
TIME-MODE CIRCUITS FOR ANALOG COMPUTATION

By

VISHNU RAVINUTHULA

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2006

Copyright 2006

by

Vishnu Ravinuthula

My parents and brother have brought me to where I stand today. This work is

dedicated to them for trusting me and standing by me through all hardships.

ACKNOWLEDGMENTS

I owe a special debt of gratitude to Dr. Harris for his expert guidance and

stimulating discussions. His perception, insight, and experience have contributed

immensely to the clarity and rigor of my research. The faith he showed was the

motivating force towards my contribution. My association with him has been an

enlightening and refreshing experience.

I am immensely thankful to Dr. Jose Fortes for his help when I was in a

quagmire and it was a privilege working under him.

I am also grateful to the analog genius Dr. Robert Fox, for he went out of

the way to help me even when I was not working under him. He is one of the few

professors I feel proud that I got to work with.

This work was supported by National Aeronautics and Space Administration

(NASA) under award no. NCC 2-1363 and Semiconductor Research Corporation

(SRC) under Task ID: 1049 - Crosscut Research. I would like to thank Dr. M. P.

Anantram, Dr. Harry Partridge, and Dr. T. R. Govindan at NASA Ames Research

Center, CA, for the confidence they showed in me and all their support during my

internship at NASA.

Thanks are due to the administrative staff of the Department of Electrical and

Computer Engineering: Ellie, Janet, Linda, and Shannon for their co-operation.

Furthermore, I take this opportunity to express my appreciation to all those who

helped me in the completion of my work.

I would like to thank my former and current labmates: Pravin, Vaibhav,

Rama, Du, Xiaoxiang, Yuan, Harpreet, Mark, Meena, Harsha, and Ismail for

iv

their support and encouragement. Lastly, but not the least, I thank my friends,

roommates and colleagues for making my stay at UF memorable.

v

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiv

CHAPTER

1 INTRODUCTION . 1

1.1 Biological Motivation . 3
1.2 Engineering Motivation . 3
1.3 Chapter Summary . 5

2 THE WEIGHTED AVERAGE CIRCUIT 6

2.1 Time-Mode Weighted Averaging Circuit 6
2.1.1 Reset Stage . 9
2.1.2 Measured Results . 10
2.1.3 Discussion . 12

2.2 Theoretical Analysis of Signal-to-Noise Ratio and Dynamic Range . 14
2.2.1 Output Noise due to Timing Jitter at the Inputs 14
2.2.2 Output Noise due to Fundamental Noise Sources in the Circuit 15

2.2.2.1 Noise in tOUT due to noise in current source I1 . . . 16
2.2.2.2 Noise in tOUT due to noise in current source I2 . . . 17
2.2.2.3 Noise in tOUT due to noise in the comparator . . . 18

2.2.3 Discussion . 21
2.3 Scaling of Time-Mode Weighted Average Circuit with Technology . 21

2.3.1 Simulation Setup . 22
2.3.2 Results and Inferences . 23
2.3.3 Discussion . 26
2.3.4 Drawbacks . 27

2.4 Carbon Nanotube Based Time-Mode Weighted Averaging Circuit . 30
2.4.1 Carbon Nanotube Field Effect Transistors (CNFETs) and

Their Spice Models . 30
2.4.2 Physics Governing the Operation of CNFET 32
2.4.3 Simulation Results . 32

vi

2.4.4 Discussion . 33
2.5 Reliable Time-Mode Weighted Average Circuit 34

2.5.1 Motivation . 34
2.5.2 Time-Mode Median Circuit 36
2.5.3 Redundancy in Time-Mode Computation 37
2.5.4 Discussion . 40

3 SNR COMPARISON OF WEIGHTED AVERAGING CIRCUITS 42

3.1 Voltage-Mode Averaging Circuit . 43
3.1.1 Noise Contribution at the Output due to ∆v1

2 45
3.1.2 Noise Contribution at the Output due to ∆v2

2 45
3.1.3 Noise Bandwidth . 46

3.2 Current-Mode Averaging Circuit 47
3.3 Discussion . 52

4 OTHER TIME-MODE CIRCUIT EXAMPLES 53

4.1 Weighted Subtraction Circuit . 53
4.2 Weighted Sum Circuit . 54
4.3 Scalar Multiplication Circuit . 57
4.4 Maximum(MAX)/Minimum(MIN) Circuit 58

5 APPLICATION OF TIME-MODE CIRCUITS 60

5.1 Time-Mode Edge Detection Circuit 60
5.1.1 Basic Formulation . 60
5.1.2 Smoothing . 62
5.1.3 Thresholded Difference . 63
5.1.4 Results . 64
5.1.5 Discussion . 69

5.2 3-Tap 1-Quadrant Time-Mode Finite Impulse Response Filter . . . 69
5.2.1 Finite Impulse Response Computation in Time 70
5.2.2 3-Tap 1-Quadrant Time-Mode FIR Filter Architecture 74
5.2.3 Step-by-Step Description of the Functionality 79

5.3 Simulation Results . 79
5.4 Signal-to-Noise Ratio/Dynamic Range Analysis 91

5.4.1 Noise in tOUT due to Noise in Current Source I1 91
5.4.2 Noise in tOUT due to Noise in Current Source I2 92
5.4.3 Noise in tOUT due to Noise in Current Source I3 92
5.4.4 Noise in tOUT due to Noise in Current Source I4 93

5.5 Performance of the FIR Filter under Input Time Jitter 95
5.6 Advantages of Time-Mode FIR Filters 96
5.7 Limitations of Time-Mode FIR Filters 96

vii

6 NON-LINEAR TIME-MODE COMPUTATION 98

6.1 Implementing Non-Linear Arithmetic by Introducing Non-Linearity
in the Existing Linear Computational Blocks 98
6.1.1 Time-Mode Multiplication 98
6.1.2 Time-Mode Division . 101

6.2 Implementing Non-Linear Arithmetic Using Time-Mode Multi-Layer
Perceptron . 103
6.2.1 Time-Mode Multi-Layer Perceptron 103
6.2.2 Hardware Implementation of Time-Mode MLP 106

7 CONCLUSION AND FUTURE WORK 113

7.1 Conclusion . 113
7.2 Future work . 114

REFERENCES . 116

BIOGRAPHICAL SKETCH . 119

viii

LIST OF TABLES

Table page

2–1 Measured performance characteristics of time-mode weighted averaging
circuit. 13

4–1 Classification of Time-mode computational circuits. Relative time reference
implies that the inputs and outputs are defined with respect to a reference
time (start of a frame). Absolute time reference implies that inputs and
outputs are not defined with respect to a reference time. 59

ix

LIST OF FIGURES

Figure page

1–1 Different modes of computation. 2

2–1 Time-mode weighted average circuit. A) Circuit schematic. B) Idealized
graph showing the capacitor voltage at different time periods. 6

2–2 Inputs t1, t2 and output tOUT are defined within a frame 9

2–3 Plot of tOUT for varying I (C = 20pF , VTH = 2.5V). The block was
given one step input. 10

2–4 Plot of tOUT for varying I (C = 20pF ,I = 1.0476µA, VTH = 2.5V). The
block was given one step input. 11

2–5 Plot of tOUT for varying t2 (C = 20pF ,I = 1.0476µA, VTH = 2.5V with
t1 fixed at 1µs, 8.5µs and 32.5µs.) . 12

2–6 Plot of tOUT for varying t2 (C = 20pF ,I1 = 1.46µA, I2 = 0.29µA, VTH =
2.5V with t1 fixed at 1µs, 8.5µs and 32.5µs.) 13

2–7 Variation of capacitor charging current with scaling technology 24

2–8 Variation of dynamic power with scaling technology 24

2–9 Variation of average power with scaling technology 26

2–10 Variation of energy consumed per averaging operation with scaling technology 27

2–11 Comparison of calculated and simulated time-mode averaging outputs
over technologies . 28

2–12 Comparison of calculated and simulated time-mode averaging output
noise over technologies . 28

2–13 Comparison of calculated and simulated time-mode averaging SNR values
over technologies . 29

2–14 Variation of dynamic range with scaling technology 29

2–15 PCNFET ID-VGS plots for varying VDS 33

2–16 NCNFET ID-VGS plots for varying VDS 34

2–17 Nano-weighted average circuit simulation outputs 35

x

2–18 Capacitor charging/discharging current in a nano-weighted average circuit 35

2–19 Time-mode median circuit for 3-inputs 36

2–20 Time-mode median circuit for N-inputs 37

2–21 Von Neumann’s two-out-of-three majority circuit 38

2–22 Block diagram of a reliable time-mode weighted average circuit 39

2–23 Plot showing the increase in reliability of the redundant circuit as compared
to the individual elements . 40

3–1 Voltage mode weighted averaging circuit 44

3–2 Voltage mode weighted averaging circuit with noise sources 45

3–3 Current mode weighted averaging circuit 48

3–4 Current mode weighted averaging circuit with noise sources 48

3–5 Half of the noise current from each transistor flows to the output 50

3–6 Calculated and simulated SNR values of a time-mode weighted averaging
circuit over technology . 52

4–1 Weighted subtraction circuit. A) Circuit schematic. B) Idealized graph
showing the capacitor’s voltage at different time periods. 53

4–2 Weighted sum circuit. A) Circuit schematic. B) Idealized graph showing
the capacitor’s voltage at different time periods. 56

4–3 Scalar multiplication circuit. A) Circuit schematic. B) Idealized graph
showing the capacitor’s voltage at different time periods. 57

4–4 Circuit schematic of MAX circuit . 58

4–5 Circuit schematic of MIN circuit . 58

5–1 Edge detection by derivative operators 60

5–2 Data flow in time-mode edge detection 62

5–3 Circuit to smooth pixel intensities . 62

5–4 Circuit used to obtain thresholded differences on the smoothed steps . . 64

5–5 MATLAB simulation results showing the original image, smoothed image
and the detected edges of an image . 66

5–6 Simulation results showing the original image, smoothed image and the
detected edges of a 16 pixel image . 67

xi

5–7 Outputs from different stages in time-mode edge detection 68

5–8 Computational block to be used in the FIR filter 71

5–9 Voltage across the computational block’s capacitor at various times . . . 72

5–10 3-tap time-mode FIR filter architecture 76

5–11 The architecture of the input conditioning block 77

5–12 3-tap FIR filter’s input, digital preconditioning block and its outputs . . 78

5–13 State of the FIR filter as input t1 enters 80

5–14 State of the FIR filter as input t2 enters 81

5–15 State of the FIR filter as input t3 enters 82

5–16 State of the FIR filter as input t4 enters the system and with frame 4
discharging computational block 1 . 83

5–17 State of the FIR filter before frame 5 starts 84

5–18 Pole-zero plots of the FIR filter . 86

5–19 Time-mode FIR filter’s magnitude response (sampling freq = 100 kHz) . 86

5–20 Time-mode FIR filter’s phase response 87

5–21 Time-mode FIR filter’s group delay . 88

5–22 Time-mode FIR filter’s input and output waveforms (in time domain) . . 88

5–23 Energy of FIR filter’s input and output signals 89

5–24 Cadence simulation results for the time-mode 3-bit FIR filter 90

6–1 Scalar multiplication circuit . 99

6–2 Timing details of the 2-input time-mode multiplier 100

6–3 Schematic of the 2-input time-mode multiplier 101

6–4 Schematic of the 2-input time-mode divider 102

6–5 Feedforward multi-layer perceptron . 104

6–6 Fully connected 2-input feedforward MLP with one hidden layer and one
output layer . 105

6–7 Non-linear model of a neuron . 105

6–8 Time-mode scalar multiplication and summing circuit 108

xii

6–9 Time-mode piece-wise linear activation circuit 109

6–10 Variation of output mean square error with epochs 111

6–11 Time-mode MLP desired and actual outputs 111

6–12 Cadence simulation results . 112

xiii

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

TIME-MODE CIRCUITS FOR ANALOG COMPUTATION

By

Vishnu Ravinuthula

August 2006

Chair: John G. Harris
Major Department: Electrical and Computer Engineering

We introduce a set of basic circuit building blocks for analog computation

using a temporal step function representation for the inputs and outputs.

Time-mode circuits are described that use a step function representation for

computing the weighted average, weighted difference, weighted sum, scalar product,

maximum, minimum, multiplication, division and thresholded difference operations.

Time-mode circuits are alternatives to well-known voltage- and current-mode

approaches which could be used to perform these same mathematical operations.

Time-mode circuits grow more appealing as CMOS process technologies

scale since they minimize the amount of analog circuitry and use noise robust

asynchronous time events as inputs and outputs. Time-mode circuits provide a

seamless interface to the growing number of time-based sensors which already

output compatible timing events. An example is given where a time-mode edge

detector is developed to directly interface to the output of a time-to-first-spike

imager. Time-mode circuits have simple architecture, provide high signal-to-noise

ratio, dynamic range, consume low power, and hence, prove advantageous in

architecturally complex applications like finite impulse response filters.

xiv

CHAPTER 1
INTRODUCTION

All analog signal processing circuits must represent signals using physical

quantities such as voltage, current, charge, frequency or time duration. In

analog literature, we have seen extensive use of voltage-mode, current-mode

and charge-mode circuits that generally represent input and output signals as

voltage, current and charge respectively:

• Voltage-mode circuits are the most common example, wherein voltages are
used to represent both input and output signals. These circuits have a long
history including classic opamp based designs [1] and GmC style circuits
common in today’s analog very large scale integration (VLSI) designs [2].

• Current-mode circuits are also very popular where currents are used
for both inputs and outputs [3]. These designs include Barrie Gilbert’s
original translinear circuits that rely on the exponential voltage to current
relationships of bipolar or complementary metal oxide semiconductor (CMOS)
subthreshold circuits [4]. More recent log domain filters [5] are also generally
considered to be current-mode circuits.

• Another physical quantity is charge, and charge-mode circuits have been
employed in various applications, particularly for charge coupled devices
(CCDs) [6].

These different modes of signal representation have respective advantages and

drawbacks and can therefore be used in different parts of the same system. The

voltage representation makes it easy to distribute a signal in various parts of a

circuit, but implies a large stored energy CV 2

2
into the node’s parasitic capacitance

C. The current representation facilitates the summing of signals but complicates

their distribution. Replicas must be created which are never exactly equal to

the original signal. It has been observed that it is problematic to clearly define

the distinction between current-mode and voltage mode circuits [7]. The charge

1

2

representation requires time sampling but can be nicely processed by means of

CCDs or switched-capacitor techniques. In actual fact, every circuit uses voltage,

current and charge in its operation and sometimes semantics and philosophy are

debated when definitively categorizing these classes of circuits [7].

Temporal coding is used as the dominant mode of signal representation for

communication in biological nervous systems. Signals represented in this manner

are easy to regenerate and this representation might therefore be preferred for

long-distance transfers of information. It is discontinuous in time, but the phase

information is kept in asynchronous systems. We introduce time-mode circuits

as another category of analog signal processing circuits that represent input and

output signals in the temporal domain. Figure 1–1 depicts block diagrams for

voltage-, current-, and time-mode circuits. Time-mode circuits use temporal events,

in this case voltage steps, to represent signals.

VOLTAGE-MODE
COMPUTATION

CURRENT-MODE
COMPUTATION

TIME-MODE
COMPUTATION

+
-

V1

V
2

VOUT

+

-

I2

IOUT

t1

t2

tOUT

+
-

I
1

Figure 1–1: Different modes of computation.

3

1.1 Biological Motivation

The idea of performing computation using the timing of events is shared

with the most powerful existing computer: the human brain. The brain is an

analog computer, but it does not transmit continuous analog voltages, likely due

to noise and cross-talk susceptibility. Instead, information is represented and

transmitted using the timing of asynchronous digital-like timing pulses. However,

an important difference is that time-mode circuits described in this thesis use a

step function representation because of the resulting circuit simplicity compared to

pulse representations in mathematical computations.

Since we are using a step function representation, we cannot represent

information in terms of firing rates (where we need multiple spikes to represent

an analog variable). This new approach is similar to temporal coding by single

spikes [8] rather than on the traditional interpretation of analog variables in terms

of firing rates.

Maass [8] points out that a spiking neuron in principle will be able to compute

in temporal coding of inputs and output a linear function if its postsynaptic

potential can be described or approximated by a linear function during some

initial segment. As we will see in Chapter 2, time-mode circuits perform linear

computations by linearly mapping the temporal inputs to a voltage across a

capacitor. Also, Maass points out that networks of noisy spiking neurons are

—universal approximators— they can approximate with regard to temporal coding

any given continuous function of several variables. This observation is proved

in Chapter 6 where we use a network of time-mode circuits to implement an

approximation of the multiplication function (non-linear function).

1.2 Engineering Motivation

Independent of any biological motivation, it is also making more and more

sense to consider analog computation using the timing of asynchronous events

4

from a purely engineering perspective. Through the electronics revolution over

the past decades, CMOS process technology is shrinking the usable voltage swing,

wreaking havoc on traditional analog circuit design. However, the faster “digital”

transistors are better able to process timing signals leading us to consider analog

computation more similar to that of the brain. This trend will likely continue

with nanotechnology since even smaller voltage ranges and even faster devices are

promised. Of course, CMOS technology is primarily scaling in favor of faster and

faster digital devices, however power consumption is beginning to limit how far

these digital circuits can scale.

Time-based signal representations have been in use for many years, including

such techniques as pulse-width modulation and sigma-delta converters but

temporal codes are becoming even more common with the rising popularity of

such techniques as class D amplifiers, spike-based sensors and even ultra-wideband

(UWB) signal transmission. However, these temporal codes are typically

used as temporary representations and computation is only performed after

reconstruction back to a traditional analog or digital form. There are instances

where amplifiers use temporal signals as inputs and outputs [9], but they do not

perform computation with them.

There are architectures like the PALMO [10] where the inputs and outputs

are represented by temporal signals, but using pulses. In such architectures, the

input temporal pulses are immediately converted to voltage and they lose the

computational advantages that the time-based representation promises. Similarly,

Murray discusses the implementation of arithmetic functions like addition and

multiplication using voltage or current pulses [11]. Another approach by Sarpeshkar

uses pulses for scalable hybrid computation [12]. However, all the above mentioned

architectures use pulses for computation with more complicated circuits than the

time-mode circuits.

