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Abstract

Regularization is typically understood as improving generalization by altering
the landscape of local extrema to which the model eventually converges. Deep
neural networks (DNNs), however, challenge this view: We show that removing
regularization after an initial transient period has little effect on generalization,
even if the final loss landscape is the same as if there had been no regularization.
In some cases, generalization even improves after interrupting regularization. Con-
versely, if regularization is applied only after the initial transient, it has no effect
on the final solution, whose generalization gap is as bad as if regularization never
happened. This suggests that what matters for training deep networks is not just
whether or how, but when to regularize. The phenomena we observe are manifest
in different datasets (CIFAR-10, CIFAR-100, SVHN, ImageNet), different architec-
tures (ResNet-18, All-CNN), different regularization methods (weight decay, data
augmentation, mixup), different learning rate schedules (exponential, piece-wise
constant). They collectively suggest that there is a “critical period” for regularizing
deep networks that is decisive of the final performance. More analysis should,
therefore, focus on the transient rather than asymptotic behavior of learning.

1 Introduction

There is no shortage of literature on what regularizers to use when training deep neural networks and
how they affect the loss landscape but, to the best of our knowledge, no work has addressed when
to apply regularization. We test the hypothesis that applying regularization at different epochs of
training can yield different outcomes. Our curiosity stems from recent observations suggesting that
the early epochs of training are decisive of the outcome of learning with a deep neural network [1].

We find that regularization via weight decay or data augmentation has the same effect on generalization
when applied only during the initial epochs of training. Conversely, if regularization is applied only in
the latter phase of convergence, it has little effect on the final solution, whose generalization is as bad
as if regularization never happened. This suggests that, contrary to classical models, the mechanism
by which regularization affects generalization in deep networks is not by changing the landscape of
critical points at convergence, but by influencing the early transient of learning. This is unlike convex
optimization (linear regression, support vector machines) where the transient is irrelevant.

In short, what matters for training deep networks is not just whether or how, but when to regularize.

In particular, the effect of temporary regularization on the final performance is maximal during an
initial “critical period.” This mimics other phenomena affecting the learning process which, albeit
temporary, can permanently affect the final outcome if applied at the right time, as observed in a
variety of learning systems, from artificial deep neural networks to biological ones. We use the
methodology of [1] to regress the most critical epochs for various architectures and datasets.
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Specifically, our findings are:

(i) Applying weight decay or data augmentation beyond the initial transient of training does not
improve generalization (Figure 1, Left). The transient is decisive of asymptotic performance.

(ii) Applying regularization only during the final phases of convergence does not improve, and in
some cases degrades generalization. Hence, regularization in deep networks does not work by
re-shaping the loss function at convergence (Figure 1, Center).

(iii) Applying regularization only during a short sliding window shows that its effect is most
pronounced during a critical period of few epochs (Figure 1, Right). Hence, the analysis of
regularization in Deep Learning should focus on the transient, rather than asymptotics.

The explanation for these phenomena is not as simple as the solution being stuck in some local
minimum: When turning regularization on or off after the critical period, the value of the weights
changes, so the solution moves in the loss landscape. However, test accuracy, hence generalization,
does not change. Adding regularization after the critical period does change the loss function, and
also changes the final solution, but not for the better. Thus, the role of regularization is not to bias
the final solution towards critical points with better generalization. Instead, it is to bias the initial
transient towards regions of the loss landscape that contains multiple equivalent solutions with good
generalization properties.

In the next section we place our observations in the context of prior related work, then introduce
some of the nomenclature and notation (Sect. 3) before describing our experiments in Sect. 4. We
discuss the results in Sect. 5.

2 Related Work

There is a considerable volume of work addressing regularization in deep networks, too vast to review
here. Most of the efforts are towards analyzing the geometry and topology of the loss landscape
at convergence. Work relating the local curvature of the loss around the point of convergence
to regularization (“flat minima” [14, 21, 8, 4]) has been especially influential [5, 24]. Other work
addresses the topological characteristics of the point of convergence (minima vs. saddles [6]). [20, 16]
discuss the effects of the learning rate and batch size on stochastic gradient descent (SGD) dynamics
and generalization. At the other end of the spectrum, there is complementary work addressing
initialization of deep networks, [10, 13]. There is limited work addressing the timing of regularization,
other than for the scheduling of learning rates [32, 25].

