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Abstract 

Existing network detection techniques rely on SSIDs, network patterns or MAC addresses of 

genuine wireless devices to identify malicious attacks on the network. However, these device 

characteristics can be manipulated posing a security threat to information integrity, lowering 

detection accuracy, and weakening device protection. This research study focuses on empirical 

analysis to elaborate the relationship between received signal strength (RSSI) and distance; 

investigates methods to detect rogue devices and access points on Wi-Fi networks using network 

traffic analysis and fingerprint identification methods. In this paper, we conducted three 

experiments to evaluate the performance of RSSI and clock skews as features to detect rogue 

devices for indoor and outdoor locations. Results from the experiments suggest different devices 

connected to the same access point can be detected (p < 0.05) using RSSI values.  However, the 

magnitude of the difference was not consistent as devices were placed further from the same access 

point.  Therefore, an optimal distance for maximizing the detection rate requires further 

examination. The random forest classifier provided the best performance with a mean accuracy of 

79% across all distances. Our experiment on clock skew shows improved accuracy in using beacon 

timestamps to detect rogue APs on the network.  

Keywords: DDoS (Distributed Denial of Service), Traffic detection, Fingerprinting, Evil 

Twin attack, RSSI (Received Signal Strength Indicator), Clock skew      
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Chapter One 

Introduction 

 

The continuous evolution of wireless networks technology and ubiquitous use of mobile 

devices has fueled the spread of malicious activities on the internet. The adoption of wireless 

sensor networks has progressively become an enticing focus for vindictive assaults. Wi-Fi 

technology evolution and deployment as a low-cost infrastructure provide great opportunity for 

indoor localization (Sun, 2014).Wi-Fi localization systems incorporates 802.11 protocol for 

position accuracy and plays a pivotal role in determining receiver location (Zhang, 2019). Besides, 

most wireless devices rely on these positioning features for optimum performance and accuracy. 

Wi-Fi localization uses 2.4GHz and exploits signal path loss propagation due to Wi-Fi signal 

variations to determine how close the receiver is to a certain AP. Continuous radio waves 

attenuation with reference to inverse-square law indicates the distance can be estimated based on 

the transmitted and received signal strengths relationship 

 As stipulated in (Chen Y. T., 2007), wireless network openness has propelled cybercrimes 

such as IP spoofing, identity theft and DDoS attacks. Additionally, wireless localization over the 

years has attracted substantial research exertion due to the increased ease to deploy and 

interoperability of wireless fingerprinting localization (Yiu, 2017). IP spoofing attacks have 

continuously posed an incurable threat to the internet as recent attacks on most popular network 

infrastructure and websites prints the damaging effects of these attacks (Duan, 2008). Besides, IP 

spoofing still is a contributive ingredient to identity theft and makes it harder to isolate network 

attacks from legitimate traffic. 
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This survey elucidates recent rising advancements with the concentration towards IP 

spoofing and its effect to information security, privacy, and identity theft. This paper gives an in-

depth analysis on existing literature in mitigating the effect on Infrastructure based DDoS attacks. 

Continuous adoption of wireless sensors has increased indoor localization feasibility in Wireless 

Local Area Network (WLAN) (Feng, 2010). On the contrary, spoofing attacks compromise the 

legitimacy of users on the network and pose a serious threat by masquerading as legit nodes on the 

network. These advanced characteristics affect information integrity as well as cause havoc on 

network systems by injecting traffic attacks such as evil twin access point attacks.  

Although traditional approaches proposed in  (Chen Y. T., 2007) to address spoofing 

attacks, cryptographic authentication has proven to offer additional infrastructural overhead and 

computational power linked with cumbersome key management issues. Wireless localization 

requires low-cost hardware and maintenance through dependency on the existing network 

infrastructure such as IEEE 802.11 protocol. Wireless fingerprinting relies on the RSS values for 

effective positioning on the WLAN. Moreover, these sensors on the network use node distance 

between each other to determine their actual position (Kaemarungsi, 2004). 

    In this study, machine learning algorithms were used for classification to determine 

centroid distance, evaluate classification accuracy, and determine relationship between the actual 

and estimated distance of the nodes and access points in the signal space. Additionally, this 

research study focuses on RSSI as signal input to detect rogue clients on the network and evaluates 

beacon timestamps performance in detecting rogue access points on the signal space. This paper 

is organized as follows; Chapter 2 provides in-depth analysis on previous research work in 

detecting rogue Wi-Fi clients on the network and rogue APs on the signal space. In Chapter 3, we 

describe machine learning techniques used in classification performance as well as methods used 
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to detect and identify rogue Wi-Fi clients with reference to RSSI and clock skew. Chapter 4 

examines and interprets experiment results through determining RSSI reliability and clock skew 

effect in detecting rogue clients and APs. Lastly, Chapter 5 gives in-depth analysis on the research 

study done and proposes future exploration of the research study. 

 

Chapter Two 

Related work 

The rapid rise and adoption of IoT technologies has precipitated a large volume of research 

to explore DDoS attacks, network identity theft, and their effect in the smart home environment. 

