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Time-of-Arrival Based Localization Under
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Abstract—Three or more base stations (BS) making time-of-
arrival measurements of a signal from a mobile station (MS) can
locate the MS. However, when some of the measurements are from
non-line-of-sight (NLOS) paths, the location errors can be very
large. This paper proposes a residual test (RT) that can simultane-
ously determine the number of line-of-sight (LOS) BS and identify
them. Then, localization can proceed with only those LOS BS.

The RT works on the principle that when all measurements are
LOS, the normalized residuals have a central Chi-Square distri-
bution, versus a noncentral distribution when there is NLOS. The
residuals are the squared differences between the estimates and
the true position. Normalization by their variances gives a unity
variance to the resultant random variables.

In simulation studies, for the chosen geometry and NLOS and
measurement noise errors, the RT can determine the correct num-
ber of LOS-BS over 90% of the time. For four or more BS, where
there are at least three LOS-BS, the estimator has variances that
are near the Cramer-Rao lower bound.

Index Terms—Mobile positioning, non-line-of-sight (NLOS),
time-of-arrival (ToA).

1. INTRODUCTION

ETERMATION of the position of a transmitting mobile
D station (MS) is a requirement in mobile phone operations.
Responding to E-911 calls, providing location specific service
information, and tracking a user, are examples that require an
MS location [1].

An introduction to the basics of MS localization is given
in [2]-[6]. Adding a GPS receiver to an MS, which appears
to be an obvious solution, increases costs, weight, and power
consumption, although in the U.S., this is now mandatory for
new MS. In most other cases, the standard practice is to local-
ize an MS from measurements of time-of-arrival (ToA), time-
difference-of-arrival (TDoA), angle-of-arrival, signal strength,
or a combination of these. The more popular is ToA. Three or
more base stations (BS) measure the ToA of the transmission
from an MS, giving ToA; and §; = ¢ x ToA,, which is the dis-
tance between the BS; and the MS,. where the speed of light
is ¢,. the locus of points at a distance d; from BS; is a circle,
and the intersections of circles give the MS location. Due to
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errors in ToA measurements, the circles do not intersect at a
unique point, and it is necessary to find a location that best fits
the measurements [1].

Another more significant problem is the non-line-of-sight
(NLOS) situation, when the signal arrives at a BS from re-
flections. There is no direct, or line-of-sight (LOS), path. This
often happens in an urban environment. Localization with an
NLOS ToA can lead to large position errors.

There are, broadly, three ways to cope with the NLOS con-
dition. The first way is similar to matched field processing for
localization [7], [8]. It first measures the propagation character-
istics of the channel, and then determines the MS location from
a scattering model [9]-[12]. The difficulties are in obtaining an
accurate model, and the model may change with the seasons and
addition or removal of building structures.

The second way localizes with all NLOS and LOS mea-
surements, but provides weighting or scaling to minimize the
effects of the NLOS contributions. The weighting comes from
either the localization geometry and BS layout [13], [14], or
from the residuals (fitting errors) of individual BS [15]. The
advantage here is that there is always an estimate, even when all
BS are NLOS. The problem is that the answer can be unreliable
because NLOS errors, though reduced, are always present.

The third way attempts to identify and localize with the LOS-
BS. Identification is by a time-history based hypothesis test [16];
a probabilistic model [17]; [18]; residual information [19]; or
maximum likelihood detection [25]. If the identification is cor-
rect, the accuracy is what the localization algorithm can provide,
but there is always the possibility of wrong identification. In ad-
dition, unlike the first two methods, it requires at least three
LOS-BS to localize.

This paper considers the third category. It determines the LOS
dimension (D), i.e., the number of LOS-BS, identifies those BS,
and localizes only with them. A residual test compares the resid-
uals of a group of, say, k BS, against a predetermined threshold
TH. If only a small percentage, say 10%, of the residuals are
above T'H, then D = k. Otherwise, the test moves to groups of
(k — 1) BS. This process stops when it has determined a D, or
when D = 3, the minimum value necessary for a unique local-
ization. In the following, Section II describes the residual test,
and Section III contains the simulation results. The conclusions
are given in Section IV.

II. RESIDUAL TEST

For clarity, “dimension” here in denotes the number of BS that
receives LOS ToA measurements, and “identification” means
finding the identities of those BS. The residual test performs

0018-9545/$20.00 © 2006 IEEE
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dimension determination and identification simultaneously but,
conceivably, there can be schemes that separate the two func-
tions.