5

In this thesis we describe a set of basic circuit building blocks for computation

using an analog temporal step function representation for both inputs and outputs.

1.3 Chapter Summary

The thesis is divided into the following chapters:

• Chapter 2: The Weighted Average Circuit. This chapter introduces time-mode
computation by describing the details of the weighted average circuit in
terms of functionality and fabricated chip measurements. We then proceed
to see how new and emerging silicon/carbon-nanotube technologies affect the
performance of this prototype time-mode circuit. Later we introduce a method
to improve the reliability of this time-mode circuit.

• Chapter 3: SNR Comparison Of Weighted Averaging Circuits. In this
chapter we derive expressions for the Signal-to-noise ratio of voltage-mode,
current-mode and time-mode 2-input weighted average circuits, use these
expressions to compare and contrast the SNR performances of those circuits
and verify the observations with simulations.

• Chapter 4: Other Time-Mode Circuit Examples. This chapter describes other
time-mode circuit examples including the weighted difference, weighted sum,
scalar product, maximum, minimum and thresholded difference operations.

• Chapter 5: Application Of Time-Mode Circuits. In this chapter we talk
two applications of linear time-mode computational circuits: We start
with the design of a time-mode edge detector that interfaces directly to a
time-to-first-spike imager. Later we describe the design of a 3-tap time-mode
FIR filter. We analyze these two applications and describe the advantages of
using time-mode circuits for these applications.

• Chapter 6: Non-Linear Time-Mode Computation. In this chapter we discuss
two different methods of performing non-linear computation using time-mode
circuits: The first method implements non-linear arithmetic using a time-mode
multi-layer perceptron and the second method implements non-linear
arithmetic by introducing non-linearity in the existing linear computational
blocks.

• Chapter 7: Conclusion And Future Work. This chapter concludes the thesis by
recapitulating all the main points of the thesis. We also discuss possible future
research work.

CHAPTER 2
THE WEIGHTED AVERAGE CIRCUIT

2.1 Time-Mode Weighted Averaging Circuit

VTHC

I
2I

1

t
1 t

2

t
OUT

M
1

M2

0

V
temp

V
TH

t
1 t2

tOUT

V
C

t

A) B)

Figure 2–1. Time-mode weighted average circuit. A) Circuit schematic. B)
Idealized graph showing the capacitor voltage at different time periods.

Figure 2–1A illustrates the basic elements used to perform a weighted sum of

temporal signals. In general, the circuit can process many input steps but only two

are shown for simplicity. The circuit consists of a single capacitor and comparator

plus an inverter, current source and pfet for each input1 . The rising edges of the

input steps correspond to the time values t1 and t2 representing the two input

values. The PMOS transistors M1 and M2 act as switches. The two current sources

I1 and I2 are connected to the sources of the PMOS transistors to start charging

the capacitor C when the step inputs rise. The comparator senses the voltage

across the capacitor and outputs a step when the voltage reaches the threshold

1 The inverters would not be necessary if nfets were used to sink current or if an
inverted step function was used to represent input and output values. Furthermore,
source signalling should be used to reduce charge injection effects as explained in
[13].

6

7

voltage VTH . Once the block outputs a step, an appropriate reset stage (not shown

in the figure) resets the capacitor to 0V . The current sources I1 and I2 charge the

capacitor during different time periods as shown in Figure 2–1B.

Initially, the voltage across the capacitor (VC) is reset to ground. For

simplicity, let t1 < t2 < tOUT . The capacitor voltage VC stays at 0V until the

first step arrives at time t1. Transistor M1 turns on and the voltage VC linearly

increases with the current source I1 charging capacitor C. This linear increase

continues until time t2 when the second step arrives. For purposes of the following

discussion, the capacitor voltage at that instant is labeled Vtemp.

The value of Vtemp is computed during the period t1 to t2 as

Vtemp =
I1

C
(t2 − t1) (2–1)

Similarly, during the period t2 to tOUT (the time for the capacitor to charge to

VTH)

VTH − Vtemp =
I1 + I2

C
(tOUT − t2) (2–2)

Solving Eqs. 2–1 and 2–2 gives:

tOUT =
I1t1 + I2t2

I1 + I2

+
CVTH

I1 + I2

(2–3)

where tOUT is the time when the output step makes its transition from low to high

voltage. Eq. 2–3 is symmetric with I1t1 and I2t2 so the assumption that t1 < t2 can

be relaxed. However, we still need to assume that tOUT occurs after t1 and t2 to

ensure the validity of the equations.

The minimum value of tOUT in Eq. 2–3 occurs if tOUT = t2 and substituting

into Eq. 2–3, gives

I2t2 − I1t1 = CVTH (2–4)

8

Therefore for general values of tOUT above the minimum value,

|I2t2 − I1t1| < CVTH (2–5)

Eq. 2–5 provides the relation to be met for Eq. 2–2 to be valid. For the special case

where I1 = I2 = I, then the output step time tout is the mean of t1 and t2 plus a

programmable constant (CVTH/2I).

For unequal values of I1 and I2,

tOUT =
I1t1 + I2t2

I1 + I2

+
CVTH

I1 + I2

(2–6)

where CVTH

I1+I2
is a constant. The above equation is valid, when

|I1t1 − I2t2| < CVTH (2–7)

In this case, then the output time step is the weighted average of t1 and t2 plus a

constant.

We can summarize the results obtained above in a single equation:

tOUT =

t1 +
CVTH

I1

, for |I1t1 − I2t2| ≥ CVTH and t1 < t2 (2–8a)

t2 +
CVTH

I2

, for |I1t1 − I2t2| ≥ CVTH and t2 < t1 (2–8b)

I1t1 + I2t2
I1 + I2

+
CVTH

I1 + I2

otherwise (2–8c)

In general for N input steps,

tOUT =

∑

n Intn
∑

n In

+
CVTH
∑

n In

(2–9)

provided that VTH is large enough. The circuit can be further generalized to handle

negative weight values in several ways; for instance, using current sources that

sink current to ground as long as the output voltage stays positive and eventually

reaches VTH .

9

Inputs t1, t2 and output tOUT of the weighted average circuit are time-steps

and these time-steps are defined within a frame (Frame 1) as shown in Figure 2–2.

When a frame (Frame 1) ends, the inputs and the output steps also end and the

circuit is reset. As the next frame starts (Frame 2 in the figure), the circuit would

be ready to process the next set of inputs t1 and t2. Each frame should be long

enough to allow the weighted average circuit to produce its output. For bounded

frame lengths, there is a chance that the output will not occur.

Figure 2–2. Inputs t1, t2 and output tOUT are defined within a frame

2.1.1 Reset Stage

In the circuit shown in Figure 2–1A, we have not shown an explicit reset stage.

Setting the capacitor’s voltage to its initial voltage VTH through a transmission

gate is the functionality desired from the reset stage and this can be integrated

with the application’s reset stage.

Later in this dissertation, we will discuss some applications of this time-mode

weighted average circuit: an edge detection circuit and a 3-tap FIR filter. These

applications have custom reset stages and the reset for the basic block is integrated

in these custom reset stages.

10

2.1.2 Measured Results

The weighted averaging circuit was fabricated using the AMI 0.6µm CMOS

process. Figure 2–3 shows the measured output tOUT when just one input is

provided to the circuit. The output tOUT is plotted for varying I. The values of

C and VTH in the circuit are 20pF and 2.5V respectively. Figure 2–4 also shows

the output tOUT when only one input (occuring at t1) is provided to the circuit.

The current source I is fixed at 1.05µA . The input transition time t1 was varied

externally and the output tOUT was measured and plotted. The output expected

from the block tOUT = t1 + CVTH

I
was also plotted. The values of C and VTH in

the circuit are 20pF and 2.5V respectively. The root mean squared error (
√

MSE)

between the expected results and the measured results obtained of the output tOUT

obtained was 0.26µs.

0 0.5 1 1.5 2 2.5 3

x 10
−6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

Charging Current I1 in Amps

to
ut

 in
 s

ec
s

Output tout for varying current I1 with C=20 pF, Vref=2.5V

Expected results
Measured results

Figure 2–3. Plot of tOUT for varying I (C = 20pF , VTH = 2.5V). The block was
given one step input.

Figure 2–5 shows the output tOUT when both the inputs are provided to the

circuit but the current sources I1 and I2 are fixed at 1.552µA. The first input

entering the block was fixed as 1µs, 8.5µs and 32.5µs for three different sets of

measurements. The input transition time t2 was varied externally for different

11

0 1 2 3 4 5 6 7

x 10
−5

4

5

6

7

8

9

10

11

12
x 10

−5

to
ut

 in
 s

ec
s

t1 in secs

tout with varying t1

Expected Results
Measured Results

I = 1.0476 uA
C = 2.5pF
Vref=2.5V

Figure 2–4. Plot of tOUT for varying I (C = 20pF ,I = 1.0476µA, VTH = 2.5V). The
block was given one step input.

values of t1 and the output tOUT was measured and plotted. The output expected

from the block tOUT = t1+t2
2

+ CVTH

2I
was also plotted. The values of C and VTH

in the circuit are 20pF and 2.5V respectively. The
√

MSE between the expected

results and the measured results obtained of the output tOUT obtained was 0.3µs.

Figure 2–6 shows the output tOUT for the case when both inputs are provided

to the circuit but the current sources I1 and I2 are different and are fixed at 1.46µA

and 0.29µA respectively. Similar to the above case, the first input entering the

block was fixed as 1µs, 8.5µs and 32.5µs for three different sets of measurements.

The input transition time t2 was varied externally for different values of t1 and

the output tOUT was measured and plotted. The output expected from the block

tOUT = I1t1+I2t2
I1+I2

+ CVTH

I1+I2
was also plotted. The values of C and VTH in the circuit

are 20pF and 2.5V respectively. The
√

MSE between the expected results and the

measured results obtained of the output tOUT obtained was 1.9µs.

12

0 1 2 3 4 5 6 7

x 10
−5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−5

t2 in secs

to
ut

 in
 s

ec
s

tout for varying t2

t1 = 1 us

t1 = 8.5 us

t1 = 32.5 us

C = 20 pF
I = 1.552 uA
Vref = 2.5V

Figure 2–5. Plot of tOUT for varying t2 (C = 20pF ,I = 1.0476µA, VTH = 2.5V with
t1 fixed at 1µs, 8.5µs and 32.5µs.)

2.1.3 Discussion

Errors in the weighted average calculation arise from a number of sources

including:

• mismatches in capacitor and current source values.

• fundamental noise sources causing jitter in the timing of the input and output
step functions.

• transistor time delays, for example through the comparator.

Each of these errors can be reduced somewhat with careful layout, larger

circuits, more power consumption, and/or calibration procedures. These tradeoffs

must be taken based on the demands of particular applications. Particular

advantages and disadvantages of the weighted average circuit and other time-mode

circuits must be carefully considered. It is likely that time-mode circuits will have

larger dynamic ranges than conventional designs but high speed operation will

be compromised since time is used in the representations. General claims are

difficult, especially considering that it even difficult to cite general advantages of

13

0 1 2 3 4 5 6 7

x 10
−5

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

−5

t2 in secs

to
ut

 in
 s

ec
s

tout with varying t2

t1 = 32.5u

t1 = 8.5u

t1 = 1u

I1 = 1.46u
I2 = 0.29u
C = 20pF
Vref=2.5V

Figure 2–6. Plot of tOUT for varying t2 (C = 20pF ,I1 = 1.46µA, I2 = 0.29µA,
VTH = 2.5V with t1 fixed at 1µs, 8.5µs and 32.5µs.)

current-mode circuits vs. voltage-mode circuits [7]. A big advantage of time-mode

circuits however is that more and more sensors are being designed with step

outputs [14][15] and the time-mode circuits can directly interface to these sensors.

Table 2–1. Measured performance characteristics of time-mode weighted averaging
circuit.

Performance specification Value
Power consumption 0.6µW
SNR 56dB
Differential-mode dynamic range 62dB
Common-mode dynamic range Effectively infinite

By performing computation using temporal step functions, the averaging

block was able to achieve almost infinite common-mode dynamic range, 62dB

differential-mode dynamic range and SNR of 56dB with very low power consumption

of 0.6µW . This power consumption was on the order of nanowatts, when the

comparator were operated in the sub-threshold region. But, the operating speed

of the comparator was slow. Therefore, we had to strike a trade-off between the

14

comparator’s operating speed and the power consumption. The measured circuit

specifications are tabulated in Table 2–1.

2.2 Theoretical Analysis of Signal-to-Noise Ratio and Dynamic Range

There are two sources of output noise in a time-mode circuit.

1. output noise due to timing jitter at the inputs.

2. output noise due to fundamental noise sources in the circuit.

2.2.1 Output Noise due to Timing Jitter at the Inputs

We know that the output from the block shown in Figure 2–1A is:

tOUT =
I1t1 + I2t2

I1 + I2

+
CVTH

I1 + I2

(2–10)

Jitter ∆t1 (across different input values it has a mean value of ∆t1 and a variance

of ∆t1
2) in the input t1, causes the following output

tOUT1 =
I1(t1 + ∆t1) + I2t2

I1 + I2

+
CVTH

I1 + I2

(2–11)

The jitter at the output ∆tOUT1 is given by:

∆tOUT1 = tOUT1 − tOUT

= (
I1(t1 + ∆t1) + I2t2

I1 + I2

+
CVTH

I1 + I2

) − (
I1t1 + I2t2

I1 + I2

+
CVTH

I1 + I2

)

=
I1∆t1
I1 + I2

(2–12)

which is a simple scalar multiplication of ∆t1.

The mean of the output jitter scales accordingly as,

∆tOUT1 =
I1∆t1
I1 + I2

(2–13)

The variance of this noise can be easily derived to be,

∆tOUT1
2 =

I2
1∆t1

2

(I1 + I2)2
(2–14)

15

Similarly, the variance if the output noise caused by the input time jitter ∆t2

(corresponding to input t2),

∆tOUT2
2 =

I2
2∆t2

2

(I1 + I2)2
(2–15)

The total variance of the noise at the output is given by,

∆tOUT
2 = ∆tOUT1

2 + ∆tOUT2
2

= (
I2
1∆t1

2

(I1 + I2)2
) + (

I2
2∆t2

2

(I1 + I2)2
)

=
I2
1∆t1

2 + I2
2∆t2

2

(I1 + I2)2
(2–16)

If I1 = I2, then

∆tOUT
2 =

∆t1
2 + ∆t2

2

4
(2–17)

Since only a fraction (25%) of the jitter at the inputs affect the output jitter, we

can say that the time-mode weighted average circuit effectively reduces the jitter at

the inputs.

2.2.2 Output Noise due to Fundamental Noise Sources in the Circuit

Figure 2–1A illustrates the basic elements used to perform a weighted sum of

temporal signals. We already know that the output from this block is:

tOUT =
I1t1 + I2t2

I1 + I2

+
CVTH

I1 + I2

(2–18)

We will now derive an expression for the signal-to-noise ratio of this time-mode

weighted averaging circuit.

The first step towards the derivation is to define the signal. Assuming a

differential representation, let us refer the inputs and outputs of the averaging

block to its first input. For simplicity, let us assume t1 as the first input. The two

inputs to the averaging block are defined as, t̂1 = t1 − t1 = 0 and t̂2 = t2 − t1.

The output is defined as t̂OUT = tOUT − t1. This output is defined as the signal. In

16

words, the signal is defined as the output tOUT of the averaging block referred to

the input t1.

Therefore, t̂OUT is given by:

t̂OUT = tOUT − t1

= (
I1t1 + I2t2

I1 + I2

+
CVTH

I1 + I2

) − t1

=
I1t1 + I2t2 + CVTH − I1t1 − I2t1

I1 + I2

=
I2(t2 − t1) + CVTH

I1 + I2

(2–19)

There are 3 noise sources that dominate the noise performance of this circuit.

1. Noise due to the current source I1.

2. Noise due to the current source I2.

3. Noise due to the voltage comparator.

These noise sources are uncorrelated and therefore we can consider the impact

of each of these noise sources individually on the output of the circuit.

2.2.2.1 Noise in tOUT due to noise in current source I1

Let us assume that current source I1 is noisy with a noise current of ∆I1.

Therefore, the total current from the current source is given by I1 + ∆I1. Since

currents I1 + ∆I1 and I2 charge the capacitor, the new output from the weighted

average circuit is given by,

tOUT1 =
I2(t2 − t1) + CVTH

I1 + ∆I1 + I2

(2–20)

17

The noise at the output ∆tOUT can be calculated as shown below:

∆tOUT1 = tOUT1 − t̂OUT

=
I2(t2 − t1) + CVTH

I1 + ∆I1 + I2

− I2(t2 − t1) + CVTH

I1 + I2

=
(I2(t2 − t1) + CVTH)(−∆I1)

(I1 + ∆I1 + I2)(I1 + I2)

≈ (I2t2 − I2t1 + CVTH)(−∆I1)

(I1 + I2)2
(2–21)

The variance of this noise is given by

∆tOUT1
2 ≈ (I2t2 − I2t1 + CVTH)2(∆I1

2)

(I1 + I2)4
(2–22)

2.2.2.2 Noise in tOUT due to noise in current source I2

Let us assume that current source I2 is noisy with a noise current of ∆I2.