The rising number of interconnected devices in the IT sector has led to unprecedented increase in 

digital disruption. Besides, linked IoT devices have largely contributed to the widespread DDoS 

attacks due to low security features integration. Furthermore, vast user information stored on the 

cloud has powered the increase in DDoS attacks (Nawir, 2016). Likewise, spoofing attacks can 

cause a variety of security breaches such as rogue access point (AP) masquerading as legit access 

point. While there is a significant amount of research contributions with respect to the smart IoT 

environment, the ensuing literature review will focus on prior studies that are most closely related 

to our work.   

The deployment of cryptography as native security approach to cope with the alarming 

rates of DDoS attacks in IoT devices has yielded partial effectiveness. Besides, cryptographic 

schemes are predisposed to node compromise and due to its infrastructural and computational 

overhead; its partially functional (Chen Y. T., 2007). Moreover, wireless devices have limited 

power thus makes it impossible to deploy authentication and key management. These predicaments 

have proven to require additional human resource to manage the devices on the network layer. 
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 (Jana, 2009) proposed two different methods for estimating APs clock skews. First, they 

used linear programming approach to estimate clock skew deviation by calculating difference in 

the upper-bound time offsets and beacon arrival time at the fingerprinting node. Secondly, the 

other method was based on identifying a line with the least square distance from all time offsets. 

Furthermore, (Jana, 2009) proposed a more heuristic approach to differentiate frames sent by fake 

APs and Real APs by evaluating beacon timestamps and frames transfer rate.  

 (Zander, 2008) hypothesized synchronized sampling that reduces quantization error and 

improves clock skew accuracy by up to two magnitudes on low-resolution timestamps and one 

magnitude on high-resolution timestamps respectively. As indicated in (Krishna, 2009), 

calculating relative clock drifts can be achieved through examining two-way beacon frame TOA 

location tracking.  

Numerous research studies have conflicting arguments whether RSSI is a good Wi-Fi 

localization candidate or not. (Sadowski, 2018) suggests indoor localization is hindered by several 

factors such as noise, environment and manufacturers’ hardware capabilities thus affecting 

position accuracy. Furthermore, (Sadowski, 2018) highlights Indoor Wi-Fi localization offers 

better discriminative characteristics in node fingerprinting since it requires low cost to operate. 

Alternately, (Navarro, 2010) emphasizes RSSI fingerprinting is not a good Wi-Fi localization 

candidate. The objective of the research study is to investigate RSSI reliability in device 

fingerprinting and explore how clock skew can be used in detecting rogue access points. 
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IP Spoofing and Mac Filtering  

 (Li, 2006) proposed light-weight MAC (medium access control) security feature through 

forge-resistant analyzing relationships from the incoming packets on the spoofed networks. This 

approach introduces security within the MAC address as a fingerprint to identify multiple fake 

devices using the same MAC address. As discussed in (Park, 2001), route-based packet filtering 

was used to address proactive spoofed IP packets from reaching to their destination as well as to 

identify reactive spoofed IP traceback flows. Moreover, DPF (route-based distributed packet 

filtering) uses routing information to determine if the packet has a genuine source or destination 

address.  (Cota-Ruiz, 2013) proposed WSN localization technique which estimates sensor node 

coordinates based on local spatial constraints by providing constant updates with reference to 

adjacent nodes within the communication spectrum. (Nuo, 2012) proposed a cluster based WSN 

localization algorithm to reduce measurement errors on multi-hop nodes and aimed at improving 

nodes localization accuracy.  

Although (Park, 2001)proposed route-based packet filtering, routers can be flawed with 

rogue IP addresses as well as fake MAC address resulting to security breach. Adversaries can 

bypass the strict rule set on the routers through masquerade and cause havoc on the entire network 

infrastructure. Alternatively, these strict rules can discard legit frames or devices as the maximum 

threshold number of users is reached resulting to DDoS attack. Furthermore, this paper proposes 

a method for detecting spoofing attacks using RSSI (Received Strength Signal Index) as a Wi-Fi 

localization technique.  

Wi-Fi Localization Techniques  

Fingerprinting and Traffic Detection – RSSI localization technique relies on the signal 

strength to create a road map from various nodes readings from the network environment. 
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Basically, fingerprint maps are reference points at predetermined points coupled with various 

signal strength. Fingerprint mapping includes all measurements from different positions and their 

corresponding received signal strength (Pei, 2017). Moreover, clock skew can be used for device 

fingerprinting through monitoring and analyzing beacon/probe frames (Jana, 2009). Besides, 

beacon timestamps have substantial advantages in identifying rogue APs on the signal space. Time 

synchronization function (TSF) has a higher transfer rate (10 to 100 frames per second) 

considering TCP clock synchronization latency and provides accurate beacon timestamp compared 

to TCP timestamp delay (Jana, 2009).  

Signal based – Wireless localization systems takes signal strength measures form different 

access points to determine the connected device distance from all access points.  

Signal based localization makes use of signal power level in reversed approach for AP to identify 

multiple signals emitted by multiple devices on the network (Chen Y. &., 2002). 

Angle of arrival (AoA)- This technique uses angle measurements of the RF signal from 

the device. Besides, AoA triangulation doesn’t incorporate distance to signal but it also relies on 

angles to determine the position of an object. Furthermore, AoA uses signal strength and difference 

of signal arrival to determine the best angle of arrival (Wielandt, 2017). For effective accuracy, 

two or beacons are required for location estimation. Although AoA technique seems effective, 

there are limitations since AoA requires additional antennas resulting to high implementation cost 

(Farid, 2013). 

