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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has been shown to elucidate reliable patterns of
brain networks in both children and adults. Studies in adults have shown that rs-fMRI acquisition times of *5
to 6 min provide adequate sampling to produce stable spatial maps of a number of different brain networks. How-
ever, it is unclear whether the acquisition time directly translates to studies of children. While there are many sim-
ilarities between the brains of children and adults, many differences are also evident. Children have increased
metabolism, differences in brain morphology and connectivity strengths, greater brain plasticity, and increased
brain noise. Furthermore, there are differences in physiologic parameters, such as heart and respiratory rates,
and compliance of the blood vessels. These developmental differences could translate into different acquisi-
tion times for rs-fMRI studies in pediatric populations. Longer scan times, however, increase the subject bur-
den and the risk for greater movement, especially in children. Thus, the goal of this study was to assess the
optimum acquisition time of rs-fMRI to extract stable brain networks in school-age children. We utilized
fuzzy set theory in 84 six-to-eight year-old children and found that eight networks, including the default mode,
salience, frontal, left frontoparietal, right frontoparietal, sensorimotor, auditory, and visual networks, all stabilized
after *5½ min. The sensorimotor network showed the least stability, whereas the salience and auditory networks
showed the greatest stability. A secondary analysis using dual regression confirmed these results. In conclusion, in
young children with little head motion, rs-fMRI acquisition times of *5½ min can extract the full complement of
brain networks.
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Introduction

The last several years have witnessed a growing in-
terest in studying developmental differences in the

brain’s functional network architecture (Fair et al., 2008;
Supekar et al., 2010; Uddin, 2011; Vogel et al., 2010; Wu
et al., 2013; Zhong et al., 2013). Functional connectivity is
defined as the temporal dependency of neuronal activation
patterns of anatomically separated brain regions and can be
studied using resting-state functional magnetic resonance
imaging (rs-fMRI) (Biswal et al., 1995). rs-fMRI is highly
suitable for studying neurodevelopment of functional con-
nectivity, since resting-state data acquisition requires mini-
mal task demands and can yield an array of reproducible

brain networks (Beckmann et al., 2005; Smith et al., 2009;
van den Heuvel and Hulshoff Pol, 2010; Vogel et al.,
2010). In adults, analysis of incremental durations of data ac-
quisition times ranging from 2 to 12 min show that functional
connectivity estimates stabilize after *5 to 6 min of data
collection (Franco et al., 2013; Liao et al., 2013; Van Dijk
et al., 2010; Whitlow et al., 2011). To our knowledge,
there have been no studies examining the minimum number
of volumes or acquisition time to obtain stable functional
resting-state connectivity patterns in children.

There are a number of reasons why studies of the optimal
acquisition time/volumes in adults may not directly trans-
late to studies in children. Studies have shown age-related
differences between short- and long-range connections, with
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long-range connections showing greater strength in adults
(Fair et al., 2008). Furthermore, networks related to higher
order executive functions have been shown to be less mature
in children (de Bie et al., 2012). Greater immaturity could re-
flect less network stability. In addition, there are develop-
mental differences in noise patterns found within the brain
(McIntosh et al., 2010). Increased noise in children may be
associated with the shifting of cognitive states, which may
in turn result in age-related differences in the measurement
of brain network stability. Finally, the studies of brain net-
work stability with respect to volumes or time of acquisition
have primarily focused on the default mode (Franco et al.,
2013; Van Dijk et al., 2010) and attention networks (Van
Dijk et al., 2010), and thus the stability of other brain net-
works is less clear.

Currently, there is considerable variation in the acquisition
time used in rs-fMRI studies in children. Studies of resting-
state networks in children using similar repetition times (TR)
have acquisition times ranging from less than 5 min to nearly
9½ min (de Bie et al., 2012; Fair et al., 2009; Gordon et al.,
2011; Jolles et al., 2011; Langeslag et al., 2013; Stevens
et al., 2009; Supekar et al., 2010; Thomason et al., 2011).
It has been shown in adult studies that *5 to 6 min of data
yield a sufficient signal-to-noise ratio to model brain net-
works, whereas this has not been explored in children. Lon-
ger scan times can place an increased burden on the
participants and also increase the risk for greater motion ar-
tifacts, especially in children.

