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Time-Multiplexed Multiple-Constant Multiplication
Peter Tummeltshammer, Student Member, IEEE, James C. Hoe, Member, IEEE,

and Markus Püschel, Senior Member, IEEE

Abstract— This paper studies area-efficient arithmetic circuits
to multiply a fixed-point input value selectively by one of several
preset fixed-point constants. We present an algorithm that gener-
ates a class of solutions to this time-multiplexed multiple-constant
multiplication problem by “fusing” single-constant multiplication
circuits for the required constants. Our evaluation compares our
solution against a baseline implementation style that employs
a full multiplier and a lookup table for the constants. The
evaluation shows that we gain a significant area advantage, at
the price of increased latency, for problem sizes (in terms of the
number of constants) up to a threshold dependent on the bit-
widths of the input and the constants. Our evaluation further
shows that our solution is better suited for standard-cell ASICs
than prior works on Reconfigurable Multiplier Blocks (ReMBs).

Index Terms— Multiplierless, reconfigurable multiplier block,
addition chain

I. INTRODUCTION

This paper is concerned with arithmetic circuits for the time-

multiplexed multiple-constant multiplication with the interface

shown in Fig. 1 and is an extension of our preliminary work

in [1]. The input x is a fixed-point value of a specified bit-

width. The output of the circuit is cix where ci is one of

N given fixed-point constants {c1, c2, . . . , cN} selected ac-

cording to the ⌈log
2
N⌉-bit control input i. A straightforward

implementation would comprise a lookup table of the N
constants and a full multiplier (depicted later in Fig. 5(a)).

Intuitively, the full generality of a full multiplier is unnecessary

for multiplying by a predetermined set of constants. This

paper presents a class of circuits that take advantage of

the redundancy and structure in the constituent constants to

reduce hardware cost in terms of the number and the size

of the adders and multiplexers in the circuit. This problem

(sometimes referred to as Reconfigurable Multiplier Blocks,

or ReMBs) has been studied by prior work [2], [3], [4], [5],

[6], [7] that develops solutions targeted to Field Programmable

Gate Array (FPGA) implementations. Our approach uses a

different architecture than these approaches and is optimized

for ASIC implementations. We address the difference between

our method and the prior work in Section II-B.

Our solution is based on “fusing” single-constant multiplica-

tion circuits of the required constants. Area-efficient arithmetic

circuits to multiply a fixed-point input by one fixed-point
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Fig. 1. The time-multiplexed multiple-constant multiplier block considered
in this paper. The input x is multiplied by one out of N given fixed point
constants c1, . . . , cN , based on the control input i.

constant have been studied extensively. The best approach for

minimizing the number of required additions (and subtrac-

tions) is reported in [8] (more details are in Section II-A).

Other constructions of single-constant multiplication circuits

are possible. For example, for a given a set of constants, one

can consider single-constant circuits that share intermediate

values. Algorithms that produce these circuits are used for the

related problem of parallel multiple-constant multiplication,

e.g., [9], [10], [11].

Given an input set of single-constant multiplication circuits

(in a graph representation), the algorithm in this paper derives

an area-efficient circuit for the time-multiplexed multiple-

constant multiplication. Specifically, given the N separate

single-constant circuits for {c1, c2, . . . , cN} as input, the N
single-constant circuits are integrated iteratively into a ”fused”

circuit consisting of adders and multiplexers. The properly

synthesized controls for the multiplexers enable the circuit to

behave as a single-constant circuit for each of the N constants.

The algorithm takes into consideration the commonalities in

the topology of the N initial single-constant circuits and

uses a heuristic search to produce a final fused circuit with

the smallest bit-width adders and with the minimum number

of steering multiplexers. The fused circuit contains only as

many adders as the largest of the single-constant circuits. The

number of multiplexers, however, depends on the constants

and how the single-constant circuits are fused, i.e., which

adders are multiplexed.

We implemented the fusion algorithm as a generator that

takes as input the N constants and the bit-width of x, and

generates the Verilog netlist of an area-optimized fused multi-

plication circuit for these constants. (The generator is available

online at [12].) We first evaluate our algorithm on inputs

of single-constant circuits generated using [8]. These circuits

have the minimal number of adders. The evaluation includes a

detailed comparison of the generated circuits against a default

implementation based on multipliers and lookup tables. For

small values of N , our solution yields considerably smaller

synthesized circuit area in a commercial 0.18µm standard cell

technology. However, for sufficiently large values of N , the

fused multiplier circuits eventually grow to be too expensive.

Namely, the area cost grows approximately linearly with N , in
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contrast to the baseline approach where only the constant table

expands with N . For example, assuming a 16-bit input value

and random 16-bit constants, our approach results in a smaller

synthesized circuit area for up to 15 constants. The price for

these gains is an increased latency compared to the baseline.

We also evaluate our algorithm on inputs of single-constant

circuits prepared according to [11]. These circuits share more

intermediate values, but have in general more adders. As a

consequence, we get only marginal improvements and only

under very limited conditions. Nevertheless, in practice, both

starting inputs for a given set of constants could be evaluated

in conjunction since the runtime of our algorithm is typically

only a few seconds. Finally, we compare our multiplier blocks

for time-multiplexed multiple-constant multiplication against

previous work on ReMB designs. For standard cell synthesis,

we can demonstrate an area advantage that becomes more

significant with increasing number of constants.

Paper outline. Following this brief introduction, Section II

discusses additional background and related work on the

problem of multiplying a value by one or several constants.

Section III presents our algorithm for generating a time-

multiplexed multiple-constant multiplier circuit by iteratively

fusing single-constant circuits. We analyze the runtime of our

algorithm and derive bounds on the quality of the generated

circuits. Section IV evaluates our approach against the baseline

approach and compares to previous work. Finally, we offer

conclusions in Section V.