Therefore, the total current from the current source is given by I2 + ∆I2. Since

currents I1 and I2 + ∆I2 charge the capacitor, the new output from the weighted

average circuit is given by,

tOUT2 =
(I2 + ∆I2)(t2 − t1) + CVTH

I1 + I2 + ∆I2

(2–23)

The noise at the output ∆tOUT can be calculated as shown below:

∆tOUT2 = tOUT2 − t̂OUT

=
(I2 + ∆I2)(t2 − t1) + CVTH

I1 + I2 + ∆I2

− (
I2(t2 − t1) + CVTH

I1 + I2

)

=
(t2 − t1)(I1∆I2)

(I1 + I2 + ∆I2)(I1 + I2)
+ CVTH(− ∆I2

(I1 + I2 + ∆I2)(I1 + I2)
)

≈ (t2 − t1)(I1∆I2)

(I1 + I2)2
+ CVTH(− ∆I2

(I1 + I2)2
)

≈ ∆I2(
I1(t2 − t1) − CVTH

(I1 + I2)2
) (2–24)

18

The variance of this noise is given by

∆tOUT2
2 ≈ (I1(t2 − t1) − CVTH)2(∆I2

2)

(I1 + I2)4

≈ (I1(t1 − t2) + CVTH)2(∆I2
2)

(I1 + I2)4
(2–25)

2.2.2.3 Noise in tOUT due to noise in the comparator

Let us assume that current sources I1 and I2 are noiseless and noise in the

comparator is given by ∆V . The output from the weighted average circuit for these

assumptions is given by,

tOUT3 =
I2(t2 − t1) + C(VTH + ∆V)

I1 + I2

(2–26)

The noise at the output ∆tOUT can be calculated as shown below:

∆tOUT3 = tOUT3 − t̂OUT

=
I2(t2 − t1) + C(VTH + ∆V)

I1 + I2

− I2(t2 − t1) + CVTH

I1 + I2

=
C∆V

(I1 + I2)2
(2–27)

The variance of this noise is given by

∆tOUT3
2 =

(C∆V 2)

(I1 + I2)4
(2–28)

For typical values, the noise variation denoted by Eq. 2–28 is negligible

compared to the noise variances shown in Eqs. 2–22 and 2–25. Therefore, in the

forthcoming calculations we neglect the noise contribution of the comparator.

Therefore, the total noise at the output of the averaging block is given by

∆tOUT
2 ≈ (I2t2 − I2t1 + CVTH)2(∆I1

2)

(I1 + I2)4
+

(I1t1 − I1t2 + CVTH)2(∆I2
2)

(I1 + I2)4
(2–29)

19

The noise in the current sources I1 and I2 is dominated by shot noise. In

general, shot noise due to a current source I is given by [16],

∆I2 =
eI

τ
(2–30)

where τ is the time during which the current source is ON and contributes to the

output and e is the charge of an electron.

Current source I1 charges the capacitor during the time period tOUT − t1.

Noise in the current source would affect the circuit only during this time period.

Therefore,

τ1 = t̂OUT − t̂1

= (tOUT − t1) − (t1 − t1)

= tOUT − t1

=
I2(t2 − t1) + CVTH

I1 + I2

(2–31)

Therefore,

∆I1
2 =

eI1

I2(t2−t1)+CVTH

I1+I2

=
eI1(I1 + I2)

I2(t2 − t1) + CVTH

(2–32)

Current source I2 charges the capacitor during the time period tOUT − t2. Only

during this time period, the noise in the current source would affect the circuit.

Therefore,

τ2 = t̂OUT − t̂2

= (tOUT − t1) − (t2 − t1)

=
I2(t2 − t1) + CVTH

I1 + I2

− (t2 − t1)

=
I1(t1 − t2) + CVTH

I1 + I2

(2–33)

20

Therefore,

∆I2
2 =

eI2

I1(t1−t2)+CVTH

I1+I2

=
eI2(I1 + I2)

I1(t1 − t2) + CVTH

(2–34)

Substituting Eqs. 2–32 and 2–34 into (2–29), we get

∆tOUT
2 =

(I2t2 − I2t1 + CVTH)2(eI1(I1+I2)
I2(t2−t1)+CVTH

)

(I1 + I2)4
+

(I1t1 − I1t2 + CVTH)2(eI2(I1+I2)
I1(t1−t2)+CVTH

)

(I1 + I2)4

=
eI1(I2(t2 − t1) + CVTH) + eI2(I1(t1 − t2) + CVTH)

(I1 + I2)3

=
eCVTH(I1 + I2)

(I1 + I2)3

=
eCVTH

(I1 + I2)2
(2–35)

The signal-to-noise ratio is given by:

SNR =
(I2(t2−t1)+CVTH

I1+I2
)2

eCVTH

(I1+I2)2

=
(I2(t2 − t1) + CVTH)2

eCVTH

(2–36)

Eq. 2–36 gives the SNR for a time-mode weighted average circuit.

For an averaging circuit, I1 = I2 = I. Therefore,

SNR =
(I(t2 − t1) + CVTH)2

eCVTH

(2–37)

The maximum value of this SNR occurs when

t2 − t1 =
CVTH

I
(2–38)

21

Substituting Eq. 2–38 into Eq. 2–37, we get

SNRMAX =
(I(CVTH

I
) + CVTH)2

eCVTH

=
(CVTH + CVTH)2

eCVTH

=
4(CVTH)2

eCVTH

=
4(CVTH)

e
(2–39)

To quantify this peak SNR value, we substituted C = 2pF and VTH = 5V

(max value) in Eq. 2–39 and obtained a value of 84dB. This peak value can

be increased by further increasing the value of the capacitance. For a 20pF

capacitance, we get a SNR of 88dB.

2.2.3 Discussion

We should note that the SNR value obtained through the hand calculations

shown above is an approximation. We have neglected the effect of jitter at the

inputs and matching errors in the currents I1, I2. Since these effects affect our noise

measurements and therefore the measured SNR value, we obtain different values for

calculated and measured SNR values.

2.3 Scaling of Time-Mode Weighted Average Circuit with Technology

As we have seen previously time-mode circuits promise very high dynamic

range and good SNR. An important question is how does the performance of

time-mode circuits scale as technology scales. Since the time-mode weighted

average circuit is the prototype of all the time-mode circuits discussed in this

thesis, we will project how the time-mode weighted circuit performs in terms

of Signal-to-Noise Ratio, Dynamic Range, Power Consumption and Energy

Consumption as technology scales.

We choose the current 180nm as the reference technology and 90nm, 65nm,

45nm and 32nm as future technologies for our simulations. PTM HSpice transistor

22

models are used for all the technologies - Predictive technology models are

developed by the Nanoscale Integration and Modeling Group at Arizona State

University [17].

2.3.1 Simulation Setup

We used Synopsys HSPICE to simulate the time-mode weighted average

circuit in different current/future technology nodes. Low voltage cascode current

mirrors were used for current sources and a five transistor single-ended differential

amplifier (PMOS input pair, NMOS current mirror load) was used as a comparator.

In the differential amplifier, a higher W/L ratio for the PMOS inputs and smaller

W/L ratio for the loads was chosen to minimize noise and the effects of mismatch.

The comparator’s systematic offset would affect only the constant component -

CVTH

I1+I2
of the output and can be calibrated out later, if necessary.

To compare the performance of the weighted average circuit as technology

scales, the capacitance C and reference voltage VTH were kept constant across

different future technology nodes. This ensures that charging currents I1 and I2

are the only variable circuit parameters and it allows an apt comparison of the

trends in dynamic range, power and SNR of the weighted average circuit across

technologies. To vary I1 and I2, we had to change the sizes of the transistors in the

low-voltage cascode current sources. For simplification, the two charging currents

I1 and I2 were kept constant. The transistors in the weighted average circuit (the

transistors of the low-voltage cascode current mirrors, comparator and the digital

switches) were sized for two possible scenarios:

• For every technology, the circuit was designed for the lowest possible current
to keep all transistors in active/saturation.

• The transistor sizes were fixed for the 180nm process and the transistor sizes
were scaled down by the factor with which the technology scales down.

23

It was argued previously that the only noise sources that contribute heavily

to the noise of the time-mode weighted averaging circuit are the shot noises of

the DC current sources I1 and I2. The noise of the comparator is negligible.

To characterize the noise performance of the weighted average circuit across

various future technologies, noise analysis during transient simulation is required.

Since such an analysis is not readily available in our Cadence software setup, to

achieve this two noise current sources (with Guassian distribution) were generated

randomly in MATLAB and their RMS values were set according to equations

previously derived. These current sources model the shot noise of the current

sources I1 and I2 and are connected in parallel to their respective current sources

during the simulations. These noise current sources were switched on only during

the period when the time steps turned on the DC current sources.

The timing of the first step is chosen as the time reference and was kept

constant for all technologies. In this way the output time had the same reference in

all technologies.

2.3.2 Results and Inferences

• Power Supply: The VDD was decreased from 1.3 V to 0.6 V with scaling of
technologies and the circuit worked well for all values. This shows that the
time mode circuits are not dependent on voltage ranges and hence voltage
supplies can be reduced easily without changing the design.

• Charging Current: With scaling of technology, charging currents I1 and
I2 follow a monotonically decreasing trend as shown in Figure 2–7. This
is because as technology scales, transistor sizes reduce and therefore, the
current conducted by the transistors scale down exponentially (following the
well-established large-signal long-channel/short-channel current equations).

• Dynamic Power/Average Power: As dynamic/average current scales down
exponentially with technology, dynamic power/average power scales down
exponentially as well. This trend can be seen in Figures 2–8 and 2–9.

• Dynamic Range: The dynamic range is defined as the maximum allowable
time difference between two time steps. If t1 < t2, the maximum allowable
time difference between two time steps of a weighted average circuit is given

24

Figure 2–7. Variation of capacitor charging current with scaling technology

Figure 2–8. Variation of dynamic power with scaling technology

25

by CVTH

I1
. With the capacitor C and threshold voltage VTH fixed in our

simulations, the dynamic range is inversely dependent on current. With
an almost exponential decrease in current we would expect an exponential
increase in dynamic range and the same trend can be noted in Figure 2–14.

• Energy Consumed: As power consumed by the weighted average circuit
scales down exponentially with technology, so does the energy consumed by
the circuit per weighted average operation. This trend can be noted from
Fig. 2–10.

• Weighted Average Outputs: From Figure 2–11 comparing the simulated and
calculated values of the output of the weighted average circuit, we see that the
simulated results match the calculated results well. We believe that the slight
difference in results as technology scales is due to inaccuracy in circuit models
at low current levels.

• Output Noise: The simulated noise and calculated output noise values match
closely as shown in Figure 2–12 confirming the accuracy of the derived
expression for noise of this circuit. Also, noise is inversely proportional to
current with all other factors remaining the same. Hence with exponential
type decrease in current we see an exponential type increase in noise.

• SNR: Observations similar to those made for the output noise can also be
made with the simulated and calculated SNR values as shown in Figure 2–13.
The signal, which is the time taken by the weighted average circuit to produce
an output, increases as we scale technology. With the noise also increasing
with scaling technology we note that the ratio of signal power and noise power,
the SNR, actually decreases only slightly with scaling technology. This is
in accordance to what was predicted by our equations. With more detailed
analysis, (with all other factors constant) we can note that the SNR is slightly
dependent on the current. So as current decreases with technology, SNR also
decreases. However, in Eq. 2–37, the I(t2 − t1) term is much smaller than the
CVTH term causing SNR to be almost a constant. Also, slight variations in the
simulated SNR results confirm this analysis.

For all the above mentioned performance measures, for both the transistor

sizing scenarios - sizing the transistors so that the transistors are in the active

region and sizing the transistors by the technology scaling factor, we see the same

performance trend.

26

Figure 2–9. Variation of average power with scaling technology

2.3.3 Discussion

We see that the dynamic range of inputs supported by the time-mode circuits

keeps increasing exponentially with scaling technology. For voltage mode and

current mode circuits as technology scales the input dynamic range supported

reduces (because scaling technology reduces the supply voltage and the maximum

current supported by the devices). But, for time-mode circuits, as technology scales

the input DR supported increases (scaling technology does not affect information

stored in time). This is a very promising aspect of time-mode circuits when

compared to voltage-mode and current-mode circuits.

With scaling technology, though the noise performance of the circuit gets

worse the SNR stays a constant. Therefore, applications using time-mode circuits

can expect the SNR performance of the time-mode circuits to remain constant with

new technologies.

27

As technology scales, time-mode circuits become more power and energy

efficient. Therefore, they can be chosen for low-power applications across different

device technologies.

Figure 2–10. Variation of energy consumed per averaging operation with scaling
technology

The results from the experiments are very encouraging and reinforce the

fact that time-mode circuits would scale well with technology and show good

performance.

2.3.4 Drawbacks

Time-mode circuits have shown promising results, however certain design

issues can limit their performance.

• Right now the measurement of the output timing was done when the input of
the comparator reached the threshold. The delay of the comparator would be
another offset but this would be highly dependent on the load. When these
circuits are used with larger fan out, the offset caused due to the capacitive
load at the output would not remain constant.

• While the current sources are charging the capacitor the VDS across the input
switching transistors does not remain constant and causes variations in the

28

Figure 2–11. Comparison of calculated and simulated time-mode averaging
outputs over technologies

Figure 2–12. Comparison of calculated and simulated time-mode averaging output
noise over technologies

29

Figure 2–13. Comparison of calculated and simulated time-mode averaging SNR
values over technologies

Figure 2–14. Variation of dynamic range with scaling technology

30

current. Having larger lengths for these transistors is critical for accurate
operation.

• Input switching causes coupling between the gate and drain and we see a large
spiking current initially. If the tOUT to be calculated is small, this can cause
problems in accuracy.

• A limitation to the accuracy of these results is due to limitations of the
simulator as we try to operate at very low currents and measure up to six
significant digits. This is especially true in case of noise current, where we
believe the errors creep in due to numerical methods and round off. However,
these precision issues do not change the trend in the results.

2.4 Carbon Nanotube Based Time-Mode Weighted Averaging Circuit

To see if the time-mode weighted averaging circuit would scale well in the

nano-technology regime, we replace the traditional BSIMv3.1 AMI 0.5µm Si

transistor models by carbon nanotube FET models [18] and simulate our prototype

weighted average circuit. Transistors M1, M2, Current Sources I1, I2, and the

inverters of the weighted averaging circuit are realized using NCNFET and

PCNFET models developed by Roy et al of INAC/Purdue. The circuit is simulated

using HSPICE. The NCNFET and PCNFET transistor models used in our

simulations have only a single carbon nanotube representing their channels. The

biggest advantage of this single carbon nanotube technology is that the transistors

have extremely small gate and channel capacitances; thus, promising very high

speed operation.

2.4.1 Carbon Nanotube Field Effect Transistors (CNFETs) and Their
Spice Models

Carbon nanotubes are nano-diameter cylinders consisting of a single

graphene sheet wrapped up to form a tube. Since their invention in the early

1990s, researchers have been actively exploring the electrical properties of these

devices and their potential applications in electronics. One of the most promising

applications of carbon nanotubes, the carbon nanotube transistor (CNTFET) -

first reported in 1998, is currently considered as the most promising building block

31

of a future nano-electronic era. The reason for this is not just their small size, but

their inherent properties like low power dissipation, possible ballistic transport,

high current densities, high mobility, low resistance and the facilitation of making

transistors and interconnects using semi-conducting and metallic carbon nanotubes.

For a typical nanotube geometry of 100nm length and 3nm diameter, C is of

order 4aF . The channel resistance can be as small as 6.25kΩ. Therefore, the RC

frequency is equal to 6.3THz [19]. Let us compare this frequency with the fT of

a minimum size NMOS transistor in the AMI 0.5u Si process. The fT of a NMOS

transistor can be roughly expressed as,

fT ≈ µ

2πL2
(VGS − VTH) (2–40)

with µ the mobility, L the channel length, VGS the gate to source voltage and

VTH the threshold voltage. Substituting typical values of µ = 449.98cm2/V s,

L = 0.6µm, VGS − VTH ≈ 4V for AMI 0.5u Si process, we get fT = 80GHz. This

shows that the speed limit intrinsic to a nanotube transistor is several orders of

magnitude greater than a Si transistor.

The CNFET model used in our simulations is a simplistic model that

was developed to assess circuit performance of single walled semiconducting

CNFETs. It is an appropriate model to evaluate delays, estimate power in

circuits and simulate the performance degradation due to interconnect and device

parasitics. The modeling technique used is generic in the sense that it can faithfully

represent a wide range of CNFET geometries and gate materials with reasonable

operating voltages and user specified temperature conditions. The model has a

strong foundation on the underlying physics of operation along with necessary

simplifications and assumptions. This makes a multiple-transistor circuit simulation

possible.

The assumptions made to arrive at the CNFET spice model include,

32

Bulk-type CNFETs: In the literature, two types of carbon nanotube

transistors have been studied extensively. They are respectively, the Schottky

barrier CNFET and the bulk-type CNFET. Though the Schottky barrier

CNFET has its own advantages, the model assumes a bulk-type CNFET as

this MOSFET-like device has a higher on-current and, hence, would define the

upper limit of performance.

Ballistic transport: Recent experiments have demonstrated that a CNFET

can typically be used in the MOSFET-like mode of operation with near ballistic

transport.

2.4.2 Physics Governing the Operation of CNFET

It is a well established fact that gate voltage induces charge in the CNFET

channel and also modulates the top of the energy band between the source and the

drain. As the source-drain barrier is lowered, current flows between the source and

the drain. Since we are dealing with ballistic transport, all scattering mechanisms

are neglected.

2.4.3 Simulation Results

The rail-to-rail supply voltage used in our simulations is 0.6V . The simulation

outputs are shown in Figure 2–17. For the simulations we chose t1 = 1ns, t2 = 3ns,

C = 7fF and VTH = 0.5V . Since the CNFET spice models are simplistic models

and not ideal for analog simulations instead of the 5-transistor comparator, we

chose an ideal op-amp to perform the comparator’s functionality. The expected

tOUT and the calculated tOUT values match closely and they are approximately

equal to 9ns. The small difference between the two tOUT values can be attributed

to the OFF current of the CNFETs charging the capacitor. The carbon nanotube

transistors have very high current drive as can be seen from Figures 2–15, 2–16

and from Figure 2–18 we can see that the off-current of these carbon nanotubes is

also high (in the order of 30nA). These high off-currents can produce an offset that

33

introduces some jitter in the output. In spite of the large off currents, the average

power consumed by the circuit is 0.33µW .

Figure 2–15. PCNFET ID-VGS plots for varying VDS

2.4.4 Discussion

We did not plot the performance results of these carbon nanotube transistor

based time-mode circuits with the Si technology scaling curves discussed in the

previous section because these CNFET models are totally different from the PTM

models used for all the Si processes. But, it would be extremely useful if we can

still compare the performance numbers obtained from the scaling Si simulations

and the CNFET based circuit’s simulations. The carbon nanotube transistor based

time-mode circuits have parasitic capacitances in the range of aF (compared to

fF for the silicon based transistors), have high current drive - therefore high speed

(because of the high current drive of carbon nanotube transistors) and are very

power efficient (power even lower than the corresponding 32nm process based

averaging circuit’s power). Since nano-technology promises very attractive features

34

Figure 2–16. NCNFET ID-VGS plots for varying VDS

and performance for time-mode circuits, we can safely say that time-mode circuits

scale well into the future technologies.