A. ML Estimation
Let there be N LOS-BS at («x;, y;), measuring distance §; =
¢ x ToA; from an MS at unknown location © = [z y|T. Let

0 =R +e (1)

where R; are the true distances, and ¢; are independently and
identically distributed (i.i.d.) zero mean Gaussian random vari-
ables denoting measurement noise. The maximum likelihood
(ML) estimate is the © that maximizes the likelihood function

.
J=> (5 - R)? )
i=1

where
R} = (z—m:)" + (y—vi)*. 3)

Setting the differentials of (2) with respect to © to zero gives
the likelihood equations

N

(6 = Ri) (@ — ;)
2w "
N
(0 — Ri)(y —wi)
; & = 0. 0))

—

1

The equations in (4) are nonlinear in © and have no closed form
solutions. However, [20] was able to manipulate (4) into a set
of linear equations in ©, in the form of

AB =1 &)

but with A and b being functions of ©. A suboptimal but linear
algorithm [23] first gives an initial estimate of ©, which can
then give values of A and b. Solving (5) then produces a new
value of © to update A and b, and then O. The procedure,
called the approximate ML (AML) estimator [20], stops after
five updates and takes the © that gives the smallest J in (2) as the
solution. This ensures that the AML will not diverge, and will, at
worst, have the errors of the linear estimator. Simulation results
in [20] show that the AML actually attains the Cramer—Rao
lower bound (CRLB).

When all measurements are LOS, the random variables in
(7) should have a central x? distribution. This implies that the
estimates 2 and g should be Gaussian zero mean, and have
variances equal to the CRLB.ML estimates obtained from the
AML satisfy this requirement.

B. Dimension Determination

For ease of illustration but without loss of generality, let there
be seven BS, with some or all §; being LOS. The problem is
to determine the LOS dimension D and estimate © from the D
number of BS.

The residual test (RT) begins by checking if D = 7. It com-
putes, with the AML [20], a total of

7C; =99 6)

M~

=3

estimates of ©. Thus, e.g., in the case of 7(C'5 = 35, there are
35 different estimates of ©, obtained from 7 ¢;, taken three at a
time. Let these estimates be O(k), k = 1...99, with ©(99) the
7Cth estimate.

Next, the RT computes the square of the normalized residuals

(£ (k) — 2(99)]

X (k) = B.(R)
o L0(k) —9(99)) -~
Xy(k)—w, k=1,...98. %

The reference estimate is ©(99), which is the best estimate
of the true © among all O (k). This follows, because ©(99) is
the estimate from all LOS (assumed) BS.

In (7), B, (k) and B, (k) are the approximation of the CRLB
(see Appendix) of © from the ¢; combination that produces
O(k). The CRLB is the theoretical lower bound, valid when
the ¢; in §; = R; + ¢; are i.i.d. zero mean Gaussian random
variables, and is a function of the localization geometry. Its
computation requires knowledge of the true ©. Since this is not
available, the @(k) location is used as a substitute to produce
B, (k) and B, (k).

Now, if D = 7 and © is an ML estimate of O, then

i(k) —= 9(k) —y

B. (%) B, (%) ®

have a N (0, 1) probability density function (pdf). It follows that
the random variables (r.v.) in (7) have an approximate central
x? (Chi square) pdf of one degree of freedom [21]. If, however,
one or more of the &; are NLOS, then ©(99) and some O (k)
will contain biases. The r.v. in (7) will have a noncentral x? pdf,
with the noncentral parameter being a function of the biases.

The pdf of the r.v. in (7) is only approximately central 2, even
when N = 7, because 1) the (k) and y(k) are partially corre-
lated since they share some common ToA noise term ¢; in their
computations; and 2) the CRLB in (7) are only approximations.

Fig. 1 plots the experimental pdfs of the r.v. x2(k) and
X; (k) in (7), for N =7, and D =7, D = 6. It also contains
the theoretical 2 pdf for comparison. The experimental pdfs
come from histograms of 10 000 independent trials for noise
o =10m. For N = 7 and D = 6, the NLOS measurement has
a bias = 1000 m. The x-axis in Fig. 1 begins at 0.1 so as to
produce plots that can emphasize the differences between the
theoretical and experimental pdfs. This figure shows that at
x? = 2.71, the area to its right is 0.02 for the experimental pdf
verses 0.07 for the theoretical [22].

