule the
computations so that deadlines can be met.

• Time compensation is used to take into account communication latency. For
example, suppose a simulator for a moving vehicle generates a message indicating its
current position, speed, and direction of motion. If the message is received 100
milliseconds later, the destination can extrapolate the current position of the vehicle
using dead reckoning techniques in order to estimate the vehicle’s position when the
message was received.

In the HLA, these mechanisms must be implemented within the federate. Unlike
message ordering and time stamping requirements that are largely independent of the
goals of the federation and what is being simulated, specifics concerning the above
mechanism are highly dependent on the federation objectives and details of the models.
For example, hardware clocks must often be more closely synchronized in hardware-in-
the-loop T&E applications compared to interactive training simulations. Scheduling
algorithms require detailed information concerning the computations performed within
the federate, and thus are not well suited for implementation within the RTI. Time
compensation techniques require information concerning the semantics of what is being
simulated. Such information is not available within the RTI.

For this reason, the HLA time management services provide a minimalist approach to
addressing time management concerns for these applications. The principal requirements
for these applications with respect to the RTI are (1) minimal, predictable
communication latency, and (2) minimal computational and communication overhead
imposed by the RTI. Toward this end, the HLA provide basic communication services
where messages are delivered with minimal latency, and little additional functionality for
time management. In particular, the overheads associated with realizing time stamp
order and control over time advances are eliminated if these services are not used.

Here, federate time refers to the current simulation time of a federate. For federates that
can send or receive TSO messages, federate time is referred to as logical time, to
distinguish these federates from those using a federate time derived directly from
wallclock time. At any instant during the execution of a federation, different federates
may, and often do, have different logical time values.

Figure 2. Logical view of time management in the HLA.

5. Time Management Services

A logical view of time management component of the HLA is illustrated in

federate

• local time and event management
• mechanism to pace execution with wallclock time (if needed)
• federate specific techniques (e.g., time compensation)

wallclock time
(synchronized with

other processors)

logical time

Runtime
Infrastructure

(RTI)

state updates
and interactions logical time advance

requests and grants

receive
order

messages

time stamp
order

messages

FIFO
queue

TSO
queue

Figure 2. The services include two key components: a time stamp order delivery service,
and a protocol for simulations to advance their logical time.

5.1 Message Order and Time Stamps

Incoming messages are categorized as either receive order (RO) or time stamp ordered
(TSO). Receive ordered messages are simply placed in a queue when they arrive, and
are immediately eligible for delivery to the federate. The ordering of these messages is
arbitrary. TSO messages are assigned a time stamp by the federate generating the
message, and are delivered to each receiving federate in order of non-decreasing time
stamps. Incoming TSO messages are placed into a queue within the RTI, but are not
eligible for delivery until the RTI can guarantee there are no other TSO messages
destined for that federate containing a smaller time stamp, and no others will later arrive
from other federates. To ensure the latter property, the RTI must compute a lower bound
on the time stamp of future messages it may receive from other federates. More will be
said about this later. Because the RTI may not be able to deliver TSO messages
immediately upon receipt, TSO messages may incur a higher message latency than RO
messages. Federates may send and receive both TSO and RO messages.

Messages containing identical time stamps, referred to as simultaneous events, are
delivered to the federate in an arbitrary order. Often it is important to order these
messages in a particular fashion. To address this issue, the federate receiving the
messages can buffer and order the messages itself. To support this, the RTI provides a
means for specifying when the federate has received all simultaneous events with a given
time stamp value. Alternatively, federates may include tie-breaking fields in the message
time stamp to order simultaneous events. This requires federation specification of the
format and meaning of the time stamp field and logical time values and duration. To
support this, time values can be specified by the federation using an abstract data type.
This allows the time representation to be tailored to meet the requirements of different
federations. In addition to specifying the time stamp format, which must be documented
in the Object Model Template, the federation must also specify certain operators such as
comparison of time stamp values. This capability enables HLA federations to utilize
techniques such as those described in (Mehl 1992) to deterministically order events, e.g.,
to facilitate repeatable executions.