Changing the regularizer during training is common practice in many fields, and can be done in a
variety of ways, either pre-scheduled – as in homotopy continuation methods [28], or in a manner
that depends on the state of learning – as in adaptive regularization [18]. For example, in variational
stereo-view reconstruction, regularization of the reconstruction loss is typically varied during the
optimization, starting with high regularization and, ideally, ending with no regularization. This is
quite unlike the case of Deep Learning: Stereo is ill-posed, as the object of inference (the disparity
field) is infinite-dimensional and not smooth due to occluding boundaries. So, ideally one would
not want to impose regularization, except for wading through the myriad of local mimima due to
local self-similarity in images. Imposing regularization all along, however, causes over-smoothing,
whereas the ground-truth disparity field is typically discontinuous. So, regularization is introduced
initially and then removed to capture fine details. In other words, the ideal loss is not regularized,
and regularization is introduced artificially to improve transient performance. In the case of machine
learning, regularization is often interpreted as a prior on the solution. Thus, regularization is part of
the problem formulation, rather than the mechanics of its solution.

Also related to our work, there have been attempts to interpret the mechanisms of action of certain
regularization methods, such as weight decay [38, 35, 26, 15, 23, 3], data augmentation [36], dropout
[34]. It has been pointed out in [38] that the Gauss-Newton norm correlates with generalization, and
with the Fisher Information Matrix [9, 2], a measure of the flatness of the minimum, to conclude that
the Fisher Information at convergence correlates with generalization. However, there is no causal
link proven. In fact, we suggest this correlation may be an epi-phenomenon: Weight decay causes an
increase in Fisher information during the transient, which is responsible for generalization (Figure 5),
whereas the asymptotic value of the Fisher norm (i.e., sharpness of the minimum) is not causative. In
particular, we show that increasing Fisher Information can actually improve generalization.
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Figure 1: Critical periods for regularization in DNNs : (Left) Final test accuracy as a function
of the epoch in which the regularizer is removed during training. Applying regularization beyond the
initial transient of training (around 100 epochs) produces no appreciable increase in the test accuracy.
In some cases, early removal of regularization e.g., at epoch 75 for All-CNN, actually improves
generalization. Despite the loss landscape at convergence being un-regularized, the network achieves
accuracy comparable to a regularized one. (Center) Final test accuracy as a function of the onset
of regularization. Applying regularization after the initial transient changes the convergence point
(Fig. 2, B), but does not improve regularization. Thus, regularization does not influence generalization
by re-shaping the loss landscape near the eventual solution. Instead, regularization biases the solution
towards regions with good generalization properties during the initial transient. Weight decay (blue)
shows a more marked time dependency than data augmentation (orange). The dashed line (green)
in (Left) and (Center) corresponds to the final accuracy when we regularize throughout the training.
(Right) Sensitivity (change in the final accuracy relative to un-regularized training) as a function
of the onset of a 50-epoch regularization window. Initial learning epochs are more sensitive to
weight decay compared to the intermediate training epochs for data augmentation. The shape of
the sensitivity curve depends on the regularization scheme as well as the network architecture. For
experiments with weight decay (or data augmentation), we apply data augmentation (or weight decay)
throughout the training. Critical period for regularization occurs during the initial rapid decreasing
phase of the training loss (red dotted line), which in this case is from epoch 0 to 75. The error bars
indicate thrice the standard deviation across 5 independent trials.

3 Preliminaries and notation

Given an observed input x (e.g., an image) and a random variable y we are trying to infer (e.g., a
discrete label), we denote with pw(y|x) the output distribution of a deep network parameterized by
weights w. For discrete y, we usually have pw(y|x) = softmax(fw(x)) for some parametric function
fw(x). Given a dataset D = {(xi, yi)}

N
i=1, the cross-entropy loss of the network pw(y|x) on the

dataset D is defined as LD(w) :=
1
N

PN

i=1 `(y, fw(xi)) = E(xi,yi)⇠D[� log pw(yi|xi)].

When minimizing LD(w) with stochastic gradient descent (SGD), we update the weights w with an
estimate of the gradient computed from a small number of samples (mini-batch). That is, wt+1  
wt � ⌘Ei2ξt [r`(yi, fw(xi))] where ⇠t ✓ {1, . . . , N} is a random subset of indices of size |⇠t| = B
(mini-batch size). In our implementation, weight decay (WD) is equivalent to imposing a penalty to

the L2 norm of the weights, so that we minimize the regularized loss L = LD(w) +
λ
2 kwk

2.