2.5 Reliable Time-Mode Weighted Average Circuit

2.5.1 Motivation

The reliability of integrated circuits is a major concern for the electronics

industry and becomes more of a concern as processes scale down to deep

sub-micron CMOS and future nanotechnologies [20]. As these process technologies

become more and more complex, higher levels of integration used in the ICs will

increase the chip failure rate. These failures underscore the importance of reliability

for manufacturing of nano-scale systems. It is, therefore, imperative that circuits

are designed with reliability in mind.

Construction of reliable digital systems with the use of redundant components

was first considered by Von Neumann for certain cases of intermittent failures of

elements [21]. His ground-breaking work was extended by Dickinson and Walker

for the case of permanent failures of logic elements [22]. But the works of Von

35

Figure 2–17. Nano-weighted average circuit simulation outputs

Figure 2–18. Capacitor charging/discharging current in a nano-weighted average
circuit

36

Neumann, Dickinson and Walker and many others were all dedicated to improving

the reliability of digital circuits. In this chapter, we discuss the design of reliable

analog nanocomputational circuits using redundancy. As an example, we will

explain the design of a reliable analog time-mode weighted average circuit.

2.5.2 Time-Mode Median Circuit

Figure 2–19 illustrates the basic elements used to find the median of an

odd-number of input temporal signals. In general, the circuit can process many

input steps, but only three are shown here for simplicity. The circuit consists of an

inverter, a current source of value I and a PMOS transistor for each input and a

current source of value 3I
2

connected to the drains of the transistors M1, M2 and

M3. The rising edges of the input steps correspond to the time values t1, t2 and t3

which represent three input values. The PMOS transistors M1, M2 and M3 act as

switches.

Figure 2–19. Time-mode median circuit for 3-inputs

To aid the explanation of the operation of this circuit, we assume that

t1 < t2 < t3 though such a condition is not necessary for the operation of the

circuit. Since the input step making its low-high transition at time t1 enters the

median block first, it switches transistor M1 on. Since the current source of value

3I
2

is discharging the parasitic capacitance CP , there won’t be any charge built up

across the parasitic capacitance. However, when the second step enters the block

37

at time t2, a net current of I
2

charges the parasitic capacitance and starts adding

charge to the capacitor and we will get an output step at time tOUT . Since the

parasitic capacitance gets quickly charged after the second step enters the median

block,

tOUT ≈ t2 (2–41)

Thus, we see that the output obtained in Eq. 2–41 is the median of the three

inputs t1, t2 and t3. In general, this median circuit can process N-input steps -

provided that N is odd. The circuit is shown in Figure 2–20. Depending on the

value of N, the value of the current source that pulls-down the capacitor’s voltage

is chosen to be NI
2

. It is to be noted that using conventional voltage-mode and

current-mode analog circuit designs it is difficult to design such a simple circuit to

perform a median operation among various inputs.

Figure 2–20. Time-mode median circuit for N-inputs

2.5.3 Redundancy in Time-Mode Computation

We will explain the concept of improving reliability using redundancy through

the design of a reliable analog time-mode weighted average circuit that has an

architecture similar to Von Neumann’s 2-out-of-3 majority circuit shown in

Figure 2–21 and perform analysis to quantify its reliability.

Von Neumann’s 2-out-of-3 majority circuit shown in Figure 2–21 uses a

majority circuit fed by three independent devices which operate from the same

38

Figure 2–21. Von Neumann’s two-out-of-three majority circuit

source of input information [21]. Dickinson and Walker analyzed the circuit in

detail and proved that the circuit has a resultant reliability greater than that of

its elements [22]. As mentioned above, their work was only applicable to digital

circuits. Here, we use their concept to improve the reliability of analog circuits. We

will extend the work of Dickinson and Walker to design a reliable analog time-mode

weighted average circuit as shown in Figure 2–22. Von Neumann’s 2-out-of-3

majority circuit is essentially used polling between inputs and can only be used for

digital applications. Therefore, it is being replaced by a time-mode median circuit

as shown in Figure 2–19. For our failure analysis, we assume that the median

circuit never fails. The same assumption is made for the digital voting circuits

discussed above. The only failures to be considered are those of the three elements

(weighted average blocks) which feed the median circuit.

The time-mode weighted average block has components like current sources,

digital switches, comparator and a capacitor. It is possible for any of these

components to fail and introduce errors in the output of the circuit. For explanation

purposes, let the output of the weighted average circuit when there are no failures

in its components be tideal
out and the output when there are some failures be tobtained

out .

The weighted average blocks can fail in two modes:

1. tobtained
out < tideal

out . This also includes the case where due to failure there is no
output from the weighted average block (tobtained

out is close to infinity).

39

Figure 2–22. Block diagram of a reliable time-mode weighted average circuit

2. tobtained
out > tideal

out . This also includes the case where due to failure, the weighted
average block fires an output immediately after its internal nodes are reset
(the reset stage is not shown in the figure) - (tobtained

out is close to zero).

Let us assume that the probability that any weighted average block will

function correctly is R0. The probability that the redundant system is not going to

fail R1 is given by the sum of the three cases mentioned below:

1. All the three time-mode weighted average blocks function correctly. The
probability that the redundant system is not going to fail in this case is given
by R3

0.

2. One of the weighted average blocks fail in any of the two modes - (tobtained
out >

tideal
out) or (tobtained

out < tideal
out) mentioned earlier and the other two function

correctly, in which case the output of the system would still be correct. The
probability for this case is given by (1 − R0)R

2
0. Since this case can happen in

three different ways, the total probability for this case is 3(1 − R0)R
2
0.

3. Two of the three weighted average blocks fail in this case but we assume that
the elements have equal probability of failing in either of the modes. That
means that there is a probability of 1

2
that the two weighted average blocks

will fail in opposite directions (one block firing output early and the other
firing output late), in which case the output of the redundant system would
still be correct. The probability that two elements fail and the others still

40

function correctly is (1 − R0)
2R0 and this can happen in three different ways.

Therefore, the probability for this case is given by 3
2
(1 − R0)

2R0.

Therefore, the total probability that the redundant system is not going to fail

R1 is given by the sum of the probabilities obtained in the above mentioned three

cases [22]:

R1 = R3
0 + 3(1 − R0)R

2
0 +

3

2
(1 − R0)

2R0

=
3

2
R0 −

1

2
R3

0 (2–42)

Figure 2–23. Plot showing the increase in reliability of the redundant circuit as
compared to the individual elements

From the result shown in Eq. 2–42, we see that the redundant time-mode

weighted average circuit is always more reliable than the individual elements.

This can also be realized from the reliability curve in Figure 2–23. As shown in

that figure, there is a considerable improvement in the reliability of the redundant

circuit as compared to the reliability of the individual elements.

2.5.4 Discussion

We see that for the above 2 cases, redundancy provides additional reliability

for the weighted average circuit. Many circuit designers would be concerned

41

that such redundancy would increase the chip area. But, most of the real time

applications would compromise on the chip area than on the reliability of the

circuits. Also, this redundant weighted average circuit can be seen as a stepping

stone towards improving the reliability of nanocomputational circuits.

In Chapter 2, we will see how the performance of the time-mode weighted

averaging circuit with its voltage-mode and current-mode counterparts.

CHAPTER 3
SNR COMPARISON OF WEIGHTED AVERAGING CIRCUITS

We have quantified the performance of time-mode circuits in terms of

key measures such as SNR, DR and power consumption. These performance

metrics are not clear-cut. For instance, dynamic range is a well-defined concept

in voltage-mode and current-mode but must be carefully considered for some

time-mode circuits whose inputs can be arbitrarily large.

We need to compare the performance measures such as SNR and DR of

time-mode circuits to corresponding voltage-mode and current-mode circuits by

making a ceteris paribus (other things being equal) comparison. Since it is difficult

to compare all possible voltage-mode, current-mode and time-mode computation

circuits, we would like to start by restricting ourselves to the comparison of

weighted average circuits shown in the Figures 3–1, 3–3 and the time-mode

weighted averaging circuit discussed in Chapter 2. We will quantize their SNR

and DR, compare their performances, and comment on them. The main criteria

for the choice of these voltage and current mode weighted average circuits are low

complexity and low power consumption. The choice would enable us to perform a

fair comparison with the basic two-input time-mode weighted average circuit.

The first circuit operating in voltage-mode computes

VOUT =
g1V1 + g2V2

g1 + g2

(3–1)

where g1 and g2 represent the transconductances of the two OTAs in the circuit.

The transconductances are set by the individual bias voltages applied to the OTAs.

V1, V2 are the two input voltages and VOUT is the output voltage of the circuit.

42

43

The second circuit operating in current-mode computes

IOUT =
ek1I1 + ek2I2

ek1 + ek2

(3–2)

where I1, I2 are the two input currents and VOUT is the output current of the

circuit. k1, k2 are the voltages applied to the transistors in the circuit. These

voltages contribute to the weights ek1 and ek2 applied by the circuit to compute the

weighted average.

And, as we have seen in Chapter 2, the time-mode weighted averaging circuit

computes

tOUT =
I1t1 + I2t2

I1 + I2

+
CVTH

I1 + I2

(3–3)

As mentioned earlier, though we can come up with more efficient circuits,

the voltage-mode, current-mode and time-mode averaging circuits compared in

this paper are chosen such that their circuit architecture is extremely simple and

consume very low power.

To quantify the SNR relations obtained for voltage-mode, current-mode and

time-mode averaging circuits, let’s make the following assumptions.

• no load capacitance is connected at the output node.

• for simplicity, we assume that all the transistors involved in the analyses have
the same dimensions: W = 6µm and L = 20µm.

• the transistors operate at room temperature.

• process parameters of AMI 0.5µ process are used.

3.1 Voltage-Mode Averaging Circuit

Figure 3–1 illustrates the basic elements used to perform a weighted average of

voltage-mode signals V1 and V2. It consists of two transconductance amplifiers G1

and G2 connected in unity feedback configurations.

44

Figure 3–1. Voltage mode weighted averaging circuit

The output of the circuit is given by the equation:

VOUT =
g1V1 + g2V2

g1 + g2

(3–4)

For SNR calculations, we need to define a reference for the inputs and outputs.

Let us define the input V1 as the reference.

Now, VOUT defined with respect to the reference would be given by,

V̂OUT = VOUT − V1

= (
g1V1 + g2V2

g1 + g2

) − V1

= (
g1V1 + g2V2 − g1V1 − g2V1

g1 + g2

)

=
g2(V2 − V1)

g1 + g2

(3–5)

There are two noises sources in this circuit as shown in Figure 3–2.

1. ∆v1
2 - noise due to operational transconductance amplifier g1 referred to its

positive input.

2. ∆v2
2 - noise due to operational transconductance amplifier g2 referred to its

positive input.

Since these two noise sources are not correlated, we can derive the individual

contribution of each of these noise sources at the output and add up the contributions

by applying superposition.

45

Figure 3–2. Voltage mode weighted averaging circuit with noise sources

3.1.1 Noise Contribution at the Output due to ∆v1
2

At one particular instant in time, if the instantaneous noise of OTA1 is ∆v1,

then the instantaneous noise at the output is give by,

∆VOUT1 =
g2(V2 − (V1 + ∆v1))

g1 + g2

− g2(V2 − V1)

g1 + g2

= −(
g2∆v1

g1 + g2

) (3–6)

The variance of the noise at the output is given by,

∆VOUT1
2 =

g2
2∆v1

2

(g1 + g2)2
(3–7)

Similar calculations are done for the noise contribution from OTA2.

3.1.2 Noise Contribution at the Output due to ∆v2
2

At one particular instant in time, if the instantaneous noise of OTA2 is ∆v2,

then the instantaneous noise at the output is give by,

∆VOUT2 =
g2((V2 + ∆v2) − V1)

g1 + g2

− g2(V2 − V1)

g1 + g2

= (
g2∆v2

g1 + g2

) (3–8)

The variance of the noise at the output is given by,

∆VOUT2
2 =

g2
2∆v2

2

(g1 + g2)2
(3–9)

46

Therefore, the total noise contribution at the output due to the two noise

sources is given by,

∆VOUT2
2 =

g2
2(∆v1

2 + ∆v2
2)

(g1 + g2)2
(3–10)

Assuming that the OTAs are basic 5-transistor differential input/single

ended output OTAs, we would have noise contributions from the input transistors

and the mirror transistors. Neglecting flicker noise of these transistors (valid

for intermediate and high frequencies) and taking only thermal noise into our

calculations, the input referred noise variances are given by:

∆VOUT1
2 = 4(

8kT

3g1

)∆f (3–11)

∆VOUT2
2 = 4(

8kT

3g2

)∆f (3–12)

3.1.3 Noise Bandwidth

The voltage-mode weighted averaging circuit has a pole at its output that

occurs at

fc =
1

2πROUT COUT

(3–13)

where, COUT is the capacitance at the output node, usually defined by the load

capacitance CL.

ROUT =
1

g1

|| 1

g2

=
1

g1 + g2

(3–14)

Hence,

fc =
1

2π 1
g1+g2

COUT

=
g1 + g2

2πCOUT

(3–15)

If an amplifier has just one pole at fc, then the noise bandwidth is given by

∆f =
π

2
fc =

π

2
(

g1 + g2

2πCOUT

) =
g1 + g2

4COUT

(3–16)

47

The signal-to-noise ratio is given by

SNR =

g2

2
(V2−V1)2

(g1+g2)2

g2

2
(∆v1

2+∆v2
2)

(g1+g2)2

=
(V2 − V1)

2

(∆v1
2 + ∆v2

2)

=
(V2 − V1)

2

4(8kT
3g1

+ 8kT
3g2

)∆f

=
(V2 − V1)

2

4(8kT
3g1

+ 8kT
3g2

)(g1+g2

4COUT
)

=
(V2 − V1)

2

48kT
3

(g1+g2

g1g2

)(g1+g2

4COUT
)

=
3

8kT

(V2 − V1)
2g1g2COUT

(g1 + g2)2
(3–17)

For an averaging circuit, g1 = g2 and the SNR relation becomes,

SNR =
3

32kT
(V2 − V1)

2COUT (3–18)

For AMI 0.5µ process, maximum value of V2 − V1 that could be achieved

= 3.5V (thought the rail-to-rail voltage is 5V, to maintain the transistors of the

OTA in saturation the input voltage swing would be lower). Also, through hand

calculations we found out that the output node capacitance is 0.4pF . Substituting

all the values to Eq. 3–18, we get maximum SNR of 80dB.

3.2 Current-Mode Averaging Circuit

Figure 3–3 illustrates the circuit that performs weighted average of currents I1

and I2. In this circuit, transistors M1-M4 operate in the sub-threshold region and

they are in saturation.

We assume that in all the sub-threshold current equations below that κ = 1.

By using KCL at nodes 1 and 2 in Figure 3–3, we can write

I1 = ISe
K2−VA

VT + ISe
K1−VA

VT

= ISe
−VA
VT [e

K1

VT + e
K2

VT] (3–19)

48

Figure 3–3. Current mode weighted averaging circuit

and

I2 = ISe
K2−VB

VT + ISe
K1−VB

VT

= ISe
−VB
VT [e

K1

VT + e
K2

VT] (3–20)

From Eqs. 3–19 and 3–20, we get

I1

I2

=
e
−VA
VT

e
−VB
VT

(3–21)

The output current is given by

IOUT = ISe
K1−VA

VT + ISe
K2−VB

VT (3–22)

Figure 3–4. Current mode weighted averaging circuit with noise sources

49

Substituting Eq. 3–21 in Eq. 3–22, we get

IOUT = ISe
−VA
VT [e

K1

VT +
I2

I1

e
K2

VT]

= ISe
−VA
VT

[I1e
K1

VT + I2e
K2

VT]

I1

(3–23)

Using Eq. 3–19 in Eq. 3–23, we get

IOUT =
I1e

K1

VT + I2e
K2

VT

e
K1

VT + e
K2

VT

(3–24)

Figure 3–4 shows the current mode weighted averaging circuit with noise

sources. As shown in the figure, there is noise associated with each transistor in the

circuit and the equivalent noise variances can be represented using current sources

connected in parallel to the transistors. The noise current source ∆I1 sees the

source resistance 1
gm1

of transistor M1 and the source resistance 1
gm2

of transistor

M2 as shown in Figure 3–5. Since K1 = K2, gm1 = gm2. Therefore, half of the

current ∆I1 flows through transistor M2 and contributes to noise in the output

current IOUT . Similarly only half of noise currents ∆I2, ∆I3 and ∆I4 contributes to

output noise.

Therefore, the total output noise current is given by

∆IOUT =
∆I1 + ∆I2 + ∆I3 + ∆I4

2
(3–25)

The variance in the output noise current is given by

∆IOUT
2 =

∆I1
2 + ∆I2

2 + ∆I3
2 + ∆I4

2

4
(3–26)

Neglecting flicker noise, the noise current of a transistor operating in the

subthreshold region is given by 2KTgm. Substituting this noise current expression

50

in Eq. 3–26, we get

∆IOUT
2 =

∆I1
2 + ∆I2

2 + ∆I3
2 + ∆I4

2

4

=
(2KTgm1 + 2KTgm2)∆f1 + (2KTgm3 + 2KTgm4)∆f2

4
(3–27)

where the noise currents of transistors M1 and M2 would have a noise bandwidth

determined by R-C time constant of node 1 and noise currents of transistors M3

and M4 would have a noise bandwidth determined by R-C time constant of node 2.

Since K1 = K2, for subthreshold transistors gm1 = gm2. Similarly, gm3 = gm4.