Time of Flight (TOF) – measures the time taken for a signal to travel from the object to 

the reference point. TOF deploys time synchronization between when the signal was sent by the 

device and the exact time the signal is received at the reference point and also incorporating signal 

speed (Anjum, 2020). Although, TOF based systems are widely replacing signal to noise ratio 
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(SNR) based systems; they have drawbacks in implementation since they have inherent challenges 

in obtaining accurate measurements. Additionally, 802.11 protocol requires single frequency band 

to operate and TDOA requires better time synchronization for better accuracy. 

Even though, RSSI localization is widely explored to determine the node positioning on 

the network, there exist lots of unsolved research problems. For instance, signal strength errors are 

a common phenomenon ranging from unknown distance from the access point (Hyo, 2009). 

Besides, most localization systems depend on wireless device transmission power with reference 

to signal strength to determine node positioning. Since the propagation of signal is affected by 

reflection, diffraction and scattering, there’s a substantial impact on measurement accuracy. As 

indicated in (Bekcibasi, 2014) RSSI is affected by some factors such as environmental and device 

errors that result to localization error and measurement inaccuracy. 

Problem Statement 

There have been many solutions proposed to improve existing limitations with common 

standards across various layers in the IoT stack.  Yet there remain challenges with attacks on 

different protocols within the network layer. The focus of this research is to propose solutions for 

a subset of network attack vectors or techniques used to create a distributed denial of service 

(DDOS). Specifically, this study examines how to prevent network nodes from gaining 

unauthorized access to an IoT network by exploiting IP spoofing or MAC address hijacking and 

SSID manipulation. There are two approaches to identify these types of attacks such as traffic 

detection and fingerprint identification (Tang, 2017). 

Research Questions 

Traffic Detection. Examines differences in traffic patterns.   Received Signal Strength 

(RSS) will be used to identify the location of nodes in the wireless network. 
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First, this research study aims to identify the optimal distance between valid and rogue Wi-

Fi clients connected to the same access point. While prior research suggests received signal 

strength (RSS) can be used to detect rogue devices (Chen, 2007); the distance between Wi-Fi 

clients and access points can significantly impact detection accuracy. This research study assumes 

rogue Wi-Fi clients have hijacked mac addresses from legitimate nodes.  

RQ1:  What is the optimal distance to differentiate between rogue and valid devices on a 

Wi-Fi network using received signal strengths (RSS)?  

The null hypothesis is:  

H1:  There is no statistical difference between devices that are 5 meters from the access 

point compared to devices that are 10 meters from the same access point.  

Secondly, to perform near real-time detection of rogue Wi-Fi clients, computational 

overhead must be minimized.  One way this can be achieved is by investigating the tradeoff 

between the detection accuracy and the amount of RSS data required.  The more data required to 

detect the rogue clients the more computational resources required to perform the analysis.  If 

calculations are to be done on IoT devices the limitation with computational resources is further 

amplified. 

RQ2:  What is the trade-off between the amount of RSS data and detection accuracy? 

The null hypothesis is: 

H2:  There is no statistical difference in detection accuracy for same devices with 50% 

fewer data points connected to the same access point.  

RQ2 will be evaluated using different machine learning algorithms to identify the impact 

on detection accuracy by decreasing the sample size of the data.  The complete sample size 

collected for each individual device is 297 data points 
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Fingerprint identification. There will be a significant difference between temporal 

network characteristics of rogue devices compared to authorized devices.  For example, the 

duration field in a MAC address can be used to identify the chipset for a device (Cache J., 2006). 

In instances where hardware of rogue devices matches valid nodes on the network, the nodes’ 

location or proximity within the network can be used to detect the rogue device.   

While RQ1 and RQ2 are directed toward helping network operators to detect rouge devices 

connected to their network, the next set of research questions are aimed at addressing client-side 

vulnerabilities.  For example, if a Wi-Fi user is connected to a rogue access point no safeguards 

exist that can alert the user.  Therefore, this part of the research aims to detect rogue access points 

also known as “evil twins”. Furthermore, this research hypothesizes that at proximity RSS values 

between devices may not provide enough variance to detect rogue devices. For example, an 

attacker may place a rogue access point near a valid access point to mask any detectable differences 

in received signal strength. In such situations, alternatives discrimination characteristics must be 

used. One characteristic that has shown to aid in the detection of rogue devices is clock skew.  As 

discussed in (Arackaparambil, 2010) the clock skew is the temporal difference in the hardware 

clocks between the access points and the Wi-Fi client.  

Thirdly, this research study seeks to investigate if clock skews can provide enough 

discrimination quality to detect rogue devices (Wi-Fi clients and access points).  

RQ3: Do clock skews provide higher discrimination to detect rogue Wi-Fi clients 

compared to received signal strength?  The null hypothesis is:  

H3:  There is no statistical difference in clock skews between rogue and valid Wi-Fi clients. 

RQ4: Does distance impact the discrimination quality to detect rogue access points? The 

null hypothesis is:  
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H4:  There is no statistical difference in clock skews between rogue and valid access points.  

