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Abstract—We study a reservation system with finite
computing resources over an infinite horizon, where a set of
incumbent users submit reservation requests for computing
resources ahead in time. Computing resources may be
purchased in exchange for tokens. We use the Multinomial
Logit (MNL) framework to model customer substitution
behavior. Given user requests, the objective is to maximize
system performance, defined as the proportion of customers
that obtain their preferred time slot, by adjusting resource
prices in tokens per unit of time and per computing
resource.

We consider a class of pricing policies called Time-of-Use
(ToU), and propose a simple and intuitive algorithm that is
provably optimal for an approximation to our formulated
problem. Our proposed solution has the appealing property
of flattening demand over the horizon. We evaluate the
performance of our approach numerically. For the set of
problem instances that we consider, the optimal ToU policy
outperforms single pricing strategies by 3-8 % for Customer
Satisfaction, on average. We discuss the implementation
of our proposed approach for Cloud Computing being
developed by IBM at the King Abdullah University of
Science and Technology (KAUST).

I. INTRODUCTION

Cloud Computing is offering a new paradigm for the
dynamic provisioning of scalable and efficient services.
Several firms, including Amazon, IBM and Google,
are making large investments in Cloud Computing.
Furthermore, analysts such as Gartner believe that the
introduction of Cloud Computing in the market will
result in strategic shift in the IT industry: “Organiza-
tions are switching from company-owned hardware and
software assets to per-use service-based models” [8]. To
bring this new technology to the market, firms are not
only addressing the technology questions related to e-
migration, virtualization, etc. but also developing new
scheduling and pricing models in order to efficiently
allocate computing resources on the cloud to consumers.
Research in these areas has the potential to impact the
evolution of this business. The focus of this paper is to
address the problem of pricing of computing resources.

Consider a firm that owns a Cloud Computing center
(C3) consisting of a finite number of computing re-
sources, which we refer to as compute nodes. We assume

that the firm has a pool of captive users.1 This would
be the case if the firm was a university and the users
were students and faculty or if the firm were a for-
profit company and the users were paying customers. In
order to manage access to C3, each user is periodically
endowed with a fixed number of tokens that can be
exchanged for compute nodes by submitting a request
through a reservation system (R), depending on the price
(throughout the paper, we refer to prices in tokens)
charged by the manager of C3.

We assume that each user has full visibility into the
system workload. In particular, when a user interacts
with R, he may observe which time slots are currently
reserved and which are not, as well as posted prices for
each compute node that has not been reserved. Given
the number of compute nodes that are available for
each time slot and associated posted prices, he may
submit a request for using the resource starting at a
specific time period, according to his own preferences
over starting time slots. We assume that users’ token
budget is adjusted to satisfy their average computing
resource requirements, which are set exogenously.

The objective of the C3 manager is to efficiently
allocate compute nodes to users. To achieve this goal,
she can price the resource to shape the inter-temporal
demand. Since prices are set in tokens, pricing decisions
do not affect revenues directly. However, they do affect
the performance of the system. Several criteria may be
used to measure the system performance such as average
system utilization. Close interactions with Subject Matter
Experts led us to choose “fraction of satisfied customers”
as the most suitable objective for our setting. We define
a satisfied customer to be one who is able to obtain
his preferred time slot. If a customer does obtain the
time slot that is his first preference, he is deemed to be
unsatisfied.

Since C3 has a pool of captive users, we assume
that the manager is constrained to consider fair price
schemes: the average price paid by a user must match
the budget for the average request.

1We use the terms users and consumers interchangeably in the paper.



The remainder of the paper is structured as follows:
Section II provides an overview of related work. In Sec-
tion III, we formulate the problem. Section IV discusses
a ToU pricing approach to our problem. Our simulation
results are discussed in Section V.

II. RELATED WORK

We first review the research on resource management
in grid or cluster computing. We then briefly review the
literature related to energy pricing that is relevant to our
problem.

