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1. INTRODUCTION

There has been great interest in ultra-wide bandwidth tech-
nology in recent years because of its potential for a large
number of applications. A large body of literature exists
on the characterization of indoor propagation channels and
many indoor propagation measurements have been made
[1–7]. Due to its fine delay resolution properties, UWB shows
good capability for short-range communications in dense
multipath environments. One of the most attractive capa-
bilities of UWB technology is accurate position localization
[8–10]. The transmission of extremely short pulses or equiv-
alently the use of extremely large transmission bandwidths
provides the ability to resolve multipath components. This
implies high ranging accuracy.

Position estimation is mainly affected by noise, multipath
components, and different propagation speeds through ob-
stacles in non-line-of-sight (NLOS) environments. Most po-
sitioning techniques are based on the time of arrival (ToA)
estimation of the first path [11]. Generally, the first path is
not the strongest, making the estimation of the ToA challeng-
ing in dense multipath channels.

ToA estimation in a multipath environment is closely re-
lated to channel estimation, where channel amplitudes and
time of arrivals are jointly estimated using, for example,
a maximum likelihood (ML) approach [12, 13]. Received
paths often partially overlap and thus become unresolvable,

thereby degrading the ToA estimation. This situation is con-
sidered in [14] where an ML delay acquisition algorithm for
code division multiple access (CDMA) systems in nonresolv-
able channels is proposed. First, distinct path packets are lo-
cated using a conventional acquisition algorithm to reduce
the set of possible delay combinations to be tested, then the
mean squared error between the received signal and a set of
hypothesized estimated signals is minimized. In [15] a gener-
alized ML-based ToA estimation is applied to UWB signals,
by assuming that the strongest path is perfectly locked and
estimating the relative delay of the first path using statistical
models based on experimental data.

The problem of estimating the channel parameters can
be considered a special case of the harmonic retrieval prob-
lems that are well studied in spectral estimation literature.
There is a particularly attractive class of subspace or SVD-
based algorithms, called high-resolution methods, which can
resolve closely spaced sinusoids from a short record of noise-
corrupted data. An example is given by the root multiple sig-
nal classification (MUSIC) [16], which uses the noise white-
ness property to identify the signal subspace from an eigen-
value decomposition of the received signal correlation ma-
trix. For CDMA systems the MUSIC super-resolution algo-
rithm is applied in [17] to frequency-domain channel mea-
surement data to obtain the ToA estimation in indoor WLAN
scenarios. In [18] a scheme for the detection of the first arriv-
ing path using the generalized likelihood ratio test (GLRT)
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in a multipath environment in severe NLOS conditions is
described, and a high-resolution ToA estimation algorithm
using minimum variance (MV) and normalized minimum
variance (NMV) is proposed. In [19] several frequency-
domain methods are proposed for UWB channel estima-
tion and rapid acquisition. In particular, the problem of low-
complexity channel estimation and timing synchronization
in UWB systems using low sampling rates and low power
consumption methods is addressed. In [20] we demonstrate
how the presence of multipath can be used to reduce the ac-
quisition time.

Methods for calibration and mitigation of NLOS ranging
errors are analyzed in [21, 22] and, in the specific UWB range
estimation context, in [23]. An algorithm for ranging estima-
tion in the case of an intermittently blocked LOS is proposed
in [24].

Most of these works rely on simulation results and have
not been verified with actual experimental data. In addi-
tion, the propagation conditions for which a specific ToA
estimation technique result to be more convenient from the
complexity-accuracy compromise point of view with respect
to a simpler method (e.g., the conventional one based on
threshold detection) have not yet been investigated. More-
over, the previous literature has mainly focused on the effect
of NLOS propagation on ranging accuracy. In the case of no
high ranging accuracies are required, lower complexity ToA
estimators can be considered such as those based on energy
detection [25, 26].

The main purpose of our work is to investigate the ef-
fects of multipath propagation on ToA estimation using real
measurement data by considering different algorithms with
different levels of complexity. The trade-off between estima-
tion accuracy, complexity and sensitivity to parameter choice
for different propagation conditions is discussed.

Due to the large number of paths characterizing typi-
cal UWB propagation environments, the complexity of sys-
tem implementation of super-resolution techniques can be
prohibitive. On the other hand, the ML criterion for chan-
nel estimation requires a multidimensional optimization of
a highly oscillatory error function, implying a huge, com-
plex computational solution. For these reasons, we eval-
uate the performance of suboptimal ToA algorithms with
increasing levels of complexity derived from the ML cri-
terion and based on a simple peak detection process. In
particular, we propose a novel estimation strategy able to
cope with the presence of unresolvable multipath, called
search subtract and readjust. The performance of a conven-
tional technique based on threshold detection is investigated
as well, to better understand the conditions for which the
adoption of more complex techniques results to be conve-
nient.