Data augmentation (DA) expands the training set by choosing a set of random transformations
of the data, x0 = g(x) (e.g., random translations, rotations, reflections of the domain and affine
transformations of the range of the images), sampled from a known distribution Pg , to yield D0(g) =
{(gj(xi), yi)}gj⇠Pg

.

In our experiments, we choose g to be random cropping and horizontal flipping (reflections) of
the images; D are the CIFAR-10 and CIFAR-100 datasets [22], and the class of functions fw are
ResNet-18 [12] and All-CNN [33]. For all experiments, unless otherwise noted, we train with SGD
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Figure 2: Intermediate application or removal of regularization affects the final solution: (A-
C) L2 norm of the weights as a function of the training epoch (corresponding to Figure 1 (Top)). The
weights of the network move after application or removal of regularization, which can be seen by
the change in their norm. Correlation between the norm of the weights and generalization properties
is not as straightforward as lower norm implying better generalization. For instance, (C) applying
weight decay only at the beginning (curve 0) reduces the norm only during the critical period, and
yields higher norm asymptotically than, for example, curve 25. Yet it has better generalization. This
suggests that the having a lower norm mostly help only during the critical period. We plot the norm
of the weights for 200 training epochs to confirm that the weights stabilize and would not improve
further with additional training. (D) PCA-projection of the training paths obtained removing weight
decay at different times (see Appendix A.1). Removing WD before the end of the critical period
(curves 25, 50) makes the network converge to different regions of the parameter space. Removing
WD after the critical period (curves 75 to 200) still sensibly changes the final point (in particular,
critical periods are not due the optimization being stuck in a local minimum), but all points lie in a
similar area, supporting the Critical Period interpretation of [1]. (E) Same plots, but for DA, which
unlike WD does not have a sharp critical period: all training paths converge to a similar area.

with momentum 0.9 and exponentially decaying learning rate with factor � = 0.97 per epoch, starting
from learning rate ⌘ = 0.1 (see also Appendix A).

4 Experiments

To test the hypothesis that regularization can have different effects when applied at different epochs
of training, we perform three kinds of experiments. In the first, we apply regularization up to a certain
point, and then switch off the regularizer. In the second, we initially forgo regularization, and switch
it on only after a certain number of epochs. In the third, we apply regularization for a short window
during the training process. We describe these three experiments in order, before discussing the
effect of batch normalization, and analyzing changes in the loss landscape during training using local
curvature (Fisher Information).

Regularization interrupted. We train standard DNN architectures (ResNet-18/All-CNN on
CIFAR-10) using weight decay (WD) during the first t0 epochs, then continue without WD. Similarly,
we augment the dataset (DA) up to t0 epochs, past which we revert to the original training set. We
train both the architectures for 200 epochs. In all cases, the training loss converges to essentially zero
for all values of t0. We then examine the final test accuracy as a function of t0 (Figure 1, Left). We
observe that applying regularization beyond the initial transient (around 100 epochs) produces no
measurable improvement in generalization (test accuracy). In Figure 3 (Left), we observe similar
results for a different data distribution (CIFAR-100). Surprisingly, limiting regularization to the initial
learning epochs yields final test accuracy that is as good as that achieved by regularizing to the end,
even if the final loss landscapes, and hence the minima encountered at convergence, are different.
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Figure 3: (Top) Critical periods for regularization are independent of the data distribution:
We repeat the same experiment as in Figure 1 on CIFAR-100. We observe that the results are
consistent with Figure 1. The dashed line (green) in (Left) and (Right) denotes the final accuracy
when regularization is applied throughout the training. The dashed line on top corresponds to ResNet-
18, while the one below it corresponds to All-CNN. (Center) In the middle row (Left and Center),
we show critical regularization periods for models trained on SVHN [30] and ImageNet [7]. Critical
periods for regularization also exists for regularization methods apart from weight decay and data
augmentation, for example, Mixup [39] (Center Right). In fact, we observe that applying Mixup only
during the critical period (first 75-100 epochs) results in better generalization compared to applying
it throughout the training. (Bottom) Critical regularization periods with a piecewise constant
learning rate schedule: We repeat experiment in Figure 1, but change the learning rate scheduling.
Networks trained with piecewise constant learning rate exhibit behavior that is qualitatively similar
to the exponentially decaying learning rate. The same experiment with constant learning rate is
inconclusive since the network does not converge (see Appendix, Figure 11).