Receive ordered messages may also, optionally, contain a time stamp value. In this case,
the time stamp value is simply passed, uninterpreted by the RTI, to the destination
federate.1

5.2 Advancing Logical Time

The second portion of the time management component of the HLA provides a
mechanism to advance simulation time within each federate. As mentioned earlier, the
RTI guarantees a federate will not receive any TSO message with time stamp less than its
current logical time. To realize this capability, federates cannot autonomously advance

1 Specification of the representation of time as an abstract data type and allowing time stamps on receive
ordered messages were added to the interface specification in late 1998.

their logical time. Rather, federates must explicitly request that their logical time be
advanced, and advances do not take place until the RTI explicitly grants them. This
protocol for advancing logical time is central to the HLA time management services.

A time management “cycle” consists of three steps. First, the federate invokes a time
management service to request its logical time to advance. Next, the RTI delivers some
number (possibly zero) of messages to the federate. A message is delivered to the
federate by the RTI invoking a federate defined procedure, e.g., Reflect Attribute
Values to deliver new values for object attributes, or Receive Interactions to deliver
interaction events. The RTI completes the cycle by invoking a federate defined procedure
called Time Advance Grant to indicate the federate’s logical time has been advanced.

The two principal mechanisms for a federate to request its logical time to be advanced
are the Time Advance Request (TAR) and Next Event Request (NER) services. TAR
is well suited for federates that internally use a time stepped mechanism, and NER is the
preferred primitive for event driven federates. There is no restriction concerning what
federates can invoke which primitive, however. Any federate can exclusively use NER
or TAR, or it can intermix calls between the two. These two time management services
are defined as follows:
• Time Advance Request (T): The federate invokes this service to request its logical

time to be advanced to T. All RO messages in the RTI’s internal queues, and all TSO
messages with time stamp less than or equal to T are delivered to the federate after
this service has been invoked. When no additional TSO messages with time stamp
less than or equal to T are forthcoming (or will be generated by another federate in
the future), the RTI calls the federate’s Time Advance Grant procedure with
parameter T to indicate the federate’s logical time has been advanced to T.

• Next Event Request (T): An event driven federate will typically invoke this service
when it has completed all simulation activity at the current logical time, and is ready
to advance to a new time. The parameter T specified in the NER request indicates
the logical time to which the federate would like to advance, if there are no other
events from other federates containing a smaller time stamp. Typically, T is the time
stamp of the next event in the federate’s local set of pending events. After invoking
this service, the RTI will deliver all RO messages in its internal queue. If there are
no TSO messages with time stamp less than or equal to T, and none will be received
in the future, the RTI invokes the federates Time Advance Grant procedure
indicating its logical time has been advanced to T. Otherwise, the RTI will deliver
the next smallest TSO message destined for the federate (with time stamp T’ where
T’ �� 7�� DQG� DOO� RWKHU� PHVVDJHV� ZLWK� WLPH� VWDPS� 7¶�� � 7KH� 57,� WKHQ� FDOOV� Time
Advance Grant with parameter T’. In this case, the federate’s logical time is
advanced to T’.

Now = 0; /* current time */ Federate RTI
while (simulation not completed) Main: …
 T=time of next event in PES T=time of next event in PES
 NextEventRequest(T) Main: NextEventRequest(T)

 PendingNER = TRUE; NER: … return
 while (PendingNER) Tick(); Main: PendingNER = TRUE;
 Now = time of next event in PES Main: Tick();
 Process events in PES at time
Now

Tick: …

End-while Tick:
ReflectAttributeValues

RAV: store event into PES
RAV: return

Tick: return
ReflectAttributeValues() Main: Tick();
 Store event into PES Tick: …

Tick: TimeAdvanceGrant
TimeAdvanceGrant() TAG: PendingNER=FALSE
 PendingNER = FALSE; TAG: return

Tick: return
Main: Now = time of next
event
Main: Process events in PES

(a) (b)

Figure 3. Example for an event driven federate. (a) sketch of code example. PES
denotes the internal pending event set of the federate. The black portion represents
code that exists in the original simulator. The colored code represents portions
added to interface the simulator to the RTI. (b) sample execution, where wallclock
time advances from the top to bottom of the figure. RAV denotes code in
ReflectAttributeValues, TAG denotes code in TimeAdvanceGrant, and Main
denotes code in the main federate event scheduling loop shown on (a).

