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We report time-of-flight measurements on electrons travelling in quantum-Hall edge states. Hot-electron

wave packets are emitted one per cycle into edge states formed along a depleted sample boundary. The electron

arrival time is detected by driving a detector barrier with a square wave that acts as a shutter. By adding an extra

path using a deflection barrier, we measure a delay in the arrival time, from which the edge-state velocity v is

deduced. We find that v follows 1/B dependence, in good agreement with the ~E ×
~B drift. The edge potential

is estimated from the energy-dependence of v using a harmonic approximation.

PACS numbers: 73.23.Hk, 73.43.-f, 73.63.Kv

Electronic analogues of photonic quantum-optics exper-

iments, so-called “electron quantum optics”, can be per-

formed using the beams of single-electron wave packets. The

demonstration of entanglement and multi-particle interference

with such wave packets would set the stage for quantum-

technology applications such as quantum information pro-

cessing [1]. Various theoretical proposals [2–7] and experi-

mental realisations [8–17] employ quantum-Hall edge states

[18] as electron waveguides. The group velocity and dis-

persion relation of edge states are important parameters for

understanding and controlling electron wave-packet propaga-

tion. For edge-magnetoplasmons, the velocity can be deduced

by time-of-flight measurements with gate pulses [19–22].

Such direct velocity measurements have been difficult with

electron wave packets because gate pulses would also affect

the background Fermi sea. Previous experiments [14, 23, 24]

use other types of electron-transport data to estimate the elec-

tron velocity. Furthermore, electron-electron interactions can

cause the formation of multiple collective modes travelling at

different velocities, leading to decoherence [14, 17, 25]. In

order to perform the measurements of bare group velocity by

time-resolved methods, we need a robust edge-state waveg-

uide system where the interactions between the transmitted

electrons and other electrons in the background can be sup-

pressed.

In this Letter, we demonstrate an experimental method for

probing the bare edge-state velocity of electrons travelling in

a depleted edge of a two-dimensional system. Electrons are

emitted from a tunable-barrier single-electron pump [26–28]

∼ 100 meV above the Fermi energy [13, 29]. These elec-

trons are injected into an edge where the background two-

dimensional electron gas (2DEG) is depleted to avoid the in-

fluence of electron-electron interactions. The arrival time of

these wave packets is detected by an energy-selective detec-

tor barrier with a picosecond resolution [13, 16]. The travel

length between the source and detector is switched by a de-

flection barrier. The time of flight of the extra path is mea-
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FIG. 1. (a) A scanning electron micrograph of a device and schemat-

ics of the measurement circuit. (b) Schematics of the lowest Landau

Level at the sample edge. Electrons travel in high energy states in-

dicated by a red dot. The dashed box represents a region where a

harmonic approximation is used to deduce the edge potential profile

shown in Fig. 3(d). (c) Sine-wave signal V RF

G1 applied to G1 and

square-wave signal V RF

G3 applied to G3. Their relative phase delay

td is controlled at a picosecond resolution using the internal skew

control of the arbitrary waveform generator.

sured as a delay in the arrival time at the detector [30]. The

edge-state velocity is calculated from the length of the extra

path and the time of flight. We find that the edge-state velocity

is inversely proportional to the applied magnetic field in good

agreement with the ~E × ~B drift velocity, where ~E is the elec-

tric field and ~B is the magnetic field. We probe the dispersion

of the edge states by controlling the electron emission energy.

From the energy dependence of the velocity, we deduce the

edge potential profile and obtain the spatial positions of the

edge states.

The measurements presented in this work are performed
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on two samples, A and B, with slightly different device pa-

rameters. Figure 1(a) shows a scanning electron micrograph

of a device with the same gate design as Sample B. Both

samples are made from GaAs/AlGaAs heterostructures with

a 2DEG 90 nm below the surface, but the 2DEG carrier den-

sity is slightly different (1.8 × 1015 m−2 for Sample A and

1.6 × 1015 m−2 for Sample B). The active part of the device

is defined by shallow chemical etching and Ti/Au metal depo-

sition using electron-beam lithography. The device comprises

5 surface gates: the pump entrance gate (G1), pump exit gate

(G2), detector gate (G3), deflection gate (G4), and depletion

gate (G5). L1 is the path length along the deflection gate and

is the same for both samples (1.5 µm). L2 is the path length

along the loop section defined by shallow etching, and is 2 µm

for Sample A and 5 µm for Sample B. The measurements are

performed at 300 mK.