Buyya et al. (2002) compare the infrastructure re-
quired for resource allocation on a grid through dif-
ferent mechanisms such as exogenous prices, tenders
and auctions. Vengerov (2008) proposes a reinforcement
learning algorithm that tunes parameters of a sellers dy-
namic pricing policy even when the sellers environment
is not fully observable in the context of a grid. Paleol-
ogo (2004) proposes a “Price-at-Risk” methodology that
explicitly models contingent factors, such as uncertain
rate of adoption or demand elasticity, to account for
risk before the pricing decision is taken. To our knowl-
edge, Yeo and Buyya (2007) are the first to consider
customer utility perceived from job submission, in the
context of cluster resource management. They describe
an architectural framework for a utility-driven cluster
resource management system. Their main contribution is
the presentation a user-level job submission specification
for soliciting user-centric information that is used by the
cluster for making better resource allocation decisions.

Celebi and Fuller (2007) assume that suppliers in
competitive electricity markets respond to prices that
change hour by hour or even more frequently, but most
consumers respond to price changes on a very differ-
ent time scale. They examine mixed complementarity
programming models of equilibrium that can bridge the
speed of response gap between suppliers and consumers
yet adhere to the principle of marginal cost pricing
of electricity. They develop a computable equilibrium
model to estimate ex ante Time-of-Use (ToU) prices
for a retail electricity market. Borenstein et al. (2002)
present a method for decomposing wholesale electricity
payments into production costs, inframarginal competi-
tive rents, and payments resulting from the exercise of
market power. Using data from June 1998 to October
2000 in California, they find significant departures from
competitive pricing, particularly during the high-demand
summer months.

The literature on stock-out based substitution in retail
is also related to our work. We will allude to relevant
work later in the paper—see Van Ryzin and Mahajan
(2001), Gaur et al. (2009).

III. PROBLEM FORMULATION

Consider a C3 consisting of K compute nodes and
N users. We will use n ∈ {1, . . . , N} to denote a
generic user. We use t to index time periods that have
elapsed since the beginning of the horizon. We assume
that in each period t in the horizon, user n receives a
positive workload Wn,t := (Sn,t, Dn,t) with probability
qt > 0, where Sn,t and Dn,t are the number of nodes
required and duration in time periods. For t ≥ 1 and
s ≥ t, let Xt

s,n denote the number of compute nodes
available at period s at the beginning of period t before
user n accesses R. We assume that system workload is
revealed to customers each period in an arbitrary order,
and that, those that receive a positive workload access
the reservation system sequentially with no preemption.
Define the state of the system as Xt

n :=
{
Xt
s,n : s ≥ t

}
.

We first make a simplifying assumption on the size
and duration of a request that allows us to model user
preferences for starting time slots in a straightforward
manner.

Assumption 3.1: The size and duration of each re-
quest is normalized to one unit, i.e., for all t ≥ 1 and
n ∈ {1, . . . , N},

Sn,t = Dn,t = 1.

Assumption 3.1 allows us to collapse the reservation
system state into a (infinite dimensional) vector that
indicates the number of nodes available for each future
time slot. We also assume that the reservation system
is prevented from making acceptance or rejection deci-
sions, and that hard-to-model effects like fragmentation
(resulting from dynamic resource allocation) are com-
pletely absent.

The remainder of this section is structured as follows:
In Section III-A, we introduce the framework that we
use to model customer preferences. In Section III-B, we
introduce an assumption to characterize the demand that
is typical in our setting. Finally, Section III-C formally
introduces the objective of the C3 Manager.