Therefore,

∆IOUT
2 = (KTgm1)∆f1 + (KTgm3)∆f2 (3–28)

Figure 3–5. Half of the noise current from each transistor flows to the output

The pole contributed by node 1 is given by:

fnode1 =
1

2π 1
gm1||gm2

Cnode1

=
gm1

πCnode1

(3–29)

Noise bandwidth for noise currents of transistors M1 and M2 is given by,

∆f1 =
π

2
fnode1 =

π

2
(

gm1

πCnode1

) =
gm1

2Cnode1

(3–30)

The pole contributed by node 2 is given by:

fnode2 =
1

2π 1
gm3||gm4

Cnode2

=
gm3

πCnode2

(3–31)

51

Noise bandwidth for noise currents of transistors M3 and M4 is given by,

∆f2 =
π

2
fnode2 =

π

2
(

gm3

πCnode2

) =
gm3

2Cnode1

(3–32)

as parasitic capacitance Cnode1 = Cnode2.

The variance in the output noise current is given by,

∆IOUT
2 = (KTgm1)

gm1

2Cnode1

+ (KTgm3)
gm3

2Cnode2

=
kT

2Cnode1

(g2
m1 + g2

m2)

=
kT

2Cnode1V 2
T

(I2
1 + I2

2) (3–33)

Since the discussions would get too complex, let us just focus our discussions

here to current mode averaging functionality. Lets assume that K1 = K2. The

output IOUT in this case is given by IOUT = I1+I2
2

. The output referred to the first

input I1 is given by,

ÎOUT = IOUT − I1

= (
I1 + I2

2
) − I1

=
I1 − I2

2
(3–34)

The signal-to-noise ratio is given by

SNR =
(I2−I1)2

4
kT

2Cnode1V 2

T

(I2
1 + I2

2)

=
V 2

T Cnode1(I2 − I1)
2

2kT (I2
1 + I2

2)
(3–35)

To quantify the SNR equation, we substituted these nominal values: Cnode1 =

0.4pF (as in the voltage-mode case), I1 = 1nA (low sub-threshold current) and

I2 = 20nA (high subthreshold current) in Eq. 3–35. The maximum SNR that can

be obtained from this circuit is 44dB.

52

3.3 Discussion

Clearly, the SNR achieved by the time-mode weighted average circuit is higher

than the SNR achieved by voltage-mode and current-mode weighted average

circuits. The SNR values obtained from simulations differ only by 1% from the

SNR values obtained through hand-calculations as shown in Figure 3–6.

130nm 90nm 65nm 45nm 32nm
30

35

40

45

50

55

60

65

S
N

R
 in

 d
B

Comparison of calculated and simulated SNR Values

Simulated
Calculated

Figure 3–6. Calculated and simulated SNR values of a time-mode weighted
averaging circuit over technology

So far we have just discussed a single type of time-mode circuit - the weighted

averaging circuit. In Chapter 4, we will describe other time-mode computational

circuits.

CHAPTER 4
OTHER TIME-MODE CIRCUIT EXAMPLES

In this chapter, we will introduce a family of time-mode circuits that can

perform linear computations like weighted subtraction, weighted sum, scalar

multiplication, maximum and minimum computations.

4.1 Weighted Subtraction Circuit

By replacing the PMOS transistor M2 by an NMOS transistor and changing

the direction of the I2 of the basic block in Figure 2–1A, we obtain a circuit that

can perform weighted subtraction of steps occurring at t1 and t2 as shown in

Figure 4–1A.

VTHC

I2

I
1

t
1

t2

M1

M
2

-
+

t
OUT

t
2

(with initial
voltage VTH)

0

V
TH

t1 t2
tOUT

V
C

t

CHARGED
BY I

1

DISCHARGED
BY I

2
-I

1

A) B)

Figure 4–1. Weighted subtraction circuit. A) Circuit schematic. B) Idealized graph
showing the capacitor’s voltage at different time periods.

We will assume that the capacitor is initially charged to a voltage VTH , t1 < t2,

I2 > I1. As soon as the first step enters the block at time t1, the current source I1

starts to charge the capacitor. When the input step occurs at time t2, net current

I2 − I1 (with I2 > I1) starts discharging the capacitor as shown in Figure 4–1B.

When the capacitor voltage reaches VTH , the comparator outputs a step at time

tOUT . The output of the comparator contains an unwanted pulse at the reference

53

54

time because the positive and negative terminals of the comparator carries the

same voltage VTH . The AND gate connected to the output of the comparator

ensures that the output from the block contains only a step output at time tOUT .

Once the block outputs a step, an appropriate reset stage (not shown in the figure)

resets the capacitor to 0V .

The output tOUT from the block is given by the equation,

tOUT =
I2t2 − I1t1

I2 − I1

(4–1)

We see from the equation above that, the block applies a weight I2/(I2 − I1) to t2

and a weight I1/(I2 − I1) to t1. This block has a single-ended output.

Without the assumptions made above, different outputs given out by the block

can be summarized in a single equation:

tOUT =

I2t2 − I1t1
I2 − I1

, for t1 < t2, I2 > I1 (4–2a)

I1t1 − I2t2
I1 − I2

, for t1 > t2, I2 < I1 (4–2b)

No output, otherwise (4–2c)

As in the weighted averaging circuit, inputs t1, t2 and output tOUT are

time-steps and are defined within a frame. When the frame ends, the inputs and

the output steps also end and the circuit is reset. As the next frame starts, the

circuit would be ready to process the next set of inputs t1 and t2.

4.2 Weighted Sum Circuit

The circuit shown in Figure 4–2A is again a minor modification of the basic

block shown in Figure 2–1A. We will assume that the capacitor is initially charged

to a voltage VTH , t1 < t2, I2 − I1 < I3. As soon as the frame starts (at time tREF),

net current I1 + I2 − I3 starts to charge the capacitor as shown in Figure 4–2B.

When the first temporal signal enters the block at time t̂1 (where t̂1 is defined

as t1 with respect to reference time tREF) , the current source I1 stops charging

55

the capacitor and net current I2 − I3 charges the capacitor C. When the second

signal enters the block at time t̂2 (where t̂2 is defined as t2 with respect to reference

time tREF), current source I3 discharges the capacitor. A comparator senses the

voltage across the capacitor and outputs a step when the voltage reaches the

threshold voltage VTH . The output of the comparator would contain an unwanted

pulse at the reference time because the positive and negative terminals of the

comparator carry the same voltage VTH . The AND gate connected to the output of

the comparator ensures that the output from the block contains only a step output

at time t̂OUT = tOUT − tREF . Once the block outputs a step and the frame ends, an

appropriate reset stage (not shown in the figure) would reset the capacitor voltage

to VTH at reference time tREF .

tOUT is the time when the output step of the block, makes its transition from

low to high voltage.

t̂OUT = (
I1

I3

)t̂1 + (
I2

I3

)t̂2 (4–3)

From the above equation, we observe that the block computes a weighted sum of

the two input time steps occurring at times t̂1 and t̂2.

An output from the block occurs when

(I1 + I2 − I3)t̂1 + (I2 − I3)(t̂2 − t̂1) > 0 (4–4)

Solving Eq. 4–4, we would get

I1t̂1 + I2t̂2 > I3t̂2 (4–5)

Eq. 4–5 can be interpreted as,

t̂2 > (
I1

I2 − I3

)t̂1 (4–6)

Since t1 < t2 was assumed, it follows that I1
I2−I3

> 1 or I3 > I2 − I1.

56

If we assume that t2 occurs before t1, we would get an output from the block,

when

(I1 + I2 − I3)t̂2 + (I1 − I3)(t̂1 − t̂2) > 0 (4–7)

Solving Eq. 4–7 gives I3 > I1 − I2.

VTH

C

I
2I

1

M1

M2

I3

+
-

t
1

t
2

(with initial
voltage VTH)

t
OUT

t1
tREF

V
TH

t
1 t2

tOUT

V
C

t

CHARGED
BY I2-I3

DISCHARGED
BY I3

CHARGED
BY I1+I2-I3

A) B)

Figure 4–2. Weighted sum circuit. A) Circuit schematic. B) Idealized graph
showing the capacitor’s voltage at different time periods.

In both cases, I1 = I2 = I results in

t̂OUT = t̂1 + t̂2 (4–8)

This case corresponds to the sum of two input time steps occurring at t̂1 and t̂2.

Thus, we see that by controlling the current sources, we achieve two different

functionalities from the block - sum and weighted sum.

Without the assumptions made above, different outputs given out by the block

can be summarized in a single equation:

t̂OUT =

(
I1

I3

)t̂1 + (
I2

I3

)t̂2, for t1 < t2, I3 > (I2 − I1) or t1 > t2, I3 > (I1 − I2)(4–9a)

t̂1 + t̂2, for t1 < t2 or t1 > t2, I1 = I2 = I3 (4–9b)

No output, otherwise (4–9c)

The circuit has a single-ended output; the inputs and outputs occurring at t1,

t2 and tOUT are defined with respect to a time reference tREF (start of the frame).

57

4.3 Scalar Multiplication Circuit

By removing the PMOS transistor M1 that controlled current source I1

charging the capacitor, replacing PMOS transistor M2 by an NMOS transistor M2

and changing the direction of the I2 of the basic block in Figure 2–1A, we obtain a

circuit that can be used for scalar multiplication of a temporal signal entering the

block at time t2 as shown in Figure 4–3A.

V
THC

I
2

I
1

M2

-
+

t
OUT

t
2

(with initial
voltage VTH)t

2

t
REF

V
TH

t2 tOUT

V
C

t

CHARGED

BY I
1

DISCHARGED

BY I
2
-I

1

A) B)

Figure 4–3. Scalar multiplication circuit. A) Circuit schematic. B) Idealized graph
showing the capacitor’s voltage at different time periods.

Assuming that the capacitor is initially charged to a voltage VTH , the current

source I1 starts to charge the capacitor as soon as the frame starts (at time tREF).

The input step occurs at time t̂2 where, as above, t̂2 is defined as t2 with respect

to reference time tREF . The current source I2 − I1 starts discharging the capacitor

as shown in Figure 4–3B. When the capacitor voltage reaches VTH , the comparator

outputs a step at time tOUT . The output of the comparator would also contain an

unwanted pulse at the reference time because the positive and negative terminals

of the comparator would carry the same voltage VTH . The AND gate connected to

the output of the comparator ensures that the output from the block contains only

a step output at time tOUT . Once the block outputs a step, an appropriate reset

stage (not shown in the figure) would reset the capacitor to VTH at reference time

tREF .

58

The output tOUT from the block is given by the equation,

t̂OUT = (
I2

I2 − I1

)t̂2 (4–10)

We see from the equation above that, the block multiplies time t̂2 with a scalar

I2/(I2 − I1).

Without the assumptions made above, different outputs given out by the block

can be summarized in a single equation:

t̂OUT =

(
I2

I2 − I1

)t̂2, for I2 > I1 (4–11a)

No output, for I2 ≤ I1 (4–11b)

This block has a single-ended output and the inputs and outputs are defined

with respect to a time reference tREF (the start of the frame).

4.4 Maximum(MAX)/Minimum(MIN) Circuit

t
2

tOUT

t
1

Figure 4–4. Circuit schematic of MAX circuit

t
2

tOUT

t
1

Figure 4–5. Circuit schematic of MIN circuit

The MAX and MIN circuits shown in Figures 4–4 and 4–5 support inputs

and outputs that have absolute time as the reference. The output from the MAX

59

and MIN circuits are single-ended. This block processes two temporal signals say,

the time steps occurring at t1 and t2 as shown in the figure, and determines the

max(t1, t2) or min(t1, t2) of the two steps. If the signal was to be represented

using voltages, a complex circuit would be required to compute max(V1, V2) or

min(V1, V2). In time-based analog computation, the circuitry to compute these

functions is straightforward.

The time-mode linear computational circuits we have discussed so far and the

thresholded difference block (to be discussed in Chapter 5) can be classified into

different subclasses based on their output style, shown in Table 4–1.

Table 4–1. Classification of Time-mode computational circuits. Relative time
reference implies that the inputs and outputs are defined with respect to
a reference time (start of a frame). Absolute time reference implies that
inputs and outputs are not defined with respect to a reference time.

Output Single-ended Differential
Absolute time reference Weighted Averaging Circuit Thresholded difference

Weighted Subtraction Circuit block of Edge detection
MAX circuit
MIN circuit

Relative time reference Sum circuit
Scalar Multiplication Circuit

So far, we have discussed time-mode computational circuits to perform

computations like weighted average, weighted subtraction, weighted sum, scalar

multiplication, maximum and minimum. In Chapter 6, we will discuss a couple of

applications - a time-mode edge detection circuit and a time-mode 3-tap FIR filter.

CHAPTER 5
APPLICATION OF TIME-MODE CIRCUITS

5.1 Time-Mode Edge Detection Circuit

Time-mode circuits provide a seamless interface to the growing number of

time-based sensors which already output compatible timing events [14], [15]. In

this section, an example is given where a time-mode edge detector is developed to

directly interface to the output of a time-to-first spike imager [14].

Figure 5–1. Edge detection by derivative operators

5.1.1 Basic Formulation

Edge detection in image processing has been studied for many years and is

well understood [23]. An edge is the boundary between two regions with relatively

distinct gray-level properties. In all the discussions below, we assume that the

60

61

regions in question are sufficiently homogeneous so that the transition between two

regions can be determined on the basis of gray-level discontinuities alone.

Traditionally, the idea underlying most edge-detection techniques is the

computation of the local derivative operator. This concept is illustrated in

Figure 5–1. The figure shows a synthetic image of a light object on a dark

background, the gray-level profile along a horizontal scan line of the image,

and the first and second derivatives of the profile. We note from the profile that

an edge (transition from dark to light) is modeled as a ramp, rather than as an

abrupt change of gray level. The first derivative of an edge modeled in this manner

is 0 in all regions of constant gray level, and assumes a constant value during a

gray-level transition. The second derivative, on the other hand, is 0 in all locations,

except at the onset and termination of a gray-level transition. Based on these

remarks, it is evident that the magnitude of the first derivative can be used to

detect the presence of an edge, while the sign of the second derivative can be used

to determine whether an edge pixel lies on the dark (background) or light (object)

side of an edge. The sign of the second derivative in Figure 5–1 for example, is

positive for pixels lying on the dark side of both the leading and trailing edges of

the object, while the sign is negative for pixels on the light side of these edges.

Although the discussion thus far has been limited to a one-dimensional horizontal

profile, a similar argument applies to an edge of any orientation in an image.

In this chapter, we will discuss the design of a time-mode edge detector

that performs a first derivative operation on the pixel outputs through a novel

time-mode thresholded differencing block to detect both the presence and the sign

of the edges. Significant changes in scene illuminance are typically detected with a

spatial derivative operation following a spatial smoothing process that reduces high

frequency noise. Figure 5–2 shows the basic data flow in the proposed time-based

edge detection scheme. Initially the time steps corresponding to pixel intensities

62

are smoothed. Next, the smoothed time steps are fed to a thresholded differencing

block that finds the difference between the input steps and thresholds the result.

The output of the thresholded derivative block can either be positive or negative

implying a positive or negative edge between pixels.

SMOOTHING SMOOTHING SMOOTHING SMOOTHING

THRESHOLD

DIFFERENCE

THRESHOLD

DIFFERENCE

THRESHOLD

DIFFERENCE

t
n-1

tn tn+1 t
n+2

en-1
en

en+1

Figure 5–2. Data flow in time-mode edge detection

5.1.2 Smoothing

We have previously fabricated a time-to-first spike CMOS imager in our lab

[24],[14]. This imager provides output steps whose timing encodes illumination

information at each pixel. These spatial information must be smoothed to eliminate

noise in the image as well as noise introduced by the electronics.

Step (pixel 1) Step (pixel 2)

Step (pixel 3)

SMOOTHED STEP

VTH
C

II

t3

t
OUT

t
1

2*I

t2

Figure 5–3. Circuit to smooth pixel intensities

Figure 5–3 shows a circuit that could be used to perform smoothing of these

pixel intensities. We implement a standard convolution mask with weights of 1-2-1

63

by appropriately scaling the current source values. Since the circuit shown in

Figure 5–3 is a special case of the weighted averaging circuit explained in Chapter

2, we can easily derive the smoothing block’s output expressed below:

tOUT =
t1 + 2t2 + t3

4
+

CVTH

4I
(5–1)

5.1.3 Thresholded Difference

The threshold difference block performs a spatial first derivative operation on

the smoothing circuit’s outputs. By replacing one PMOS transistor by an NMOS

transistor and changing the direction of the corresponding current source in the

time-mode weighted averaging circuit, we obtain a circuit that can be used to

obtain thresholded differences of steps shown in Figure 5–4. There are two cases to

be considered assuming that VC is initially reset to a midrange voltage:

• One of the smoothed steps enters the thresholded difference block first, starts
to linearly charge (or discharge) the capacitor until it hits the positive (or
negative) threshold VTH (or −VTH) before the second smoothed step enters the
block. Here, we have a step from the positive (or negative) output of the block
at time

tOUT = t1 +
CVTH

I
(5–2)

The threshold implemented by this block is CVTH/I. This threshold value can
be programmed by choosing desired values for VTH and I.

• The two smoothed step inputs arrive within the threshold time CVTH/I. Since
the positive and negative current sources exactly cancel one other, no step
is generated from either the positive or negative output indicating no edge
between pixels. Mismatches between the two current sources will eventually
cause one of the outputs to fire, but at a time much longer than the frame
time of the system.

If the thresholded difference block fires an output, we can know the presence

of edges between adjacent pixels. Also, depending on whether we get positive

output or negative output we can infer the sign of the edges. That is, a positive

output implies that pixel 1 is brighter than pixel 2. Thus, from the outputs of the

64

Smoothed Step

(pixel 2)

C = 2.5pF

POSITIVE OUTPUT FROM
THRESHOLD DERVIATIVE

BLOCK

Smoothed Step
(pixel 1)

I

I

VTH

-V
TH

NEGATIVE OUTPUT FROM
THRESHOLD DERVIATIVE

BLOCK

Figure 5–4. Circuit used to obtain thresholded differences on the smoothed steps

threshold differentiation block (that performs a spatial first derivative operation),

we can detect both the presence and the sign of the edges.

5.1.4 Results

Using the time-mode edge detection concepts explained above, we processed

a noisy JPEG image to detect edges. The whole operation is completed within

3 frames. The frames are defined by the imaging process - typically 30ms. The

MATLAB simulation results are shown in Figure 5–5. In the first frame, we

converted the pixel magnitude information (between 0 and 255) of each pixel to

timing information using reverse coding. A bright pixel would fire earlier compared

to a dark pixel, that is, with respect to the frame the bright pixel would have a

smaller temporal amplitude compared to a dark pixel. In the second frame, we

remove the spurious noise in the image by using time-mode smoothing circuits.