Figure 1(a) also shows the measurement circuit. The rf

sine signal V RF
G1 (peak-to-peak amplitude ∼ 1 V) applied to

G1 pumps electrons over the barrier formed by the dc voltage

VG2 applied on G2 [27]. The rf signal is repeated periodically

at a frequency f = 240 MHz, producing the pump current

IP. When the device pumps exactly one electron per cycle,

IP = ef ≈ 38 pA, where e is the elementary charge (see the

supplemental material for pump tuning). In a magnetic field

B applied perpendicular to the plane of the 2DEG [in the di-

rection indicated in Fig. 1(a)], the electrons emitted from the

pump follow the sample boundary and enter the region where

the background 2DEG is depleted by the negative voltage VG5

on G5 (at least 100 mV past the typical depletion voltage of

∼ −0.2 V). The bottom of the lowest Landau level is raised

above the Fermi energy EF but is kept lower than the electron

emission energy as shown in Fig. 1(b). The electrons travel

along the edge approximately 500 nm (roughly equal to the

extent that G5 covers from the edge defined by shallow etch-

ing) away from the nearest 2DEG [as indicated by the red dot

in Fig. 1(b)].

Depending on the voltage VG4 applied to G4, the elec-

tron wave packets reach the detector (G3) either through the

shorter route [solid red line in Fig. 1(a)] or the longer route

(dashed line). In both cases, the majority of electrons reach

the detector without measurable energy loss for the magnetic

field considered here. Electrons that lose energy through LO-

phonon emission [13, 31] are reflected by the detector barrier

and do not contribute to the detector current. The longer route

adds an extra length 2L1 + L2 to the electron path, causing a

delay in the arrival time at the detector. The arrival time is de-

tected using a time-dependent signal [13, 16]. A square wave

V RF
G3 with a peak-to-peak amplitude of ∼ 20 mV is applied to

G3 [16] in addition to a dc voltage V DC
G3 . The detector cur-

rent ID is monitored as V DC
G3 is swept and the relative delay

time td between V RF
G1 and V RF

G3 [see Fig. 1(c)] is varied with a

picosecond resolution [16] (see the supplemental material for

more information).

Figures 2(a)-(c) show the behaviour of the detector current

for three values of VG4 taken at B = 14 T with Sample A.

Here, dID/dV
DC
G3 is plotted in colour scale as a function of
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FIG. 2. (a)-(c) dID/dV
DC

G3 plotted in colour scale as a function of

V DC

G3 and td for three values of VG4. Red crosses are placed at the

centre of the transition in the detector threshold, which indicates the

peak in the electron arrival time. The data are taken from Sample

A. (d) dID/dtd plotted as a function of td for two values of VG4:

-0.48 V (solid line) and -0.51 V (dashed line). (e) Peak arrival time

plotted as a function of VG4. Taken from Sample A. (f) Peak arrival

time taken from Sample B. The solid line is fit to −1/VG4.

V DC
G3 and td. The pump current is set at the quantised value

for one electron emission per cycle (i.e. IP ≈ ef ). When

the detector barrier is sufficiently low (i.e. V DC
G3 is less neg-

ative) but is kept above EF, all emitted electrons that do not

suffer energy loss during the travel enter the detector contact

and contribute to ID. Therefore, ID ≈ IP as the LO phonon

emission is negligble at B = 14 T in these samples. When the

detector barrier is sufficiently high, all electrons are blocked,

and ID = 0. When the detector barrier is matched to the

energy of incoming electrons, a peak in dID/dV
DC
G3 appears

[13, 16]. The peak position (or the detector threshold) in V DC
G3

depends on td because a square wave is applied to the detector

gate and the sum V DC
G3 + V RF

G3 determines the detector barrier

height. When td is small (large), electrons arrive when the

square wave is negative (positive), and hence it shifts the de-

tector threshold to more positive (negative) in V DC
G3 . The tran-

sition of the detector threshold in V DC
G3 from more positive

to more negative occurs at td where the square-wave transi-

tion coincides with the electron arrival at the detector. As VG4

is made more negative, the detector transition shows splitting

[Fig. 2(b)] and finally settles to larger td [Figs. 2(c)]. The

splitting happens as G4 splits the wave packets into the shorter

and longer routes, and hence two sets of electron wave pack-

ets arrive at the detector with a time delay. The shift of the

detector transition to larger td occurs because the longer route

causes a delay in the arrival time.

