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Abstract

We describe a new approach for generating regular-

speed, low-frame-rate (LFR) video from a high-frame-rate

(HFR) input while preserving the important moments in the

original. We call this time-mapping, a time-based anal-

ogy to high dynamic range to low dynamic range spatial

tone-mapping. Our approach makes these contributions:

(1) a robust space-time saliency method for evaluating vi-

sual importance, (2) a re-timing technique to temporally re-

sample based on frame importance, and (3) temporal filters

to enhance the rendering of salient motion. Results of our

space-time saliency method on a benchmark dataset show it

is state-of-the-art. In addition, the benefits of our approach

to HFR-to-LFR time-mapping over more direct methods are

demonstrated in a user study.

1. Introduction

High-frame-rate (HFR) cameras such as the FastCam1

and Phantom2 are capable of capture rates of 1, 000 fps or

higher at HD video resolution. These cameras are typically

used to create slow-motion playback by replaying the cap-

tured frames at a much slower rate. These are expensive

specialized cameras intended for visualization and analysis

of high-speed events such as automotive crash tests and ex-

plosions. There are now consumer-grade cameras such as

the GoPro3 and iPhone 5S4 which are capable of 120 fps

video capture at 720p. In addition, there is a Kickstarter

project called “edgertronic5” where the goal is a relatively

inexpensive high-speed camera capable of 18, 000 fps.

Although the obvious purpose for HFR cameras is to

produce slow-motion video, we address a different ques-

tion. Given HFR video, can one produce a superior regular-

speed low-frame-rate (LFR) video, than is possible from

normal LFR video input? By regular-speed, we refer to

maintaining the overall pacing of the original input, i.e.,

1http://www.photron.com/
2http://www.visionresearch.com/
3http://gopro.com/
4http://www.apple.com/
5http://www.kickstarter.com

(a)

(b)
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Figure 1. Example of time-mapping. (a) Uniform sampling using a

box filter. Note the blur throughout each frame. (b) Sampling and

filtering using our system. The sampling is denser in the middle to

stretch out a little the more interesting part of the video.

a 10 second event should still playback in 10 seconds, al-

though short intervals may deviate from this constraint.

This is analogous to the conversion from high-dynamic-

range (HDR) imagery to the low-dynamic-range (LDR) of

current monitors for display. This HDR-to-LDR conver-

sion, often called tone-mapping has been well studied. In

this paper we explore HFR-to-LFR conversion, i.e., time-

mapping, with the goal of producing superior normal speed

LFR video from the richer set of input frames available from

HFR capture. To our knowledge, this is the first paper to ask

and attempt to answer this specific time-mapping question.

Clearly, one can (almost) reproduce low-frame-rate (30
fps) video by simply averaging over HFR blocks of frames

representing each 1/30th of a second. But can one do bet-
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ter? For example, the rich temporal details captured by

a HFR camera may be lost in this averaging step. Con-

sider the performance capture of the skateboarding maneu-

ver shown in Fig. 1a, where three frames are synthesized by

uniformly averaging the HFR video frames over 1/30th of a

second intervals. The 1/30th of a second intervals as well as

the temporal integration miss and blur the split-second key

moment. Alternatively, given three sequential HFR frames,

the key moment is preserved but we now need to consider

how to display these frames in such a way as to both depict

this moment and also maintain the pacing of the real event.

To accomplish this goal, we devised methods for: (1)

predicting what is interesting or salient in the video, (2) re-

timing to retain as many salient frames as possible while

minimizing time distortion, and (3) temporal filtering to

combine frames minimizing loss of detail while avoiding

strobing. Methods for retiming and filtering make use of

the results of the proposed space-time saliency measure.

As an example, shown in Fig. 1b, the output video is gen-

erated using more densely sampled frames where the faster

and more interesting part of the skateboarder’s performance

can be better visualized at a higher temporal resolution. To

enhance the motion perception of the fast moving object

(e.g., hand and torso), a saliency-based filter is applied to

synthesize motion blur while keeping the foreground sharp.