Now, Fig. 1 suggests how the r.v. in (7) can determine the LOS
dimension. For example, for a threshold TH = 2.71, D = 7 if
only 2% or less of the r.v. are larger than 2.71. Otherwise, the
pdf is noncentral Xz, and D < 7.
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Fig. 1. Experimental and true x2 pdfs.
TABLE I TABLE II
CONFUSION MATRIX FOR ¢ = 9 m CONFUSION MATRIX FOR ¢ = 18 m

| Determined Dimension (D ) I Determined Dimension (D )

D 7 6 5 4 D 7 6 5

2|9 53 4 0 0 S | 936 61 3 0 0

943 53 4 0 0 936 61 3 0 0
s|e 0 951 47 2 0 clel® 943 55 2 0
o 0 91 47 2 0 3 0 943 55 2 0
[0}
Els]? 0 48 o ! 2N 0 955 44 0
2 0 0 e L S 0 0 956 44 0
pm}
g 4 0 f 0 ] 0 f 949 o 46 f E . 0 0 0 934 47
0 5 5 5 53 0 0 0 942 58
3 0 0 0 0 729
0 0 0 8 992 3
0 0 0 25 975

Let Py p be the probability of overdetermination; i.e., when
D < 7 but the RT decides that D = 7. Similarly, Pyp is the
probability of underdetermination; i.e., when D =7 but the
decision is D < 7. For TH = 2.71, overdetermination occurs
when D < 7 but only 2% or less of the r.v. are greater than 2.71.
Underdetermination occurs when D = 7 but more than 2% of
the r.v. are greater than 2.71.

It is desirable to minimize both Ppp and Pyp through a
proper choice of TH. For TH < 0.1, Pop ~ 1 while Pyp ~ 0,
since both the 2 and noncentral x 2 pdfs have approximately the
same areas to the right of TH < 0.1. For TH > 0.1, Pop ~ 0
while Py p is dependent on TH. For 10 000 independent trials,
Fig. 2 gives a plot of Py p verses TH. It shows that TH = 2.71
gives the lowest Py p. The simulation experiments used TH =
2.71, resulting in almost zero overdetermination and a Py p of
less than 0.1, as seen in Tables I and II.

Now, in Fig. 1, the experimental x? pdf has an area of 0.02 to
the right of TH = 2.71. The theoretical value is actually 0.07. To

accommodate other dimension tests besides seven, and to keep
Ppp to a minimum instead of 2% or 7%, the RT checks to see
if 10% of the r.v. in (7) are above TH for dimension determina-
tion. It is preferable to underdetermine than overdetermine. The
former results in a smaller number of LOS BS for localization,
while the latter contains NLOS BS for localization. resulting in
large errors. Hence, for N = 7, if the number of r.v. larger than
2.711s 0.1 x 98 x 2 ~ 20 or less, the RT decides that D = 7.
Otherwise, it checks if D = 6.

Summarizing, the steps for deciding if D = 7 are as follows:

1y
2)

3)

4)

Do ZZ:3 7C; estimates of O (k), k =1,...,99.
Compute B, (k), and B, (k) and then x2 (k) and x; (k) in
).

Count the number of r.v., [, in (7) that are larger than
TH = 2.71.

If] < 20,then D = 7, and (:)(99) is the answer. Otherwise,
check if D = 6.
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Fig. 2. Finding the TH.

To check D = 6, form 7Cg = 7 sets of BS, six per set. For
each set, do

6Ci = 42 €))

N.
I Mcn
w

estimates of(;)(k)7 k=1,...,42,and repeat steps 1) and 2), and
then find seven [ values. If there existsan! < 0.1 x 41 x 2 &~ §,
then D = 6, and that set of six BS are LOS BS. Otherwise, check
for D = 5. If more than one set have [ < 8, take the set with the
smallest [, and the BS in this set are taken to be LOS. The steps
for checking D = 5 and D = 4 are similar to the D = 6 case.

Now, suppose RT has determined that D = 3, so that the next
task is to identify three LOS-BS from the seven. Since three BS
do not provide a sufficient number of r.v. for a reliable RT, a
different test is necessary. The following procedure, called the
delta test (DT), takes two BS as the reference set, and combines
with another BS out of the remaining five, to see if these three
are LOS.