A. User preferences

In order to model user preferences across different
time slots, we work under the hypothesis of utility-
maximizing customers. We use the Multinomial Logit
choice model (MNL) framework. In particular, we as-
sume that users receiving unit size workloads will assign
(random) utilities to each upcoming time slot (including
the present one) and will select the one that provides
them with the highest utility among those that are still
available. Let Un(t, s) denote the utility that user n
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assigns to time slot s when currently in time slot t. We
assume that

Un(t, s) := µs − ps − δ(s, t) + ξtn,s, (1)

where ps is the price to purchase one compute node
during time slot s, µs is the average utility derived
by a user from processing a unit workload during time
slot s, δ(s, t) a discount factor depending on both time
slot s and current time slot t, and ξkn,s is a (standard)
Gumbel distributed random variable. We assume that
these random variables are independent across t, s and
n.

The modeling approach described above has been
widely used in Economics, Marketing and Operations
Research to model consumer substitution behavior in
retail environments (for example, see Mahajan and Van
Ryzin (2001)). From the user’s perspective, our approach
is to model different time slots as substitute products.
Note that such behavior can only be justified when het-
erogeneity of single user preferences through time leads
to an overall balance between budget and allocation:
users can adopt a utility maximizing behavior as long
as this does not result in average allocation spending
above the predefined budget. Consequently, we assume
that, if budget is allocated on a periodic basis (weekly
or monthly), users are allowed to trade tokens among
themselves to cover short term needs, as long as the
total token balance remains non-negative.

B. Demand Structure

The overall demand is likely to exhibit patterns like
the ones associated with utility services, with peak peri-
ods and off-peak periods during the day. Before we state
this formally, we introduce some additional notation.
Let T denote the number of periods in a day, and
define µ := {µ1, . . . , µT } and q := {q1, . . . , qT } as the
expected mean utility and workload arrival probability
patterns, respectively, for any given day.

We next introduce some assumptions on the demand
process.

Assumption 3.2: The sequence of mean utility values
and workload arrivals probabilities are stationary, and
consist of T different values each, i.e., µt = µs, and
qt = qs for all t, s ≥ 1 such that tmod T = s
mod T, where a mod b = a−bba/bc. Additionally, we
assume that δ(s, t) = δ · (dt/T e− ds/T e), where bac =
max {b ∈ N : b ≤ a}, and dae = min {b ∈ N : a ≤ b}.

Assumption 3.2 will allow us to solve the pricing
problem described below by solving a simpler single-
day problem.

C. Decision Variables and Objective Function

The C3 manager is interested in determining the
optimal pricing strategy that maximizes user satisfaction.
We define a price policy to be a mapping π : R∞ →
R∞ that specifies a sequence of prices pt(X,n) :=
{pt(s,X, n) : s ≥ t} for every system state X , where
pt(s,X, n) is the price for using time slot s requested
in period t when the state of the system is X and n
users have submitted requests during time slot t. Let
P denote the set of non-anticipative price policies, i.e.,
price policies π such that pt ∈ Ft, were Ft corresponds
to the “history” observed up to time period t.

Recall the characterization of user satisfaction
that we introduced in section I: proportion of
users that get their most preferred starting slot
choice. We now state this formally. Let r(t, n) :=
argmax

{
Un(t, s) : s ≥ t , Xt

s,n > 0
}

represent the al-
located time slot to user n for workload originated in
time slot t if any, r∗(t, n) := argmax {Un(t, s) : s ≥ t}
represent the most preferred time slot to user n for
workload that originated in time slot t, and Atn :=
{r∗(t, n) = r(t, n)}. We are interested in maximizing
the steady state number of users’ requests assigned to
the most preferred time slot, within any T consecutive
time slots, considering that the average price charged to
process a request is 1, with prices measured in terms
of the fraction of the budget allocated to processing a
single unit workload:

max
π∈P

{
lim
s→∞

T∑
t=1

N∑
n=1

P
{
At+sn , Dn,s+t > 0

}}
(2)

subject to the constraint that

lim
s→∞

T∑
t=1

E
[
pt(r(s+ t, n), Xt

n)1 {Dt,n > 0}
]
≤ N

T∑
t=1

qt.

The problem stated above is intractable, even if we
restrict our search to policies for which the limits above
are well defined. In the next section, we will restrict our
attention to a ToU class of policies.