After smoothing, we perform the spatial first derivative operation by running the

smoothing block’s outputs through time-mode thresholded difference blocks in the

third frame.

For better understanding, let us restrict our analysis to 16 pixels. The original

noisy image, smoothed image and the detected edges are shown in Figure 5–6. The

noisy original image and the smoothed image are shown in dotted lines and solid

65

lines respectively. The edges detected are shown special characters in the figure.

From the results shown, we can infer that the time-based edge detection method is

extremely accurate.

For these 16 pixels, Figure 5–7 shows the Cadence simulation outputs from

different stages in the time-based edge detection process. The length of the frame

and the threshold we chose for the thresholded difference block are 30ms and 15ms

respectively. In the figure, the original image is shown followed by the temporal

signals output by the imager. It is followed by the outputs of the smoothing

and thresholded difference blocks. The edge detection circuits needs 3 frames to

complete their operations. The final results indicate that only three edges were

detected to be above the threshold. The power consumed by the edge detection

circuits for these 16 pixels was in the order to 35µW .

66

Figure 5–5. MATLAB simulation results showing the original image, smoothed
image and the detected edges of an image

67

0 10 20 30 40 50 60
−50

0

50

100

150

200

250

Pixel

P
ix

el
 In

te
ns

ity

Time−based Edge Detection

Original Image
Smoothed Image
Edges obtained

Figure 5–6. Simulation results showing the original image, smoothed image and
the detected edges of a 16 pixel image

68

F
ig

u
re

5–
7.

O
u
tp

u
ts

fr
om

d
iff

er
en

t
st

ag
es

in
ti

m
e-

m
o
d
e

ed
ge

d
et

ec
ti

on

69

5.1.5 Discussion

The length of the frame that governs the operation of the time-mode edge

detection circuit has a very important tradeoff. If we opt for longer frames, the

DR of inputs that can be processed by the edge detection circuits is large. With

short frames, the speed of the entire edge detection operation is increased and the

leakage currents of the transistors in the thresholded difference block won’t cause

erroneous outputs.

From Eq. 5–2, we can easily infer that by controlling C, VTH or I we can

program the desired threshold in the thresholded difference block. But, once a edge

detection chip is designed, it is tough to vary the value of C. Therefore, to vary the

threshold, we should either tune VTH or I off-chip.

5.2 3-Tap 1-Quadrant Time-Mode Finite Impulse Response Filter

FIR realization for a N-tap FIR filter follows directly from the convolution sum

relationship written in the form:

y(n) =
N−1
∑

k=0

w(k)x(n − k) (5–3)

For a 3-tap filter,

y(n) =
2

∑

k=0

w(k)x(n − k) = w(0)x(n) + w(1)x(n − 1) + w(2)x(n − 2) (5–4)

From Eq. 5–4, we see that to compute the n-th sample of the output of a 3-tap

FIR filter, we need the current input x(n) and two previous inputs x(n − 1) and

x(n − 2). For example, the output at the 3rd sampling period is given by,

y(3T) = w(0)x(3T) + w(1)x(2T) + w(2)x(1T) (5–5)

If the input and output at the 3rd sampling period are represented in time by

t3T
IN and t3T

OUT respectively, then we can implement a time-mode FIR filter if we can

70

implement,

t3T
OUT = w(0)t3T

IN + w(1)t2T
IN + w(2)tTIN (5–6)

From Eq. 5–6, we see that we would need inputs t2T
IN and tTIN other than t3T

IN to

obtain t3T
OUT . To do this, we can either

• delay t2T
IN by one sampling period and tTIN by two sampling periods, or

• store t2T
IN for one sampling period and tTIN for sampling periods,

so that these inputs would be available during the sampling period 3T when

the computation shown in Eq. 5–6 is to be performed.

When the information is in time, delaying that information (information is

encoded in the rising edge of a time step referenced to the start of a frame) would

involve converting the time information to voltage and then converting that voltage

back to time (information again is a time step but referenced to a new frame)

using analog components. Since we are considering the implementation of a 3-tap

FIR filter, we would need two delay stages. Since the delay stages involve analog

components like current sources and capacitors that have matching constraints,

we might end up with inaccurate delays that might lead to erroneous outputs.

Therefore, the better option would be store the information over various sampling

periods. Since, we have not yet come up with the circuit that would store time

information directly in time, we convert the time information to voltage and store

it on a capacitor.

5.2.1 Finite Impulse Response Computation in Time

The circuit shown in Figure 5–8 is similar to the prototype time-mode

weighted average circuit except that this figure also shows the reset functionality.

Three inputs that enter this block are

1. train of frames - these act as reference for the input and output steps.

2. train of input steps.

71

Figure 5–8. Computational block to be used in the FIR filter

72

3. chip reset.

Lets postpone the discussion of the input processing that should be done to

the two input trains to generate signals IN1, IN2, IN3, NEG IN and COMPUTATION

RESET to the next section. These signals are the inputs to the computational

block shown in Figure 5–8. Before any of the input trains enter the system, the

chip reset signal would reset the capacitor’s voltage to VTH . As the first frame

starts, IN1 generated by the input processing block turns on the switch M1 for a

period t1. This let’s the current source I1 charge the capacitance C for the period

t1 as shown in Figure 5–9.

Figure 5–9. Voltage across the computational block’s capacitor at various times

The voltage across the capacitor is given by,

V 1
C = VTH +

I1t1
C

(5–7)

The capacitor in this block performs two functionalities simultaneously:

73

• input t1 is stored as voltage until the computation ends (at the end of the
fourth frame) to facilitate the FIR type computation (assuming that the
capacitor has minimal or no leakage).

• a weight of I1
C

is applied to the input t1 (though that weight is not the final
weight applied to the input).

After the second frame starts, IN2 turns on the switch M2 causing I2 to charge

the capacitance C for a period t2. The new voltage across the capacitor is given by,

V 2
C = VTH +

I1t1
C

+
I2t2
C

(5–8)

Now, the capacitor is holding both inputs t1, t2 and has applied weights I1
C

and I2
C

respectively. When the third frame starts, IN3 turns on the switch M3 causing I3

to charge the capacitance C for a period t3. Now, the capacitor holds inputs t1,

t2, t3 and has applies weights I1
C

, I2
C

and I3
C

respectively as shown by the capacitor

voltage Eq. 5–9.

V 3
C = VTH +

I1t1
C

+
I2t2
C

+
I3t3
C

(5–9)

As frame 4 starts, the signal NEG IN turns on switch M4 and the current I4 starts

to discharge the capacitance C. With the voltage across the capacitance being

continuously monitored by the comparator, voltage across the capacitance slowly

decreases as I4 discharges it and when the voltage reaches VTH the comparator fires

a step output. The rising time of this output step referenced to the fourth frame

gives the desired output tOUT .

tOUT =
C(V 3

C − VTH)

I4

=
C(I1t1

C
+ I2t2

C
+ I3t3

C
)

I4

=
I1t1
I4

+
I2t2
I4

+
I3t3
I4

(5–10)

From Eq. 5–10, we see that the computational block applies weights I1
I4

, I2
I4

and

I3
I4

to signals t1, t2 and t3 and sums them together. After the block performs this

74

computation, the capacitor voltage is reset to VTH by the computation reset signal

generated by the input processing block.

We made the following basic assumptions to arrive at the above result:

• The inputs t1, t2 and t3 do not saturate the capacitance C.

• Frame 4’s ON period is large enough to discharge the capacitance C (until the
voltage across the capacitance reaches VTH) and produce the output tOUT .

Since, t1, t2, t3 and tOUT are defined with frames 1,2,3 and 4 as reference

respectively, we can write Eq. 5–10 as,

t4T
OUT = (

I1

I4

)tT1 + (
I2

I4

)t2T
2 + (

I3

I4

)t3T
3 (5–11)

As mentioned in the assumptions above, the ON period of frame 4 should be large

enough atleast to produce an output at time tOUT . Therefore, tframe4
ON = tOUT .

Assuming that the OFF period of the frame where the capacitor is reset to VTH

is extremely small, tframe ≈ tOUT . Therefore, the minimum possible frame length

= tOUT and the maximum possible sampling speed = 1
tOUT

.

If the Eq. 5–11 can be interpreted in terms of samples then,

tOUT (4) = (
I1

I4

)tIN(1) + (
I2

I4

)tIN(2) + (
I3

I4

)tIN(3) (5–12)

Comparing Eq. 5–12 with the conventional 3-tap FIR equation shown below,

y(3) = w(2)x(1) + w(1)x(2) + w(0)x(3) (5–13)

we see that tOUT has an extra sample delay when compared to the conventional

FIR output. In other words, the FIR filter’s computation block has an extra pole

at the origin as compared to the conventional FIR filter.

5.2.2 3-Tap 1-Quadrant Time-Mode FIR Filter Architecture

The main functional block of the 3-tap 1-quadrant time-mode FIR filter

architecture is the computational block shown in Figure 5–8. Let’s say that

75

the computational block processes inputs tIN(1) referenced to frame 1, tIN(2)

referenced to frame 2, tIN(3) referenced to frame 3 and produces an output tOUT (4)

referenced to frame 4. The computational block gets ready to process the next set

of inputs only at the end of frame 4 where the capacitor is reset to VTH . The next

output this block would produce is tOUT (8) processing tIN(5), tIN(6) and tIN(7).

Since this block cannot produce the intermediate outputs tOUT (5), tOUT (6) and

tOUT (7), we would need three more computational blocks to produce those outputs.

Therefore, the 3-tap FIR filter would need in total, four computational blocks to

continuously process the input time signals. In general, for a N-tap FIR filter, we

would need N+1 computational blocks to construct the FIR filter.

The complete architecture of a 3-tap time-mode FIR filter is shown in

Figure 5–10. The FIR filter block needs the same 3 inputs as the computational

block - a chip reset, a train of frames and a train of time steps as shown in

Figure 5–12. Every input step (example, t1) in the train of time steps is defined

with respect to a frame (example, frame 1) in the train of frames as shown in

Figure 5–12. The trains of frames and time steps are fed to a input conditioning

block. The architecture of the input conditioning block is shown in Figure 5–11.

The input conditioning block performs the following functions:

• the train of frames and input steps that enter the filter are decoded onto
different lines so that they can be fed to the various computational blocks’
inputs.

• generates the necessary charging/discharging pulses for the computational
blocks.

• generates the reset pulses necessary to reset the capacitors of the computational
blocks to their initial voltage VTH .

Each computational block needs 3 inputs in different lines - because we are

designing a 3-tap FIR filter. Also, since there are four computational blocks that

process the following different sets of inputs - (t1,t2,t3), (t2,t3,t4), (t3,t4,t5) and

76

Figure 5–10. 3-tap time-mode FIR filter architecture

77

Figure 5–11. The architecture of the input conditioning block

78

(t4,t5,t6) - that is, at every sample (frame), we would need 6 inputs in 6 different

lines for the 4 computational blocks. To keep moving these inputs at different

input lines during every frame, we have used 2 counters - a 2-bit counter and a

3-bit counter (that counts between 3 and 5) - followed by decoders. Similarly, since

we need the frames to discharge the capacitances of the computational blocks,

we have a 3-bit counter followed by a decoder to decode the frame train onto 4

different lines.

Figure 5–12. 3-tap FIR filter’s input, digital preconditioning block and its outputs

79

The architecture shown is for a 1-quadrant FIR filter. That is, it can only

process positive inputs and apply positive weights to those inputs. By adding extra

circuitry, we can extend this architecture to process both positive and negative

inputs and apply both positive and negative weights to those inputs.

5.2.3 Step-by-Step Description of the Functionality

1. Figure 5–13 describes the state of the computational blocks as input t1 enters
the blocks. At sampling instant tFRAME, we can see only the capacitance of
the computational block C1 being charged by current I1.

2. As input t2 enters the blocks at sampling instant 2tFRAME ,
• I2 charges capacitor C1, and,
• I1 charges capacitor C2 of computational block 2,

as shown in Figure 5–14.

3. As input t3 enters the blocks at sampling instant 3tFRAME as shown in
Figure 5–15,

• I3 charges capacitor C1 of computational block 1,
• I2 charges capacitor C2 of computational block 2, and
• I1 charges capacitor C3 of computational block 3,

4. At sampling instant 4tFRAME as frame 4 and input t4 enter,
• frame 4 charges capacitor C1,
• I3 charges capacitor C2, and,
• I2 charges capacitor C3

as shown in Figure 5–16.

5. As frame 4 is about to finish as shown in Figure 5–17,
• capacitor C1 is reset to VTH and it is ready for frame 5 and input t5,
• voltage of capacitor C2 stays a constant, and,
• voltage of capacitor C3 stays a constant,

5.3 Simulation Results

To test the filter functionality of the circuit shown in Figure 5–10, we chose the

following values for the current sources: I1 = 302nA, I2 = 400nA, I3 = 302nA and

I4 = 1µA with C=5pF and VTH = 2.5V (for a supply voltage of 5V). The weights

applied to inputs become I1
I4

= .302, I2
I4

= .4, I3
I4

= .302.

80

Figure 5–13. State of the FIR filter as input t1 enters

81

Figure 5–14. State of the FIR filter as input t2 enters

82

Figure 5–15. State of the FIR filter as input t3 enters

83

Figure 5–16. State of the FIR filter as input t4 enters the system and with frame 4
discharging computational block 1

84

Figure 5–17. State of the FIR filter before frame 5 starts

85

The output of the computational block was previously derived as,

tOUT (4) = (
I1

I4

)tIN(1) + (
I2

I4

)tIN(2) + (
I3

I4

)tIN(3) (5–14)

The general expression for this output can be written as,

tOUT (n) = (
I1

I4

)tIN(n − 3) + (
I2

I4

)tIN(n − 2) + (
I3

I4

)tIN(n − 1) (5–15)

Taking z-transform of this output, we would get

tOUT (z) = (
I1

I4

)tIN(z)z−3 + (
I2

I4

)tIN(z)z−2 + (
I3

I4

)tIN(z)z−1

tOUT (z)

tIN(z)
= (

I1

I4

)z−3 + (
I2

I4

)z−2 + (
I3

I4

)z−1

H(z) = (
I1

I4

)z−3 + (
I2

I4

)z−2 + (
I3

I4

)z−1 (5–16)

Substituting the weights in Eq. 5–16 we get,

H(z) = 0.302z−3 + 0.4z−2 + 0.302z−1 (5–17)

The poles and zeros of this FIR filter are shown in Figure 5–18. The sampling

frequency chosen for the simulations is 100KHz. The FIR filter’s magnitude

response and phase response are shown in Figures 5–19 and 5–20 respectively.

From the plots, we see that the choice of coefficients I1 = 60.4nA, I2 = 80nA,

I3 = 60.4nA and I4 = 100nA has tuned the FIR filter to function as a low pass

filter with a cut-off frequency of ≈ 10KHz, stop-band attenuation of ≈ 20dB and

a passband attenuation of ≈ 1dB. Similarly, by choosing different values (either

positive or negative) we can come up with high pass, band pass and notch filters.

It is important to note that the architecture shown in Figure 5–10 can handle only

positive currents. If negative currents are to be handled, the circuit architecture

would have to be altered.

86

Figure 5–18. Pole-zero plots of the FIR filter

0 10 20 30 40
−100

−80

−60

−40

−20

0

20

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Figure 5–19: Time-mode FIR filter’s magnitude response (sampling freq = 100
kHz)

87

0 10 20 30 40
−300

−250

−200

−150

−100

−50

0

Frequency (kHz)

P
ha

se
 (

de
gr

ee
s)

Phase Response

Figure 5–20. Time-mode FIR filter’s phase response

The FIR filter’s input and output waveforms in the time domain and frequency

domain are shown in Figures 5–22 and 5–23. From the time domain waveform, we

see that the output waveform is essentially a delayed version of the input waveform

(as would be expected from a low pass filter) with the delay being equal to 2

samples = 20µs. This 2-sample delay is also confirmed by the group delay plot

shown in Figure 5–21 where the group delay of the FIR filter was obtained as 2

samples. In the freq domain, we see that the FIR filter attenuates the input signal’s

energy for frequencies above 10kHz by ≈ 20dB.

Figure 5–24 shows the Cadence simulation results for a 3-tap time-mode

FIR filter. The various plots shown in the figure are: Input frame train, Input

time step train, outputs of the four computational blocks and the final output

from the FIR filter. We can see from the figure that for t1 = 10µs, t2 = 40µs,

t3 = 70µs, from simulations we get tOUT = 41.1µs. From hand calculations, we

expect tOUT = 40.2µs. The small difference between the expected output time

and the expected output time should be attributed to the delay of the digital

blocks processing the inputs, delay of the comparator and the leakage currents

88

0 5 10 15 20 25 30 35 40 45
1

1.5

2

2.5

3

Frequency (kHz)

Group Delay

Figure 5–21. Time-mode FIR filter’s group delay

Figure 5–22. Time-mode FIR filter’s input and output waveforms (in time
domain)

89

Figure 5–23. Energy of FIR filter’s input and output signals

charging the capacitance. The DC power consumed by the FIR filter is ≈ 89.45µW .

The speed of operation of the filter is ≈ 25kHz. There is an interesting trade-off

between speed and input/output dynamic range in time-mode FIR filters. As

information is represented in time, to accommodate a very high dynamic range in

the inputs we may have to increase the duration of a frame. This in turn means

that the sampling frequency is reduced. Therefore, the speed of operation is

reduced. This, we see that there is a direct tradeoff between the speed of operation

of the FIR filter and its input/output dynamic range.

90

F
ig

u
re

5–
24

.
C

ad
en

ce
si

m
u
la

ti
on

re
su

lt
s

fo
r

th
e

ti
m

e-
m

o
d
e

3-
b
it

F
IR

fi
lt

er

91

5.4 Signal-to-Noise Ratio/Dynamic Range Analysis

The output of the basic computational block of the FIR filter is given by

tOUT = (
I1

I4

)t1 + (
I2

I4

)t2 + (
I3

I4

)t3 (5–18)

There are 4 noise sources that dominate the noise performance of this circuit.