It is tempting to ascribe the imperviousness to regularization in the latter epochs of training (Figure 1,
Left) to the optimization being stuck in a local minimum. After all, the decreased learning rate, or the
shape of the loss around the minimum, could prevent the solution from moving. However, Figure 2
(A, curves 75/100) shows that the norm of the weights changes significantly after switching off the
regularizer: the optimization is not stuck. The point of convergence does change, just not in a way
that improves test accuracy.

The fact that applying regularization only at the very beginning yields comparable results, suggests
that regularization matters not because it alters the shape of the loss function at convergence, reducing
convergence to spurious minimizers, but rather because it “directs” the initial phase of training
towards regions with multiple extrema with similar generalization properties. Once the network
enters such a region, removing regularization causes the solution to move to different extrema, with
no appreciable change in test accuracy.

Regularization delayed. In this experiment, we switch on regularization starting at some epoch t0,
and continue training to convergence. We train the DNNs for 200 epochs, except when regularization
is applied late (from epoch 150/175), where we allow the training to continue for an additional
50 epochs to ensure the network’s convergence. Figure 1 (Center) displays the final accuracy as
a function of the onset t0, which shows that there is a “critical period” to perform regularization
(around epoch 50), beyond which adding a regularizer yields no benefit.
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Figure 4: Critical periods for regularization are independent of Batch-Normalization: We
repeat the same experiment as in Figure 1, but without Batch-Normalization. The results are
largely compatible with previous experiments, suggesting that the effects are not caused by the
interaction between batch normalization and regularization. (Left) Notice that, surprisingly, removal
of weight decay right after the initial critical period actually improves generalization. (Center) Data
augmentation in this setting shows a more marked dependency on timing. (Right) Unlike weight
decay which mainly affects initial epochs, data augmentation is critical for the intermediate epochs.

Absence of regularization can be thought of as a form of learning deficit. The permanent effect
of temporary deficits during the early phases of learning has been documented across different
tasks and systems, both biological and artificial [1]. Critical periods thus appear to be fundamental
phenomena, not just quirks of biology or the choice of the dataset, architecture, learning rate, or other
hyperparameters in deep networks.

In Figure 1 (Top Center), we see that delaying WD by 50 epochs causes a 40% increase in test error,
from 5% regularizing all along, to 7% with onset t0 = 50 epochs. This is despite the two optimization
problems sharing the same loss landscape at convergence. This reinforces the intuition that WD does
not improve generalization by modifying the loss function, lest Figure 1 (Center) would show an
increase in test accuracy after the onset of regularization.

Here, too, we see that the optimization is not stuck in a local minimum: Figure 2 (B) shows the
weights changing even after late onset of regularization. Unlike the previous case, in the absence of
regularization, the network enters prematurely into regions with multiple sub-optimal local extrema,
seen in the flat part of the curve in Figure 1 (Center).

Note that the magnitude of critical period effects depends on the kind of regularization. Figure 1
(Center) shows that WD exhibits more significant critical period behavior than DA. At convergence,
data augmentation is more effective than weight decay. In Figure 3 (Center), we observe critical
periods for DNNs trained on CIFAR-100, suggesting that they are independent of the data distribution.

Sliding Window Regularization. In an effort to regress which phase of learning is most impacted
by regularization, we compute the maximum sensitivity against a sliding window of 50 epochs
during which WD and DA are applied (Figure 1 Right). The early epochs are the most sensitive,
and regularizing for a short 50 epochs yields generalization that is almost as if we had regularized
all along. This captures the critical period for regularization. Note that the shape of the sensitivity
to critical periods depends on the type of regularization: Data augmentation has essentially the
same effect throughout training, whereas weight decay impacts critically only the initial epochs.
Similar to the previous experiments, we train the networks for 200 epochs except, when the window
onsets late (epoch 125/150/175), where we train for 50 additional epochs after the termination of the
regularization window which ensures that the network converges.