To illustrate, let the reference set contains BS; and BSs,

assumed to be LOS. Then, for [ =1, 2
o =R +¢ (10)

where the variables in (10) are defined as those in (1) and (3).
In contrast, a NLOS BS; will measure

6j = Rj +¢; +q (I
where «; is the additional distance due to NLOS. Letting

C? = 22 4 ¢ (12)
and

K2 = 2?2 49?2 (13)

(3 3

1
1.64

1 1
2.71 3.84

Threshold Value

and expanding (10) and (11) result in

21‘1 2y1 0 €T

2¢9 2y2 O Y

2.’Ej 2y] -1 Aj
K12+02—(5% 2Rqe1 +E%

= |K2+C?—62| + | 2Roey + €2 (14)
K2 +C? —d7 2Rje; + €5

In (14)

A]‘ = 2Rj0[j + 20éj€j + CYJ2- (15)

and the right-most vector contains unknown terms that are de-
pendent on the .v. ;.

Ignoring the vector of disturbance containing ¢;, solving (14)
gives (z,y, A;) in terms of C. Substituting the expressions for
x and y into (12) results in a quadratic whose unknown is C.
Its solution then gives numerical values for (z,y, A;).

When all three BS in (14) are LOS, A; should be ~ 0, and
nonzero when one or more of them are NLOS. The DT first
forms 7Cy = 21 reference sets of two BS per set, and computes
a A; from taking each of the other five BS as the jth BS. In
those 21 sets, three BS will appear 3C5 = 3 times, with one of
the three taking turns as the jth BS. If these three BS are LOS,
then |A;| should be small. The DT sums the 3|A;| of these three
BS and selects the set with the smallest sum as the LOS set.

Values of C? i.e., the roots of the quadratic, can be: 1) both
equal and positive, meaning the solution for (z, v, A; ) is unique;
2) positive but unequal, and DT selects the smallest |A;|, since
it is checking for LOS BS; and 3) both negative or complex, an
indication that (14) does not have a real solution, and DT will
consider this set of BS as containing at least one NLOS BS.
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Fig. 3. Flowchart for the residual and delta tests.

To reiterate, the main idea of dimension determination is as
follows. If there are /N BS and the dimension is IV, then the esti-
mates of © from all possible BS combinations Zf\; 3 v C; should
have normalized residuals that obey the central Chi square dis-
tribution. The algorithm flow chart is in Fig. 3.

v

Form v C, sets of 2 BS each

v

From each set, add a BS from
the remaining (MN-2) to form a
set of 3 BS

v

For each set, solve A ;
of (15)

L
Sum thIC€|A /-|I'or three sets
of same BS.
v

The set that has the smallest
sum contains the 3 LOS-BS

The set that has the smallest
¢ contains the DLOS-BS

III. SIMULATION STUDIES

The localization experiment in this section aims to evalu-
ate the RT for dimension determination. There are seven BS,
and their locations are at (6000, 0), (3000, —6000), (—3000,
—5000), (—6000,—1000), (—4000,6000), (0,5000), and
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Fig. 4. Localization geometry.

(4000, 6000), and the MS is at (2000, 1000). All units are in
meters. Fig. 4 is the localization geometry. For a given trial, the
distance measurements from ToA are, for LOS

0 =Ri+¢ (16)

where ¢; are i.i.d. zero mean Gaussian r.v. of variance 02, and
for NLOS

0 = R; +¢ei +q (17)

where «; are i.i.d. r.v. of uniform probability density between
100 m and 1300 m. For a given dimension D and o, there are
1000 independent trials. The NLOS and LOS BS are randomly
selected for each trial. The RT determines DD and gives the
estimates.

The parameter D varies from three to seven, and o from
0.05 m to 18.05 m. For wideband CDMA, the timing resolution
is half a chip [26], equivalent to a distance of 40 m. Assum-
ing a uniform pdf between 0 and 40 m, the ToA noise o is
(40)/(v/3) ~ 23 m. In GSM, a BS measures ToA in the uplink,
with the 3G systems having an accuracy of about 10 m through
GPS-assisted measurements [27]. Thus, the simulation range of
o is below that for WCDMA, but within those of 3G-GSM.