II. MULTIPLICATION BY CONSTANTS

In this section we review the problem of multiplying an

input by one or several fixed-point constants using only

additions and shifts and put our contribution into the context

of previous work. Further, we review the directed acyclic

graph (DAG) representation of single- and multiple-constant

multiplication, which provides a suitable way to formulate the

problem and its solution.

Without loss of generality, we assume that the multiplica-

tive constants are fixed-point positive integer numbers. The

constant bit-width is denoted by w such that for a constant c,

c = bw−1bw−2 · · · b1b0 =

w−1
∑

i=0

bi2
i, bi ∈ {0, 1}. (1)

A. Multiplication By One Constant

From (1) we see that the product cx of an input x and a

w-bit constant c is given by
∑w−1

i=0
bi2

ix. This summation can

be directly mapped into a series of shifts (scalings by powers

of 2) and additions. In particular, if the binary representation

of c has k non-zero digits, the multiplication cost in terms of

the number of additions is k − 1. In this paper, we assume

the cost of shifts is negligible since they can be implemented

as wired connections in hardware. For brevity, we use in the

remainder of the paper the term “addition” for both additions

and subtractions since these operations are virtually identical

in complexity and map to similar hardware structures.

CSD representation. Both software and hardware compil-

ers generally use signed digit (SD) recoding [13, chap. 6] to
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Fig. 2. The DAG corresponding to multiplying by 10021.

reduce the number of additions associated with multiplying by

a constant. An SD constant is bw−1bw−2 · · · b0 =
∑w−1

i=0
bi2

i

where bi ∈ {1, 0, 1} and 1 stands for −1. The most salient

aspect of SD recoding is in replacing the occurrences of k
consecutive 1’s by 10 · · · 01, which yields a saving of k − 2
additions. The canonical signed digit (CSD) recoding requires

in addition that no two consecutive bits are nonzero; CSD

recoding results in a 33% cost saving on average [13, chap. 6].

DAG based methods. The CSD method is not optimal

in general. For example, multiplying an input x by c =
1002110 = 100111001001012 can be done in the following

steps:
s1 = x + (x ≪ 2)
s2 = s1 + (s1 ≪ 11)
s3 = s2 + (x ≪ 5)
cx = s3 − (x ≪ 8)

(2)

In this example, 4 additions are required to compute cx,

compared to 5 additions required by the CSD method.

The computation in (2) is best represented as the directed

acyclic graph (DAG) in Fig. 2. The nodes of the graph rep-

resent additions and the edges represent the dataflow between

additions. We assume that each node has an in-degree of 2,

i.e., each addition has two operands. Each edge is labelled

by a positive 2-power integer k = 2s, which represents the

scaling (by shifting by s) applied to the operand on that edge.

Each node is labelled by the intermediate constant f . These

intermediate constants are referred to as the fundamentals in

the DAG, following the terminology in [14]. If x is the DAG

input and f is the fundamental of a node, then the intermediate

output produced at this addition node is fx.

The problem of finding an optimal DAG for a constant

is known to be NP-hard [15] and has been studied in the

literature [14], [8]. It is related to, but in theory and solution

fundamentally different from the addition chain problem,

which considers DAGs without shifts [16, pp. 465–485] and

subtractions. Recently, [8] has developed an algorithm that

finds optimal DAGs for constants up to a maximal bit-width

of 19, and shows that 5 additions are sufficient in all cases. In

this paper, we use a re-implementation of this method. Fig. 3

shows the histogram of the number of adders for all odd 20-bit

constants.

By propagating shifts, each DAG can be transformed into
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Fig. 3. Histogram for the number of adders in SCM DAGs for all odd 20-bit
constants. Only one constant (699829) needs 6 adders.

an equivalent normalized DAG with equal cost that satisfies

the following properties (see [14, theorem 2]):

• for each addition node, one of the operands is not shifted

and, as a consequence,

• all fundamentals are odd.

For example, the DAG in Fig. 2 is normalized. In the remain-

der of this paper, we will consider only normalized DAGs.

Finally, for our fusion algorithm we assume that all the

shifts in the single-constant DAGs are left shifts. This restric-

tion may yield suboptimal DAGs, but only in very few cases.

For example, we evaluated (using the tool in [11]) that among

the 524288 odd 20-bit constants only 341 (or 0.065%) can

save exactly one adder by using right shifts.

B. Multiplying by Multiple Constants

In this section, we consider the problem of multiplying an

input x by a given set {c1, . . . , cN} of N constants again

using only additions and shifts. There are two fundamentally

different scenarios:

• Parallel multiplication is performed by a (parallel) mul-

tiplier block that simultaneously outputs the N values

c1x, . . . , cNx. This problem is commonly referred to as

multiple-constant multiplication or MCM.

• Time-Multiplexed multiplication is performed by a multi-

plier block that outputs cix as controlled by an input that

specifies i (Fig. 1).

Both scenarios have been studied in the literature. The

second is the subject of this paper. We briefly discuss both.

Parallel multiplication. The problem of multiplying an

input by several constants in parallel occurs for example in

finite impulse response (FIR) filters and thus was the subject

of a large number of papers, e.g., [15], [9], [17], [18], [10].