IV. TIME OF USE PRICING

ToU pricing refers to the practice of charging state-
independent prices that differ within a day according to
the time-of-the-day they refer to. In what follows we
restrict policies to have the ToU structure:

pt(s,X
t) = f(s mod T ) ∀t and Xt.

Even if we restrict out attention to ToU pricing policies,
(2) remains intractable due to the stock-out based sub-
stitution phenomenon arising from the sequential arrival
of users and the limited resource capacity. Research on
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assortment planning addressing stock-out based substitu-
tion considers either simplified choice models that allow
us to compute near-optimal solutions to the replenish-
ment decision problem or heuristic solutions based on
approximations that restore tractability. We will follow
the latter path. Specifically, we will assume that each
generated workload is allocated to available time slots
in fixed proportions consistent with the choice model
(this is the path followed by Gaur et al (2009)). To state
the above formally, we need to reformulate the demand
process.

A. Approximate Problem Formulation

In this section, we consider the ToU class of poli-
cies and formulate an approximation to (2) by making
assumptions on the demand process. We assume that
the workload is generated exclusively at the beginning
of each day and can only be allocated during that day.
Under this assumption, the demand and allocation across
days is independent. We next make two assumptions,
one on the distribution of the total workload generated
during the day and the second on the allocation of
the demand across different time slots during the day.
These assumptions will allow us to develop a tractable
formulation of (2).

Assumption 4.1: Binomial Approximation The total
workload generated during a day, D, follows a Binomial
distribution with parameters N and

∑T
t=1 qt < 1.2

The reader may note that Assumption 4.1 is accurate
when

∑T
t=1 qt << 1.

Assumption 4.2: Constant Proportions The demand
generated within a day is allocated proportionally to each
available slot according to the selection probabilities
derived from the MNL choice model, i.e., the demand
allocated to time slot t (as a function of x, the total
workload arrived) is given by

dt(x) :=

∫ x

0

exp(µt − pt)1 {dt(y) < C}∑T
s=1 exp(µs − ps)1 {ds(y) < C}

dy,

for x ≤ D and ∀ s = 1, . . . , T.
Note that Assumption 4.2 essentially suppress uncer-
tainty over users’ preferences.

Let p = (p1, . . . , pT ) denote the vector of prices
during the day. For a given p, consider the permutation
{s(1), . . . , s(T )} of {1, . . . , T} such that

µs(1) − ps(1) ≥ µs(2) − ps(2) ≥ . . . ≥ µs(T ) − ps(T ).

Then, the minimum daily demand that exhausts the
resource for time slot s(t), t = 1, . . . , T may be written

2We assume that
∑T

t=1 qt < 1, i.e., a user receives, on average,
less than one unit of workload each day.

as

xt =

∑T
u=t vs(u)

vs(t)
C + (t− 1)C,

where vt = exp(µt − pt) and x0 = 0.
Lemma 4.1: Suppose assumptions 4.1 and 4.2 hold.

Then, the formulation (2) reduces to

min
p

{
E

[
T∑
t=1

(D − xt)+
vs(t)∑T
u=1 vs(u)

]}
, (3)

subject to the constraint that

E

[
T∑
t=1

((xt ∧D)− (xt−1 ∧D))

∑T
u=t ps(u)vs(u)∑T
u=t vs(u)

]
≤ E [D ∧ CT ] ,

where a+ := max {a, 0} and (a ∧ b) := min {a, b}.