We validate our space-time saliency approach using a

benchmark dataset, and subsequently our overall approach

through a user study. Results show that our approach is ca-

pable of generating visually better regular-speed video than

achieved from standard LFR video. In this paper, we as-

sume that the camera is stationary.

2. Related work

In this section, we briefly review related work in motion

saliency, video re-timing, and temporal filtering.

Motion saliency. The ability to predict where a human

might fixate in an image or a video is of interest in the vi-

sion community. While many models have been proposed

in image domain (see [2] for a review), computing spatio-

temporal saliency for videos is a relatively unexplored prob-

lem. Most existing motion saliency methods built upon im-

age attention models by taking into account simple motion

cues. For instance, Guo et al. [7] adopt an efficient method

based on spectral analysis of the frequencies in the video.

Similarly, Cui et al. [4] analyze the Fourier spectrum of the

video along X-T and Y-T planes. Seo and Milanfar [21]

propose using self-similarity in both static and space-time

saliency detection. Rahtu et al. [17] apply a sliding window

on video frames to compare the contrast between the feature

distribution of consecutive windows. Recently, Rudoy et

al. [20] model the continuity of the video by predicting the

saliency map of a given frame, conditioned on the map from

the previous frame. Compared to previous work, our mo-

tion saliency method combines various low-level features

with region-based contrast analysis.

Video re-timing. Our method for re-timing is closely re-

lated to time-lapse video and video summarization tech-

niques for condensing long videos into shorter ones. (See

[24] for a review.) By sampling the video non-uniformly

with user control, Bennett and McMillan [1] are able to gen-

erate compelling-looking time-lapse videos. In an interest-

ing twist, Pritch et al. [16] present a time-lapse technique to

shorten videos, while simultaneously showing multiple ac-

tivities which may originally occur at different times. Kang

et al. [10] generate a space-time video montage by ana-

lyzing both spatial and temporal information distributions

in a video sequence. By sweeping an evolving time front

surface, Rav-Acha et al. [19] manipulate the time flow of

a video sequence to generate special video effects. Un-

like these techniques that significantly modify the original

spatio-temporal video structure, our HFR video sampler is

designed to produce natural regular-speed videos.

Temporal filtering. Temporal filtering techniques have

been well-studied for removing noise and aliasing artifact in

video signals and for creating motion effects [14] in the con-

text of computer animation. For instance, Fuchs et al. [5]

investigate the effect of different temporal sampling kernels

in creating enhanced movies for HFR input. Bennett and

McMillan [1] experiment with various virtual shutters that

synthetically extend the exposure time of time-lapse frames.

By simulating motion blur in stop-motion videos, Brostow

and Essa [3] are able to approximate the effect of captur-

ing moving objects on film. Recently, temporal filtering has

also been used to obtain high-resolution videos [22] from

multiple low-resolution inputs.

In the related work on motion magnification, special spa-

tial or temporal filters are used to amplify subtle motions.

Wang et al. [27], for example, introduce the cartoon anima-

tion filter to create perceptually appealing motion exagger-

ation. Liu et al. [13] compute flow and amplify subtle mo-

tions and visualize deformations that would otherwise be

invisible. On the other hand, Wu et al. [28] apply a linear

Eulerian magnification method to reveal hidden information

in video signal. Another variant of this work, a phase-based

method [26] has recently been shown to achieve larger mag-

nifications and with less noise. We focus on retaining im-

portant moments that lie within the original HFR video.

3. Space-time saliency

The key to effective time-mapping of high-frame-rate to

regular-speed low-frame-rate counterparts is the ability to

identify frames that are more informative. We propose a ro-
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Figure 2. The pipeline for computing space-time saliency.

bust bottom-up saliency model to rate spatial-temporal re-

gions in a video. The process of computing our space-time

saliency measure is summarized in Fig. 2. First, the video

is segmented into spatio-temporal regions; for each region,

various appearance and motion features are extracted. The

saliency measure for each region is a combination of feature

contrast (Section 3.2) and local prior (Section 3.3).

3.1. Video pre-processing

Prior to estimating saliency, we over-segment the input

video into color-coherent spatio-temporal regions (STRs).