Thus, our primary research question was to determine the
optimal acquisition time of rs-fMRI data needed to obtain
stable resting-state brain networks in school-age children.
Our goal was to assess not only the stability of multiple
brain networks with respect to time, but also to explore the
stability of common noise components. There have been
no studies to date that have evaluated the relationship be-
tween acquisition time and network stability evaluating a
comprehensive group of brain and noise networks. Shorter
acquisition times are important to decrease the participant
burden and to reduce the chance for movement artifacts
(Van Dijk et al., 2012), which are especially relevant when
imaging young children (Power et al., 2012). However,
there is a cost/benefit ratio in that sequences that are too
short and will result in a failure to adequately model the
time series associated with different networks. Thus, we
sought to determine the optimal scan acquisition time to de-
termine stable brain networks in school-age children.

Materials and Methods

Participants

The study sample included the first 188 children between
the ages of six to eight who were recruited from the Generation
R Study and who received an 8 min 20 sec rs-fMRI scan. The
Generation R Study is a large population-based study from
fetal life until young adulthood in Rotterdam, the Netherlands
( Jaddoe et al., 2006; Tiemeier et al., 2012). Children were ex-
cluded if they had a contraindication in obtaining a magnetic
resonance imaging (MRI) scan, suffered a major head injury,
or had a neurological disorder (i.e., seizure disorder, tuberous
sclerosis, history of brain tumors, etc.), or had a history
of claustrophobia. Subjects included 13 children whose moth-
ers smoked cigarettes during pregnancy, 5 children whose

mothers smoked cannabis during pregnancy, 21 children
whose mothers reported depressive symptoms during preg-
nancy, and 5 children whose mothers took selective seroto-
nin reuptake inhibitors during pregnancy. IQ was estimated
using the Mosaics and Categories subtest of the Snijders-
Oomen Non Verbal Intelligence Test–Revised (Tellegen
et al., 2005). The study was approved by the Medical Ethical
Committee of the Erasmus Medical Center, Rotterdam.

Imaging protocol

The study design of the imaging component within the Gen-
eration R Study has been described in detail elsewhere (White
et al., 2013). In brief, the children were first familiarized with
the MRI scanning environment during a mock scanning ses-
sion. The mock scanning session allowed the children to expe-
rience the physical environment of the scanner, including
listening to recorded sounds of the actual scanner. Following
the mock scanning session, MRI scans were obtained using a
GE Discovery 3 Tesla scanner (General Electric, Milwaukee,
WI) and an 8-channel head coil. For anatomical reference, a
high-resolution T1 inversion recovery fast spoiled gradient
recalled (IR-FSPGR) sequence was obtained with the follow-
ing scan parameters: TR = 10.3 msec, TE = 4.2 msec, flip
angle = 16�, and 186 slices with a slice thickness of 0.9 mm
and an in plane resolution of 0.9 · 0.9 mm. The children
were able to watch a film of their choice during the high-
resolution structural scan. During the rs-fMRI, the movie
was turned off and the children were instructed to lie com-
pletely still with their eyes closed and to think about nothing
in particular. Heart rate and respiratory rate were not collected
during the scan. The rs-fMRI was obtained using an echo-
planar imaging sequence sensitive to blood oxygen level-
dependent contrast. The scan parameters were as follows:
TR = 2000 msec, TE = 30 msec, flip angle = 85�, number of sli-
ces = 37, slice thickness = 4 mm, in-plane resolution = 3.6 ·
3.6 mm, and number of volumes = 250.