5.3 Example

The code for an event driven federate is sketched in Figure 3(a). This example assumes a
single threaded implementation where the RTI is realized as a library that is compiled
into the code for the federate. Many existing implementations of the RTI operate in this
fashion. With this approach, a key question concerns how execution is scheduled
between the RTI and the federate. This problem is solved by an RTI procedure called
Tick that is called by the federate to turn the CPU over to the RTI to allow it to perform
its operations. Specifically, delivery of messages and time advance grants are
implemented by calls from the RTI to the federate within the Tick procedure.

Figure 3(b) illustrates the execution sequence for a time advance cycle for the code
shown in Figure 3(a). The federate first invokes the RTI’s NextEventRequest (NER)
service to request delivery of TSO messages, or to advance its logical time to the time
stamp of its next local event. After NER has been called, the federate sets a flag
indicating it is waiting for an NER cycle to complete, and calls tick to turn the CPU over
to the RTI. In this example, there is one event produced by another federate that has

time stamp less than the next event in the federate’s local pending event set (PES). The
Tick procedure calls the federate’s ReflectAttributeValues procedure to deliver this event
to the federate. Here, the event is simply placed into the PES along with other, locally
generated events. After this has been done, Tick returns control to the federate. Because
the PendingNER flag is still TRUE, the federate will again call Tick to request additional
events, or a time advance grant if there are none. This time, the RTI determines there are
no more events with the same time stamp as the event it just delivered, and none are
forthcoming from other federates in the future. The RTI issues the grant by calling the
federate’s TimeAdvanceGrant procedure. This procedure sets the federate’s
PendingNER flag to FALSE and returns. Tick returns, and the federate now advances its
local clock (the Now variable), processes its events, and repeats this cycle.

6. Interface Issues

Time stamp ordering and primitives to advance time form the central components of the
HLA time management architecture. The interface is designed so that the RTI is
provided with essential information necessary to realize efficient implementations of the
time management primitives, but at the same time, RTI implementers are not constrained
to use a particular synchronization protocol. In particular, the interface represents a kind
of contract between the federate and RTI concerning the time stamp of messages the
federate might generate later in the execution. Additional primitives are provided to
support federates executing on parallel processors using optimistic synchronization
protocols. These aspects of the time management interface are discussed next.

6.1 LBTS Computation

The key to implementing the time management services within the RTI is to compute a
quantity called the lower bound on time stamp (LBTS) for each federate. LBTSi, the
LBTS value computed for federate i, is a lower bound on the time stamp of messages that
may be received that are destined for that federate later in the execution. Two key tasks
the RTI must perform are (1) ensure TSO messages are delivered to the federate in time
stamp order, and (2) ensure no message is delivered to the federate with time stamp
smaller than its current logical time. Once LBTSi has been computed, the RTI can
deliver all TSO messages containing a time stamp less than LBTSi. Further, if the RTI
prevents the federate from advancing its logical time beyond LBTSi, then it can
guarantee that federate will not receive any messages in its past.

Federate A

Federates

Potential message
without lookahead

Potential message
with lookahead

Figure 4. Snapshot of a federation showing unprocessed events and their time
stamps. The smallest time stamped event at federation time 10 is the only event the
RTI can deliver if there is no lookahead. If each federate is at time 10, and has a
lookahead of 5, all of the darkened events with time stamp 15 or less can be
delivered.