One of the best available methods is [11], also available as

online tool at [12]. Most of the above methods also use a

DAG-based approach. The basic idea is to achieve savings

by generating for the given constants DAGs that “overlap” for

additional savings, which is a form of common sub-expression

elimination. The goal is to minimize the total number of adders

shared by all constants. The resulting multiplier block is shown

as a schematic in Fig. 4. The leaf-shaped structures are the

single-constant DAGs for c1, . . . , cN . The overlapping regions

x

c  x

c  x

c  x

1 

2

N

Fig. 4. Multiplier block for the parallel multiplication by N given constants.

signify common subexpressions or fundamentals. One of the

overlapping regions is highlighted.

Time-multiplexed multiplication. In this paper, we are

interested in developing an area-efficient combinational logic

block that can multiply a fixed-point input value by one of

the N preset constants according to a ⌈log
2
N⌉-bit control

input (Fig. 1). The most straightforward implementation of this

logic block is shown in Fig. 5(a) where the preset constants

are stored in a lookup table. At a given time step, the control

input selects which constant is supplied to one input of a full

multiplier.

Again the question arises whether it is possible to exploit

redundancy or inherent structure of the problem using a DAG

based approach. An immediate idea is to adapt the solution for

the parallel multiplication (Fig. 4) to the sequential problem

as depicted in Fig. 5(b), which uses a multiplexer to select

one of the output products according to the control input.

Whether this yields any savings compared to the generic

solution depends on the number N of multiplicative constants

and the degrees of overlapping between the individual DAGs.

However, a coarse analysis already shows that the adapted

solution in Fig. 5(b) is in general suboptimal for the sequential

problem. The reason is that each unique fundamental would

be instantiated as one adder. Since only one product is visible

through the output multiplexer at any moment, the results of

some adders are unused.

To further improve, one can fuse the fundamentals from

different DAGs, equal or not, to share the same adders by

time-multiplexing, thus exploiting the topological similarities

between the DAGs to a much larger degree. This is the

basic idea behind our solution depicted in Fig. 5(c), which

inserts multiplexers into the DAG for time-multiplexed sharing

of adders and thus reduced area requirements. Our solution

employs only as many adders as required by the largest of the

initial DAGs being fused.

Related work. Time-multiplexed multiple-constant multi-

plication — sometimes referred to as Reconfigurable Multi-

plier Block (ReMB) — has been studied extensively in [2], [3],

[4], [5], [6], [7], [19] in the context of FPGA implementations.

The architecture of these prior solutions is motivated by the

fact that in the construction of an adder in an FPGA, a 2-

to-1 multiplexer can be inserted in front of one input at no

additional cost. A stand-alone 2-to-1 multiplexer would incur

a cost comparable to an adder of the same width.

Thus, the basic building block in these solutions per-

forms the operation SUM = A + (select ? B : C). For

example, the circuit in shown later in Fig. 15(a) (repro-
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Fig. 5. Three implementations (as schematics) of the multiplier block in Fig. 1. From left to right: The standard solution using a generic multiplier; an
adaptation of the parallel multiplier block in Fig. 4; proposed method with shared adders.

duced from Fig. 6 in [5]) is an ReMB for the constants

{1, 2, 4, 8, 15, 26, 50, 162, 256}. However, the ReMB approach

is not optimal in general because the FPGA-motivated con-

straints lead to solutions that use more than the minimal

possible number of adders. For example, the aforementioned

ReMB comprise 7 adders, although the optimal DAGs for the

individual constants need no more than 2 adders each. On

non-FPGA technologies, there is opportunity to reduce the

number of the adders (by time-multiplexed reuse) at the cost of

additional (but relatively cheaper) multiplexers. For example,

for the same set of constants, the approach in this paper will

produce a circuit with only 2 adders. As a part of our eval-

uation in Section IV, we compare the synthesized standard-

cell circuit area resulting from our approach based on time-

multiplexed reuse to ReMB examples from [3], [5], [7]. One

should also point out that the straightforward implementation

in Fig. 5(a) is, in most scenarios, the most economical solution

on FPGAs given the availability of embedded multipliers and

hard memory macros [20].

III. DAG FUSION

This section describes the proposed fusion algorithm. The

input to the algorithm is a set of N normalized DAGs

representing single-constant multiplications for c1, . . . , cN ; the

output is a composite, or fused, DAG that consists exclusively

of additions, shifts, and multiplexers and implements the

time-multiplexed multiplication by c1, . . . , cN as depicted in

Fig. 5(c). One crucial property of our fusion algorithm is that

the number of additions in the generated composite DAG is

equal to the largest number of additions required by any of

the input DAGs, and therefore does not grow with N .

A simple example. Before starting the technical explanation

of the DAG fusion algorithm, we show a small example.

In Fig. 6, the two DAGs in (a) and (b) are optimal for

multiplying by 45 and 19, respectively. Each of these DAGs

requires 2 additions, and thus the composite DAG, produced

by our algorithm and shown in (c), also requires max{2, 2} =
2 additions. With both multiplexers set to select their left

inputs, the active datapaths in this composite DAG correspond

to DAG (a), and with both multiplexers set to their right

input it corresponds to DAG (b). Note that in the fusion

process, we replaced 2 additions by 2 multiplexers. Since a

multiplexer requires about half as much combinational area

as an addition (in ASIC), this saves area compared to the

competing multiplierless solution Fig. 5(b), which, in this
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Fig. 6. (a) Optimal DAGs for 45; (b) optimal DAG for 19; and (c) the fused
DAG produced by our algorithm.

case, does not allow for DAG overlapping since the DAGs

in Fig. 6(a) and (b) have no common fundamentals.

In the remainder of this section we provide the details of the

fusion algorithm. We start with an algorithm for the baseline

case of fusing N = 2 DAGs. This algorithm is then used

iteratively, as a subroutine primitive, in the algorithm for the

fusion of N DAGs.