For this research its assumed that IoT Wi-Fi clients will have the capability to compute, 

maintain and compare historical clock skew data with new data from the access point.   Since IoT 

devices have limited processing power understanding the amount of data required to accurately 

detect rouge access points is a critical component for designing security controls. 

Chapter Three 

Methodology 

This section describes the experimental environment along with the hardware components 

that were used for RSS fingerprinting. We conducted practical experiment to investigate whether 

RSS can be used as a candidate for Wireless Sensor Network (WSN) localization. In our 

localization model, we used Weka to process the measurements taken from the experiment. As 

discussed in (Adewumi, 2013), RSSI mean can be used to determine the position of nodes in the 

signal space at given distance. As indicated in (Kaur, 2015), machine learning classification 

techniques can be used for prediction purposes and performance evaluation.   

Hardware used in the experiments consist of a Verizon FIOS Actiontec MI424WR router 

that served at the valid access point; Dell M3800 notebook with an Intel® Dual Band Wireless-

AC 7260 as our valid device and CanaKit Raspberry Pi 4 as our rogue device with a constant 5 

meters incremental distance from 5 meters to 20 meters from the access point. We collected 297 

RSS readings from both wireless nodes with varying distance considered.  Based on a statistical 

power analysis in Figure 3.1, 297 samples are required to detect a large effect size. 
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                              Figure 3.1 Power analysis to determine sample size to detect large effect 

 

 

Experiment I – Rogue Wi-Fi Clients (RQ1: Distance) 

In this experiment, we deployed two wireless nodes: Dell as the valid node and Raspberry 

Pi4 as the rogue node on the signal space and Verizon FIOS Actiontec as our AP (access point). 

The two nodes were positioned 5M apart from the AP and with a 5m incremental distance from 

the AP. Additionally, 297 RSS readings were recorded for analysis purposes and evaluation. 

 
 

(a) Dell and Raspberry Pi4 @ AP1                 (b) Dell and Raspberry Pi4 @ AP1                 
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(c) Dell and Raspberry Pi4 @ AP1                 (d) Dell and Raspberry Pi4 @ AP1                 

                                             Figure 3.2. Experimental setup 

A Two-Sample Mean T-Test is used to test hypothesis, H1.  

Experiment II – Amount of Data 

  Next, the amount of data required is examined.  Since data collection can be a time-

consuming process that can delay the detection of rogue devices, RQ2 investigates detection 

accuracy with 50% of the original data.  The original dataset contains 594 data points for each 

distance (i.e., 297 data points were collected for each device (Dell and Pi) at 5, 10, 15 and 20 

meters from the access point) 148 data points were removed for each device at each distance to 

create the 50% reduction.  The modified dataset contains 298 data points.  A total of 148 data 

points was used for each device.  Minimizing the amount of data collected will minimize the 

amount of time to perform near-real time analysis.  The optimal algorithm identified in experiment 

I will also be used in this experiment to examine classification performance with reduced data. 

Experiment III – Clock Skew 

Clock skews are the inherent tiny drifts in the clocks of hardware devices due to variations 

in the manufacturing process (Arackaparambil, 2010).  (Kasera, 2008) showed that the clock skews 

of wireless devices remain consistent over time.  In their research that observed that, due to the 

essentially zero latency and the availability of a high frequency stream of high precision beacon 
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timestamps, the process of measuring clock skews became more accurate and effective in wireless 

networks.    

The objective of this experiment is to empirically validate prior research by investigating 

the accuracy of using clock skews to discriminate between valid and rogue access points. To 

accomplish this objective, two timestamps are collected: (1) the beacon timestamp, which is the 

amount of time, in microseconds, that an access point has been active and (2) the packet arrival 

time, which is the time the operating system receives a packet and will rely on the kernel to give 

it a valid timestamp. The kernel will get the timestamp from either the network interface driver or 

the networking stack.  The packet arrival time is supplied as seconds since January 1, 1970, 

00:00:00 UTC (also known as UNIX time or Epoch time).  Timestamps will be collected from 

access points at two distinct time periods.  Raspberry Pi’s will serve as the Wi-Fi client which 

receives access point broadcasts of beacon frames.  Linear regression and statistical tests will be 

conducted to examine statistical significance and effect size. 

Chapter Four 

Results and Analysis 

Experiment I- Rogue Wi-Fi Clients (RQ1: Distance) 

                         In this experiment, we have examined how RSS values change with reference to 

different distances. RSS readings were taken with a 5-meter incremental distance with Dell and 

Raspberry connected to AP1. Furthermore, we performed a statistical t-test to determine if RSS 

can be used for wireless localization.  

K-Means Clustering 

In this section, we used RSS readings collected from Experiment I to compute and 

determine cluster points distributions on the signal space using K-Means clustering algorithm.  
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(a). 5M (b) 10M 

(c) 15M (d) 20M 

  Figure 4.1. Dell cluster points vs Rasp cluster points at distances between 5 to 20 meters (x 

=Dell, x = Pi4)                              

The results were plotted from 5m-20m where distance served as discriminative feature to 

determine cluster points positioning as shown in Figure 4.1. The difference in node positioning 

can be visualized at 10M (Figure 4.1(b)) and the change in cluster pattern can be detected 

compared cluster points positioning as shown in Figure 4.1 compared to both nodes connected to 

the same access point at 5M (Figure 4.1(a)). The LQI (Link Quality Index) is largely affected by 

the decrease in TX power and increase in distance between the node and the access point. Weak 

AP signals affects the ability to detect rogue clients since the nodes are recording in almost similar 

RSS value range.  