For example, Figure 4 shows a snapshot of a federation execution containing four
federates all at time 10. Each box represents an event, and the (X,Y) coordinate position
of the event indicates the time stamp, and destination federate. It is seen that two events,
containing time stamps 14 and 17 have been sent to federate B. Suppose LBTSB has
been computed to be 15. This means the time stamp 14 event can be delivered to the
federate, but the time stamp 17 event cannot, since it is still possible federate B will later
receive another event with time stamp less than 17. Similarly, the RTI cannot advance
the logical time of federate B beyond 15, because if it did so, that would leave the
possibility the federate could receive a TSO message in its past.

To compute LBTS, the RTI must consider
• the smallest time stamp of any TSO message any federate might generate in the

future; the current logical time of a federate is one bound since no federate can
generate a TSO message in its past, and

• the time stamps of messages within the RTI and the interconnection network.

Algorithms for computing LBTS are beyond the scope of the present discussion.
Interested readers are referred to (Fujimoto 1999).

Federate D

Federate C

Federate B

Federation Time
10 12 14 16 18

6.2 Time Constrained and Time Regulating Federates

An HLA federation may include some federates using the time advance and time stamp
order delivery services (e.g., analytic wargaming simulations), as well as others that do
not (e.g., DIS style training simulations). In such an environment, the RTI must
determine those federates that must participate in the LBTS computation, and those that
require the results of the computation.

In the HLA, each federate contains two boolean flags that indicate to the RTI its status
with respect to LBTS computations: the time constrained and time regulating flags. A
time regulating federate is one that is able to generate TSO messages, and therefore must
be considered when computing LBTS values. A time constrained federate is one that
may receive TSO messages, and thus requires the result of LBTS computations. The
HLA time management services provide primitives for federates to turn on or off their
constrained and regulating flags. If a federate does not have its regulating (constrained)
flag set when it sends (receives) a TSO message, the RTI will convert that message to an
RO message. Federates with their regulating (constrained) flag set can send (receive)
both TSO and RO messages. Because the LBTS computations require a certain amount
of computational and communication resources, federates would not normally set these
flags unless they had specific requirements to operate using the time management
services.

6.3 Lookahead

Consider the federation depicted in Figure 4. Assume all four federates have both their
constrained and regulating flags set, i.e., each can send and receive TSO messages.
Suppose federate D is at logical time 10, and is processing the smallest time stamped
event in the federation. This federate could generate a TSO message with timestamp 10
to each of the other federates. This implies none of the other federates can advance
beyond logical time 10, so in the snapshot depicted in Figure 4, the other three federates
must remain idle until federate D has advanced. Needless to say, this is a very
undesirable situation!

A constraint called lookahead provides a solution to this problem. Suppose one were to
mandate that no simulation may schedule a new event with timestamp less than the
federate’s current time plus (say) 5. Then any new event generated by federate D must
have a time stamp of at least 15. This, would allow each of the other federates to advance
up to logical time 15, i.e., the shaded events in Figure 4 with time stamp less than or
equal to 15 can be delivered to the federates and processed.

This value 5 in the above example is referred to as the lookahead for the federate. This is
because a federate must be able to “look ahead” 5 time units into the future to predict
what events it will generate, and schedule these events early. Lookahead may, in
general, be difficult to incorporate into certain classes of simulations, but nevertheless is
very important for simulations requiring guaranteed message ordering services to achieve
acceptable performance. As demonstrate in (Fujimoto 1989), lookahead can have a very
dramatic effect on federation performance.

Lookahead is clearly very intimately related to details of the simulation model, and thus
cannot be determined automatically by the RTI. Some examples of where lookahead
may be derived are described below.
• Physical limitations concerning how quickly one federate can react to an external

event. Suppose the minimum amount of time for a tank to respond to an operator’s
command (e.g., to fire an ordnance) is 500 milliseconds. This means the simulation
can guarantee that it will not schedule the results of any new operator actions until at
least 500 milliseconds into the future, providing a lookahead of this amount.