In Fig. 2(d), dID/dtd is plotted as td is swept through the

centre point of the detector transition marked by red crosses

for the cases of VG4 = −0.48 V (solid line) in Fig. 2(a) and

-0.51 V (dashed line) in Fig. 2(c). These two curves represent

the arrival-time distributions for the shorter and longer routes,

and hence the time difference τd between the two peaks is

the time of flight of the extra path (2L1 + L2) taken by the
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longer route. The edge-state velocity in the extra path can

be calculated as v = (2L1 + L2)/τd. In this example, v =
5 µm/95 ps = 5.3× 104 m/s.

The uncertainty in these velocity estimates arises from the

uncertainties in 2L1 + L2 and τd. The value of 2L1 + L2 is

likely to be accurate only to ±10% as we can only estimate it

from the device geometry. This gives the same systematic er-

ror to all velocity estimates within the same sample, and hence

it does not affect the discussions in the later sections qualita-

tively. The uncertainty in τd is more problematic. This is

because the arrival time does not necessarily switch between

just two values as the edge-state path is switched. As plotted

in Fig. 2(e), the arrival time initially changes slowly towards

larger td as VG4 is made more negative. Then it starts to move

through a series of small steps until it makes a final large step.

After that, the arrival time moves gradually back to smaller

td. This behaviour can be interpreted as follows. The series

of changes for −0.51 < VG4 < −0.48 V occur as the path

length and the velocity of the edge state under G4 is altered in

a complicated manner due to disorder potential. This lasts un-

til the edge state is finally pushed out of the region under G4 at

VG4 ∼ −0.51 V, and is switched to the longer route (see the

supplemental material for more details on this effect). Then

the arrival time continues to change as VG4 is made more neg-

ative, because the velocity along G4 keeps increasing as the

edge potential along G4 is made steeper (due to the ~E × ~B
drift as discussed later). For the measurements with Sample

A, we take τd to be the difference in arrival time before and

after rapid changes as indicated in Fig. 2(e). A typical uncer-

tainty in τd estimate by this method is ±5 ps.

A more rigorous velocity estimate can be introduced by ex-

cluding the contribution from the electron paths along G4.

Figure 2(f) shows the time-of-flight data taken from Sample

B plotted in the same manner with Fig. 2(e). With Sample

B, the arrival time changes more rapidly as VG4 is made more

negative after the electron path is switched to the longer route.

As the case with Sample A, this is considered to result from a

rapid change in the velocity along G4, and is the main source

of the uncertainty in velocity estimates. In order to reduce

the uncertainty, we break up the time of flight into two parts,

τd1 along G4 (length 2L1) and τd2 along the loop (length

L2), i.e. τd = τd1 + τd2 = 2L1/v1 + L2/v2, where v1(2)
is the velocity along the path L1(2). From this, one can see

τd → τd2 = L2/v2 in the limit v1/v2 ≫ 2L1/L2. Once the

electron path is deflected, v1 increases as VG4 is made more

negative, whereas v2 is unaffected. Therefore, in the limit of

large negative VG4, the time of flight settles to τd2. It is not

trivial to know exactly how v1 changes with VG4, but a linear

relation (v1 ∝ −VG4) fits well to the experimental data [solid

line in Fig. 2(f)]. As shown in Fig. 2(f), τd2 can be estimated

as the difference between the saturated values of arrival time

at the positive and negative ends of VG4. The velocity around

the loop is calculated as v2 = L2/τd2. We find that the uncer-

tainty is reduced approximately by a factor of three using this

method. We note that we cannot apply this method to Sample

A as L2 is too small to observe the saturation in the arrival
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FIG. 3. (a) Edge-state velocity v measured as a function of B. Circle

(triangle) data points are taken with Sample A (B). The solid curves

are fits to 1/B. Inset: v plotted against 1/B. (b) Electron emission-

energy spectrum measured at B = 14 T. (c) v2 plotted as a function

of relative emission energy ∆E. Solid lines are fits to a linear re-

lation. (d) Edge confinement potential −φ (solid lines) estimated

from the velocity measurements. The spatial positions of the edge

states corresponding to the velocity measurements are indicated by

symbols.

time at the negative end in VG4.