It is known [27] that the presence of noise and multi-
path creates ambiguities in the ToA estimate, mainly because
the direct path is not always the strongest one. In this pa-
per we will show two fundamental consequences; a notice-
able bias and a significant variance are introduced on the ToA
estimate. As we will show later, in some propagation con-
ditions a good channel estimator does not necessarily give

significant gains in the ToA estimation of the direct path,
hence the price for the increased complexity may not be jus-
tifiable. Additionally, some discussion on NLOS excess prop-
agation delay is presented, showing that its effects would
not be always dominant with respect to the effects of mul-
tipath if the ToA estimation scheme parameters are not opti-
mized.

This paper is organized as follows. Section 2 provides the
theoretical background from which the multipath estimator
is derived. Section 3 describes the proposed algorithms and
their implementation. The performance of the proposed al-
gorithms is given in Section 4. Section 5 concludes the pa-
per.

2. MULTIPATH ESTIMATOR

2.1. System model

We consider a multipath channel with an impulse response
given by

c(t) =
L∑

l=1

clδ
(
t − τl

)
, (1)

where cl and τl, respectively, are the amplitudes and time de-
lays of the L propagation paths.

In this case, the received signal can be expressed as

r(t) =
L∑

l=1

clw
(
t − τl

)
+ n(t), (2)

where w(t) is the isolated ideal received pulse with duration
Tp (i.e., in the absence of multipath and noise) and n(t) is
additive white Gaussian noise (AWGN) with zero mean and
spectral density N0/2.

We are interested in the estimation of τ1, that is, the ToA
of the direct path, when it exists, based on the observation of
the received signal in the interval [0,T]. However, due to the
presence of multipath, the received waveform depends on a
set of unknown parameters, denoted by U = {τ, c}, where

τ � [τ1, τ2, . . . , τL]T and c � [c1, c2, . . . , cL]T . Note that the
ToA estimation is closely related to the problem of channel
estimation, where not only τ1 but the entire set of unknown
parameters is estimated.

This work relies on data collected in a UWB propagation
experiment, thus the system is characterized by sampled sig-
nals. The transmitted and received signals are composed of
Z and M samples (Z < M), respectively, at the sampling rate
1/Ts, such that T = M · Ts and Tp = Z · Ts. In this sit-
uation, the received signal can be written in vector form as
follows:

r =W(τ)c + n, (3)
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where

n∈RM with elements ni=n
(
iTs

)
, for i=1, 2, . . . ,M,

r ∈ RM with elements

ri = r
(
iTs

)

=

L∑

l=1

clw
(
iTs−τl

)
+n

(
iTs

)
, for i=1, 2, . . . ,M,

W(τ) =
[
w(D1),w(D2), . . . ,w(DL)

]
∈ RM×L.

(4)

In the previous expression

w(Dl) =
[

0Dl ,w, 0M−Z−Dl

]T
∈ RM , for l = 1, 2, . . . , (5)

where

w ∈ RZ with elements wi = w
(
iTs

)
, for i = 1, 2, . . . ,Z,

0Dl =
[
0, . . . , 0︸ ︷︷ ︸

Dl

]
,

0M−Z−Dl =
[
0, . . . , 0︸ ︷︷ ︸
M−Z−Dl

]

(6)

and Dl is the discretized version of time delay τl, such that
τl ≃ Dl · Ts. It is worth noting that L columns of ma-
trix W(τ) represent sampled replicas of w(t) shifted by de-
lays τl for l = 1, . . . ,L where 0 < τ1 < τ2 < · · · < τL and
maxl{τl} ≤ T − Tp.

2.2. ML estimator

When the observation noise is Gaussian, the ML criterion
is equivalent to the minimum mean squared error (MMSE)
criterion. Thus, given an observation r of the received signal,
the ML estimates of the delay vector τ and amplitude vector
c are the values that minimize the following mean squared
error:

S(τ, c) =
1

M

M∑

i=1

∣∣ri − r̂i
∣∣2

, (7)

where

r̂i = r̂
(
iTs

)
=

L∑

l=1

clw
(
iTs − τl

)
, for i = 1, 2, . . . ,M, (8)

is the reconstructed discrete-time signal, based on the set of
parameters U. It can be shown that the ML estimates of τ
and c in the continuous-time domain, here reformulated in
the discrete-time domain, are given by [12]

τ̂ = arg max
τ

{
χT(τ)R−1

w (τ)χ(τ)
}

,

ĉ = R−1
w (τ̂)χ(τ̂),

(9)

where

χ(τ) =WT(τ)r =
[
w(D1)T r,w(D2)T r, . . . ,w(DL)T r

]
∈ RL

(10)

is the correlation between the received signal and different
delayed versions of w(t) and

Rw(τ)

=WT(τ)W(τ)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

w(D1)Tw(D1) w(D1)Tw(D2) · · · w(D1)Tw(DL)

w(D2)Tw(D1) w(D2)Tw(D2) · · · w(D2)Tw(DL)

...
...