• Physical limitations concerning how quickly one simulation can affect a second
simulation. Suppose two tanks are ten miles apart, and there is also a maximum
speed of a projectile fired from one tank to another. These constraints place a lower
bound on how much time must elapse for the first tank to affect the second. Thus,
events such as a projectile exploding at the second tank can be scheduled into the
future, providing some degree of lookahead.

• Tolerance to temporal inaccuracies. Suppose a simulation produces an event at time
T, but assigning a time stamp of T+1 second does not impact the accuracy of the
simulation results. Then, the simulation may schedule events 1 second into the
future, providing a lookahead of this amount.

• Time stepped simulations: In a time stepped simulation, the lookahead is normally the
size of the time step. This is because a simulation can only schedule events into the
next time step (or later), but not into the current time step.

• Non-preemptive behavior. Suppose a tank is moving north at 30 miles per hour, and
nothing in the federation model could cause it to change any events produced by the
tank over the next ten minutes. These events could therefore be scheduled
immediately, resulting in a lookahead of 10 minutes.

Lookahead can change dynamically during the simulation. However, lookahead cannot
instantaneously be reduced. At any instant, a lookahead of L indicates to the RTI that the
federate will not generate any event (using timestamp ordering) with timestamp less than
C+L, where C is the federate’s current logical time. If the lookahead is reduced by K
units of time, the federate must advance K units before this changed lookahead can take
effect, so no events with timestamp less than C+L are produced. In the HLA, a single
lookahead value is declared by each federate. This value may change at runtime, but
reductions in lookahead do not take effect immediately.

6.4 Zero Lookahead and Simultaneous Events

When a federate receives a Time Advance Grant to simulation time T as the result of
invoking the Next Event Request or Time Advance Request service, the RTI
guarantees the federate has received all events with time stamp equal to T. This is a
useful guarantee because it means the federate can now order the events at time stamp T
and process them without fear of later receiving additional events containing this time
stamp. This guarantee cannot be kept if federates have a lookahead value of zero. This
is because the federate that has received a Time Advance Grant to logical time T could
now generate a new event with time stamp equal to T. This, in turn, might result in a

second event also with time stamp equal to T that is sent back to the original federate.
Early versions of the time management services circumvented this problem by requiring
all federates to have strictly positive lookahead values.

During the HLA prototyping phase, it became apparent that prohibiting zero lookahead
values was too restrictive. To support zero lookahead federates, but without giving up
the property that federates could guarantee that they had received all events at a given
time stamp (so that the events could be ordered in a deterministic fashion), two new
services were added. These services are called Next Event Request Available (NERA)
and Time Advance Request Available (TARA). NERA (TARA) is similar to NER
(TAR) except in one important aspect: when a Time Advance Grant to logical time T is
issued by the RTI in response to a NERA (TARA) service call, the RTI does not
guarantee that the federate has received all messages with time stamp exactly equal to T.
The federate is able to generate new messages with time stamp equal to T (i.e., zero
lookahead messages). By contrast, when a federate receives a Time Advance Grant to
time T as the result of a NER or TAR call, the federate is prohibited from sending
messages with time stamp exactly equal to (or less than, of course) T, even if the
federate’s lookahead is zero. This approach allows federates to generate zero lookahead
messages, but also gives the federate the ability to determine when it has received all
messages with time stamp equal to the current logical time.

6.5 Guarantees on the Time Stamp of Outgoing Messages

Consider again the snap shot shown in Figure 4, but assume each federate has a
lookahead value of zero. Suppose each federate is event driven and each has a single
local event (not shown in Figure 4) with time stamp 20. Federates A, B, and C will be
blocked on a call to NER with time parameter 20. Suppose federate D completes
processing the time stamp 10 event, and also calls NER(20). If the only constraint on the
time stamp of new messages is the time stamp must be greater than or equal to the
federate’s current time plus lookahead, the RTI cannot preclude the generation of new
messages with time stamp value 20. Thus, the RTI cannot issue a Time Advance Grant
to any federate, and the simulation is deadlocked!