Since the k-means results are not conclusive, the data was further examined with a t-test.  

Results suggest a difference between devices can be detected based on their received signal 

strength.  As indicated in Table 4.1, p-values calculated in the T-Test suggest a difference in RSSI 

distributions between difference devices connected to the same access point from the same 
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distance. From the experiment, we can clearly pinpoint the p-value is less than 0.05; hence we can 

conclude that is likely a difference in RSS values between rogue and valid nodes. Moreover, since 

the p-value is lower than 0.05, we reject the null hypothesis. 

Table 4. 1  Corresponding P-values and RSSI mean of the nodes connected to AP1 

Based on the p-value results in Table 4.1 it is evident that the strongest difference is 

detected at 10 meters. In statistical analysis, p value and effects are correlated in that the p value 

reports if the effect exists while as the effect size shows substantive significance of the results. For 

instance, any observed discrepancy is presumed to be explained by sampling unpredictability if 

the P value is greater than the chosen alpha level (e.g.,.05). A statistical test with a large enough 

sample will almost always show a substantial difference, unless there is no effect at all, in which 

case the effect size is exactly zero. The P value is considered indecisive because it depends on the 

sample size. The main result of the calculation may mean that only large samples were used. As a 

result, the magnitude of the effect is calculated to test the effect of distance on signal strength.  

Results provided in Table 4.2. suggest the largest effect sizes are observed at 10 and 20 meters.  A 

larger effect size suggests there is a larger difference in the distribution of RSS values between the 

rogue device (raspberry Pi) and the legitimate device (Dell laptop).  

5 meters 10 meters 

mean (5-

10m) 15 meters 20 meters 

mean (15-

20m) 

0.116024 0.693934605 

0.404979302

5 -0.19854501 

-

0.547907971 0.37 

                                                  Table 4. 2  Effect size (N=297) 

While a statistical difference and large effect size (>0.5) suggest signal strength may be 

used to detect rogue Wi-Fi client’s; further examination is required to see how this difference 

Distance (meters) No. of samples RSSI Mean P-value 

  Dell Pi 4  
5 297 58.99 57.58 2.90286E-02 

10 297 71.94 63.84 1.02045E-70 

15 297 75.65 76.70 1.77791E-06 

20 297 79.99 83.74 5.01165E-39 



TIME OF FLIGHT AND FINGERPRINTING BASED METHODS             

FOR WIRELESS ROGUE DEVICE DETECTION 

23 

actually performs as a feature and which machine learning algorithm provides the best accuracy.  

To further validate the statistical results from experiment, three machine learning algorithms are 

evaluated to investigate the detection accuracy.  The following popular machine learning 

algorithms are used to examine the classification performance for detecting rogue Wi-Fi devices 

using RSS values: naïve Bayes, multilayer perceptron, and random forest.  Tables 4.3 - 4.6 contain 

details regarding detection accuracy for discriminating between a raspberry Pi (rogue device) and 

a Dell laptop (legitimate device) at different distances from the same access point. 

Distance (d = 5 

meters)      

 Accuracy  Precision  Recall  F ROC Area 

Naive Bayes 69% 0.729 0.69 0.677 0.797 

Multilayer 

Perceptron 63% 0.656 0.633 0.619 0.632 

Random Forest 83% 0.834 0.827 0.826 0.919 

           Table 4. 3  Classifier performance for detecting a rogue device (raspberry Pi) at 5 meters 

 

 

Distance (d = 10 

meters)      

 Accuracy  Precision  Recall  F ROC Area 

Naive Bayes 82% 0.851 0.816 0.812 0.891 

Multilayer 

Perceptron 80% 0.814 0.798 0.795 0.881 

Random Forest 91% 0.907 0.906 0.906 0.96 

          Table 4. 4  Classifier performance for detecting a rogue device (raspberry Pi) at 10 meters 

 

 

Distance (d=15 

meters)      

 Accuracy Precision Recall F ROC Area 

Naive Bayes 62% 0.633 0.621 0.613 0.687 

Multilayer 

Perceptron 56% 0.564 0.564 0.564 0.616 

Random Forest 65% 0.651 0.65 0.649 0.729 

          Table 4. 5  Classifier performance for detecting a rogue device (raspberry Pi) at 15 meters 
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Distance (d=20 

meters)      

 Accuracy  Precision  Recall  F ROC Area 

Naive Bayes 75% 0.759 0.751 0.749 0.787 

Multilayer 

Perceptron 76% 0.805 0.763 0.754 0.789 

Random Forest 76% 0.804 0.763 0.754 0.783 

           Table 4. 6  Classifier performance for detecting a rogue device (raspberry Pi) at 20 meters 

 

 

At distances ranging from 5 to 20 meters, results in the tables 4.3-4.6 consistently indicate 

the random forest classification algorithm outperforms both Naïve Bayes and Multilayer 

Perceptron. The best classification accuracy of 91% was observed at 10 meters. However, even 

though a large effect size was detected at 20 meters the detection accuracy is significantly low 

compared to the large effect size detected at 10 meters (78% vs 91%).  Another observation 

presented in Figure 4.2 is that the classification rate drops when the distance is increased from 10 

meters to 15 meters beyond 10 meters, but then slightly increases from 15 meters to 20 meters. 