We leverage a streaming method [29] to segment video

frames on-the-fly. To capture region of interests in different

spatial scales, we construct a l-level pyramid of segmenta-

tion by adopting different scale parameters in the usage of

[29]. (In our work, l = 4.) After the initial segmentation

pass at each scale, we refine the result by merging adjacent

STRs that are too small but have similar colors.

3.2. Feature contrast

Our space-time saliency measure is defined based on

contrast in both appearance and motion features. In other

words, a spatio-temporal region may be salient because its

color or motion is different from its neighbors. This design

decision is inspired by sensitivity of the human visual sys-

tem to contrast in visual signal, and shared by the recent

advance in image saliency [9, 15].

At each scale level6, given an STR (denoted by rc,t)
within a sliding window7 centered at frame t, we compute

three feature vectors. First, we compute its color statistics

in CIE Lab color space, which is perceptually uniform. The

6To keep the notation clean, we remove the scale superscript j =

1, · · · , l from r
j
c,t until the fusion step.

7Our STR features for each frame are computed within a sliding tem-

poral window (200 frames) instead of over the entire sequence.

appearance of rc,t is computed as a color histogram, xcol
c,t ,

normalized to be of unit length. The second and third fea-

tures are based on the motion of the STR’s pixels. Given the

pixel-wise optical flow [12] between consecutive frames,

the motion distribution of rc,t is encoded in two descrip-

tors: x
mag
c,t a normalized histogram of the flow magnitude,

and xori
c,t the distribution of flow orientation.

The contrast of each STR (rc,t) is measured as the sum
of its feature distances to other STRs (ri,t), i.e.,

uc,t =
X

f

X

ri,t 6=rc,t

|ri,t|w(rc,t, ri,t)kx
f
c,t � x

f
i,tk, (1)

where f = {col,mag, ori} denotes one of the three fea-

tures, each of which is weighted by two factors. | · | is the

STR size and w(rc,t, ri,t) = exp(
�kpc,t�pi,tk

2

σs
) measures

the proximity between the center-of-mass, pc,t and pi,t, of

the STRs rc,t and ri,t. Note that all these are computed over

the current temporal window. As with [9], we set �s = 0.04
with the pixel coordinates normalized to [0, 1]. A larger ri,t
closer to rc,t contributes more in the estimation of uc,t.

3.3. Local prior

In addition to the contrast between an STR and its neigh-

bors, we also compute a prior term based only on the STR’s

characteristics itself. There is a natural bias towards specific

parts of the video, e.g., the center of the frame or foreground

objects. We encode these priors as part of saliency, to com-

plement feature contrast. Our priors are based on location,

velocity, acceleration, and foreground probability.

It has been shown that [25] humans watching a video

are biased towards the center of the screen. We represent

this bias by assigning a constant Gaussian falloff weight,

vceni = exp(�9(x2
i + y2i )), for each pixel i with a nor-

malized coordinate (xi, yi) centered at the frame origin. To

encode preference for fast moving pixels and rapid changes
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in direction, we compute for each pixel its velocity vveli and

acceleration vacci , respectively from the optical flow. Fi-

nally, since we want to bias foreground objects with higher

saliency, we compute the foreground probability vfgi of

each pixel by subtracting the background from the frame. In

our work, our camera is stationary; hence, the background

is approximated as a per-pixel temporal median filtering.
Given the various pixel attributes, the local prior of each

STR rc,t is computed as the average prior of the pixels i
within rc,t, i.e.,

vc,t =
X

a

1

|rc,t|

X

i2rc,t

v
a
i , (2)

where a 2 {cen, vel, acc, fg} denotes one of the four pixel

attributes.