A. Fusing Two DAGs

We start with 2 DAGs denoted as DAGL and DAGR, for

the multiplication with constants cL and cR, respectively. We

assume that DAGL and DAGR have n and m nodes (or

additions) and denote the node sets as follows:

NodesL = {NodeL,0, NodeL,1, . . . , NodeL,n−1},

NodesR = {NodeR,0, NodeR,1, . . . , NodeR,m−1}.

Without loss of generality, we assume n ≥ m.

Intuitively, the fusion algorithm tries to find and exploit

similarities in the topology of the two DAGs. These similar

regions are fused and allow the additions in DAGL and

DAGR to time-multiplex the same adder instantiations with

little hardware overhead. In regions that are not similar, adders

can still be time-multiplexed by the additions in DAGL and

DAGR, but multiplexers must be inserted to connect the

correct input sources to the shared adders or to correct for

different shifts of the addition’s operands.

The algorithm: Overview. A high level description of the

fusion procedure for 2 DAGs, called FusePairDags, is shown

in Algorithm 1. The algorithm enumerates all admissible
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Algorithm 1 Fusing two DAGs. Input: Two DAGs

DAGL, DAGR for multiplying with two constants cL, cR; the

DAGs have n and m nodes (additions) respectively; n ≥ m.

Output: Fused DAG with small area estimate for the time-

multiplexed multiplication with cL and cR.

FusePairDAGs(DAGL, DAGR)

1: best area = ∞
2: best dag = nil

3: for all admissible assignments φ of DAGL to DAGR do

4: dag = FusePair(DAGL, DAGR, φ)

5: area = EstimateArea(dag)

6: if area < best area then

7: best area = area

8: best dag = dag

9: end if

10: end for

11: return best dag

assignments of NodesR to NodesL. Admissible means that the

assignment respects the ordering of the nodes in both DAGs.

For each such assignment, the function FusePair merges the

edges of DAGL and DAGR in the best possible way w.r.t. the

area estimation function EstimateArea, which is explained

later in Section III-B. Finally, the composite DAG with the

lowest estimated area among all enumerated assignments is

returned.

We provide additional detail on the node assignment and

on the edge merging procedure. Then we slightly extend

FusePairDags to the case where DAGL is already composite.

This extension will serve as the subroutine in the iterative step

when merging N > 2 DAGs.

Node assignment. To fuse DAGL and DAGR, one must

assign each node NodeR,i in DAGR to a unique node NodeL,j

in DAGL, which means NodeR,i and NodeL,j will share the

same addition in the composite DAG. Each assignment is an

injective mapping φ : NodesR → NodesL, i.e., no two nodes

in DAGR are mapped to the same node in DAGL. Further, to

allow fusion, φ has to respect the partial orderings imposed by

the dependencies in the two DAGs. In the simplest and most

common case, both DAGL and DAGR are totally-ordered

(e.g., Fig. 2), which means there are
(

n

m

)

possible assignments

φ, which FusePairDags will enumerate. With respect to node

assignment, the most expensive DAGs have minimum depth

relative to the number of nodes, since this produces the least

ordering constraints. For a single-constant DAG with m nodes,

the minimal possible depth is ⌈log
2
(m + 1)⌉; Fig. 7 shows

an example of such a DAG. In this worst case scenario, the

number of admissible φs is n!/(⌈log
2
(m + 1)⌉!(n − m)!).

For the constant bit-widths ≤ 20 considered in this paper,

n,m ≤ 6 as shown in Fig. 3; thus, the number of admissible

φs cannot exceed 720 and does not impose a computational

problem.

Merging Edges. Assume an assignment φ of nodes has

been fixed. The function FusePair then creates a composite

DAG starting from the input node. Consider the fusion of two

addition nodes NodeR,i and NodeL,j . Remember that each

Input

Fig. 7. Structure of a worst case minimum-depth DAG.
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Fig. 8. Effect of merging edges: (a) and (b) are merged into (c). The fusion
of the upper adders produces no multiplexer, the middle adders produce one,
while the lower adders produce two multiplexers.

node has two operands (incoming edges) and that one of them

is not shifted. One of three cases applies at each node as

illustrated in Fig. 8:

• The two incoming edges of the corresponding NodeL and

NodeR are shifted by the same values and belong to the

same operand (a fused common predecessor node). Then

the composite DAG does not need any multiplexers for

this node. For example, this case occurs for the upper

adders in Fig. 8.

• Exactly one of the two incoming edges of the corre-

sponding NodeL and NodeR is shifted by the same

value and belongs to the same operand. In this case one

multiplexer is needed in the composite DAG for this node

to accommodate for the remaining dissimilar edges. For

example, this case occurs for the middle adders in Fig. 8

as well as for both adders in Fig. 6.

• In all other cases, two multiplexers are needed for fusing

the corresponding NodeL and NodeR to accommodate

for different input shifts and/or different operands. For

example, this case occurs for the lower adders in Fig. 8.

Note that FusePair also tries to flip the incoming edges of a

node (since addition is commutative) to improve the result.

Thus, at most 2m fusions are tried for each call of FusePair.

Subtractions. A DAG may contain subtractions. If two
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subtraction nodes are fused, the result is again a subtraction

node. If an addition node and a subtraction node are fused,

the result is a combined addition/subtraction node, supported

by most macro libraries. Also, if a node is not a pure addition

node, commutativity is lost, and FusePair does not flip edges

to try to improve area.

Extension to support composite DAGL. To use Fuse-

PairDags for the iterative fusion of N DAGs, we have to

generalize it to the case of a DAGL that is already composite,

i.e., that may contain multiplexers before each node.