. . .
...

w(DL)Tw(D1) w(DL)Tw(D2) · · · w(DL)Tw(DL)

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ RL×L

(11)

is the autocorrelation matrix of w(t). Hence (9) can be
rewritten as

τ̂ = arg max
τ

{(
WT(τ)r

)T(
WT(τ)W(τ)

)−1
WT(τ)r

}
,

(12)

ĉ =
(
WT(τ̂)W(τ̂)

)−1
WT(τ̂)︸ ︷︷ ︸

pseudo-inverse matrix

r. (13)

When the channel is not separable, that is,

∣∣τi − τ j
∣∣ < Tp, for some i �= j, (14)

we note from (9) that the estimation of the ToA of the direct
path, in general, can depend strongly on the estimation of
the other channel parameters. Direct optimization of (9) can
be computationally complex, since it requires the evaluation
of (12) and (13) for each set of hypothesized values of τ̂. It
could also be highly oscillatory, that is, (12) involves the hard
task of the maximization, over all possible sets of hypothe-
sized values of τ̂, of a multidimensional nonlinear function
with several potential local maxima. In Section 3 we propose
two possible suboptimal optimization strategies with lower
complexity.

On the other hand, when the channel is separable, that is,
when

∣∣τi − τ j
∣∣ ≥ Tp ∀i �= j, (15)

the expressions (9) are simplified to

τ̂ = arg max
τl

⎧⎨
⎩

L∑

l=1

[
χ
(
τl
)]2

Rw(0)

⎫⎬
⎭ = arg max

τl

⎧⎨
⎩

L∑

l=1

[
w(Dl)T r

]2

Ew

⎫⎬
⎭ ,

(16)

ĉ =
χ(τ̂)

Rw(0)
=

WT(τ̂)r

Ew
, (17)

where Rw(0) = Ew is the energy of w(t). In this case the es-
timation of the ToA of the direct path is decoupled from the
estimation of the other channel parameters, that is, optimiza-
tion of (16) can be accomplished by maximizing each term
of the sum independently.

It can be seen from (10) that the system can be imple-
mented with the discrete-time version of matched filters. In
fact, each element of χ(τ) is the discrete correlation between



4 EURASIP Journal on Applied Signal Processing

the received signal and a different delayed version of w(t).
As a result, (16) can be simply accomplished observing the
MF output at proper instants. The discrete-time impulse re-
sponse of the MF is

h =
[
w
(
ZTs

)
,w

(
(Z − 1)Ts

)
, . . . ,w

(
Ts

)]T
∈ RZ , (18)

and the sampled output of the MF can be written as the dis-
crete convolution (∗) between the impulse response of the
MF (h) and the received signal (r) as follows:

y = h∗ r with elements ,

yi =
Z∑

j=1

h jri− j+1, for i = Z,Z + 1, . . . ,M .
(19)

Under condition (15), and considering a transmitted
pulse without sidelobes, in the absence of noise, the values
τl with l = 1, 2, . . . ,L could be easily found from the loca-
tions tl of the peaks of the MF output, since τl = tl − Tp. It
is worth noting that the parameter we are interested in for
the purpose of ranging is τ1, which is the smallest element in
the vector τ̂, that is, the path that arrives first among all the
detected paths.

In the presence of noise, and in a more realistic situation
where the autocorrelation of w(t) has non-negligible side-
lobes, it becomes more challenging to recognize the correct
signal peaks at the MF output. In Section 3 we suggest two
different solutions for selecting the location of the peaks as
the best values of the ToAs in order to achieve a high ranging
accuracy.

3. ESTIMATION STRATEGIES

3.1. Peak-detection-based estimator

We consider three algorithms based on peak detection, called
single search, search and subtract and search, subtract and
readjust. As the following will make clear, they are charac-
terized by an increasing level of complexity. These algorithms
essentially involve the detection ofN largest positive and neg-
ative values of the MF output, where the parameter N is the
number of paths considered in the search by the algorithms,
and the determination of the corresponding time locations
tk1 , tk2 , . . . , tkN . While these algorithms are equivalent, that is,
give the same delay and amplitude estimates, when the multi-
paths are separable, the last two algorithms take into account
the effects of a nonseparable channel.

3.1.1. Single search

The delay and amplitude vectors are estimated with a single
look.

(a) Calculate the MF output using (19).
(b) Given the absolute value v = |y| of the MF output,

find N samples vki , with i = 1, 2, . . . ,N , corresponding
to both positive and negative N largest peaks of y.

(c) Convert the indexes ki into the time locations tki =
ki · Ts of the peaks and from them derive the delay

estimates τ̂ki = tki − Tp. Then find the minimum of

{τ̂ki}
N
i=1 and set it as the delay estimate τ̂1 of the ToA of

the direct path.