 
Figure 4.2. Random Forest classification rate for RSS values at distances between 5 to 20 meters 

 

One assumption is that the noticeable differences between classification rates below 10 

meters compared to classification rates above 10 meters many signal a demarcation point or 
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threshold value that suggests the demarcation for using RSS values for detecting rogue devices in 

Wi-Fi networks. To further investigate this assumption, the average classification rates above and 

below 10 meters is presented in Figure 4.3.  

 

 
         Figure 4.3 Mean random forest classification rate below and above 10 meters 

 

It can be observed that detecting rogue devices using received signal strength values at 

distances greater than 10 meters provides lower discrimination quality compared to devices that 

are 10 meters or less from a given access point. 

 

Therefore, the potential for using RSS may be proven most useful under certain attack 

scenarios where an adversary has the capability to place a rogue device in the same proximity as a 

legitimate user.  However, in certain situations the adversary may not have the ability to place a 

rogue device at the exact same distance as a legitimate user.  The most challenging scenario, based 

on the previous results, is if the adversary is within the 10-meter range.  The hypothesis for RQ1 

specifically examines this case.  H1 states that: 
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There will be no statistical difference in received signal strength between devices that are 

5 meters from an access point compared to devices that are 10 meters from the same access point.  

Since, the random forest algorithm outperformed the other classification methods in experiment I 

it will also be used to address H1.  The Raspberry Pi is a low cost highly portable device hence in 

subsequent analyses it has been selected as the device for the adversary.  In an attack scenario 

considered the adversary does not have access to be within the same distance to the access point 

but we assume she/he does have the ability to be within proximity.  We examine the case where 

the adversary is 10 meters from the access point and the legitimate user is within 5 meters from 

the same access point.  RSS data are collected from the Pi at 10 meters and the Dell at 5 meters 

from the same access point.  Results are presented in Table 4.7. 

d= Dell at 5 vs. Pi at 10 

meters      

 Accuracy  Precision  Recall  F 

ROC 

Area 

Random Forest 85% 0.849 0.848 0.848 0.918 

      Table 4. 7  Classification accuracy for Dell at 5 meters and Pi4 at 10 meters from an AP 

 

An 85% classification accuracy was achieved with the random forest algorithm.  Therefore, 

at close distances less devices than or equal 10 meters from an access point received signal strength 

can help to detect rogue devices. 

Experiment II- Rogue Wi-Fi Clients (RQ2: Data reduction) 

Unlike Experiment I which investigated the classification performance for detecting 

different Wi-Fi devices connected to the same access point at the same distance, the second 

experiment analyzes classification performance for different devices connected to the same access 

point at different distances with reduce data.  Placing a constraint on the amount of data required 

for analysis can provide near real-time analysis.  Results from experiment II demonstrate that the 
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accuracy for discriminating between wireless devices using received signal strength (RSS) does 

not negatively impact performance.  

 

d= Dell at 5 vs. Pi at 10 

meters      

 Accuracy Precision Recall F 

ROC 

Area 

Random Forest 87% 0.894 0.866 0.863 0.92 

      Table 4. 8  Modified dataset with 50% reduction in data  

As can be seen in Table 4.8 an 87% classification accuracy was achieved with a 50% 

reduction in data (148 data points for each device vs 297 data points for each devices).  To examine 

this in greater detail the original dataset was used with 20% of the data used for training and the 

remainder for the test data.  Results are provided in Table 4.9. 

d= Dell at 5 vs. Pi at 10 

meters      

 Accuracy  Precision  Recall  F 

ROC 

Area 

Random Forest 86% 0.857 0.857 0.857 0.928 

      Table 4. 9  Original dataset with 20% used for training and the remainder used for test 

 

Again, it can be observed that the received signal strength data contains enough 

discrimination quality even with significantly less data.  This underscores the value for using RSS 

data as an attribute to detect rogue devices that may have access to be within proximity to an access 

point as legitimate users.   

However, results in Figure 4.1 show that the p-values after 10 meters goes down at 15 

meters and then up again at 20 meters. This oscillating pattern may suggest a more stable method 

is required that is not impacted by distance or latency.  Consequently, alternate methods for 

detecting rogue devices at longer ranges from an access point are required. 
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One alternate method is to examine the differences in clock skews between Wi-Fi devices. Prior 

research has shown that the clock skews of wireless devices remain consistent over time (Jana, 

2009).  Clocks skews will be examined between the rogue (raspberry Pi) and legitimate device 

(Dell laptop) connected to the same access point.  One access point is within the same indoor 

location as the rogue and legitimate device.  This access point has an SSID = 53BL2 and is within 

close range to the Wi-Fi devices.  The other access points are located outdoors from the Wi-Fi 

clients.  The distance is unknown but is at least 20 meters away from the Wi-Fi client devices.  