The node assignment in this case is the same as in the

previous case. The edge merging in FusePair is also very

similar. In fact, the chances of efficient merging are now

increased as each node in DAGL now has several incoming

multiplexed edges. In case a node with a v-to-1 multiplexer

is fused, and a new multiplexer must be added, it becomes a

(v + 1)-to-1 multiplexer.

Introducing larger multiplexers increases the effort for find-

ing an optimal edge assignment, because when adding a new

edge to a multiplexer, the multiplexer has to be checked if the

edge already exists. The cost of this pass is O(v) for a v-to-1

multiplexer.

B. Fusing Multiple DAGs

In this section we explain the algorithm for fusing N
constant DAGs in the general case N ≥ 2. The algorithm

is essentially an iterative fusion of 2 DAGs (Algorithm 1)

combined with a search over different orderings of fusing

these DAGs. We analyze the impact of reordering the DAGs

and explain the area estimation function (already used in

Algorithm 1) to select the best DAG among the generated

alternatives.

The algorithm. Pseudocode for fusing N DAGs is shown

in Algorithm 2 called FuseNDags. The input is an array of N
DAGs, representing the multiplications by the N constants

c1, . . . , cN , and an integer parameter Num Iterations. The

output is a composite DAG that multiplies by ci, 1 ≤ i ≤ N ,

according to a ⌈log
2
N⌉-bit control input.

The algorithm loops for Num Iterations to evaluate fusing

the input DAG array in different randomly chosen orderings. In

each iteration, the randomly permuted input array is fused us-

ing the function FusePairDags in Algorithm 1 repeatedly. The

lowest cost DAG among all different orderings is returned. The

cost is again estimated using the cost function EstimateArea.

Effect of ordering. First, we provide an example that shows

why the order of fusion makes a difference. Fig. 9(a), (b), (c)

shows three DAG nodes that are to be fused. Fusing (a) and

(b) first yields (d); then fusing (d) and (c) yields (f). Fusing

(a) and (c) first yields (e); then fusing (e) and (b) yields (g),

which has the same functionality as (f).

We observe that (g) needs one 3-to-1 multiplexer and one 2-

to-1 multiplexer, whereas (f) needs only two 2-to-1 multiplex-

ers and thus less logic. This difference arises in FuseNDags

because FusePairDags makes a local decision about where

multiplexers are inserted, and these decisions can impact the

options available to subsequent calls to FusePairDags for the

remaining DAGs. In this example, when fusing (a) and (c),

Algorithm 2 Fusing N DAGs. Input: A list DAG[N ] of

N DAGs for constants c1, . . . , cN . Output: Fused DAG with

low area estimate for the time-multiplexed multiplication with

c1, . . . , cN .

FuseNDAGs(DAG[N ], Num Iterations)

1: best cost = ∞
2: best dag = nil

3: for i = 1, . . . , Num Iterations do

4: randomly permute DAG[N ]
5: dag = DAG[1]
6: for j = 2, . . . , N do

7: dag = FusePairDAGs(dag, DAG[j])
8: end for

9: cost = EstimateArea(dag)

10: if cost < best cost then

11: best cost = cost

12: best dag = dag

13: end if

14: end for

15: return best dag

+
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Fig. 9. Different orders to fuse three DAGs fragments. (a), (b) and (c) are
three DAG fragments to be fused. (d) and (f) show the progression of first
fusing (a) and (b) and then (c); (e) and (g) show the progression of first fusing
(a) and (c) and then (b).

two equal cost outcomes are possible; the connections of 24y
and 20y could be switched in (e). Unfortunately, the option

taken in (e) forces a 3-to-1 multiplexer when attempting to

further fuse (b). Taking the other option (not shown) would

have led to the same optimal result as in (f).

To overcome the problem of possibly choosing a clearly

suboptimal solution due to the wrong fusion order, FuseNDags

enumerates Num Iterations many orderings. The maximum

number of orderings possible is N !, which makes an exhaus-
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Fig. 10. Representative histograms of estimated areas. Each histogram
shows the area distribution (estimated) of 10,000 out of 16! possible different
ordering to fuse 16 randomly selected DAGs with five additions.

tive search eventually impractical for large N . However, for

example for N = 8, FuseNDags only needs on the order of

seconds on a current workstation to iterate through all possible

fusions of 8 random 16-bit constant DAGs.

To analyze the expected gain obtained by enumerating dif-

ferent orderings, we conducted an experiment on ten different

random sets of sixteen 16-bit constants, each requiring 5

additions (the maximum possible). In each case we fused the

DAGs using 10,000 random orderings and evaluated the results

using the area estimation function EstimateArea explained

below. Fig. 10 gives the histograms of three representative

trials among the ten. The difference between the best-case

ordering and worst-case ordering is about 10–15% in each

case. Thus, the expected gain of considering a number of

different orderings is about 5–8%.

Finally, we note that we explored a “greedy scheme”, which

determined an order of fusion, by fusing those DAGs first

that have the largest overlap when fused with FusePairDags.

However, the method did not improve over selecting a random

order, so we omit a more detailed explanation.

Area estimation. Both algorithms FusePairDags and

FuseNDags use the area estimation function EstimateArea.

This function makes one pass through a given composite

DAG and recursively computes the bit-widths needed for

each of the occurring multiplexers, adders, subtractors, and

adder/subtractors. Knowing the bit-width, say k, for any of

these building blocks, the area can then be estimated in square

micron as a · k, where a is a constant depending on the

ASIC technology and library used for mapping. In our case,

we mapped to a 0.18µm ASIC technology, using Synopsys

Design Compiler v. 2002.05-SP2 and a commercial 0.18µm

standard cell library, optimizing for area. The constants a were

estimated, respectively, as follows:

• v-to-1 Multiplexer: amux = 14v;

• Adder: aadd = 67;

• Subtractor: asub = 75;

• Adder/Subtractor: aaddsub = 98.