3.1.2. Search and subtract

This algorithm provides a way to detect multipath compo-
nents in a nonseparable channel.

(a) Calculate the MF output using (19).
(b) Find the sample vk1 corresponding to the largest peak

of the absolute value of the MF output, convert the in-
dex into the corresponding time location tk1 = k1 · Ts,
and then derive the delay estimate τ̂k1 = tk1 − Tp of
the strongest path, which does not necessarily coincide
with the first path.

(c) Calculate the amplitude estimate ĉk1 of the strongest
path solving (13), which gives

ĉk1 =
(
w(k1)Tw(k1)

)−1
w(k1)T r. (20)

(d) Subtract out the estimated path from the received vec-
tor r and calculate the new observation signal r′ as fol-
lows: r′ = r − ĉk1w

(k1).
(e) Calculate the following discrete convolution: y′ = h∗

r′; find the sample v′k2
corresponding to the largest

peak of the absolute value of the new MF output, then
convert the index into the corresponding time location
tk2 = k2·Ts, and derive the delay estimate τ̂k2 = tk2−Tp

of the second strongest path of r.
(f) Estimate the corresponding amplitude ĉk2 using (13),

which is now equal to

ĉk2 =
(
w(k2)Tw(k2)

)−1
w(k2)T r . (21)

(g) Subtract out the estimated path from r′, obtaining
r′′ = r′ − ĉk2w

(k2).
(h) Repeat the same process until the N strongest paths are

found. Then find the minimum of {τ̂ki}
N
i=1 and set it as

the estimate τ̂1 of the ToA of the direct path.

3.1.3. Search subtract and readjust

So far the delay and amplitude of each path are estimated
separately at each step; in this algorithm a joint estimation of
the amplitudes of different paths is introduced.

(a) Calculate the output of the MF, given by (19).
(b) Find the sample vk1 corresponding to the largest peak

of the absolute value of the MF output, convert the in-
dex into the corresponding time location tk1 = k1 · Ts,
and derive the delay estimate τ̂k1 = tk1 − Tp of the
strongest path.

(c) Calculate the amplitude estimate ĉk1 of the strongest
path from (13):

ĉk1 =
(
w(k1)Tw(k1)

)−1
w(k1)T r. (22)

(d) Subtract out the estimated path from the received vec-
tor r and calculate the new observation signal r′ as fol-
lows: r′ = r − ĉk1w

(k1).
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(e) Calculate the discrete convolution between the new
observation signal and the MF impulse response as fol-
lows: y′ = h ∗ r′. Find the sample v′k2

corresponding
to the largest peak of the absolute value of the new MF
output, then convert the index into the corresponding
time location tk2 = k2 ·Ts and derive the delay estimate
τ̂k2 = tk2 − Tp of the second strongest path of r.

(f) Given τ̂k1 and τ̂k2 , estimate the corresponding ampli-
tudes of the first two strongest paths of the received
signal. This step can be accomplished solving the fol-
lowing equation:

[
ĉk1

ĉk2

]
=
([
w(k1),w(k2)

]T[
w(k1),w(k2)

])−1

×
[
w(k1),w(k2)

]T
⎡
⎢⎢⎣
r1

...
rM

⎤
⎥⎥⎦ .

(23)

It is worth noting that, unlike in the search and subtract
algorithm, here the amplitudes of the paths selected as
the strongest are jointly estimated at each step.

(g) Subtract out the two estimated paths from r, obtaining
r′′ = r − ĉk1w

(k1) − ĉk2w
(k2).

(h) Repeat the same process until the N strongest paths are
found. Then find the minimum of {τ̂ki}

N
i=1 and set it as

the estimate τ̂1 of the ToA of the direct path.

In the above three algorithms, the parameter N has to be
determined with an optimization process, as will be demon-
strated. Moreover, the choice of N also affects the computa-
tional complexity of the strategy adopted. In particular, both
search and subtract and search subtract and readjust require a
matrix inversion process at each step for a total of N matrix
inversions. In the search subtract and readjust algorithm the
matrix dimension increases by a factor L at each step, thus
making its complexity higher than the other strategies con-
sidered. It will be shown in the numerical results that rea-
sonable ToA estimation accuracy can be obtained with a low
number of steps N . In general the matrixW(τ) is sparse, thus
efficient inversion techniques can be utilized. However, a de-
tailed analysis of the complexity issue is out of the scope of
this paper. The single search strategy does not require com-
plex computational processes (only comparisons and order-
ing), thus implying a very low complexity.

3.2. Thresholding-based estimator

We now consider the conventional threshold detection algo-
rithm, well known from radar theory [28]. We call it thresh-
old and search. ToA estimation involves the following steps.

(a) Pass the received discrete-time signal through the MF
and calculate the MF output using (19).

(b) Compare the absolute value v of the MF output y to
fixed threshold λ.