Reshaping the loss landscape. L2 regularization is classically understood as trading classification
loss against the norm of the parameters (weights), which is a simple proxy for model complexity. The
effects of such a tradeoff on generalization are established in classical models such as linear regression
or support-vector machines. However, DNNs need not trade classification accuracy for the L2 norm
of the weights, as evident from the fact that the training error can always reach zero regardless of
the amount of L2 regularization. Current explanations [11] are based on asymptotic convergence
properties, that is, on the effect of regularization on the loss landscape and the minima to which the
optimization converges. In fact, for learning algorithm that reduces to a convex problem, this is the
only possible effect. However, Figure 1 shows that for DNNs, the critical role of regularization is
to change the dynamics of the initial transient, which biases the model towards regions with good
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Figure 5: Fisher Information and generalization: (Left) Trace of the Fisher Information Matrix
(FIM) as a function of the training epochs. Weight decay increases the peak of the FIM during the
transient, with negligible effect on the final value (see left plot when regularization is terminated
beyond 100 epochs). The FIM trace is proportional to the norm of the gradients of the cross-entropy
loss. FIM trace plots for delayed application/sliding window can be found in the Appendix (Figure 7)
(Center) & (Right): Peak vs. final Fisher Information correlate differently with test accuracy:
Each point in the plot is a ResNet-18 trained on CIFAR-10 achieving 100% training accuracy.
Surprisingly, the maximum value of the FIM trace correlates far better with generalization than its
final value, which is instead related to the local curvature of the loss landscape (“flat minima”). The
Pearson correlation coefficient for the peak FIM trace is 0.92 (p-value < 0.001) compared to 0.29
(p-value > 0.05) for the final FIM trace.

generalization. This can be seen in Figure 1 (Left), where despite halting regularization after 100
epochs, thus letting the model converge in the un-regularized loss landscape, the network achieves
around 5% test error. Also in Figure 1 (Top Center), despite applying regularization after 50 epochs,
thus converging in the regularized loss landscape, the DNN generalizes poorly (around 7% error).
Thus, while there is reshaping of the loss landscape at convergence, this is not the mechanism by
which deep networks achieve generalization. It is commonly believed that a smaller L2 norm of
the weights at convergence implies better generalization [37, 31]. Our experiments show no such
causation: Slight changes of the training algorithm can yield solutions with larger norm that generalize
better (Figure 2, (C) & Figure 1, Top right: onset epoch 0 vs 25/50).

Effect of Batch-Normalization. One would expect L2 regularization to be ineffective when used
in conjunction with Batch-Normalization (BN) [19], since BN makes the network’s output invariant
to changes in the norm of its weights. However, it has been observed that, in practice, WD improves
generalization even, or especially, when used with BN. Several authors [38, 15, 35] have observed
that WD increases the effective learning rate ⌘eff,t = ⌘t/kwtk

2
2, where ⌘t is the learning rate at

epoch t and kwtk
2
2 is the squared-norm of weights at epoch t, by decreasing the weight norm, which

increases the effective gradient noise, which promotes generalization [29, 20, 17]. However, in
the sliding window experiment for L2 regularization, we observe that networks with regularization
applied around epoch 50, despite having smaller weight norm (Figure 2 (C), compare onset epoch 50
to onset epoch 0) and thus a higher effective learning rate, generalize poorly (Figure 1 Top Right:
onset epoch 50 has a mean test accuracy increase of 0.24% compared to 1.92% for onset epoch 0). We
interpret the latter (onset epoch 0) as having a higher effective learning rate during the critical period,
while for the former (onset epoch 50) it was past its critical period. Thus, previous observations in the
literature should be considered with more nuance: we contend that an increased effective learning rate
induces generalization only insofar as it modifies the dynamics during the critical period, reinforcing
the importance of studying when to regularize, in addition to how. In Figure 9 in the Appendix, we
show that the initial effective learning rate correlates better with generalization (Pearson coefficient
0.96, p-value < 0.001) than the final effective learning rate (Pearson coefficient 0.85, p-value < 0.001).

We repeat the experiments in Figure 1 without Batch-Normalization (Figure 4). We observe a similar
result, suggesting that the positive effect of weight decay during the transient cannot be due solely to
the use of batch normalization and an increased effective learning rate.

Weight decay, Fisher and flatness. Generalization for DNNs is often correlated with the flatness
of the minima to which the network converges during training [14, 24, 21, 4], where solutions
corresponding to flatter minima seem to generalize better. In order to understand if the effect of
regularization is to increase the flatness at convergence, we use the Fisher Information Matrix (FIM),
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which is a semi-definite approximation of the Hessian of the loss function [27] and thus a measure of
the curvature of the loss landscape. We recall that the Fisher Information Matrix is defined as:

F := Ex⇠D0(x)Ey⇠pw(y|x)[rw log pw(y|x)rw log pw(y|x)
T
].