Preprocessing

The functional images were preprocessed using a combina-
tion of analysis of functional neuroimages (AFNI, http://afni
.nimh.nih.gov/) (Cox, 2012) and FSL’s FMRIB’s Software
Library (FSL, FMRIB Software Library; FMRIB, Functional
Magnetic Resonance Imaging of the Brain; www.fmrib.ox
.ac.uk/fsl) ( Jenkinson et al., 2012). Slice timing correction
and motion correction were performed using AFNI. The func-
tional data were spatially smoothed using AFNI with an 8-mm
full width at half-maximum Gaussian kernel (White et al.,
2001). Functional images were co-registered to the structural
image and both the functional and structural images were nor-
malized using the Montreal Neurological Institute T1 template
(MNI152, voxel size = 2 · 2 · 2 mm) using FSL’s FLIRT
(Jenkinson and Smith, 2001; Jenkinson et al., 2002). Two sub-
jects lacked full brain coverage and were removed from the
analyses.

Independent component analyses

The first four volumes of the resting-state functional MRI
scan of each subject were discarded to allow for equilibra-
tion effects. The group independent component analysis of
fMRI toolbox (GIFT) version 1.3h (http://mialab.mrn.org/
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software/gift) was used to perform independent component
analysis (ICA) (Calhoun and Adali, 2012; Calhoun et al.,
2001) on the remaining volumes (corresponding to a data ac-
quisition duration of 8 min 12 sec). The dimensionality was
set at 16 components based on our prior work (Langeslag
et al., 2013) and also supported by studies that show that
the use of a higher dimensionality in children results in the
splitting of the frontal component of the default mode net-
work (DMN) (de Bie et al., 2012). The 16 components
from the ICA analysis were individually assessed to deter-
mine whether they constituted a well-defined brain network
or noise. Well-defined networks constitute those networks
that have been consistently reported in the literature (Allen
et al., 2011; Beckmann et al., 2005; Damoiseaux et al.,
2006; de Bie et al., 2012; Jolles et al., 2011; Smith et al.,
2009; Thomason et al., 2011; van den Heuvel and Hulshoff
Pol, 2010) and include the DMN, the salience network, the
frontal network, the left frontoparietal network, the right
frontoparietal network, the sensorimotor network, the audi-
tory network, and the visual network.

To assess the temporal stability of these brain networks, the
dimensionality of 16 was fixed and group ICA were run on
subjects after iteratively clipping off 5 TRs (10 sec) from the
end of each rs-fMRI run. This was performed from 246 TRs
down to 26 TRs, with the latter corresponding to a total dura-
tion of 52 sec. For the reference resting-state run (246 TRs)
and for each 10-sec (5 TR) decrement, brain-wide z-maps
were computed independently for each of the 16 components.
The z-score reflects the degree to which the time series of each
voxel within the brain map is associated with the mean time
series of that specific component.

Time-based stability of the rs-fMRI components

Fuzzy set theory was used for the automated matching of
components and to assess the stability of the selected rs-
fMRI components over time. A fuzzy classifier (Zadeh,
1965) using a lower threshold of z = 1.96 and an upper
threshold of z = 2.3 was applied to each of the component
maps to yield a spatial mask for each brain component. Vox-
els greater than 2.3 were assigned the value 1, whereas values
between 1.96 and 2.3 received a linear weighting between 0
and 1. The elements of set Aj are defined within the reference
rs-fMRI as those voxels in 3D space that exceeds the thresh-
old of 1.96, these are weighted between zero and one. The
subscript refers to the number of volumes used in the com-
parison. In the case of the reference set, j is fixed at 246 vol-
umes. The elements of set Ak have the same z = 1.96 to
z = 2.3 fuzzy threshold as the baseline condition, except in
this case Ak relates to the iterative decrements in the number
of TRs (k = 246, 241, 236,., 26). The spatial overlap (j) be-
tween Aj and Ak for each component was defined by Equa-
tion 1 (Kung et al., 2007):

u =
Aj \ Ak

Aj [ Ak

(1)

Dual regression analyses

In addition to analyzing the group ICA components, we
also performed iterative dual regression analyses described
by Beckmann et al. (2009) and performed using MATLAB

(Mathworks, Natick, MA). We first regressed the set of six-
teen spatial component maps individually into each subject’s
4D space/time dataset. This results in a set of subject-specific
time series, one per group-level spatial map. Next, the indi-
vidual time series were used as temporal regressors back into
the same individual’s 4D space/time dataset. This was per-
formed iteratively while chopping off 5 TR’s (10 sec) and
comparing the spatial maps individually from the shortened
time series with the full length time series using the fuzzy ap-
proach defined in Equation 1.