1. Shot noise of the DC current source I1.

2. Shot noise of the DC current source I2.

3. Shot noise of the DC current source I3.

4. Shot noise of the DC current source I4.

These noise sources are uncorrelated and therefore we can consider the impact

of each of these noise sources on the output of the circuit. Also, as previously done

for the SNR analysis of the prototype weighted average circuit we neglect the noise

contributed by the comparator and we also neglect the noise of the reset transistors

(as their contributions to the output noise would be smaller compared to the noise

contributions of the DC current sources).

5.4.1 Noise in tOUT due to Noise in Current Source I1

Let us assume that current source I1 is noisy with a noise current of ∆I1 (and

a variance of ∆I1
2). Therefore, the total current from the current source is given

by I1 + ∆I1. Since currents I1 + ∆I1, I2, I3 are charging the capacitor and I4 is

discharging the capacitor, the new output from the weighted average circuit is

given by,

tOUT1 = (
I1 + ∆I1

I4

)t1 + (
I2

I4

)t2 + (
I3

I4

)t3 (5–19)

92

The noise at the output ∆tOUT1 can be calculated as shown below:

∆tOUT1 = tOUT1 − tOUT

= ((
I1 + ∆I1

I4

)t1 + (
I2

I4

)t2 + (
I3

I4

)t3) − ((
I1

I4

)t1 + (
I2

I4

)t2 + (
I3

I4

)t3)

= (
∆I1

I4

)t1 (5–20)

The variance of this noise is given by

∆tOUT1
2 = (

∆I1
2

I4
2)t21 (5–21)

5.4.2 Noise in tOUT due to Noise in Current Source I2

Assuming that current source I2 is noisy with a noise current of ∆I2(and a

variance of ∆I2
2), the total current from the current source is given by I2 + ∆I2.

The new output from the weighted average circuit for this case is given by,

tOUT2 = (
I1

I4

)t1 + (
I2 + ∆I2

I4

)t2 + (
I3

I4

)t3 (5–22)

The noise at the output ∆tOUT2 can be calculated as shown below:

∆tOUT2 = tOUT2 − tOUT

= ((
I1

I4

)t1 + (
I2 + ∆I2

I4

)t2 + (
I3

I4

)t3) − ((
I1

I4

)t1 + (
I2

I4

)t2 + (
I3

I4

)t3)

= (
∆I2

I4

)t2 (5–23)

The variance of this noise is given by

∆tOUT2
2 = (

∆I2
2

I4
2)t22 (5–24)

5.4.3 Noise in tOUT due to Noise in Current Source I3

Let us assume that current source I3 is noisy with a noise current of ∆I3(and a

variance of ∆I3
2). Therefore, the total current from the current source is given by

I3 + ∆I3. The variance of noise at the output can be derived by following similar

93

steps as in the above two cases. The variance of this noise is given by

∆tOUT3
2 = (

∆I3
2

I4
2)t23 (5–25)

5.4.4 Noise in tOUT due to Noise in Current Source I4

Let us assume that current source I4 is noisy with a noise current of ∆I4 (and

a variance of ∆I4
2). Therefore, the total current from the current source is given by

I4 + ∆I4. Since currents I1, I2, I3 charge the capacitor and I4 + ∆I4 discharge the

capacitor, the new output from the weighted average circuit is given by,

tOUT1 = (
I1

I4 + ∆I4

)t1 + (
I2

I4 + ∆I4

)t2 + (
I3

I4 + ∆I4

)t3 (5–26)

The noise at the output ∆tOUT4 can be calculated as shown below:

∆tOUT4 = tOUT4 − tOUT

= (
I1t1 + I2t2 + I3t3

I4 + ∆I4

) − (
I1t1 + I2t2 + I3t3

I4

)

= (I1t1 + I2t2 + I3t3)(
−∆I4

I4(I4 + ∆I4)
)

≈ (I1t1 + I2t2 + I3t3)(
−∆I4

I2
4

)

=
(I1t1 + I2t2 + I3t3)

I4

(
−∆I4

I4

)

= tOUT (
−∆I4

I4

) (5–27)

The variance of this noise is given by

∆tOUT4
2 = (

∆I4
2

I4
2)t2OUT (5–28)

Therefore, the total noise at the output of the averaging block is given by

∆tOUT
2 = ∆tOUT1

2 + ∆tOUT2
2 + ∆tOUT3

2 + ∆tOUT4
2

= (
∆I1

2

I4
2)t21 + (

∆I2
2

I4
2)t22 + (

∆I3
2

I4
2)t23 + (

∆I4
2

I4
2)t2OUT (5–29)

94

As previously mentioned in Chapter 2, the shot noise due to a current source I is

given by,

∆I2 =
eI

τ
(5–30)

where τ is the time during which the current source is ON and contributes to the

output and e is the charge of an electron.

The shot noises of current sources I1 to I4 are given by, ∆I1
2 = eI1

t1
, ∆I2

2 = eI2
t2

,

∆I3
2 = eI3

t3
and ∆I4

2 = eI4
tOUT

. Substituting these noise relations into Eq. 5–29, we

get

∆tOUT
2 = (

∆I1
2

I4
2)t21 + (

∆I2
2

I4
2)t22 + (

∆I3
2

I4
2)t23 + (

∆I4
2

I4
2)t2OUT

=
eI1
t1

t21

I2
4

+
eI2
t2

t22

I2
4

+
eI3
t3

t23

I2
4

+
eI4

tOUT
t2OUT

I2
4

=
eI1t1
I2
4

+
eI2t2
I2
4

+
eI3t3
I2
4

+
eI4tOUT

I2
4

=
eI4tOUT

I2
4

+
etOUT

I4

= 2
etOUT

I4

(5–31)

The signal-to-noise ratio for the computational block and the FIR filter is given by,

SNR = 10 log10(
t2OUT

∆tOUT
2
)

= 10 log10(
t2OUT

2 etOUT

I4

)

= 10 log10(
tOUT I4

2e
) (5–32)

The equation can also be written as,

SNR = 10 log10(
tOUT I4

2e
)

= 10 log10(
I1t1 + I2t2 + I3t3

2e
)

= 10 log10(
C(V 3

C − VTH)

2e
) (5–33)

95

Substituting tOUT = 40.1µs, I4 = 200nA in Eq. 5–31, we get the output noise

variance as ∆tOUT
2 = 64.16as2 and the rms noise at the output as 8ns. From

Eq. 5–32, we get SNR≈ 64dB.

Since the dynamic range is given by the ratio of the maximum output (and

the maximum tOUT is equal to the length of the frame) to the minimum output

(minimum tOUT given by the noise floor), we get

DR = 20 log10(
tframe

∆tOUT

) = 20 log10(
tOUT

∆tOUT

) = SNR (5–34)

Therefore, the DR of the FIR filter is also equal to 64dB.

5.5 Performance of the FIR Filter under Input Time Jitter

The output of the basic computational block of the FIR filter is given by

tOUT = (
I1

I4

)t1 + (
I2

I4

)t2 + (
I3

I4

)t3 (5–35)

Assuming that input t1 has a time jitter ∆t1. With this time jitter, the output of

the computational block would become,

tOUT1 = (
I1

I4

)(t1 + ∆t1) + (
I2

I4

)t2 + (
I3

I4

)t3 (5–36)

Therefore, the noise at the output is given by

∆tOUT = tOUT1 − tOUT

= ((
I1

I4

)(t1 + ∆t1) + (
I2

I4

)t2 + (
I3

I4

)t3) − ((
I1

I4

)t1 + (
I2

I4

)t2 + (
I3

I4

)t3)

=
I1∆t1

I4

(5–37)

The output noise variance is given by,

∆tOUT
2 =

I2
1

I2
4

∆t1
2 (5–38)

For the weight chosen in our simulations I1
I4

= 0.302, ∆tOUT
2 ≈ 0.09∆t1

2. Thus,

we see that the effect of the input jitter is not pronounced at the output when the

96

weights have a magnitude less than 1. If the magnitude of the weight is more than

1, the output jitter would be more than the input jitter.

5.6 Advantages of Time-Mode FIR Filters

• Typical analog FIR filter architectures [33] involve the use of Input Buffers,
Track and Hold Circuits, Unity Gain Amplifiers, Multiplexers, Level Shifters
and Multipliers or DACs. The architecture of the time-mode FIR filters is
very simple and would occupy smaller area when compared to these analog
FIR architectures. A 3-tap FIR filter needs only 4 computational blocks. In
general, a N tap filter would require only N + 1 computational blocks.

• Since information is represented in time, the FIR filter can support very high
input and output dynamic range.

• Since the time-mode FIR architecture provides a SNR of 60dB, it is very noise
robust.

• If the magnitude of the weights chosen in Time-mode FIR architectures are
less than one, then the FIR architecture reduces the effect of the input jitter
on the output.

• The time-mode FIR architectures are very power efficient. The 3-tap
time-mode FIR filter simulated above consumes just 89.45µW as compared to
architectures that consume power in the order of mW.

• Matching of the capacitance is not an issue because the actual value of the
capacitance does not affect the output expression (Eq. 5–10).

• Since the input and output are in time, the fan-in and fan-out for the
time-mode FIR filter can be very high.

5.7 Limitations of Time-Mode FIR Filters

• Since information is represented in time, having a high dynamic range in
the inputs (which means having a long frame) would inherently reduce the
sampling frequency with which the FIR can function and hence the speed of
the filter. Since the noise floor of this architecture is approximately 8ns, these
circuits can reach speeds upto ≈ 100MHz, but at such high speeds these
circuits would support very small dynamic range of inputs and outputs.

• With more taps, though the complexity of the analog portion of the
architecture (computational blocks) reduces, more digital circuitry is needed to
extract the analog inputs and cycle the inputs to feed the analog architecture.

97

• Matching of the current sources is very important for the accurate operation of
the computational blocks of the FIR filter. Appropriate matching techniques
have to be employed during the layout of the filter to make sure the current
sources match properly.

• Since the switching of the digital switches can cause charge injection into the
capacitance of the computational blocks and the presence of fast rising inputs
on the gates of these digital switches can cause direct capacitive coupling to
the capacitors, well known charge injection and capacitive coupling techniques
can be used to reduce these effects, albeit with additional compexity in the
architecture.

CHAPTER 6
NON-LINEAR TIME-MODE COMPUTATION

We have explored two ways of implementing non-linear arithmetic:

1. Implementing non-linear arithmetic using a time-mode multi-layer perceptron.

2. Implementing non-linear arithmetic by introducing a non-linearity in the
existing linear computational blocks.

6.1 Implementing Non-Linear Arithmetic by Introducing Non-Linearity
in the Existing Linear Computational Blocks

6.1.1 Time-Mode Multiplication

In this section, we will discuss how to implement the multiplication t1t2

by introducing non-linearity in a scalar multiplication circuit. To retain proper

dimensions, we must scale (divide) the output t1t2 by a time constant τ .

The schematic, the input/output timings and the capacitor voltage waveform

of a scalar multiplication circuit are shown in Figure 6–1. Let’s neglect the

operation of this circuit during frame 1. As shown in the figure, we see that

the input t2 is defined with respect to frame 2 (starting at time tF2 . The output of

the circuit is given by,

tOUT =
I1t2
I2

(6–1)

This output tOUT is defined with respect to reference frame 3 (starting at time tF3).

During frame 1(starting at time tF1) if we can make I1 a linear function of t1, say

I1 = kt1 where k is a constant, then

tOUT = (
k

I2

)t1t2 (6–2)

Thus, we can achieve the non-linear multiplication function using linear computation

circuits.

98

99

Figure 6–1. Scalar multiplication circuit

The complete 2-input time-mode multiplication circuit is shown in Figure 6–3

and the input/output timing diagrams are shown in Figure 6–2. As shown in

Figure 6–3, initially the two signals - input t1 and reference frame 1 are XORed

and this XOR output controls the current source IX charging the capacitor C1.

Thus, the time difference between tF1 (reference frame 1) and the input t1 is

converted to voltage across the capacitor C1 where VC1 = IX t1
C1

. Assuming no

leakage from the capacitance and zero leakage current from the switches, voltage

100

Figure 6–2. Timing details of the 2-input time-mode multiplier

VC1 would remain constant until the end of the third frame (The multiplier would

have fired an output during the third frame. At the end of the third frame, the

capacitors are reset to their initial values).

Once reference frame 2 starts, the transmission gate connected to the capacitor

C1 is turned ON. The transconductance amplifier now produces a current output,

IOUT = gmVC1

= gm(
IXt1
C1

) (6–3)

This IOUT acts as the current source I1 in the scalar multiplication circuit shown

in Figure 6–1. Therefore, the output from the 2-input time-mode multiplication

circuit is given by,

tOUT =
IOUT t2

I2

=
gm(IX t1

C1

)t2

I2

=
t1t2

(I2C1

gmIX
)

(6–4)

101

Eq. 6–4 shows how the 2-input time-mode multiplication circuit produces the

desired output t1t2 scaled by the expression I2C1

gmIX
.

To arrive at the expression shown in Eq. 6–4, we have made the following

assumptions.

• Input t1 arrives earlier than input t2.

• Time difference between the tF1 and t1 doesn’t saturate the capacitor C1.

The accuracy of the output depends on the linearity of the transconductance

amplifier. Since the output is valid only in the linear range of the transconductance,

the dynamic range of the input t1 supported by the multiplier depends on the

linearity of the transconductance. There are many ways to improve the linearity

of the transconductance and those techniques can be employed in this circuit to

improve the dynamic range of inputs/outputs supported.

Figure 6–3. Schematic of the 2-input time-mode multiplier

6.1.2 Time-Mode Division

In this section, we will discuss how to implement t2
t1

by introducing non-linearity

in a scalar multiplication circuit. To retain same dimensions of time, we must scale

(multiply) the output t2
t1

by a time constant τ .

If we can make I2 a linear function of t1, say I2 = kt1 where k is a constant

and substitute it in the output of the scalar multiplication circuit tOUT = I1t2
I2

, we

102

would get,

tOUT = (
I1

k
)
t2
t1

(6–5)

Thus, we can achieve the non-linear division function using linear computation

circuits.

Figure 6–4. Schematic of the 2-input time-mode divider

The complete 2-input time-mode division circuit is shown in Figure 6–4 and

the input/output timing diagrams are shown in Figure 6–2. As in the multiplier

circuit, the input t1 is converted to voltage across the capacitor C1 where VC1 =

IX1t1
C1

. The current out from the transconductance amplifier when reference frame 2

starts is given by,

IOUT = gmVC1

= gm(
IXt1
C1

) (6–6)

This IOUT acts as the current source I2 in the scalar multiplication circuit shown

in Figure 6–1. Therefore, the output from the 2-input time-mode division circuit is

given by,

tOUT =
I1t2
IOUT

=
I1t2

gm(IX t1
C1

)

=
t2
t1

(
I1C1

gmIX

) (6–7)

103

Eq. 6–7 shows how the 2-input time-mode division circuit produces the desired

output t2
t1

scaled by the expression I1C1

gmIX
. The accuracy of the output depends

on the linearity of the transconductance amplifier as is in the case of the 2-input

time-mode multiplier circuit.

An interesting case arises when t1 − tF1 is equal to zero. When t1 − tF1 is

equal to zero, there would be no current charging C1. So, VC1 does not change and

it stays at its initial voltage VTH . Therefore, the transconductance amplifier would

not produce any current, capacitor VC2 will not be discharged and there won’t

be any output from the division circuit. This effectively means that the output

from the division circuit is very high (maximum output from the division circuit is

equal to the length of a frame because we reset the whole circuit at the end of each

frame).

To arrive at the expression shown in Eq. 6–7, we have made the following

assumptions.

• Input t1 arrives earlier than input t2.

• Time difference between the tF1 and t1 doesn’t saturate the capacitor C1.

6.2 Implementing Non-Linear Arithmetic Using Time-Mode
Multi-Layer Perceptron

Implementation of non-linear arithmetic can be done using a feedforward

multi-layer perceptron (MLP) as one shown in Figure 6–5. In this chapter, we

will first provide a brief introduction to the MLP, an important class of neural

networks. We will then discuss a technique to implement a time-mode feed-forward

MLP.

6.2.1 Time-Mode Multi-Layer Perceptron

The multilayer perceptrons (MLPs) are an important class of neural networks.

Typically, the network consists of a set an input layer, one or mode hidden layers of

computational nodes, and an output layer of computational nodes [30]. The input

104

’

FEED-FORWARD MLP

INPUT
LAYER

HIDDEN
LAYER

OUTPUT
LAYER

Figure 6–5. Feedforward multi-layer perceptron

signal propagates through the network in a forward direction, on a layer-to-layer

basis. Each unit performes a weighted sum on its inputs and then outputs the sum

through a non-linear activation function. MLPs have been applied successfully to

solve many difficult and diverse problems. Usually they are trained in a supervised

manner with the error back-propagation algorithm. This algorithm is based on the

error-correction learning rule. As such, it may be viewed as a generalization of the

least-mean-square (LMS) algorithm.

In a neural network, the neurons are organized in the form of layers.

Figure 6–6 shows the simplest example of a multilayer feedforward network.

This network has an input layer of source nodes, a hidden layer of neurons and an

output layer of neurons. The network of Figure 6–6 is strictly a feedforward type

network since there is no feedback of a signal from the output of any of the neurons

to its input. This 2-input MLP has 2 source nodes, 2 hidden neurons and 1 output

neuron. We will implement this 2-input MLP using time-mode computational

circuits and use this neural network to implement the non-linear time operation:

multiplication of two time signals.

105

Figure 6–6. Fully connected 2-input feedforward MLP with one hidden layer and
one output layer

The neuron is fundamental to the operation of the neural network. The neuron

model shown in Figure 6–7 forms the basis for designing aritificial neural networks.

There are three basic elements of the neuronal model:

1. A set of synapses, each of which is characterized by a weight or strength of its
own. Specifically a signal xj at the input of synapse j connected to neuron k is
multiplied by the synaptic weight wkj.