(c) After the first threshold crossing point is found (detec-
tion), search for the peak in an interval of length Tp

(fine estimation); then convert the index of the peak
sample vk to the time location tk = k · Ts, derive the

delay estimate τk = tk −Tp and set it as the estimate τ̂1

of the ToA of direct path.

Among the algorithms considered in the paper, this one
requires the lowest level of computational complexity since
only comparison operations are required, independently on
the parameter λ.

The choice of threshold is important. With a small
threshold, the probability of detecting peaks due to noise,
that is, false alarm, and thus estimating the position of an
erroneous path arriving earlier than the actual direct path as
τ̂1 is high. Whereas with a large threshold, the probability
of missing the direct path and thus estimating the position
of an erroneous path arriving later as τ̂1, that is, missed de-
tection, is high. We optimized the threshold considering the
overall signal dynamics at the MF output over the observa-
tion interval T , to obtain the lowest estimation error, as will
be explained in the next section.

4. PERFORMANCE ANALYSIS

4.1. A brief description of a UWB
propagation experiment

For convenience we briefly review the UWB experiment [12].
The excitation signal of our propagation channel is a pulse
with a duration of approximately one nanosecond, implying
a bandwidth signal of 1 GHz. A periodic probing pulse with
a repetition rate of 2× 106 pulses per second is used, so that
successive multipath components spread up to 500 nanosec-
onds (ns) can be measured unambiguously. In fact the dura-
tion of one pulse, inversely proportional to the transmission
bandwidth, determines the minimum differential path delay
between resolvable multipath components, while the repeti-
tion time of the periodic pulse signal determines the maxi-
mum observable multipath dispersion of the channel.

The channel response is recorded using a digital sampling
oscilloscope (DSO) with a sampling rate of 20.48 GHz, which
means that the time between samples is Ts = 48.828 picosec-
onds (ps) and the measurement apparatus is set in such a way
that all the multipath profiles have the same absolute delay
reference.

Multipath profiles data are collected in 14 rooms and
along the hallways on one floor of the building.1 In each
room the measurements are made at 49 different points lo-
cated at a fixed height on a 7×7 square grid, covering 90×90
centimeters (cm) with 15 cm spacing between measurement
points. Moreover, the transmitted pulse w(t) is measured 1 m
apart from the antenna in LOS condition and the observed
waveform has been used as a template pulse in the imple-
mentation of the algorithms.

We focus our attention on the measured signals from the
following four locations.

(i) Room F1, which represents a typical “direct line-of-
sight (LOS)” UWB signal transmission environment,

1 A detailed floor plan of the building where the measurement experiment
was performed can be viewed in [12].



6 EURASIP Journal on Applied Signal Processing

0.2

0

�0.2

A
m

p
li

tu
d

e
(V

)

0 50 100 150 200 250 300

Room F1

Time (ns)

0.1

0

�0.1
A

m
p

li
tu

d
e

(V
)

0 50 100 150 200 250 300

Room P

Time (ns)

0.05

0

�0.05

A
m

p
li

tu
d

e
(V

)

0 50 100 150 200 250 300

Room H

Time (ns)

0.05

0

�0.05

A
m

p
li

tu
d

e
(V

)

0 50 100 150 200 250 300

Room B

Time (ns)

Figure 1: Multipath profile measured at the center point (4,4) of the grid in room F1, room P, room H, and room B.

where the transmitter and the receiver are located in
the same room without any blockage in between.

(ii) Room P, which represents a typical “high signal-to-
noise ratio (SNR)” UWB signal transmission environ-
ment. The approximate distance between the trans-
mitter and the receiver is 6 meters.

(iii) Room H, which represents a typical “low SNR” UWB
signal transmission environment. The approximate
distance between the transmitter and the receiver is 10
meters.

(iv) Room B, which represents a typical “extreme-low
SNR” UWB signal transmission environment. The ap-
proximate distance between the transmitter and the re-
ceiver is 17 meters.

Figure 1 shows some representative examples of the re-
ceived waveforms measured in the different locations.

4.2. Measurement-based performance analysis

The multipath profiles collected from the Q = 49 locations
on the measurement grid in each room are processed us-
ing algorithms described in Section 3, in order to analyze the
variations caused by small changes of the receiver position.
For each point i of the grid, we evaluate the error on the esti-

mate of the ToA of the direct path, defined as ǫ(i) = τ̂
(i)
1 −τ

(i)
1 .

We also obtain the mean and variance of the ToA estima-
tion error averaged over the Q measurement locations inside
each room.