Tables I and II are the confusion matrices for o = 9 m and
o = 18 m, respectively. There are two entries in each box in
the tables. The lower entry gives the number of trials that have
determined the dimension as D. The upper gives the number of
correct identifications () of the LOS BS. When D > 5,1 = D.
Butwhen D is four or three, it becomes more difficult to properly
identify the LOS BS, and I < D in those cases.

As Tables I and II show, the RT provides at least 90% correct
D determination. In addition, most of the incorrect D are smaller
than D. When D is incorrect, it is preferable to have D<D

rather than D > D. The latter means the inclusion of NLOS
measurements, which produces large estimation errors. In con-
trast, a D < D localization means not including some LOS BS.
The degradation in accuracy is relatively minor compared to
NLOS effects.

It is of value to compare the position estimation accuracy of
RT with two other ToA-based NLOS mitigation methods, [15]
and [24]. Fig. 5 plots the mean square errors (MSE) in m?2, from
1000 independent trials, as a function of the noise o, where

> o) -
1000

ol

MSE = (18)
In (18), @(z) is the estimate of the ith trial. The plots contain
the MSE from RT, from the residual weighted (RW) estimate
of [15], and from the constrained least squares (CLS) esti-
mate of [24]. Also included as a reference is 10log(B, + B,),
where B, and B are the averaged CRLB (See Appendix) for
the estimation of x and y. Averaging over 1000 is necessary
since for each trial, except for the D = seven case, the set of
LOS-BS can be different, resulting in a different CRLB.

In Fig. 5(a), where the true dimension D = 7, the MSE of RT
follows closely, but slightly above, the CRLB. This is because,
as seen in Tables I and II, some trials had determined a D lower
than seven, and thus had less than seven BS for localization,
resulting in a higher MSE. The MSE of RW is above the CRLB
and the overall performance is inferior to RT, with much higher
MSE at some o. The CLS performed poorly in the situation
when all BS are LOS. It assumes that all BS are NLOS, so that
its MSE is quite large when this assumption is incorrect.

The results in Fig. 5(b), where D = 5, follow that of Fig. 5(a),
except that RW has relatively even higher MSE. When D = 3,
in Fig. 5(c), RT has a large percentage of incorrect LOS-BS
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Fig. 5. (a) True dimension = 7.
dimension = 3.

(e)

(b) True dimension = 5. (¢) True

identification. Its MSE, as well as that of RW and CLS, are all
above the CRLB. Results for D = 6 and 4 are similar to the
D = 7 and 5 cases, respectively, and are not shown.

To be fair to RW [15] and CLS [24], it should be explained
that they both assume that all BS are NLOS, and do not select
LOS-BS for localization. Hence, in a setting where there are
LOS-BS, they do not perform as well as RT, which attempts to
identify the LOS-BS.

IV. CONCLUSION

The localization of an MS can have significant errors when
NLOS measurements are present. This paper has proposed a
method, based on residual testing, to determine the LOS dimen-
sion and simultaneously identify the LOS BS. The principle is
that if all measurements are LOS, and if the localization tech-
nique gives maximum likelihood estimates, then the residuals,
normalized by the CRLB, will have a central x? distribution. But
if there are NLOS ToA, the distribution is noncentral Xz_ The
check for noncentral x? is by counting the number of normal-
ized residuals that exceed a predefined TH value. If that number
is larger than what a central x? distribution should have, there
is NLOS.

The RT method of LOS dimension determination is rather re-
liable, achieving accuracy of over 90% even when o = 18.05 m.
The location MSE is close to the CRLB for D > 4.Butat D = 3,
difficulty in identifying the LOS-BS leads to a higher MSE.

APPENDIX
CRLB

Let N be the number of LOS BS at locations (z;,y;) and let
the MS be at (z, y). The CRLB is the theoretical lower bound on
the estimation errors. It is a function of the localization geometry
and the measurement noise o2, To find the CRLB, compute first
the Fisher information matrix [23]. It is

r—x; 2 T—x; )(Y—Y;
1 ¥ € 7 ) S ( 3;1/ yi)
o2 L% )\Y—Yi y—yi)®
o2 Z( Jély) Z(yd?)
where d;? = (z — ;) + (y — y;)? and the summation is from

i =1to N. Then, the (1, 1) and (2, 2) elements of I~1(6) are,
respectively, B, and B,, the CRLB for £ and §.

1(0) =
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