Now, we investigate the magnetic-field and emission-

energy dependence of the velocity to see if the depleted edge-

state system is consistent with an interaction-free quantum-

Hall edge-state model. Figure 3(a) shows the magnetic field

dependence of the measured edge-state velocity for both sam-

ples [v (the velocity along the whole extra path, 2L1 + L2)

is plotted for Sample A and v2 (the velocity along the loop

section L2 only) for Sample B]. Clear 1/B dependence is

observed for both samples down to B = 5 T. This is in

good agreement with the ~E × ~B drift velocity, where v =
| ~E × ~B|/B2 ∝ 1/B, and ~E is the electric field due to the

edge potential.

In order to estimate the edge confinement potential and the

spatial position of edge states, we consider the dispersion rela-

tion in a quasi-one-dimensional channel with a harmonic ap-

proximation [32]. For the lowest branch of magneto-electric

subband [33],

E(kx) = ǫ0 +
1

2
h̄Ω +

h̄2k2
x

2m∗

ω2
y

ω2
y
+ ω2

c

, (1)

where kx is the wave number in the edge-state transport di-

rection (in x direction), ǫ0 is the lowest two-dimensional sub-

band energy, h̄ωy is the transverse confinement energy (in y
direction), h̄ωc is the cyclotron energy, and m∗ is the electron

effective mass. From the dispersion relation and the group
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velocity v = 1/h̄ · dE/dk, one can deduce

1

2
m∗v2 ≈

ω2
y

ω2
c

(

E − ǫ0 −
1

2
h̄ωc

)

, (2)

in the limit of large magnetic field (ωc ≫ ωy). From this, ωy

can be deduced by plotting v2 against E.

The emission energy from our single-electron source can

be tuned over a wide range [13]. This can be used to probe

the energy dependence of the edge-state velocity. Figure 3(b)

shows the emission energy spectrum measured as VG2 is var-

ied and with a static detector barrier (V RF
G3 = 0) with elec-

trons travelling along the longer route (VG4 = −0.7 V) at

B = 14 T. The conversion to relative emission energy ∆E
[shown on the right vertical axis in Fig. 3(b) with the highest

energy point used in this work set as zero] is made by calibrat-

ing V DC
G3 against LO-phonon emission peaks [13] (not visible

in this particular dataset) assuming the LO phonon-energy of

36 meV [34] (see the supplemental material for more details

on this procedure). The electron emission energy decreases

linearly as VG2 is made more positive.

Figure 3(c) plots v2 measured as a function of relative emis-

sion energy ∆E at B = 14 T for both samples. As ex-

pected, they fit well to straight lines. From these, we de-

duce h̄ωy = 2.7 meV and 1.8 meV, and the bottom of the

confinement potential at ∆E = −47 meV and −61 meV,

for Samples A and B, respectively. We can then reconstruct

the edge-confinement potential φ = −m∗ω2
y
y2/2e as shown

in Fig. 3(d). Here we set the potential at the bottom of the

parabola as zero. From each data point in Fig. 3(c), we can

deduce the potential energy −eφ at the position of the guid-

ing centre by subtracting the kinetic energy 1
2m

∗v2 from the

total (relative) energy ∆E. We can then visualise the spatial

position of the edge states as plotted in Fig. 3(d).

In summary, we have shown the measurements of the time

of flight of electron wave packets travelling through edge

states. The electrons travel in the region where the back-

ground 2DEG is depleted and electron-electron interaction is

minimised. We find that the electron velocity is in good agree-

ment with the expected ~E × ~B drift. From the energy depen-

dence, we deduce the edge confinement potential. Our tech-

nique provides a way of characterising the edge-state trans-

port of single-electron wave packets with picosecond resolu-

tions. The method that we have developed to transport elec-

tron wave packets in depleted edges could provide an ideal

electron waveguide system where decoherence due to interac-

tions can be avoided for electron quantum optics experiments.
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