In Figure 5 (Left) we plot the trace of FIM against the final accuracy. Notice that, contrary to our
expectations, weight decay increases the FIM norm, and hence curvature of the convergence point,
but this still leads to better generalization. Moreover, the effect of weight decay on the curvature is
more marked during the transient (Figure 5). This suggests that the peak curvature reached during
the transient, rather than its final value, may correlate with the effectiveness of regularization. To test
this hypothesis, we consider the DNNs trained in Figure 1 (Top) and plot the relationship between
peak/final FIM value and test accuracy in Figure 5 (Center, Right): Indeed, while the peak value
of the FIM strongly correlates with the final test performance (Pearson coefficient 0.92, p-value <
0.001), the final value of the FIM norm does not (Pearson 0.29, p-value > 0.05). We report plots of
the Fisher Norm for delayed/sliding window application of WD in the Appendix (Figure 7).

The FIM was also used to study critical period for changes in the data distribution in [1], which
however in their setting observe an anti-correlation between Fisher and generalization. Indeed, the
relationship between the flatness of the convergence point and generalization established in the
literature emerges as rather complex, and we may hypothesize a more complex bias-variance trade-off
like a connection between the two, where either too low or too high curvature can be detrimental.

Jacobian norm. [38] relates the effect of regularization to the norm of the Gauss-Newton matrix,
G = E[JT

wJw], where Jw is the Jacobian of fw(x) w.r.t w, which in turn relates to norm of the
networks input-output Jacobian. The Fisher Information Matrix is indeed related to the GN matrix
(more precisely, it coincides with the generalized Gauss-Newton matrix, G = E[JT

wHJw], where
H is the Hessian of `(y, fw(x)) w.r.t. fw(x)). However, while the GN norm remains approximately
constant during training, we found the changes of the Fisher-Norm during training (and in particular
its peak) to be informative of the critical period for regularization, allowing for a more detailed
analysis.

5 Discussion and Conclusions

We have tested the hypothesis that there exists a “critical period” for regularization in training deep
neural networks. Unlike classical machine learning, where regularization trades off the training error
in the loss being minimized, DNNs are not subject to this trade-off: One can train a model with
sufficient capacity to zero training error regardless of the norm constraint imposed on the weights.
Yet, weight decay works, even in the case where it seems it should not, for instance when the network
is invariant to the scale of the weights, e.g., in the presence of batch normalization. We believe
the reason is that regularization affects the early epochs of training by biasing the solution towards
regions that have good generalization properties. Once there, there are many local extrema to which
the optimization can converge. Which to is unimportant: Turning the regularizer on or off changes
the loss function, and the optimizer moves accordingly, but test error is unaffected, at least for the
variety of architectures, training sets, and learning rates we tested.

We believe that there are universal phenomena at play, and what we observe is not the byproduct of
accidental choices of training set, architecture, and hyperparameters: One can see the absence of
regularization as a learning deficit, and it has been known for decades that deficits that interfere with
the early phases of learning, or critical periods, have irreversible effects, from humans to songbirds
and, as recently shown by [1], deep neural networks. Critical periods depend on the type of deficits,
the task, the species or architecture. We have shown results for two datasets, two architectures, two
learning rate schedules.

While our exploration is by no means exhaustive, it supports the point that considerably more effort
should be devoted to the analysis of the transient dynamics of Deep Learning. To this date, most of
the theoretical work in Deep Learning focuses on the asymptotics and the properties of the minimum
at convergence.

Our hypothesis also stands when considering the interaction with other forms of generalized regular-
ization, such as batch normalization, and explains why weight decay still works, even though batch
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normalization makes the activations invariant to the norm of the weights, which challenges previous
explanation of the mechanisms of action of weight decay.

We note that there is no trade-off between regularization and loss in DNNs, and the effects of
regularization cannot (solely) be to change the shape of the loss landscape (WD), or to change the
variety of gradient noise (DA) preventing the network from converging to some local minimizers, as
without regularization in the end, everything works. The main effect of regularization ought to be on
the transient dynamics before convergence.

At present, there is no viable theory on transient regularization. The empirical results we present
should be a call to arms for theoreticians interested in understanding Deep Learning. A possible
interpretation advanced by [1] is to interpret critical periods as the (irreversible) crossing of narrow
bottlenecks in the loss landscape. Increasing the noise – either by increasing the effective learning rate
(WD) or by adding variety to the samples (DA) – may help the network cross the right bottlenecks
while avoiding those leading to irreversibly sub-optimal solutions. If this is the case, can better
regularizers be designed for this task?
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