3.4. Saliency fusion

All the processing described so far (to model each STR
based on its appearance and motion features) is done at each
level of the hierarchy. To generate a more robust space-time
saliency value, we fuse over all the levels j = 1, · · · , l. In
our work, l = 4. The final saliency score si,t for each pixel
i at frame t is then computed by combining these responses
in a linear fusion scheme, i.e.,

si,t =

l
X

j=1

u
j

c(i),tv
j

c(i),t,

where uj

c(i),t and vj
c(i),t measure the feature contrast and

local prior of the STR rj
c(i),t computed by Eq. 1 and Eq. 2

respectively. The subscript c(i) of the two terms denotes

the index of the STR containing pixel i. The superscript

j = 1, · · · , l indicates the STR is generated in the jth scale

of the segmentation pyramid.

Compared with other methods (see Fig. 5a), our model

generates saliency maps that have sharper object and motion

boundaries and with less background artifacts. It provides a

more robust and stable saliency measure for re-timing and

filtering high-speed videos.

4. Video re-timing

Time-mapping consists of re-timing followed by render-

ing via filtering. In this section, we describe how we make

use of saliency information for re-timing, i.e., mapping in-

put frames to output frames. The goal is to slightly slow

down the action to focus on highly salient regions at the

cost of slightly speeding up other portions. Thus we are

constraining the overall length of the video to mimic real-

time, and also trying to maintain a pacing that still feels real.

More specifically, we apply an optimal dynamic pro-

gramming approach to sample representative frames based

on overall saliency per frame. To reduce the effect of im-

age noise on saliency, and hence the re-timing curve, we

perform a final temporal smoothing (Section 4.2).
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Figure 3. Re-timing a synthetic 1000-frame saliency curve to 50
frames. (a) Uniform sampling (Uni). (b) DP-based sampling. (c)

Smoothed version (DPS). (d) Input-output frame mapping func-

tions. (e) 2nd derivative of the frame mapping functions. (f)

20 monotonic bases (the green curves in the upper-left) used for

smoothing, where an example base (the blue curve) is generated

by piece-wisely transforming the function sin (the red curve).

4.1. Saliency-based sampling

The “importance” of frame i is computed to be the av-

erage saliency score s 2 R
n over all its pixels. Note that

each element of s is between 0 and 1. We define the frame

saliency curve to be the variation of frame importance over

frame number. The user can set the weight of saliency on

re-timing: si  �si + (1 � �), with parameter � 2 [0, 1].
If � = 0, we have uniform sampling (Fig. 3a), while � = 1
results in total reliance on saliency for sampling. In our ex-

amples, we set � empirically to a value of 0.5 resulting in

a good balance between importance and maintaining actual

speed playback.

Suppose the input and desired effective output frame

rates are f0 and f1, respectively. This is equivalent to

extracting m frames from the original n frames such that

m = f1
f0
n. We cast the problem of video re-timing as find-

ing p 2 {1 : n}m, the optimal m-frame sampling of the

saliency curve s 2 R
n.

As an illustration, consider the synthetic example in
Fig. 3a, where we need to sample 50 frames on a 1000-
frame saliency curve. The ideal p should sample more
densely around the peaks and more sparsely at the troughs.
In principle, the cumulative saliency between successive

frames in p, i.e., ai =
Ppi+1�1

j=pi
sj ⌘ s̄, should be a con-

stant equal to s̄ = 1
m�1

Pn

i=1 si. In practice, this strict

criterion can be relaxed to minimize the following sum of
least-square errors:

min
p

m�1
X

i=1

(ai � s̄)2 + �∆i, (3)
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where a regularization term ∆i weighted by � is introduced
to penalize a large jump at ith step,

∆i =

(

|pi�pi+1|

β
, if |pi � pi+1| < 3�,

1, otherwise.

In the experiments, we empirically constrained the maxi-

mum step size to be three times the average sampling gap,

i.e., 3� = 3 n
m�1 . Due to its additive nature, Eq. 3 can

be globally minimized by dynamic programming (DP). As

shown in Fig. 3b, the DP method generates a non-uniform

sampling that adapts to the saliency.