The bit-widths bw for each block in the composite DAG

are computed recursively, starting from the input node, which

incurs cost 0. The total DAG cost A is then obtained by

multiplying all bit-widths with the respective constants a∗

above and summing them: (3).

A =

nmux
∑

i=1

amux · bwmuxi
+

nadd
∑

i=1

aadd · bwaddi

+

nsub
∑

i=1

asub · bwsubi
+

naddsub
∑

i=1

aaddsub · bwaddsubi
. (3)

We assume we fused N DAGs and the fused DAG has an

input bit-width of n. In the recursive cost computation on the

composite DAG, we distinguish three cases for the current

block:

• v-to-1 Multiplexer. The multiplexer has v inputs, each

corresponding to the input value times the predecessor

fundamental fi and scaled by a shift si, for 1 ≤ i ≤
v. The ith input value needs n + log

2
(fi) + si bits to

represent. The multiplexer bitwidth needs to handle the

largest input value among the v inputs. We compute the

maximum input bit-width using the auxiliary terms

fmux = max1≤i≤m(fi2
si),

smux = min1≤i≤m(si),
(4)

and get as bit-width for the multiplexer

bwmux = log
2
(fmux) + n − smux.

smux is subtracted because for a non-zero smux, the least-

significant bits to the multiplexer is hardwired to 0 for

all inputs. The numbers fmux and smux are also used for

the computations below.

• Adder. Following [14],

bwadd = max(log
2
(flmux) + slmux, log

2
(frmux) + srmux)

+ n − max(slmux, srmux), (5)

where lmux and rmux denote the left and right prede-

cessor multiplexer, respectively, and the values f, s are

obtained from (4).

• Subtractor or Adder/Subtractor. As in (5), but without

the term max(slmux, srmux) because one cannot hardwire

those least significant bits as zero in a subtraction as in

an addition.

We carefully compared the area estimate computed by

EstimateArea with the post-synthesis area. The average error

was below 10% in all cases.

C. Analysis

In this section we analyze the number of adders and

multiplexers of the fused DAGs generated by our proposed

Algorithm 2 and its asymptotic runtime.

Quality of generated fused DAG. We consider N distinct

single-constant DAGs to be fused and denote with Amax the

largest number of adders in any of these DAGs. Further, we

denote with A(N) and M(N) the number of adders and the

number of multiplexers in the composite DAG. By multiplexer

we refer to a 2-to-1 multiplexer; an n-to-1 multiplexer is

assumed to be built from n − 1 many 2-to-1 multiplexers.

We have

A(N) = Amax, and (6)

⌈log
2
(N)⌉ ≤ M(N) ≤ (2Amax − 1)(N − 1). (7)
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Fig. 11. Bounds and average number of multiplexers in DAG fusion for
maximum constant bit-width of 16.

Equality (6) holds since our fusion algorithms does not add

any adders but only multiplexers.

The lower bound in (7) can be derived from the fact

that every multiplexer added to a DAG can at most double

the number of possible outcomes. The upper bound in (7)

assumes that in the worst case every fused adder introduces

two multiplexers. The question may arise why (2Amax−1) is

used instead of 2Amax. The reason is that the first fundamental

in every single-constant multiplication DAG has an unshifted

and a shifted edge to the input node. The unshifted edge can be

used for all other fused DAGs, thus requiring one multiplexer

less for each DAG.

The average number of multiplexers depends on the struc-

ture of the input DAGs and thus cannot be easily analyzed.

Fig. 11 shows the upper bound, the lower bound and the

average number of multiplexers. The latter was determined

empirically by fusing randomly drawn constants with a maxi-

mum bit-width of 16 and counting the multiplexers in the final

design. Each point in Mavg is averaged over 100 experiments.

Runtime. The computational cost for fusing two DAGs

DAGL and DAGR using Algorithm 1 can be divided into

the cost for assigning nodes, the cost for merging edges, and

the cost for evaluating the cost function.

Assigning nodes means finding the best node mapping φ for

two DAGs with n and m additions respectively, and requires

O(n!/(⌈log
2
(m + 1)⌉!(n − m)!)) operations proportional to

the number of these mappings. For m = n this number is

highest. In this paper we only consider m, n ≤ 6; thus, the

maximum number of possible φs is 720.

In Section III-A the edge merging cost has been shown

to be O(2m) = O(m) for m nodes on two single-constant

DAGs. For a DAG DAGL that has been obtain by the previous

fusion of N single-constant DAGs, this cost increases due to

the increased number of multiplexer options. In the worst case,

there are O(mN) such options since the largest multiplexer

possible in DAGL is now an N -to-1 multiplexer.

Evaluating the cost function on a DAG with n additions

requires O(3n) = O(n) operations, since the cost function

makes exactly one pass through the fused DAGs, every addi-

tion can have a maximum of two ν-to-1 multiplexers, and the

evaluation does not depend on ν.

This leads to the following overall runtime for fusing two

DAGs. The first DAG has n additions and was obtained by the

TABLE I

RUNTIME OF ALGORITHM 2 IN SECONDS FOR VARIOUS NUMBERS OF

CONSTANTS AND CONSTANT BITWIDTHS.

number of constants N

bitwidth w 4 8 12 16 20

4 0.005 0.005 0.008 0.01 0.014
8 0.006 0.015 0.02 0.02 0.04

12 0.006 0.076 0.33 0.6 1.54
16 0.008 0.573 2.06 6.8 46.0
20 0.313 1.057 2.97 18.9 102.9

previous fusion of N DAGs. The second DAG has m additions

and n ≥ m.