The solution to this problem can be found by considering the operation of a sequential
event-oriented simulation program. The simulator can always advance to the time stamp
of the next event in its list of pending events after processing each event. This is because
the simulator can guarantee that at the instant it has completed processing an event, no
new events will be generated with time stamp less than the time stamp of the next event
in the event list.

Unfortunately, this same guarantee cannot be made in a distributed simulation. Consider
again federate D in Figure 4. The smallest time stamp of any event in the snapshot
destined for federate D is 13. However, there is nothing to prevent federate C from
generating a new event for federate D with time stamp 11 during the course of processing
its next event. Thus federate D cannot advance to logical time 13. However, because
each federate uses an event driven time flow mechanism, we can say that the smallest
time stamp on any unprocessed event in the entire federation is 11, so it can be

guaranteed that the smallest time stamp of any future event is also 11. This fact would
enable an event, and Time Advance Grant (to logical time 11) to be issued to federate
C, thus breaking the deadlock.

This logic is included in the following guarantees made by federates to the RTI
concerning the time stamp of any events the federate might generate in the future.
Below, a pending NER/NERA/TAR/TARA refers to an invocation of this service where
no Time Advance Grant has been issued.
• A federate cannot generate any new messages with time stamp less than the federate’s

current logical time plus its lookahead. Further, if the federate reached the current
logical time via the NER or TAR service, the federate is also prohibited from
generating a new message with time stamp equal to its current time, even if its
lookahead is zero.

• If a federate has a pending NER with time parameter T, it guarantees any new
messages it generates will have time stamp greater than or equal to T plus the
federate’s lookahead (or strictly greater than T if the federate’s lookahead is zero),
provided no additional TSO messages with time stamp less than T are delivered to
the federate. If the RTI does deliver a new message to the federate with time stamp
less than T, this guarantee is declared null and void. If the federate has a pending
NERA call the same guarantee is made except the federate may still generate
messages with time stamp equal to T if its lookahead is zero.

• If the federate has a pending TAR service call with time parameter T, the federate
unconditionally guarantees that any new messages it generates will have a time stamp
greater than or equal to T plus the federate’s lookahead (strictly greater than if the
federate’s lookahead is zero), regardless of what new messages are delivered by the
RTI in the future. A similar guarantee is made if the federate has a pending TARA
call, except the federate can generate new messages with time stamp T if its
lookahead is zero.

These rules form a contract between the federate and the RTI. This contract is important
because it enables the RTI to determine the minimum time stamp of any new message the
federate can later produce, which is essential in computing LBTS values.

6.6 Optimistic Event Processing

The discussion thus far has focused entirely on so-called conservative synchronization
techniques that avoid the possibility of a federate processing events out of time stamp
order. The other well-known approach to synchronization is the so-called optimistic
technique that allow messages to be processed out of time stamp order, but use some
mechanism to recover. Jefferson’s Time Warp mechanism is the most well known
optimistic synchronization protocol (Jefferson 1985).

The HLA supports optimistic federates while still maintaining time management
transparency. Specifically, the HLA time management services do not require all
federates to support a rollback and recovery capability even if one federate is using
optimistic event processing. Indeed, it is envisioned that federations may include both

optimistic and conservative federates within a single execution. Conservative federates
not needing or desiring to utilize optimistic processing techniques may completely ignore
the optimistic time management services with no ill effects.

An important goal of the optimistic time management services is to enable optimistic
execution among a collection of optimistic federates. Thus, simple solutions such as
requiring that the optimistic federate only send messages that it can guarantee will not be
later canceled are undesirable, because they do not fully exploit the potential offered by
optimistic execution.

A federate executing on a parallel processor using the Time Warp protocol will allow
some simulation events to be processed, even though it is possible another event
containing a smaller time stamp will later arrive, possibly from a different federate. If
such an event later arrives, some event computations must be rolled back. Realizing
rollback means rolling back the state of the simulation process receiving the late event
and canceling any new events scheduled by the rolled back computation. If the canceled
event has already been processed at the destination process, that process is also rolled
back, possibly generating additional event cancellations. Recursively applying this
procedure will eventually erase the effects of the incorrect computation.