Statistical analyses

The comparison between individuals who were included in
the analyses and those who were dropped due subject motion
or other artifacts were performed using either v2, t-tests, and a
repeated-measures analysis of variance (ANOVA). A repeat-
ed-measures ANOVA was performed to assess differences
between the network and noise components as the between-
group factors and the overlap over time as repeated-measures
within group factors.

Results

Subject motion

Our first step was to assess whether the motion artifacts
remained relatively constant across the entire rs-fMRI run.
This was performed in the group of 188 subjects with good
registration and who had an 8 min 20 sec rs-fMRI. While mo-
tion will induce noise in the connectivity analyses (Power
et al., 2012; Satterthwaite et al., 2012; Van Dijk et al.,
2012), we wanted to exclude subjects who had differences
in motion over time. To assess this, first the TR-to-TR trans-
lational motion for each subject was calculated using the
AFNI motion correction output parameter file. The TR-to-
TR translational movement parameters (x, y, and z combined
using the Pythagorean theorem) for each individual were fit
to a line using a MATLAB first-order polynomial function
(polyfit). The slope of this line for each subject was extracted
and a one-sided t-test was performed to assess whether the
mean slope for the group differed from zero. The whole
group of 188 subjects showed a significant positive slope
(Mean 0.002, SD 0.004, t = 4.7, df 185, p < 0.0001) indicat-
ing that children had greater movement over time. This
was also confirmed using a repeated-measures ANOVA
(F(9,1665) = 7.0, p < 0.0001). Then, beginning with only chil-
dren who had less than 1-mm total head movement, and
incrementing by 1-mm total head movement (i.e., only chil-
dren who had less than 2-mm total head movement, then only
children who had less than 3-mm head movement), t-tests
were performed to assess the maximum level of movement
that showed no significant positive slope. While movement
less than 3 mm did not show a significant difference in
slope, a maximum movement threshold of less than 4 mm
did show a significant difference in slope (Mean 0.0001,
SD 0.00004, t = 2.4, df 97, p < 0.02). This quantitatively de-
rived threshold for movement less than 3 mm is very similar
to that used in the literature (Gordon et al., 2011) and in our
prior studies (Langeslag et al., 2013; van den Bosch et al.,
2014; White et al., 2011, 2012). These findings were re-
peated using a repeated-measures ANOVA, which found
no significant difference over time with less than 3 mm
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maximum movement (F(9,747) = 1.6, p = 0.12), whereas it was
at F(9,873) = 7.0, p = 0.055 for maximum movement less than
4 mm. Further analyses were run with a total of 84 subjects
who had less than 3 mm of motion. Table 1 displays the de-
mographic characteristics for these 84 subjects and the com-
parison with the whole group of 188. Figure 1 shows the

mean movement over time for different levels of maximum
translational displacement.

Participant characteristics

The characteristics of the children who were included com-
pared to those who were excluded due to excess movement are

Table 1. Demographic Characteristics for the Children and Their Parents

Less than 3-mm head
motion (n = 84)

Greater than 3-mm head motion
or poor registration (n = 104) p-Value

Age at MRI (years) 7.1 – 0.58 7.0 – 0.53 n.s.
Gender (males/females) 43/42 52/52 n.s.
Handedness (right/left/mixed) 79/5/0 95/8/1 n.s.
Nonverbal IQ 102 – 14 101 – 13 n.s.

Ethnicity
Dutch or Western 57 56 n.s.
Non-Dutch/Non-Western 28 47

Family income
< 1,200 euro/month 12 22 n.s.
1,200 to 2,400 euro/month 21 28
> 2,400 euro/month 52 53

Maternal educational level (%)
Primary 14 20 n.s.
Secondary 53 65
Higher 18 18

Maternal age at intake 30.5 – 5.0 29.3 – 5.3 n.s.
Maximum head displacement (mm) 1.5 – 0.70 14.7 – 15.9 n.a.

p-Values were obtained using two sample t-tests for continuous variables and chi-square for categorical variables.
MRI, magnetic resonance imaging; n.s., not significantly different; n.a., not applicable as this variable was used to separate the groups.