4.2. Smoothing

The proposed DP sampler optimally subsamples frames

from a high-speed input given its saliency curve. In prac-

tice, however, the saliency curve can change dramatically

at motion boundaries or contain random variations due to

image noise. Consequently, the generated sampling func-

tion may be locally noisy, yielding noticeable artifacts in

the regular speed output. As shown by the blue dashed line

in Fig. 3d, the DP sampling function has several sharp peaks

in its 2nd derivative (Fig. 3e). Since the DP-based method

is based on pairwise errors (Eq. 3) between samples, it is

not possible to enforce 3rd smoothness and curvature on

the solution. To handle this limitation, we instead apply a

smoothing step.

Given a sampling function p 2 R
m, the goal of smooth-

ing is to find a monotonic approximation q 2 R
m that

remains in a similar global pattern as p while leaving out

the rapid change in fine-scale structure. Inspired by the

work [18] on approximating time warping functions, we pa-

rameterize the sampling function q = Qa as a linear com-

bination of k monotonic bases, Q = [q1, · · · ,qk] 2 R
m⇥k

weighted by a 2 R
k. The monotonic bases are generated

by piecewisely shifting and scaling sin and cos functions.

For instance, the bottom-right corner in Fig. 3f illustrates an

example basis. In our experiments, we found that 20 mono-

tonic bases are sufficient.
Given the bases Q and the input sampling function p, we

optimize a to minimize the following reconstruction error
weighted by saliency score sp on the sample position:

min
a

k(p�Qa)� spk
2 + ↵kLQak2, (4)

s. t. FQa � ✏ > 0,aT
1 = 1,

where L 2 R
m⇥m is the 2nd differential operator and

kLQak2 penalizes the curvature of the approximation Qa,

whose quality can be controlled by the parameter ↵. To en-

force monotonicity of Qa, we constrain its gradient FQa 2
R

m to be positive, where F 2 R
m⇥m is the 1st differential

operator. To prevent repeated frames in the output video,

we set a small threshold ✏ on the minimum of gradient.

The optimum of Eq. 4 can be efficiently found by solving a

small-scale quadratic programming. Fig. 3c shows the sam-

pling result refined by this smoothing step. Compared to

DP, the new DPS result has a similar global shape (Fig. 3d)

but much smaller local acceleration (Fig. 3e).

5. Temporal filtering

We approximate standard film camera capture with a box

filter over the temporal span between frame times8. Given

a high-speed video, we can also simulate a very short ex-

posure for each frame using a delta filter (i.e., selecting a

frame without any blending with other frames). While the

delta filter retains the most details, the lack of visible motion

blur can produce a discontinuous strobing effect. We intro-

duce two new saliency-based temporal filters for rendering

the regular-speed video output.

Adaptive box filter (BoxA). The adaptive box filter sim-

ulates shorter-time exposures at more important moments to

retain more temporal details. The synthetic exposure at each

frame is wi = (1� sαi )w0, which is a saliency-based expo-

nential falloff curve whose tail length matches w0. Note

that w0 is the actual exposure window associated with the

regular-speed video. The parameter ↵ allows the user to

configure the curve and we set ↵ = 1 in the experiments.

Saliency-based motion-blur filter (SalBlur). Motion

blur is a strong perceptual cue. Our goal in designing Sal-

Blur for high-speed video is to combine the advantages of

box and delta filters, i.e., retain the blur for salient motion,

while keeping foreground as clear in the original as pos-

sible. Given the saliency map, SalBlur renders the video

frame in three steps as shown in Fig. 4.

First, we remove the holes and artifacts in the original

saliency map through bilateral filtering [23]. A direct filter-

ing of the saliency map might blur the object’s boundary.

To keep the edge sharp, we compute the pixel-wise kernel

of the filter from the original frame.

Second, we compute a binary motion blur mask for each

frame based on the refined saliency map and optical flow.

The pixels with non-zero mask values correspond to the his-

toric position of important regions that need to be blurred.