To support this style of execution, the following capabilities are required:
• Federates must be able to receive TSO messages before the RTI can guarantee that no

smaller time stamped messages will be later received, i.e., before the RTI can
guarantee message ordering, in order to allow optimistic event processing. In the
HLA this ability is provided by the Flush Queue Request service that forces the RTI
to deliver all buffered events in the destination RTI’s internal queues.

• Federates must be able to cancel previously sent messages. This is accomplished via
the HLA’s Retract primitive. If the cancelled message has already been delivered to
the destination federate, the cancellation request is forwarded to that federate. At this
point, it is the destination federate’s responsibility to roll back, and possibly generate
additional retraction requests.

• Optimistic federates must be able to compute a lower bound on the logical time of
any future roll back. This lower bound, called Global Virtual Time (GVT) allows the
optimistic federate to reclaim memory resources, and to perform operations such as
I/O that cannot be rolled back. In Time Warp, rollbacks are caused by receiving a
message or event cancellation in the past of the receiving federate. Thus the
federate’s LBTS value provides the information necessary for the federate to compute
GVT.

To illustrate the use of these services in an optimistic federate, the following outlines
how a Time Warp based federate (TW) could be included in an HLA federation:
• The TW federate uses the Flush Queue Request service to receive, and

optimistically process events.
• Optimistically generated messages are transmitted through the RTI to other federates,

the same as ordinary, non-optimistic messages. The RTI does not distinguish
between these two types of messages.

• The event retraction primitive provided by the RTI is used to cancel optimistic
messages that later prove to be incorrect.

• If the message for the canceled event has not been delivered by the RTI to the
receiving federate, the message is cancelled within the RTI. If the message has
already been delivered to the receiving federate, the retraction request is forwarded to
the federate which must perform the cancellation itself, typically by performing a
rollback in the receiving federate, possibly generating additional cancellation
(retraction) requests.

• From the perspective of the Time Warp federate, global virtual time (GVT) is the
logical clock of the Time Warp federate. This, plus the Time Warp federate’s
lookahead, gives a lower bound on the time stamp of messages that may be generated
in the future by that federate. This information enables the RTI’s LBTS computation
to prevent conservative federates from receiving optimistic messages until it has been
guaranteed that they will not be later cancelled. Any event with time stamp less than
GVT is guaranteed not to be prone to future rollbacks, and since events must be
generated at least L time units into the future, where L is the lookahead, any message
with time stamp less than GVT+L is guaranteed not to be subject to any future
cancellation.

The “main loop” of a typical Time Warp simulator might execute the following steps:

while (simulation execution is still in progress) {
Next_Event_Time = time stamp of next local event
invoke Flush Queue Request (Next_Event_Time)
honor RTI requests for Reflect Attribute Values, Receive Interaction

or event retractions (cancellations). Place these incoming messages into
queues within the federate, process any rollbacks or annihilations, using
message retraction to cancel previously sent messages

honor RTI service request for Flush Queue Grant (Local_LBTS)
fossil collect using Local_LBTS as the GVT value
process next smallest time stamped message(s)
}

The last statement will typically process messages containing a time stamp larger than
GVT, giving rise to optimistic execution. Any number of messages may be processed
before the RTI queues are again flushed. Also, it is perhaps worth pointing out that fossil
collection need not be performed every iteration through the main processing loop.

One attractive property of this approach is it enables Time Warp federates to “plug into”
the RTI, without any other federate (even optimistic ones) realizing there is an optimistic
federate in the federation execution. The RTI automatically allows for optimistic
exchange of messages among a collection of optimistic federates, and at the same time,
guarantees that optimistic messages are not released to conservative federates, all
transparent to the federates in the federation. Further, no special GVT messages must be
exchanged between optimistic federates, as the RTI automatically provides the

information necessary for each optimistic federate to compute GVT locally. Finally,
another attractive feature of this approach is it requires only modest modification of the
“conservative” time management services already specified in the RTI.