2. An adder for summing the input signals, weighted by the respective synapses
of the neuron.

3. An activation function for limiting the amplitude of the output of a neuron.

Figure 6–7. Non-linear model of a neuron

106

In mathematical terms, the neuron can be described by writing the following

pairs of equations:

uk =
m

∑

j=1

wkjxj (6–8)

and

yk = ϕ(uk + bk) (6–9)

where x1, x2,...,xm are the input signals; wk1, wk2, ..., wkm are the synaptic weights

of neuron k; uk is the linear combiner output due to the input signals; bk is the

bias; ϕ(.) is the activation function; and yk is the output signal of the neuron.

Assuming that the bias bk is zero, Eq. 6–9 becomes,

yk = ϕ(uk) (6–10)

6.2.2 Hardware Implementation of Time-Mode MLP

The use of analog VLSI for implementing neural architectures such as the

multi-layer perceptrons allows the realization of low power and area efficient

hardware structures [31]. For several years pulse-stream technique has been

used by several researchers for the hardware implementation of artificial neural

networks [32], which leads to very complex circuits. As shown in Chapters 2 and

3, the time-mode circuits are extremely simple and very efficient even for complex

computations such as the weighted average. Therefore, it would be advantageous to

use time-mode circuits in computationally intense structures such as the MLP.

We have developed a time-mode feedforward multi-layer perceptron with

one hidden layer to implement a complex non-linear arithmetic operation:

multiplication. Training of the weights of the MLP is done by using running a

error back-propagation algorithm in a computer and then applying the resultant

weights off-chip and programming the weights of the MLP. To implement the MLP

using time-mode circuits, we have to first implement the non-linear model of the

107

neuron using time-mode circuits. That is, we have to first implement the Eqs. 6–8

and 6–9.

The circuit shown in Figure 6–8 is very similar in operation to the basic

computational block of the FIR filter discussed previously. This circuit performs

the following computation:

tOUT =
I1t1
I3

+
I2t2
I3

(6–11)

where, weights I1
I3

and I2
I3

are applied to signals t1 and t2 respectively and summed

together. In general for n inputs, we would get

tOUT =
m

∑

j=1

(
Ij

I3

)tj (6–12)

Therefore, the circuit shown in Figure 6–8 can be used to perform the computation

mentioned in Eq. 6–8.

The activation function denoted by ϕ(v), defines the output of a neuron in

terms of the induced local field v. Traditionally, three basic types of activation

functions have been used: the threshold function, the piecewise-linear function

and the sigmoid function. The most commonly used form of non-linearity is the

sigmoidal non-linearity defined by the logistic function:

yj =
1

1 + e−xj
(6–13)

where xj is the weighted sum of all synaptic inputs plus the bias and yj is the

output of the neuron. The presence of non-linearities ensures that the input-output

relationship of the network is not the same as the single-layer perceptron. Since we

have been successful in building linear time-mode computational circuits, we choose

a piecewise-linear function shown in Figure 6–9 to implement the sigmoid function.

Therefore, by connecting the circuits in Figures 6–8 and 6–9, we can design a

non-linear neuron shown in Figure 6–7. By connecting multiple neurons together

as shown in Figure 6–6, we can implement a 2-layer multi-layer perceptron.

108

Figure 6–8. Time-mode scalar multiplication and summing circuit

109

Figure 6–9. Time-mode piece-wise linear activation circuit

110

The designed perceptron was trained using back propagation algorithm to

implement the multiplication function t1t2
τ

where t1 and t2 are the inputs to the

perceptron and τ is a constant used to scale the output. We chose τ = 100µs for

our simulations. The back propagation training algorithm was run over a wide

range of inputs and we arrived at the following values for the weights I1
I3

and I2
I3

of

the time-mode scalar multiplication and summing circuit : 4.6, 4.9 and 1.93, 1.9

for the two neurons in the hidden layer and 1.8, 4.8 for the neuron in the output

layer. We also obtained a slope of 0.15 for the piece-wise linear activation function

in Figure 6–9.

The MLP was tested for a wide range of inputs (ranging between 1ns and

200µs). The test results were very promising. We obtained a low MSE as shown

in Figure 6–10. The desired outputs and the actual outputs of the time-mode

MLP are shown in Figure 6–11. Figure 6–12 shows cadence simulation results

for a particular combination of t1 and t2. We can infer from the figure that the

simulation results differ by approximately 3% from the desired results. This

difference can be attributed to mismatch between current sources and the delay of

the comparators used in various neuron circuits.

111

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

EPOCHS

M
S

E

Change of MSE with EPOCHS

Figure 6–10. Variation of output mean square error with epochs

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

Samples

Time−mode MLP’s Outputs

Desired Output
MLP Output

Figure 6–11. Time-mode MLP desired and actual outputs

112

F
ig

u
re

6–
12

.
C

ad
en

ce
si

m
u
la

ti
on

re
su

lt
s

CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Conclusion

Time-mode circuits are described for computing linear and non-linear

arithmetic functions - weighted average, weighted difference, weighted sum, scalar

product, maximum, minimum, thresholded difference, multiplication and division

operations. These basic time-mode computational blocks were used to design a

time-based edge detector that naturally interfaces to our time-to-first-spike imager

and a time-mode 3-tap FIR filter. Using time-mode circuits improves the circuit

complexity, power consumption, chip area, SNR and DR specifications of these

applications.

As technology scales, digital transistors become faster and faster while

voltage-mode and current-mode analog designs become more complex. However,

the performance of the time-mode circuits actually improve with scaling technologies.

We have shown that time-mode circuits are expected to perform well in new silicon

technologies and emerging carbon nanotube technologies.

There are some similarities between these time-mode circuits and single/dual-slope

ADCs converters. These converters also charge and/or discharge a capacitor

and output a step with the output voltage reaches a threshold. However, these

converters have not been used for computation. As was already pointed out in

Chapter 2, a large number of researchers have studied pulse-based computation but

these circuits have been limited in their computational power.

There is also a striking similarity between the step function computations

described here and simple models of spiking neurons. In each case, digital events

from other neurons are weighted and summed, increasing the neuron cell potential.

113

114

When the cell potential reaches a fixed threshold, a digital event occurs at the

output. Local processing is analog but global communication is asynchronous

digital. The major difference between the architectures is that steps have been used

here while neurons (and their models) use pulses. This difference may be smaller

than it may initially appear since, as Maass pointed out, if the synaptic response

function is approximately linear on the outset, then neurons could be implementing

a weighted average computation [25].

From an engineering perspective, a step input can provide a guarantee that the

neuron will eventually fire due to a single input (at least for the all-positive-weight

case). Pulses are not as straightforward to process and many times engineering

pulse computation boils down to just determining whether sets of pulse arrive

simultaneously or not. However, pulse based computation doesn’t require an

external reset as does the step based computation described here.

7.2 Future work

We have only just begun our study of time-mode circuits; there is much more

work to be done. In particular, expanding the range of functionality, exploring

their use in real applications and further analysis of their limitations and circuit

optimizations are necessary.

Currently the FIR filter design works only for positive weights. In the future,

this FIR filter design will be slightly modified to work for both positive and

negative weights; that is, ensure the FIR filter works in all four quadrants. This

way, all possible filters can be implemented using time-mode circuits. Also, the

power consumed by the FIR filter has to be optimized and compared to the power

consumed by existing low-power voltage and current mode alternatives.

The time-mode MLP is in its very early stage. More work is necessary to

optimize its implementation and fully characterize its performance.

115

Overall, time-mode circuits provide a very appealing alternative to traditional

voltage-mode and current-mode computational circuits. Since time-mode

computational circuits have advantages like low complexity, low power consumption,

high SNR and DR, we will come up with more computational applications where

the use of time-mode circuits would prove very advantageous. Further work in

scaling these circuits to deep submicron silicon and nanotechnologies is necessary.

If a mechanical threshold element (or neuron) replaces the functionality of the

capacitor and the comparator in the time-mode weighted average circuit, the circuit

implementation would be greatly simplified and it would open new doors towards

integrating NEMS and time-mode computational circuits.

REFERENCES

[1] P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press,
New York, 1989, Second Edition.

[2] D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley
and Sons, Inc., New York, 1997.

[3] C. Toumazou and D. G. Haigh and F. J. Lidgey, Analogue IC Design: The
Current-Mode Approach, Peter Peregrinus Ltd, London, 1993.

[4] B. Gilbert, “Translinear Circuits: A Proposed Classification,” Electronics
Letters, vol. 11, no. 1, pp. 14–16, 1975.

[5] D. R. Frey, “Log-domain filtering: An approach to current-mode filtering,”
Inst. Elec. Eng. Proc., vol. 140, no. 6, pp. 406–416, Dec 1993.

[6] A. J. P. Theuwissen, Solid-State Imaging with Charge-Coupled Devices,
Kluwer Academic Publishers, New York, 1995, First Edition.

[7] H. Schmid, “Why Ćurrent ModeD́oes Not Guarantee Good Performance,”
Analog Integrated Circuits and Signal Processing, vol. 35, pp. 79–90, 2003.

[8] W. Maass, “Fast sigmoidal networks via spiking neurons,” Neural Computa-
tion, 9:279–304, 1997.

[9] M. Oulmane and G. W. Roberts, “A CMOS Time Amplifer for Femto-Second
Resolution Timing Measurement,” IEEE International Symposium on
Circuits and Systems CD, May 2004.

[10] K. Papathanasiou and A. Hamilton, “Pulse based Signal Processing: VLSI
implementation of a Palmo Filter,” IEEE International Symposium on
Circuits and Systems,vol. 1, pp. 270–273, May 1996.

[11] W. Maass, Pulsed Neural Networks, Chapter 3, MIT Press, Cambridge,
Massachusetts, 1999.

[12] R. Sarpeshkar and M. O’Halloran, “Scalable Hybrid Computation with
Spikes,” Neural Computation,vol. 14, pp. 2003–2038, Sep 2002.

[13] G. Cauwenberghs and A. Yariv, “Fault-tolerant Dynamic Multi-level Storage
in Analog VLSI,” IEEE Transactions on Circuits and Systems. Part II,vol.
41, pp. 827–829, 1994.

116

117

[14] X. Qi and X. Guo and J. G. Harris, “A Time-to-first Spike CMOS Imager,”
IEEE International Symposium on Circuits and Systems, May 2004.

[15] H. S. Narula and J. G. Harris, “A Time-Based VLSI Potentiostat for Ion
Current Measurements,” IEEE Sensors Journal, vol. 6, no. 2, pp. 239–247,
Apr 2006.

[16] F. N. H. Robinson, Noise Fluctuations in Electronic Devices and Circuits,
Clarendon Press, Oxford, 1974.

[17] W. Zhao and Y. Cao, “New generation of Predictive Technology Model for
sub-45nm design exploration,” 7th IEEE Symposium on Quality Electronic
Design, pp. 585–590, 2006.

[18] A. Raychowdhury and S. Mukhopadhyay and K. Roy, “A Circuit Compatible
Model of Ballistic Carbon Nanotube Field Effect Transistors,” IEEE
Transactions on Computer Aided Design, vol. 23, no. 10, pp. 1411–1420, Oct
2004.

[19] P. J. Burke, “AC Performance of Nanoelectronics: Towards a Ballistic THz
Nanotube Transistor,” Solid State Electronics, 48(10), pp. 1981–1986, 2004.

[20] M. Butts and A. DeHon, and S. C. Goldstein, “Molecular electronics:
devices, systems and tools for gigagate, gigabit chips ,” Proc. IEEE/ACM
Intl. Conference on Computer Aided Design, pp. 433–440, Nov 2002.

[21] J. Von Neumann, Probabilistic Logics, Automata Studies, Princeton
University Press, Princeton, 1956.

[22] D. E. Dickinson and R. M. Walker, “Reliability Improvement by the Use of
Multiple-Element Switching Circuits,” IBM J. Res. Develop., vol. 2, no. 2,
April 1958.

[23] R. C. Gonzalez and P. Wintz Digital Image Processing, Addison Wesley,
Reading, 1987, Second Edition.

[24] X. Guo, “A Time-Based Asynchronous Readout CMOS Image Sensor,” Ph.D.
Thesis at the University of Florida, 2002.

[25] W. Maass, Pulsed Neural Networks, Chapter 2, Computing with spiking
neuwons, MIT Press, Cambridge, Massachusetts, 1999.

[26] C. T. Jin and P. L. Rolandi and P. H. W. Leong, “Non-volatile
programmable pulse computation cell,” Electronic Letters, vol. 35, pp.
256–267, Issue: 17,19, Aug 1999.

[27] D. Marr, Vision, W. H. Freeman and Company, San Francisco, 1982.

[28] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley, Reading, 1989.

118

[29] S. Norsworthy and I. Post and S. Fetterman, “A 14-bit 80-KHz Sigma-Delta
A/D converter: Modelling, Design, and Performance Evaluation,” IEEE J. of
Solid State Circuits, vol. 24, pp. 256–267, 1989.

[30] S. Haykin, Neural Networks: A Comprehensive Foundation,Pearson
Education, Upper Saddle River, 2nd edition, July 1998.

[31] G. Cairns and L. Tarassenko, “Learning with analogue VLSP MLPs,”
Microelectronics for Neural Networks and Fuzzy Systems, pp. 67–76, Sep
1994.

[32] J. N. Tombs and L. Tarassenko and A. F. Murray, “Novel analogue VLSI
design for multilayer networks,” IEE Proceedings of Radar and Signal
Processing F, vol.139, Issue 6, pp. 426–430, Dec 1992.

[33] X. Wang and R. R. Spencer, “A low-power 170-MHz discrete-time analog
FIR filter,” IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 417–426,
Mar 1998.

BIOGRAPHICAL SKETCH

Vishnu Ravinuthula finished his B.E. degree in electrical and electronics

engineering from the College of Engineering, Anna University, Chennai, India,

and his M.S. degree in Electrical Engineering from the University of Florida,

Gainesville, U.S. in 2000 and 2003, respectively. He is currently doing doctoral

research work on Bio-inspired analog circuits and nano-delay circuits at the

Computational NeuroEngineering Laboratory of University of Florida under the

guidance of Dr. John G. Harris. He did a summer internship at NASA Ames

Research Center, California where he was working with Dr. M. P. Anantram, Dr.

T. R. Govindan and Dr. Harry Partridge doing research on the pros and cons of

using carbon nanotube based transistors for analog and digital applications. He

will soon be working in Texas Instruments, Dallas as an analog design engineer

developing the analog circuits for high-speed SERDES applications.

119

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Biological Motivation
	1.2 Engineering Motivation
	1.3 Chapter Summary

	2 THE WEIGHTED AVERAGE CIRCUIT
	2.1 Time-Mode Weighted Averaging Circuit
	2.1.1 Reset Stage
	2.1.2 Measured Results
	2.1.3 Discussion

	2.2 Theoretical Analysis of Signal-to-Noise Ratio and Dynamic Range
	2.2.1 Output Noise due to Timing Jitter at the Inputs
	2.2.2 Output Noise due to Fundamental Noise Sources in the Circuit
	2.2.2.1 Noise in tOUT due to noise in current source I1
	2.2.2.2 Noise in tOUT due to noise in current source I2
	2.2.2.3 Noise in tOUT due to noise in the comparator

	2.2.3 Discussion

	2.3 Scaling of Time-Mode Weighted Average Circuit with Technology
	2.3.1 Simulation Setup
	2.3.2 Results and Inferences
	2.3.3 Discussion
	2.3.4 Drawbacks

	2.4 Carbon Nanotube Based Time-Mode Weighted Averaging Circuit
	2.4.1 Carbon Nanotube Field Effect Transistors (CNFETs) and Their Spice Models
	2.4.2 Physics Governing the Operation of CNFET
	2.4.3 Simulation Results
	2.4.4 Discussion

	2.5 Reliable Time-Mode Weighted Average Circuit
	2.5.1 Motivation
	2.5.2 Time-Mode Median Circuit
	2.5.3 Redundancy in Time-Mode Computation
	2.5.4 Discussion

	3 SNR COMPARISON OF WEIGHTED AVERAGING CIRCUITS
	3.1 Voltage-Mode Averaging Circuit
	3.1.1 Noise Contribution at the Output due to v12
	3.1.2 Noise Contribution at the Output due to v22
	3.1.3 Noise Bandwidth

	3.2 Current-Mode Averaging Circuit
	3.3 Discussion

	4 OTHER TIME-MODE CIRCUIT EXAMPLES
	4.1 Weighted Subtraction Circuit
	4.2 Weighted Sum Circuit
	4.3 Scalar Multiplication Circuit
	4.4 Maximum(MAX)/Minimum(MIN) Circuit

	5 APPLICATION OF TIME-MODE CIRCUITS
	5.1 Time-Mode Edge Detection Circuit
	5.1.1 Basic Formulation
	5.1.2 Smoothing
	5.1.3 Thresholded Difference
	5.1.4 Results
	5.1.5 Discussion

	5.2 3-Tap 1-Quadrant Time-Mode Finite Impulse Response Filter
	5.2.1 Finite Impulse Response Computation in Time
	5.2.2 3-Tap 1-Quadrant Time-Mode FIR Filter Architecture
	5.2.3 Step-by-Step Description of the Functionality

	5.3 Simulation Results
	5.4 Signal-to-Noise Ratio/Dynamic Range Analysis
	5.4.1 Noise in tOUT due to Noise in Current Source I1
	5.4.2 Noise in tOUT due to Noise in Current Source I2
	5.4.3 Noise in tOUT due to Noise in Current Source I3
	5.4.4 Noise in tOUT due to Noise in Current Source I4

	5.5 Performance of the FIR Filter under Input Time Jitter
	5.6 Advantages of Time-Mode FIR Filters
	5.7 Limitations of Time-Mode FIR Filters

	6 NON-LINEAR TIME-MODE COMPUTATION
	6.1 Implementing Non-Linear Arithmetic by Introducing Non-Linearity in the Existing Linear Computational Blocks
	6.1.1 Time-Mode Multiplication
	6.1.2 Time-Mode Division

	6.2 Implementing Non-Linear Arithmetic Using Time-Mode Multi-Layer Perceptron
	6.2.1 Time-Mode Multi-Layer Perceptron
	6.2.2 Hardware Implementation of Time-Mode MLP

	7 CONCLUSION AND FUTURE WORK
	7.1 Conclusion
	7.2 Future work

	REFERENCES
	BIOGRAPHICAL SKETCH