FIG. 1. Mean TR to TR movement over time. Each TR is 2 sec in duration and the mean TR-to-TR movement is averaged
over blocks of 25 TRs (50 sec). The line reflecting movement ‘‘Over 6 mm’’ reflects all children, and each subsequent threshold
reflects those children from the entire sample who have movement less than the threshold listed. Error bars reflect intersubject
variability of the TR-to-TR movement. TR, repetition times. Color images available online at www.liebertpub.com/brain
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provided in Table 1. The children scanned had a mean age of
7.1 years (SD – 0.58) and the sex and handedness distribution
between the groups were well balanced (Table 1). Between the
group of children excluded due to movement artifacts and
those included, there were no significant differences in age,
sex, handedness, ethnicity, or family income (Table 1).

Functional brain networks and noise components

Eight of the 16 components matched brain networks found
in the literature for children and adults. These networks are
shown in Figure 2 and Supplementary Figure S1 (Supple-
mentary Data are available online at www.liebertpub.com/
brain) and include the DMN (Allen et al., 2011; Beckmann
et al., 2005; Buckner et al., 2008; Damoiseaux et al., 2006;
de Bie et al., 2012; Fair et al., 2008; Jolles et al., 2011; Raichle
et al., 2001; Smith et al., 2009; Stevens et al., 2009), the left
and right frontoparietal networks (Damoiseaux et al., 2006;
Dosenbach et al., 2007; Fox et al., 2006; Jolles et al., 2011;
Smith et al., 2009; Stevens et al., 2009; van den Heuvel and
Hulshoff Pol, 2010), salience network (Seeley et al., 2007;
Thomason et al., 2011), frontal network (Allen et al., 2011;
de Bie et al., 2012; Smith et al., 2009; van den Heuvel and

Hulshoff Pol, 2010), and the three primary sensory networks
including the visual (Allen et al., 2011; Beckmann et al.,
2005; Damoiseaux et al., 2006; de Bie et al., 2012; De
Luca et al., 2006; Jolles et al., 2011; Smith et al., 2009;
van den Heuvel and Hulshoff Pol, 2010), sensorimotor
(Allen et al., 2011; Beckmann et al., 2005; Damoiseaux
et al., 2006; de Bie et al., 2012; De Luca et al., 2006; Jolles
et al., 2011; Smith et al., 2009; van den Heuvel and Hulshoff
Pol, 2010), and auditory (Allen et al., 2011; Beckmann et al.,
2005; Damoiseaux et al., 2006; de Bie et al., 2012; De Luca
et al., 2006; Jolles et al., 2011; Mantini et al., 2007; Smith
et al., 2009) networks. The frontal component is likely asso-
ciated with the DFN, as when the threshold for this network
is reduced, the posterior cingulate is included in the network.
The parietal regions, however, do not emerge with lowering
the threshold.

In addition, four noise components were also selected
based on the spatial characteristics of these networks (Fig.
3 and Supplementary Fig. S2). The spatial patterns of these
components reflected noise as a result of head motion, phys-
iologic and flow artifacts, and correlations found in the cere-
bral spinal fluid. Finally, four additional components were
identified as not consistently reported in the literature, but

FIG. 2. Eight brain network components derived using independent component analysis in 84 children and a total sequence
time of 8.2 min (246 TRs). The classification of the networks are (A) default mode network (DMN); (B) frontal network
(likely component of anterior DMN); (C) sensorimotor network; (D) visual network; (E) right frontoparietal network; (F)
left frontoparietal network; (G) salience network; (H) auditory network.
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also could not be classified as noise components. These com-
ponents were excluded from the analyses.