For example, the bottom-right of Fig. 4 shows five pixels

(circles) on a 1-D slice at current frame t0 and the opti-

cal flow (arrows) computed for the previous three frames

t1, t2 and t3. Although the third pixel (the filled red cir-

cle) locates outside the human body at frame t0, it very

likely belongs to the important region at previous frames

(the filled red square) according to the motion history. Fol-

lowing this intuition, we calculate for each pixel i the dif-

ference, r(i, t) = sf(i,t) � si, between its saliency value si
at current frame t0 and the ones sf(i,t) at the position f(i, t)

8We ignore issues such as rolling shutter here.
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Figure 4. The pipeline of the salient-based motion-blur filter (Sal-

Blur). The bottom-right corner illustrates the computation of mo-

tion blur mask for the five pixels (circles) on the 1-D slice at cur-

rent frame (t0) using the optical flow (arrows) in the previous three

frames (t1, t2, t3). The number of sf(i,t) and si indicate the

saliency value at different pixel position and r(i, t) = sf(i,t) � si

computes the saliency difference.

following the flow starting from frame t. A positive r(i, t)
indicates a more salient event happened at pixel i at some

previous frame t before. We assign a non-zero mask value

to i if r(i, t) is positive for some t within the exposure win-

dow. In the case of Fig. 4, the mask at the third pixel is

non-zero because r(i, t1) = 0.1 and r(i, t2) = 0.6.

The final result is generated by applying a box filter only

on the pixels with non-zero values in the mask.

6. Results

We first show our space-time saliency method is state-of-

the-art based on a benchmark dataset. This is also justifica-

tion of its use in re-timing and temporal filtering to generate

the output video. To subjectively evaluate the overall effec-

tiveness of our system, we show results of a user study.

6.1. Comparisons using Weizmann database

In the first experiment, we test our proposed saliency

method on the Weizmann human action database [6]. This

database contains 84 video sequences of nine people per-

forming ten actions. The ground-truth foreground mask of

each frame is provided by the authors of this dataset.

We compare our method against three image saliency

methods [8, 11, 9] and four video saliency ones [21, 17, 7,

4]. We took the implementation of all the methods from the

authors’ websites except for [4], for which we implemented

according to the paper. We evaluate the accuracy of the

computed saliency of each video frame using the ground-

truth segmentation mask in the same manner as described in

[2]. Given a threshold t 2 [0, 1], the regions whose saliency

values are higher than t are marked as foreground. The

segmented image is then compared with the ground-truth

mask to obtain the precision and recall values. The average

precision-recall curve is generated by combining the results

from all the video frames.

A visual comparison of different motion saliency meth-

ods is shown in Fig. 5a. As can be seen, the saliency map

produced by the proposed method is more visually consis-

tent with the shape, size, and location of the ground truth

segmentation map than the maps generated by the other

methods. Fig. 5b shows the precision-recall curves. Our

method significantly improves on previous motion saliency

methods [21, 17, 7, 4] and the image saliency ones [8, 11]

by a significant margin. The most competitive method to

ours is [9]. However, [9] lacks the fundamental mechanism

for enforcing temporal coherence of the saliency map across

the video, which is important for our problem.

6.2. Evaluation of our system

In the second experiment, we investigate the perfor-

mance of the proposed system for re-timing and filtering

high-speed videos. Given the lack of ground truth to evalu-

ate video quality, we collect a number of high-speed videos

and design a user study where subjects compare the quality

of differently generated outputs.

Fig. 6a lists the ten videos recorded using a Phantom

high-speed camera at between 500 and 1000 fps. These

videos (representative frames shown in Fig. 6b) cover a va-

riety of human behaviors and object interactions occurred

in different indoor and outdoor scenarios.

To establish baselines for re-timing, we implemented

the non-uniform sampling method developed by Bennett

and McMillan (BM) [1] as well as a simple uniform sam-

pler (Uni). To evaluate our temporal filters, we compare

against a delta filter (Delta, using sampled unmodified orig-

inal frames) and a box filter (Box, uniformly integrating

pixel values within a fixed-length window). In total, we

have four different re-timing schemes (Uni, BM, DP, and

DPS) and four filters (Delta, Box, BoxA, SalBlur) for com-

parison. Recall that BoxA and SalBlur, which rely on our

saliency measure, are described in Section 5. Implemented

in Matlab on a PC platform with 3.6GHz Intel Xeon and

16GB memory, our system takes less than a second to re-

time each video and ten seconds for rendering each frame.