A well known problem in optimistic simulations is “throttling” the federate to prevent it
from executing too far ahead into the future, leading to inefficient execution. At present,
the HLA does not specify what throttling mechanisms should be used; this is currently he
responsibility of individual federates.

7. Conclusions

The time management services of the HLA are central to achieving interoperability
among analytic simulations using event driven or time stepped mechanisms to advance
simulation time. The time management system includes mechanisms to ensure time
stamp ordered delivery of messages, we well as mechanisms for federates to advance
logical time so that the federate does not receive messages with time stamp less than its
current logical time. Time management transparency so that one federate need not
understand the local time management structure of other federates is key to achieve
interoperability among federates using different local time management mechanisms.

8. Additional Readings

The HLA time management design is based on a handful of key principles developed
largely by the parallel discrete event simulation community over the last twenty years.
Specifically, computation of LBTS values, lookahead, and potential deadlock problems
were recognized in the earliest time management algorithms (Bryant 1977; Chandy and
Misra 1978; Peacock, Wong et al. 1979). The importance of lookahead and its impact on
performance is discussed in (Fujimoto 1989). The need to pass information concerning
the time stamp of the next local event was perhaps first used in (Chandy and Misra
1981), and exploited heavily in second generation time management algorithms, e.g.,
(Lubachevsky 1989). Optimistic time management for distributed simulations were first
introduced in (Jefferson 1985). An in depth treatment of time management techniques is
presented in (Fujimoto 1999).

9. ACKNOWLEDGMENTS

The time management approach used in the HLA is the result of the collective efforts of
many individuals in the DoD modeling and simulation community. Richard Weatherly
provided key contributions, and lead the development of early RTI prototypes realizing
the time management services. Judith Dahmann provided technical leadership of the
overall HLA development effort as Chief Scientist for the Defense Modeling and
Simulation Office. Finally, comments from the anonymous referees are gratefully
acknowledged.

10. References

Bryant, R. E. (1977). Simulation of Packet Communication Architecture Computer
Systems. Computer Science Laboratory. Cambridge, Massachusetts, Massachusetts
Institute of Technology.

Chandy, K. M. and J. Misra (1978). “Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs.” IEEE Transactions on Software Engineering
SE-5(5): 440-452.

Chandy, K. M. and J. Misra (1981). “Asynchronous Distributed Simulation via a
Sequence of Parallel Computations.” Communications of the ACM 24(4): 198-205.

DIS Steering Committee (1994). The DIS Vision, A Map to the Future of Distributed
Simulation. Orlando, Florida, Institute for Simulation and Training.

Fujimoto, R. M. (1989). “Performance Measurements of Distributed Simulation
Strategies.” Transactions of the Society for Computer Simulation 6(2): 89-132.

Fujimoto, R. M. (1999). Parallel and Distributed Simulation Systems, Wiley
Interscience.

Jefferson, D. (1985). “Virtual Time.” ACM Transactions on Programming Languages
and Systems 7(3): 404-425.

Lubachevsky, B. D. (1989). “Efficient Distributed Event-Driven Simulations of
Multiple-Loop Networks.” Communications of the ACM 32(1): 111-123.

Mehl, H. (1992). A Deterministic Tie-Breaking Scheme for Sequential and Distributed
Simulation. Proceedings of the Workshop on Parallel and Distributed Simulation. M.
Abrams and P. Reynolds, Jr., Society for Computer Simulation. 24: 199-200.

Peacock, J. K., J. W. Wong, et al. (1979). “Distributed Simulation Using a Network of
Processors.” Computer Networks 3(1): 44-56.

Wilson, A. L. and R. M. Weatherly (1994). The Aggregate Level Simulation Protocol:
An Evolving System. Proceedings of the 1994 Winter Simulation Conference: 781-787.