Network stability over time

Network stability was measured by comparing the spatial
overlap (j) between individual ICA derived components
from the full rs-fMRI image to the time-shortened rs-fMRI

images, in which trailing volumes have been iteratively re-
moved. Thus, Equation 1 determines how well ICA can derive
spatial maps that are similar to the full rs-fMRI run, as the total
length of the rs-fMRI run becomes shorter. The measure of spa-
tial overlap is defined as the intersection over the union of two
spatial maps, thus reflecting the same components derived with
different amounts of time. Spatial maps that completely overlap
(identical maps) have a value of 1, whereas spatial maps with

FIG. 3. Four noise network components extracted using independent component analysis in 84 children and a total se-
quence time of 8.2 min (246 TRs). The classification of the networks are (A) flow artifact; (B) frontal movement; (C) ven-
tricular and midline movement; (D) ‘‘ring of fire’’ due to head motion.

FIG. 4. Brain network stability of the default mode and right frontoparietal networks showing differences in the spatial
overlap. Red reflects the networks calculated using the full 8.2 min resting-state sequence, whereas the blue networks
show shorter periods of time. DMN: (A-1) Spatial overlap = 0.77 (collected with 4 min and 22 sec of data). (B-1) Spatial over-
lap = 0.54 (collected with 2 min and 12 sec of data); (C-1) Spatial overlap with = 0.25 (collected with 52 sec of data). Right
Frontoparietal Network: (A-2) Spatial overlap = 0.76 (collected with 6 min and 32 sec of data). (B-2) Spatial overlap = 0.51
(collected with 3 min and 52 sec of data); (C-2) Spatial overlap with = 0.28 (collected with 1 min and 12 sec of data).
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no overlap result in the value j being zero. Since Equation 1 is
nonlinear, we provide an example of the spatial overlap (j) of
the DMN using j*0.75, j*0.5, and j*0.25 (Fig. 4). The
stability of the individual brain networks and noise networks
are shown in Figure 5. Note that when j= 0.5, there remains
a high spatial overlap in the individual brain regions involved
in the DMN. For two regions of equal size, a volume overlap
of 50% translates into a j of 0.33. Thus, we consider a
j> 0.5 a good level of spatial overlap.

We found that the spatial stability of the brain networks
was quite high for 170 TRs and greater, equating to a total
acquisition time greater than 5½ min (Fig. 5A). While we
expected that the primary sensory components of auditory,
visual, and sensorimotor would show the greatest stability,
we found the greatest instability in the sensorimotor network.
With the exception of the sensorimotor network, networks
remained quite stable down to 3 min of acquisition time, at
which point there was a steep decline in spatial overlap in
most networks. Interestingly however, several brain net-
works, including the auditory and salience network remained
quite stable down to 50 sec of acquisition time (25 TRs).

The spatial stability of the noise components was quite in-
teresting (Fig. 5B). We tested whether noise components re-
lated to movement would show greater variability compared

to the brain network components (Fig. 6). However, two
noise components related to movement (Fig. 3B, D) were
equally as stable as the brain networks (Fig. 5). Noise net-
works related to physiological noise also showed strikingly
high spatial overlap with decreasing acquisition time. Over-
all, the noise components showed increasing spatial overlap
with decreasing acquisition time compared to the brain net-
work components, although a repeated measures ANOVA
found only a trend level difference (F(1,10) = 4.46, p = 0.06).

The dual regression approach showed results that were
quite similar, with the auditory and salience network show-
ing the highest level of stability over time (Supplementary
Fig. S3). However, the decline in stability tended to be
more linear and the comparison of the standard deviation
shows an increase down to *4 min of acquisition time,
with a subsequent plateau (Supplementary Fig. S4). A reflec-
tion of the spatial overlap for the DMN for each individual is
shown in Supplementary Figure S5).