Given a significant number of sampling techniques and

filters and the need to make the user study manageable

for subjects, we selected only a subset of combinations

for comparisons. There are three groups of comparisons:

Uni

BM

DP

DPS

Delta

Box

BoxA

SalBlur

Uni

BM

DP

DPS

Delta

Box

BoxA

SalBlur

Uni

BM

DP

DPS

Delta

Box

BoxA

SalBlur

Retiming

Filter

Group 1 Group 2 Group 3

Our system

6



Recall(a) (b)

Original

Ground-truth

Ours

Jiang et al. [9] Seo & Milanfar [21]

Rahtu et al. [17] Guo et al. [7]

Cui et al. [4] Harel et al. [8]

Li et al. [11]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 Precision

Ours

Jiang et al. [9]

Seo & Milanfar [21]

Guo et al. [7]

Cui et al. [4]

Li et al. [11]

Harel et al. [8]

Rahtu et al. [17]

Figure 5. Comparison of different saliency algorithms on the Weizmann dataset. (a) Saliency maps. (b) Precision-recall curves.

These combinations yield 120 video pairs (12 method

combinations with 10 sequences). In the user study, the

video pairs and their ordering are randomized.

Thirteen subjects (ten men and three women) took part

in the user study. Each subject is asked to compare two

videos at a time; the two videos were generated using dif-

ferent re-timing method and filter. Each video is shown one

after another. The subject is asked to select the video that

seems more “informative” or pleasing. To counter the pos-

sible bias towards picking the second result, the same re-

sult pair would appear once more in the user study but in

the reversed order. On average, each participant took about

70 minutes to evaluate all 240 pairs of video results (120
unique pairs repeated).

The re-timing and filtering results of two examples are

illustrated in Fig. 7a and Fig. 7b respectively. The results of

the user study are summarized in Fig. 7c-e, where the mean

and variance of user preferences are plotted for each pair of

method combinations. Although video quality assessment

is a strong subjective task, we can conclude from Fig. 7c

that most users preferred the non-uniform sampling results

rather than the simple uniform sampling.

Without smoothing, the proposed DP method received

more preferences than BM with a small margin. This is

because the lack of smoothness causes some videos to ap-

pear unnatural. For instance, the second row of Fig. 7a

compares the four sampling methods, where the DP sam-

pling bar abruptly switches in sampling rates for several ar-

eas. However, the DP results were largely improved by the

smoothing step in DPS.

From Fig. 7d, we found the new BoxA filter is preferred

much more than the conventional box filter. This appears to

show the effectiveness of adapting the filter length so that

the exposure was kept low to reduce motion blur at inter-

esting moments. It is surprising to us that Delta is more

popular than Box and BoxA. Based on subject feedback,

the attractiveness of Delta is visual clarity of frames. Our

SalBlur filter is similar to Delta in that it is able to retain

the sharp motion and object boundaries in the output vides.

However, SalBlur is also able to introduce motion blur for

fast moving objects, which is an important perceptional cue

for the case like the “Soccer Kick” example (second row

in Fig. 7b). Using frames as-is will result in the strobing

effect. Fig. 7e shows that the subjects prefer the results of

our new system (DPS + SalBlur) over those of simple direct

techniques.

7. Concluding remarks

We have presented a system for time-mapping, i.e., con-

verting a HFR video into a regular-speed LFR video while

retaining detail in the original video. We propose a new

space-time saliency technique, shown to be state-of-the-art

in performance on a benchmark dataset. This new saliency

technique is the basis of retiming and temporal filtering. A

user study shows that our system is very promising in gen-

erating pleasing and informative video outputs.

There are several future directions to our work. Cur-

rently, we assume the camera is stationary. As future work,

we could remove camera motion as a preprocess by deter-

mining and tracking background features, while realizing

this is also a difficult problem. In addition, we implemented

time-mapping using whole frame selection. One challeng-

ing extension is to analyze and time-map separate objects

differently in the scene. Another direction is to correlate

effective retiming and filters with high-level content (e.g.,

indoor vs. outdoor, type of activity, and object identity).
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