Runtime(FusePairDAGs) =

O

(

n!(mN + n)

⌈log
2
(m + 1)⌉!(n − m)!

)

(8)

Algorithm 2 repeats FusePairDAGs Num Iterations times.

Thus, fusing N DAGs using Algorithm 2 requires

Runtime(FuseNDAGs) =

O(Num Iterations · N · Runtime(FusePairDAGs)), (9)

with Runtime(FusePairDAGs) in (8). Note, that in Algorithm 2

the cost function does not produce any additional computation,

since the DAGs’ estimated costs are already known from

FusePairDAGs.

To give an idea of the actual runtimes of the implemented

algorithm, we ran benchmarks for all combinations of N
constants of bitwidth w with N ∈ {4, 8, 12, 16, 20} and w ∈
{4, 8, 12, 16, 20} (see Table I). We used Num Iterations = 100.

Different values change the runtime roughly proportionally.

The runtimes are in seconds and averages over 20 uniformly

drawn sets of constants. For a fixed set of constants, the

runtime may differ from this average since it depends on the

complexity (number of adders and structure) of the single-

constant DAGs. The results show that within the space of

parameters considered, the runtime is negligible in a real-world

design flow.

IV. EXPERIMENTAL RESULTS

This section presents an experimental evaluation of Algo-

rithm 2. First, we apply Algorithm 2 to optimal single-constant

DAGs and compare the generated solutions to the baseline

implementation comprising a full multiplier and a constant

table (Fig. 5(a)). Next, we apply Algorithm 2 to single-constant

DAGs derived from parallel multiplier blocks [11] of the

form in Fig. 4. These single-constant DAGs have maximized

common fundamentals. Finally, we compare the performance

of our generated multiplier blocks against Reconfigurable

Multiplier Blocks found in the literature [3], [5], [7].

A. Fusing Optimal Single-Constant DAGs

The problem of time-multiplexed multiple-constant multi-

plication is parameterized by

• n = bit-width of the input to the multiplication block;
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Fig. 12. Average synthesized area of fused DAGs and generic multiplier solutions for varying input bit-width n and constant bit-width w.

• w = maximum bit-width of the constants considered;

• N = number of constants to be fused.

In this first set of evaluations, we compare the out-

put of Algorithm 2 against the table-based baseline design

(Fig. 5(a)) for all combinations of n ∈ {8, 12, 16, 20}, w ∈
{8, 12, 16, 20} with w ≤ n, and N ∈ {2, . . . , 20}. For each

combination of n, w, and N , the comparison is based on the

average result over 10 sets of random constants uniformly

drawn and with Num Iterations = 100. All evaluated de-

signs are described using structural Verilog and synthesized

(optimizing for area) using the Synopsys Design Compiler

(v. 2002.05-SP2) for a commercial 0.18µm standard cell

library.

Area. Fig. 12 reports the resulting average synthesized

areas (in square microns) as a function of N for different

combinations of n and w. In the figures, the baseline designs

based on generic multipliers follow a characteristic trend

where the area cost increases sharply for the first 2 to 3

constants and then grows slowly afterwards. This is because

for a small number of multiplicative constants, Synopsys can

flatten the design for logic minimization. For a larger number

of constants, the multiplier and table structure are left intact,

and thus only the table structure grows as O(N).

On the other hand, for the range of n, w and N considered,

the area cost of the multiplier blocks produced by Algorithm 2

from optimal single-constant DAGs grows approximately lin-

early with N . In all figures, the generated multiplier blocks

offer an advantage over the baseline for small values of N .

However, as the number of constants increases, the linear

growth in size of these blocks eventually exceeds the cost of

the baseline design. Furthermore, the crossover value for N
decreases for increasing w due to the larger, less fusible initial

DAGs. Table II shows all values of N for those crossover

points.

It is interesting to note that the DAG fusing approach is

likely to be ineffective on modern field-programmable gate ar-

ray (FPGA) architectures. Firstly, modern FPGAs offer dense

hardwired multiplier macro blocks; this makes a multiplierless

solution less attractive. Second, the resource cost of an adder is

comparable to a multiplexer on an FPGA so that Algorithm 2

yields little gain if a new multiplexer is required to remove an

adder.

Delay. Fig. 13 reports the resulting average synthesized

critical path delay (in nanoseconds) corresponding to the

data points in Fig. 12. The critical paths for the generated

multiplier blocks are approximately two times greater than

the corresponding baseline designs in all cases. From a per-

formance standpoint, one should always utilize the baseline

design especially when optimized multiplier macros cells are

available.
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Fig. 13. Average synthesized critical path delay of fused DAGs and generic multiplier solutions for input bit-width n and constant bit-width w.

TABLE II

CROSSOVER POINTS FOR INPUT BIT-WIDTH n AND CONSTANT

BIT-WIDTH w

constant bit-width w

input bit-width n 8 12 16 20

8 19 – – –
12 > 20 18 – –
16 > 20 19 19 –
20 > 20 > 20 20 9

B. Fusing Single-Constant DAGs Derived from Parallel Mul-

tiplication DAGs

Fig. 4 sketches a DAG for the parallel multiple-constant

multiplication (MCM). For brevity, we call such a DAG MCM-

DAG. The algorithm in [11] generates an MCM-DAG by

maximizing the number of common fundamentals between the

DAGs of different constants to minimize the total number of

adders in the MCM-DAG. From this MCM-DAG, one can

extract individual single-constant DAGs by pruning the unused

portion of the MCM-DAG with respect to a given constant.