Discussion

While the brains of children are highly similar to adult
brains, there are also important developmental differences
that make them quite distinct. There are differences in energy

FIG. 5. Network stability of (A) Eight brain network components and (B) four noise components with respect to time of
acquisition. Color images available online at www.liebertpub.com/brain
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metabolism and expenditure (Erecinska et al., 2004), gray
and white matter volumes (Gogtay and Thompson, 2010;
Lenroot and Giedd, 2006; Sowell et al., 2002), gyrification
(White et al., 2010), functional connectivity (Fair et al.,
2008, 2009; Jolles et al., 2011; Power et al., 2010; Stevens
et al., 2009), and noise characteristics within the brain (Mc-
Intosh et al., 2010). Furthermore, physiological differences,
such as heart and respiratory rates are also different between
children and adults. Thus, without testing, it is unclear
whether the optimal acquisition time of resting-state studies
in adults (given a specific TR) can be directly translated to
studies in children. While there is evidence that children
show similar brain networks as those obtained in adults (de
Bie et al., 2012; Fair et al., 2009; Gordon et al., 2011; Jolles
et al., 2011; Langeslag et al., 2013; Stevens et al., 2009;
Supekar et al., 2010; Thomason et al., 2011), the stability
of these networks with respect to time of acquisition is not
known. Thus, our primary goal was to test the network stabil-
ity in resting-state fMRI in multiple brain networks in school-
age children.

Using a TR of 2 sec, we found that scan acquisition times
greater than 5½ min yielded very good network stability for
all 8 brain components. Furthermore, we found that many of
the brain networks had very good stability even with acqui-
sition times as short as 3 min (Fig. 5). While studies in adults
have found that the default mode and attention networks sta-
bilize after *5 to 6 min (Franco et al., 2013; Van Dijk et al.,
2010), run lengths of 4 min have been shown to reliably es-
timate these brain networks (Van Dijk et al., 2010). Further-
more, adult studies have shown that global measures of small
worldness can be reliably measured with acquisition times
as short as 2 min (Whitlow et al., 2011). While our study sug-
gests that the sensorimotor network stabilizes after 5½ min,
the seven other brain networks remain quite stable down to
3 min of acquisition time. In fact, the auditory and salience
networks remained stable with acquisition times as short as
50 sec. While the strength of a specific brain network cer-
tainly plays a role in the duration necessary to reliably mea-
sure that network, it is only a part of the story. Given equal
amounts of noise, a highly connected but slowly oscillating
network (cycling between correlated and uncorrelated time

series) would show less connectivity in a shorter period of
time compared to a less well connected but more rapidly os-
cillating network. Thus, one potential reason why certain
networks show greater stability in time frames as short as
50 sec is that these brain networks cycle more frequently
than other brain networks. To test this, we calculated the
spectral density for the two most stable networks (auditory
and salience networks) compared to two less stable networks
(sensorimotor and frontal components). These are presented
in Supplementary Figure S6. We also calculated normalized
power within a low (0–0.05 Hz), medium (0.05–0.12 Hz),
and high frequency (0.12–0.25 Hz) bands, similar to other
studies (Baliki et al., 2011; Kim et al., 2014; Malinen
et al., 2010). Indeed, a paired t-test showed that the power
spectrum of auditory and salience networks show statisti-
cally significant greater power in the higher frequency
range compared with the sensorimotor and frontal networks.
However, the sensorimotor and frontal components show
statistically significant greater power in the lower frequency
range (Supplementary Fig. S6). While it is not surprising that
two different networks show different frequency characteris-
tics, the relative difference between high and low frequency
power between the networks could contribute to the differ-
ences in network stability over time.

Since studies of acquisition times in adults have focused
only on one or two specific brain networks, always including
the DMN, direct comparisons of all the networks are diffi-
cult. Our findings of the DMN show that stability undergoes
a gradual decline down to *2½ min, after which there is a
rapid drop in the spatial overlap measure (Fig. 5A). Thus,
there is good correspondence in acquisition times between
studies of children and adults with respect to the DMN.