(i) The mean value of the ToA estimation error is given by

µǫ =
1

Q

Q∑

i=1

ǫ
(i). (24)

(ii) The standard deviation of the ToA estimation error is
given by

σǫ =

√√√√√ 1

Q

Q∑

i=1

(
ǫ

(i)
)2
− µ2

ǫ. (25)

4.2.1. Peak-detection-based estimator performance

Figures 2 and 3 show the Q values of ǫ(i) for search and sub-
tract algorithm, as a function of the number of considered
paths N for measurements made in different rooms. The line
representing the mean of the ToA estimation error is super-
imposed in the plots, where there are Q crosses (each corre-
spondent to each measurement location) for every value of
N . Two regions in the behavior of µǫ can be recognized with
respect to the increasing number of considered paths.

(i) When a small number of strongest paths is consid-
ered, the first one may not be included, since the first
path is not always the strongest. Thus, the direct path
is missed and a path arriving later is declared the first
path, causing µǫ to assume positive values.
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Figure 2: ToA estimation error versus number of paths in the 49 points of the grid in rooms F1 and P (crosses) and mean of the ToA
estimation error (line). Searh and subtract algorithm was used.
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Figure 3: ToA estimation error versus number of paths in the 49 points of the grid in rooms H and B (crosses) and mean of the ToA
estimation error (line). Search and subtract agorithm was used.

(ii) As the number of considered paths increases, the mean
of the ToA estimation error decreases. Especially in the
“extreme-low SNR” case with a high number of paths,
µǫ keeps decreasing towards negative values since some
paths in the noise portion are detected.

In Figure 4 we can see the behavior of the standard devi-
ation of the ToA estimation error in room F1, room P, room
H, and room B. It is worth noting that two regions can be
recognized again. Initially, σǫ assumes large values, then, as
the number N of considered paths increases, σǫ decreases,
reaching its minimum. In such situations, where the mean
assumes values around zero and the standard deviation as-
sumes the minimum value, an optimum operating point can
be defined. The optimum number of paths to be considered
corresponds to the value that minimizes the mean squared
error (MSE), defined as

MSEǫ = σ2
ǫ

+ µ2
ǫ

(26)

for the ToA estimation error. Unlike all other cases, it can be
seen from Figure 5 that in the “extreme-low SNR” case σǫ be-
comes high when a large number of paths is considered; this
happens because room B presents a high noise floor, which
makes it easier to detect false paths in the noise portion.

It is worth mentioning that the three algorithms im-
plementing the peak-detection-based estimator are originally
considered for the estimation of the entire set of parameters
U that characterize the channel. Figure 5 shows their perfor-
mance in terms of the energy capture [12, 29] defined as

EC(τ̂, ĉ,N) = 1−
S(τ̂, ĉ)

(1/M)
∑M

i=1 |ri|2
, (27)

where the estimates of the delay and amplitude vectors ob-
tained from the algorithms have been substituted in (7). This
quantity represents the fraction of the received signal energy
captured by the UWB receiver and gives an idea about the
goodness of the channel estimation process. It can be seen
from Figure 5 that the performance improves as we move
from the single search to the search and subtract and to the
search subtract and readjust. Note that the energy capture as a
function of the number of single-path signal correlators is in-
teresting for investigating the realization of a UWB selective
Rake receiver. However, when the goal is the estimation of
the ToA of the direct path, a better result for the channel es-
timation does not always imply higher accuracy in the ToA
estimation. Our analysis shows that the behavior of mean
and standard deviation of the ToA estimation error as a func-
tion of the number of considered paths is essentially the same
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in all three algorithms. The search subtract and readjust al-
gorithm gives almost exactly the same results as the search
and subtract in the ToA estimation. The single search algo-
rithm, though showing the same general trend for µǫ and σǫ,
is better in the “direct LOS” and “high SNR” cases, while it
yields worse results in the “low SNR” and “extreme-low SNR”
cases.

4.2.2. Thresholding-based estimator performance

Figures 6 and 7 show the Q values ǫ(i) as a function of the
threshold λ for measurements made in different rooms. For
every λ in each room there are Q crosses (corresponding
to each measurement location). The crosses give an idea of
how much the ToA estimation error is spread out around the
mean, which is represented by the superimposed line in the
plots. Three regions in the behavior of µǫ can be recognized
with respect to the increasing threshold.

(i) For small values of λ, similar behaviors of the param-
eter µǫ can be observed in the different SNR environ-
ments. The mean assumes negative values, since there
is a high probability that an erroneous path corre-
sponding to noise is estimated as the first arriving path.
This phenomenon is clearly stronger in the “low SNR”
and “extreme-low SNR” cases; in fact, in the “direct
LOS” and “high SNR” cases, the noise floor is negli-
gible, thus the actual direct path is represented by a
strong component in the multipath profile, which can
be detected with a high probability.
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Figure 5: Receiver’s captured energy averaged on the 49 points of
the grid versus number of paths in rooms P, H, B, and F1 for the
three algorithms: single search, search and subtract, and search sub-
tract and readjust.

(ii) As the threshold increases, µǫ increases, assuming val-
ues around zero.