The resulting set of single-constant DAGs then can be fused

by Algorithm 2 to get a multiplier block for the multiplexed

multiple-constant multiplication.

Because the MCM-DAG is globally optimized over the

set of constants, a given derived single-constant DAG has

in general more additions than an optimal single-constant

DAG from [8]. Consequently, the resulting fused DAG (using

Algorithm 2) will in general require more adders as well. On

the other side, the increased number of common fundamentals

may lead to a reduction of the number of multiplexers in the

generated multiplier block. We evaluate this tradeoff in the

following.

We compare the results of fusing MCM-derived single-

constant DAGs versus fusing optimal single-constant DAGs

(Section IV-A) over the problem space spanned by n = w,

w ∈ {4, . . . , 20}, N ∈ {2, . . . , 20}. For each combination of

w and N , the comparison is based on the average area over 100

sets of randomly selected constants using Num Iterations=100.

We determine the area cost using the cost function described in

Section III-B. Fig. 14 displays the result. The horizontal axes

correspond to w and N , respectively; the vertical axis is the

area advantage of the MCM-derived DAGs in %. The region

where the MCM-derived DAGs have an advantage is shaded

in dark gray. The figure shows that gains can only achieved for

a small number of constants N or for short constant bitwidths

w. In other words, in these cases, the saving of using fewer

multiplexers in fusion overcomes the cost of the extra adders

of the MCM-DAGs.

In practice, both methods, i.e., both sets of DAGs, can be
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TABLE III

THE SYNTHESIZED AREA OF OUR SOLUTIONS (FIG. 16) VERSUS THE

CORRESPONDING REMBS (FIG. 15).

multiplier block label

(a) (b) (c) (d)

ReMB (Fig. 15) 16437 9203 7888 5361
DAG Fusion (Fig. 16) 6852 8859 6844 5222

tried due to the fast runtime (see Table I) of Algorithm 2.

C. Comparison Against Reconfigurable Multiplier Blocks

In this section we compare our results to the previous

work on Reconfigurable Multiplier Blocks (ReMBs) for mul-

tiplexed multiple-constant multiplication (discussed earlier in

Section II-B). Fig. 15 reproduces four ReMB examples from

Fig. 6 of [5], Figs. 7 and 8 of [3] and Fig. 6 of [7]. The

ReMB approach is geared towards FPGAs. Namely, the ReMB

solutions use in general more adders than the minimal number

possible in order to map efficiently to the special topology of

FPGAs. (In particular, a 2-to-1 multiplexer comes free with

each adder in FPGA technologies.)

In the example in Fig. 15(a), the ReMB solution uses 5 more

adders than our corresponding solution with only 2 adders (in

Fig. 16(a)) based on fusing optimal single-constant DAGs.

The remaining three smaller ReMB examples each require

1 more adder than the fused-DAG solutions. When mapped

onto an FPGA, our solutions are likely to consume more

logic resources because we use more multiplexers, which are

nearly as expensive as adders on FPGAs. Furthermore, our

multiplexers usage do no adhere to any special topology and

therefore cannot be absorbed for free into the construction of

an adder in an FPGA.

However, when synthesizing for standard cell technologies,

the FPGA-specific advantage leveraged by the ReMB algo-

rithm no longer holds. Table III summarizes the synthesized

area of ReMBs (Fig. 15) versus our solutions (Fig. 16) for the
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Fig. 15. Example ReMB solutions from (a) Fig. 6 of [5], (b) and (c) Figs. 7
and 8 of [3], and (d) Fig. 6 of [7]. In (c), the bottom mux has one constant-zero
input.

example sets of constants. We see that in synthesized standard-

cell technology, our tradeoff between adder and multiplexer

costs leads to implementations with less area overall. We

project from this evaluation that for larger constants, i.e., larger

number of adders, this advantage becomes more pronounced.

V. CONCLUSIONS

We have presented an algorithm to construct area-efficient

arithmetic circuits for time-multiplexed multiple-constant mul-

tiplication, that is, for the multiplication of a fixed-point input

by one of several preset fixed-point constants according to a

control input. The starting point to our algorithm is the DAG-

based representations of circuits for multiplying by a single

constant. The algorithm reduces the hardware resources by

a process we have termed “fusion,” i.e., by time-multiplexing

the additions required for different constants to reuse the same

adders in the final fused circuit. This keeps the number of

adders in the generated blocks constant and only increases the

multiplexers used.

Our algorithm is presented in detail including an analysis of

its time complexity and the quality of its solutions. We showed

that the generated multiplier blocks offer an area advantage
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Fig. 16. Our solutions, produced by Algorithm 2, for the same sets of
constants as the ReMB examples in Fig. 15.

over a conventional approach based on a constant table and a

full multiplier across a range of relevant bitwidths and number

of constants for the penalty of an increased latency. Further, the

multiplier blocks produced from optimal (minimum number of

adders) single-constant DAGs are better than those generated

from single-constant DAGs optimized for common subexpres-

sions. Finally, we demonstrated the advantage of our approach

when targeting synthesized standard cell technology against

the previous work on Reconfigurable Multiplier Blocks.

It is conceivable to further improve on our results using

various heuristics. For example, the optimal single-constant

DAG for a constant is not unique. Considering several or all

possibilities in tandem with our algorithm may yield further

gains. Another possibility would be to consider single-constant

DAGs extracted from MCM-DAGs that have been optimized

for minimum latency, i.e., that have fewer adders on the critical

path. A different interesting direction is an extension of our

method to produce multiplexed multiplier blocks for several

outputs as in [6], [7] for FPGAs. These blocks can be used

for small matrix-vector multiplications and thus, for example,

as building blocks in linear transforms.
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