Interestingly, we also found that four noise networks were
also quite stable over time. While we expect that artifacts re-
lated to physiological changes in blood flow would show
high stability, we expected networks related to movement
to show greater instability. The two movement components;
the frontal and ‘‘ring of fire’’ networks, involve movements
that in our experience are characteristic for children who lie
in the scanner. This is likely the reason for their high stabil-
ity. The most common movement for individuals lying in the

FIG. 6. Mean network stability of the eight brain network components and four noise components. Error bars are standard
error of the mean. Color images available online at www.liebertpub.com/brain
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scanner is rotation along the x-axis or similar to nodding the
head ‘‘yes.’’ It is often difficult to securely restrain the head
to prevent this type of movement. The ‘‘ring of fire’’ move-
ment network involves an outer boundary of temporally cor-
related signal around the brain and defines movement in
multiple directions. While this is less stable than the other
noise networks, it is equally as stable as the brain networks.
Since these noise networks remain relatively stable, they will
be easier to identify using algorithms designed for automated
network detection (Storti et al., 2013).

There are several limitations to the current study. First,
approximately half of our subjects were dropped due to ex-
cessive movement over the 8 min 20 sec run. Significant
movement in the MRI in young children is common and
we found no difference in demographic variables between
the children included and those excluded due to motion.
Since we found evidence for increased movement over
time in the children who were excluded, shorter acquisition
times would reduce the number of children excluded as a re-
sult of motion. In addition, our movement criteria were more
stringent than some other studies (de Bie et al., 2012; Gordon
et al., 2011) and resulted in approximately half of our sub-
jects being dropped due to motion. This resulted in including
only children who were able to remain very still and raises
the question as to whether our findings generalize to all chil-
dren. Second, we fixed the dimensionality at 16, as we found
in a prior study that this level of dimensionality provided
components similar to those seen in adult studies (Langeslag
et al., 2013). In the extremes, differences in dimensionality
will have large effects on network stability (i.e., 1 brain net-
work will show excellent stability, whereas 200 brain net-
works would be much more unstable). There is evidence
that using similar levels of dimensionality, brain networks
in children become more fragmented into multiple networks
compared to adults (de Bie et al., 2012). Thus, our choice of
16 components in school-age children was selected on the
basis of our prior work. Third, the advent of multiband se-
quences will greatly enhance the number of volumes col-
lected within a specific time period (Moeller et al., 2010).
The higher sampling rate will allow for increased signal to
noise and better detection of physiological confounds and
thus may decrease the optimal acquisition time for network
stability. However, comparisons of acquisition times be-
tween multiband sequences and those with traditional TRs
have both shown stabilization after 5 to 6 min (Liao et al.,
2013). This suggests that brain network stability is more re-
lated to duration of acquisition than sampling rate. Finally,
since different brain networks show different levels of stabil-
ity, our study may have relevance with respect to sliding win-
dow approaches of connectivity (Chang and Glover, 2010;
Sakoglu et al., 2010). For example, brain networks that
show high stability in short periods of time, such as the audi-
tory and salience networks may require shorter periods of the
sliding window than other networks. Further studies, espe-
cially those that include multiband imaging are important
to address this question.

Conclusions

In conclusion, we found that component group maps of all
brain networks stabilized after *5½ min of data acquisition
in school-age children. While some components such as the

auditory and salience networks remained relatively stable
down to acquisition times of less than 2 min (Fig. 5), other
networks show considerable less stability. The sensorimotor
network, for example, was the least stable brain network.
Since the signal to noise of extracting network components
increases by the square root of the run length (Van Dijk
et al., 2010), increasing the acquisition time allows for a
greater number of sampling points and a better capture of
the time series. However, there is a trade off since increasing
the acquisition time also results in an increased burden for the
children and the risk of increasing motion and other artifacts.
This is especially important since it has been shown that sub-
ject motion artifacts can influence functional connectivity pat-
terns within the brain (Power et al., 2012). Thus, our findings
suggest that an acquisition time of *5½ min is sufficient to
capture a comprehensive set of brain networks. Since it has
been shown that seed-based methods and ICA yield similar re-
sults for some of the well-studied brain networks indicates that
these complementary methods extract similar signals (Cal-
houn et al., 2012; Van Dijk et al., 2010). This suggests that
our findings are likely to apply to seed-based approaches.
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