(iii) For large values of λ, the mean increases under any
SNR conditions for the following two reasons: the first
path is missed and other paths above the threshold are
detected, or no peaks above the threshold are found.
In the latter situation, τ̂1 is set to the time location of
the highest peak, which does not always coincide with
the first path.

The standard deviation of the ToA estimation error as a
function of the ratio λ/vmax, where vmax is the amplitude of
the highest peak of the signal over the observation interval
T at the MF output, is plotted in Figure 8. It is worth noting
that three regions can be recognized again with slight dif-
ferences among the four environments. The standard devi-
ation is initially small in the “direct LOS” and “high SNR”
cases, while it assumes large values in the “low SNR” and
“extreme-low SNR” cases; then, as the threshold increases, σǫ
decreases, reaching the minimum. In such situations, where
the mean assumes values around zero and the standard de-
viation assumes the minimum value, an optimum operating
point can be defined. In fact, the optimum threshold can be
determined by choosing the minimum MSE, given by (26).
Finally, as λ becomes larger, σǫ increases under any SNR con-
ditions, though it becomes constant when no paths cross the
threshold and the time location of the strongest path is cho-
sen for the estimate of τ̂1.

An important observation can now be made: from
Figure 8 we observe that the four curves assume a similar
trend, reaching their minimum more or less for the same val-
ues of the threshold normalized to the maximum peak. Thus
a general criterion for the choice of the optimum threshold
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is given by the following relationship: λ/vmax ∈ (0.25, 0.3).
It can also be seen from Figure 8 that, as the SNR decreases,
the choice of the optimum λ becomes constrained within an
extremely small interval of values, and thus becomes more
critical.

4.3. Ranging accuracy

The evaluation of the ranging accuracy requires the trans-
lation of the error on the ToA estimation to the error on
the distance estimation, through the following relationships:
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Figure 8: Standard deviation of the ToA estimation error on the 49
points of the grid versus threshold in rooms P, H, B, and F1.

σρ = ν · σǫ and µρ = ν · µǫ, where ρ(i) = d̂(i) − d(i) is the error
on the distance estimation for each of the Q points i of the
grid, and ν is the speed of light.

In order to provide a good ToA estimator, it is necessary
to minimize mean and standard deviation of the error on
the ToA estimate. This objective can be achieved through the
optimization of a single parameter in the thresholding-based
estimator, where we reach for the optimum threshold, and
the peak-detection-based estimator, where we reach for the
optimum number of considered paths. It is worth noting
that the evaluation of the optimum threshold is more critical
than the choice of the optimum number of considered paths.
However, the optimization process is dependent on the con-
text and the application, since it is a trade-off between a small
variance and a mean as close to zero as possible. Moreover, it
may be convenient, in the peak-detection-based estimator, to
minimize the number of considered paths in order to obtain
a lower computational complexity.
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Table 1: ToA and distance estimation error in each room for the four algorithms.

Room Algorithm µǫ (ns) σǫ (ns) µρ (cm) σρ (cm) µρ/d(25) (%) σρ/d(25) (%)

F1

d(25) = 9.49 m

Threshold and search −0.10 0.15 −3.0 5.7 0.32 0.60

Single search −0.045 0.19 −1.3 5.7 0.14 0.60

Search and subtract 0.17 0.24 5.1 7.2 0.54 0.76

Search subtract and readjust 0.42 0.20 12.6 5.6 1.3 0.59

P

d(25) = 5.77 m

Threshold and search −0.082 0.20 −2.46 5.6 0.43 0.97

Single search −0.10 0.25 −3.0 7.5 0.52 1.3

Search and subtract 0.22 0.25 6.6 7.5 1.1 1.3

Search subtract and readjust 0.24 0.24 7.2 7.2 1.2 1.2

H

d(25) = 10.13 m

Threshold and search −0.20 0.43 −5.6 12.9 0.55 1.3

Single search −0.38 0.44 −11.4 13.2 1.1 1.3

Search and subtract 0.11 0.30 3.3 9.0 0.36 0.89

Search subtract and readjust 0.086 0.34 2.6 10.2 0.26 1.0

B

d(25) = 16.91 m

Threshold and Search −0.17 0.56 −5.1 16.8 0.30 0.99

Single search −0.19 0.66 −5.7 19.8 0.34 1.2

Search and subtract −0.11 0.40 −3.3 12.0 0.20 0.71

Search subtract and readjust 0.013 0.45 0.39 13.5 0.023 0.80

Table 1 shows the numerical results for the mean and
standard deviation of the ToA and distance estimation error
obtained from room F1, room P, room H, and room B. It
summarizes the performance of the four algorithms at the
optimum operating point of the parameters λ and N .