Figures 4.4 – 4.7 illustrate the differences in clock offsets.  In Figure 4.4 all devices (Wi-Fi clients 

and access point are located within 5-10 meters.  In Figure 4.5-4.7, Wi-Fi clients (raspberry Pi and 

Dell laptop) are within 5-10 meters from each other, and the access points are located more than 

20 meters from the Wi-Fi clients. 

 

Figure 4.4 Clock offset Dell vs Pi connect to access point with SSID 53BL2 
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Figure 4.5 Clock offset Dell vs Pi connect to access point with SSID Maniac 

 

 

Figure 4.6 Clock offset Dell vs Pi connect to access point with SSID CYBERDEN 
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Figure 4.7 Clock offset Dell vs Pi connect to access point with SSID Mene 

Visual inspection of the Figures 4.4-4.7 suggests a widespread or separation between 

clock offsets for the rogue (raspberry Pi) and legitimate node (Dell laptop).  To validate the 

results p-values and effect sizes were computed in Table 4.10 and 4.11. 

 Raspberry Pi 

  53BL2 Maniac Cyberden Mene 

Dell 

53BL2 9.3E-265    

Maniac  0   

Cyberden   8.7E-09  
Mene    0.057417 

 

 N 

53BL2 3342 

Maniac 9962 

Cyberden 26 

Mene 25 

                                                    Table 4. 10  p-values and sample sizes 

Results in Table 4.10 indicate clock skews is an effective metric for detecting rogue 

devices.  In every case regardless of the distance between the Wi-Fi clients (rogue = Raspberry Pi 
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and legitimate = Dell laptop) the access points results are statistically significant. While all results 

in Table 4.10 are statistically significant, the sample sizes (N) for the Cyberden and Mene access 

points are too small to detect a large or medium effect and therefore, these results should be 

interpreted with caution.  Further analysis is required.  The effect sizes for 53BL2 and Maniac are 

presented in Table 4.11. 

 

53BL2 

(Pi) Maniac (Pi) 

53BL2 

(Dell) -0.422913  
Maniac 

(Dell)  0.732330567 

                                          Table 4. 11  Effect size based on Clock Skews 

It can be observed from Table 4.11 that the largest effect size was detected between the 

rogue (Pi) and legitimate device (Dell) when connected to the Maniac access point.  The distance 

between this access point and the Wi-Fi clients is significantly further away compared to the 

53BL2 access point.  This result suggests strong support for using clock skews over received signal 

strength values for large distances between Wi-Fi clients and access points.  Specifically, large 

effect sizes can be detected between rogue and legitimate Wi-Fi clients connected at distances 

greater than 20 meters from an access point.  Further investigation is required to examine the 

impact of the sample sizes.  However, in both cases sample sizes are large enough to detect a large 

effect with a statistical power of 0.8. Experiment III investigates using clock skews for detecting 

rogue access points also known as “evil twins. 

Experiment III- Clock Skew 

Access points (AP’s) broadcast beacon frames to alert any Wi-Fi client that they are willing 

to accept a connection.  Beacon frames were broadcast to the Raspberry Pi Wi-Fi client during two 

different time periods:  November 2020 and March 2021.  Data for all access points (AP’s) within 
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range of the Raspberry Pi was collected for one minute.  Since the beacon frames and packet 

timestamps are in different units (microseconds vs Epoch time in seconds) the first packet is 

converted to time 0.  The difference of each successive packet is computed as the difference 

between the previous packet time.  Figure 4.8 presents the clock offsets of four different access 

points obtained from a Raspberry Pi Wi-Fi client during November 2020.  Results demonstrate 

that after 15 seconds (15,000,000 microseconds) clock offsets appear to represent unique linear 

functions.  This suggests clock offsets provide good discrimination quality after 15 seconds.  

 

Figure 4.8 Access point (AP) Actual Clock Offsets (November 2020) 

 

To further examine the predictive quality of clock offsets a linear regression was performed 
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Figure 4.9 Access point (AP) Predicted Clock Offsets (November 2020) 

 

As can be observed in Figure 4.9 the predicted clock offsets align with their respective 

linear functions.  

To further verify results obtained in Figure 4.8 the experiment was conducted using a 
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Figure 4.10. 
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             Figure 4.10 Access point (AP) Actual Clock Offsets (March 2021) 
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presented in Table 4.12 and Table 4.14 and respective effect sizes are provided in Table 4.13 and 

Table 4.15. 

 Rogue AP AP2 AP3 

Rogue AP  7.37214E-08 0.029861 

AP2 7.37214E-08  7.44E-39 

AP3 0.029861298 7.44E-39  
                               Table 4. 12  t-test p-values Clock Skews (November 2020) 

 

 AP2 AP3 

Rogue AP 0.404892 -0.16452093 

                                         Table 4. 13 Clock skew effect size (November 2020) 

 

It can be observed that the differences in clock skew distributions between the rogue access 

point and other access points is statistically significant (p< 0.05).  In addition, the effect size for 

AP2 is higher than AP3, but in both cases only a moderate (AP2) to small effect (AP3) are detected. 