In general, only slight differences can be observed in the
performance of the algorithms. However, it is interesting
to note that in the “direct LOS” and “high SNR” cases the
threshold and search and single search give better results than
the other algorithms; while in the “extreme-low SNR” and
“low SNR” cases, the search and subtract and search subtract
and readjust are superior. Thus, when the operating environ-
ment is good in terms of SNR, it is sufficient to use the thresh-
old and search or the single search algorithms, which have
very low complexity. However, in an environment with worse
SNR conditions, the search and subtract and search subtract
and readjust can be used to reach a reasonable ranging accu-
racy, in spite of the higher complexity. Moreover, the last two
columns of Table 1 show the values of mean and standard
deviation of distance estimation error as a fraction of the to-
tal distance between the transmitter and the receiver in each
room. It can be noted that a slight performance degradation
exists when moving from the “direct LOS” case in room F1
to the NLOS cases in the other rooms. However, there is not
a noticeable degradation of the ranging accuracy with the in-
creasing distance. In fact, in rooms P, H, and B, where the
distance between the transmitter and the receiver is approx-
imately 6 meters, 10 meters, and 17 meters, respectively, the
performance of the algorithms in terms of ranging accuracy
shows only a negligible degradation. This highlights the fact

that the impact of multipath and walls on the ToA estimation
is larger than the SNR loss due to distance.

In order to better analyze the performance of the pro-
posed algorithms with respect to the effects of noise and
multipath, the excessive propagation delay, due to blocked
LOS conditions, has been subtracted from our ToA estimates.
Since the absolute propagation delays of the received sig-
nals are different in each room, a delay reference is necessary
to analyze the excessive propagation delays. In particular,
we calculated the time offset, ∆τ, between the ideal time of
arrival, given by τ1 = d/ν, where d is the distance between the
transmitter and the receiver, and the actual time of arrival,
given by the time location of the first arriving peak in the re-
ceived signal, in each room. Then, we assumed the absolute
propagation delay of room F1, that is, the delay of the direct
LOS path, as the delay reference, taking ∆τF1 = 0. The fol-
lowing values have been found for the excessive propagation
delays of the other rooms: ∆τP = 2 ns, ∆τH = 3.7 ns, and
∆τB = 3.7 ns. Even if the distance between the transmitter
and the receiver in room B is larger than in room H, they
are characterized by the same ∆τ, because the number of ob-
stacles is about the same. The results of this work show that
the effects of noise and multipath on ranging error could be
smaller than those of NLOS propagation delay if the estima-
tor parameters, that is, N in the peak-detection-based estima-
tor and λ in the thresholding-based estimator, have been op-
timized. It can be noted from Figures 2–4 and Figures 6–8
that the contribution to the bias in the ToA estimate given by
the presence of noise and multipath becomes on the order or
greater than that given by the NLOS propagation delay when
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the parameters N and λ do not assume the optimum val-
ues. The schemes proposed in this paper provide a solution
to the problem of reducing the ranging error due to noise and
multipath effects, making it smaller than that due to NLOS
effects. Moreover, it is worth noting that the choice of the
optimum parameters is less critical in the algorithms with a
higher complexity.

5. CONCLUSION

A ToA estimation algorithm implementing a conventional
threshold-based estimator and three algorithms implement-
ing an ML estimator based on a peak detection process have
been studied in this paper using experimental data. Per-
formance analysis underlines the fact that a good channel
parameter estimator does not always provide noticeable
gains over the conventional threshold-based estimator. The
variations in their performance are strongly influenced by
the propagation environment; hence, the trade-off between
ranging accuracy, algorithm complexity, and sensitivity of
the parameters’ optimization to propagation conditions be-
comes an important issue.

For instance, results show that the low complexity thresh-
old-based estimator gives an estimation accuracy close to
that obtained using more complex schemes in the case of a
high SNR; however, the threshold choice appears much more
critical depending on the propagation conditions.

Beyond the numerical values, this paper shows some im-
portant results. The presence of noise and multipath gener-
ates ambiguities in the ToA estimate, mainly due to the fact
that the direct path is not always the strongest one. This has
fundamental consequences: a significant bias and variance
are introduced in the ToA estimation.

In order to reduce the ToA estimation bias, thereby pro-
viding a good ToA estimator, an optimization process of
one parameter is necessary. In fact, together with noise, the
presence of multipath may lead to a biased ToA estima-
tion even in a high SNR environment, if the threshold (in
the thresholding-based estimator) or the number of paths (in
the peak-detection-based estimator) is not properly chosen.
In this case, the increased ranging estimation bias may be
greater than that produced by the extra propagation delay
due to blocked LOS conditions, if present.

ACKNOWLEDGMENTS

The first author would like to thank Professors E. Del Re
and L. Mucchi from the University of Florence for giving
the opportunity to visit MIT. The second author would like
to thank Professors O. Andrisano and M. Chiani for their
support. This research was supported, in part, by the Min-
istero dell’ Istruzione, Università e della Ricerca Scientifica
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