  Rogue AP AP4 AP5 

Rogue AP   0.007381 1.43E-07 

AP4 0.007381   6.80E-08 

AP5 1.43E-07 6.80E-08   

                                    Table 4. 14  t-test p-values Clock Skews (March 2021) 

 AP4 AP5 

Rogue AP -0.09718 

-

0.0744608 

                                            Table 4. 15  Clock skew effect size (March 2021) 

 

During the March 2021 collection period higher results were observed. The differences in 

clock skew distributions between the rogue access point and other access points is statistically 

significant (p< 0.05), and the effect size for AP4 is higher than AP5.  A large effect was detected 

for both access points.  The combined results of p-value and effect sizes for both time periods 
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provides support for using clock skews to detect rogue access points. The main difference between 

the two time periods is that large effect sizes were detected during the second time (March 2021) 

compared to the first time (November 2020) with the same sample sizes of only 97 beacon frames.  

Future research will investigate the possible causes for the differences in effect sizes. 

Chapter Five 

Conclusion and Future Exploration 

 

In this paper, we have exhaustively analyzed Wi-Fi localization based on RSSI and packet-

based time synchronization on the IEEE 802.11 protocol on highlighting the impact on network 

effectiveness and performance. This study investigates the RSSI pattern through RSSI distribution 

in the signal space. RSS based positioning scheme was used to test for reliability and accuracy of 

using RSSI as a determinant feature to identify rogue Wi-Fi clients. Wi-Fi localization under these 

conditions remains a fundamental platform to explore reflecting on the application of RSSI in 

identifying the positioning of the rogue AP on the signal space.   

The main attraction to RSSI as a metric is that the measurement and calculation is simple, 

and less tasking compared to other localization metrics. Increased frequency has cultivated the 

need to focus on wireless sensor networks due to their recent adoption and applicability on a range 

of devices in the IoT environments. Network architectural designs over the years have faced the 

challenge in providing clock synchronization on the sensor network since there are many 

applications that process large chunks of data on the networks. This paper explored the 

effectiveness of beacon time synchronization on identifying the presence of rogue APs on the 

signal space. When a device wants to send a packet from the AP to the node, the device broadcast 
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its beacon frames to announce its presence on wireless network.  A summary of results from this 

research is provided in Table 5.1. 

Hypothesis Description Result 

H1 There is no statistical difference 

between devices that are 5 meters 

from the access point compared to 
devices that are 10 meters from 

the same access point.  

 

Supported. While there was some 

volatility in signal strength as the distance 

between devices and the access point was 
increased from 5-20 meters, the mean 

effect size and was larger when the devices 

were less than 10 meters from the access 
point than when the devices were more 

than 15 meters from the access point 

(Table 4.2:  0.41 for d <10m and 0.37 for 

d>15m).  The same was observed with the 
classification rates (Figure 4.3: 87% for d 

<10m and 71% for d>15m).   At proximity 

when one device was 5m from the access 
point and the other devices was placed at 

10m from the access point an 85% 

accuracy was achieved (Table 4.7). 
 

H2 There is no statistical difference in 

detection accuracy for same 

devices with 50% fewer data points 
connected to the same access point. 

A significant decrease is accuracy was not 

observed with a 50% reduction in data.  

This suggests a small amount of data 
collection is required facilitating near real-

time analysis.  An 86% detection accuracy 

was achieved (Table 4.9).   

H3 There is no statistical difference in 
clock skews between rogue and 

valid Wi-Fi clients. 

Supported. At a distance of at least 20m 
from the access points a large effect size 

was detected using clock skews (Table 

4.11).  Considering results obtained for 
H1, this result suggests clock skews 

provide better discrimination quality 

compared to signal strength at distances 

greater than 20 meters. 

H4 There is no statistical difference in 

clock skews between rogue and 

valid access points. 

Supported. In 2 out of the 3 test cases a 

large effect was detected between the 

rouge and valid access points.  This was 
observed when the distance between the 

rogue and valid access points was 20m or 

more. This is consistent with results 

obtained for H3 and addresses limitations 
with using signal strength for distances 

more than 15m as observed with results 

from H1.  Further research is required to 
understand the one exception when a small 

effect was detected. 

      Table 5. 1  Summary of results 
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The presence of rogue APs on the signal space has contributed to identity theft, service 

unavailability and has jeopardized information integrity. Besides, the adversaries have widely 

exposed the CIAD metrics resulting to user manipulation and distributed denial of service 

(DDOS).  

Future exploration 

 

Our approach focused on the hardware-based traffic detection and model implemented on 

physical and datalink of the network layered model. We propose more diverse fingerprint 

identification technique which will explore significant difference between temporal network 

characteristics of rogue devices compared to authorized devices.  For example, the duration field 

in a MAC address can be used to identify the chipset for a device (Cache, 2006). In instances 

where hardware of rogue devices matches valid nodes on the network, the nodes’ location or 

proximity within the network can be used to detect the rogue device. 

Moreover, synchronous timestamping approach offers a valid technique to detect and 

identify rogue APs. The difference in clock skew signals presence of rogue APs and can be 

implemented into two layered forms; software-based and infrastructural-based (hardware-based). 

This paper solely focused on the infrastructural-based section of the research study. Likewise, we 

suggest studies to inter-connect the software based and hardware-based time synchronization to 

minimize the overhead when there is a large pool of devices broadcasting their beacon frames.  
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