B. Optimal Solution for Approximate Problem

We now outline our approach to the optimization
problem (3). We first introduce some additional notation.
Let O denote the set of optimal solutions to (3), and
order time slots in such a way that µ1 ≥ µ2 ≥ . . . ≥ µT .
Let et be the T dimensional vector with entries 1 in
coordinates 1 through t and 0 otherwise, t = 1, . . . , T .
Our solution, detailed in Algorithm 1, starts from an
initial feasible solution p = 0 and takes a sequence of
steps, in each of which the objective function increases,
until no further improvement is feasible. This is done
by gradually increasing prices starting from the most
attractive time slot and moving along until reaching the
least attractive one. In each step, the algorithm looks
to equalize net demand intensity of most preferred time
slots while maintaining less attractive time slots with null
prices, maintaining feasibility of the solution. We now
discuss the intuition behind our approach. Ideally, one
would like to have xt as low as possible for all t. This
is achieved by prices such that µt − pt = k, a constant,
for all t. Under this condition, xt = TC ∀ t. Such a
solution is feasible only if

T∑
s=1

(µs − µT )E [D ∧ CT ] ≤ E [D ∧ CT ] . (4)

The condition above holds when either demand is low
relative to total resource capacity or when users are
highly price-sensitive, i.e., differences in average utilities
are low. Under condition (4), all components of µ − p
are identical and the average price per request is less
than the average budget per request. The next proposition
establishes optimality of the proposed solution. The
proof is omitted due to space constraints. We need some
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additional notation before we can state the result: For
t = 1, . . . , T , ∆ ∈ R+ and x ∈ R+ define

f(t,∆, x) :=
t exp(µt −∆) +

∑T
t+1 exp(µs)

t exp(µt −∆)
C ∧ x

and δµ(t) = t(µt − µt−1), for t = 1, . . . , T − 1.

Algorithm 1 Optimal Solution
Set pt = 0 for t = 1, . . . , T.
for t =1 to T − 1 do

Define p̂(∆) := p+ ∆et, and set

∆t := min

{
∆ : E

[(
t−1∑
s=1

δµ(s) + t∆

)
f(t,∆, x)

]
≤ E [D ∧ CT ]

}
if ∆t ≥ µt − µt+1 then
p← p̂(µt − µt+1)

else
p← p̂(∆t) and exit for loop.

end if
end for

Proposition 4.1: The solution provided by Algorithm
1 is optimal for the approximate problem defined in (3).

V. SIMULATION

A. Preliminary Evaluation

In this section, we provide sample results of our
numerical experiments to study the effectiveness of the
ToU pricing policy that we propose. We evaluate and
benchmark the performance of our policy on two met-
rics:

1) Customer Satisfaction: defined as the fraction of
customers who receive their first preference request.

2) Mean Fill rate: defined as the fraction of used
capacity.

We simulate a reservation system managing a 1-rack
supercomputer (with 210 compute nodes). The minimum
demand unit is 25 nodes, and requests are formulated
in powers of 2 units (i.e., a demand size of 3 requests
for 28 nodes). We divided each day into 48 time slots,
each of 30 minute duration. We assume that individual
contributions made by time slots to the per-node utility of
a user is modeled as in (1), using δ = 0.05, and that the
utility of an allocation is the sum of such contributions.
We performed experiments with different distributions
on the number of requests per time slot, the size of each
request and the duration of each request.

Fig. 1. Mean Utilities used for the base case (Figure 2).

Our simulations include extension and cancelation of
requests. The cancelation decision is assumed to depend
exclusively on the size of the request and to occur
uniformly over allocation and execution times. Extension
is assumed to depend exclusively on the duration of
a request, while the size of the extension is uniform
between one and half the original duration.

Mean utilities considered in the base case are depicted
in Figure 1. We consider a base budget of 0.1 tokens
per time slot and demand unit. Note that with this,
Condition (4) does not hold; hence users are highly price
sensitive. Since our pricing algorithm is based on a rather
stylized model, we compute prices using an adjusted
budget, such that the simulated mean price paid equals
the base budget.

We provide summary statistics (average improvement
in Customer Satisfaction and Mean Fill Rate) for se-
lected problem instances. The distribution over duration
and size of requests, and probabilities of requesting an
extension or canceling a request, are provided in the table
below. The results of the sample numerical study are
summarized in Figures 2-5 below and are based on a
simulation over 200 days. We limit the results that we
present to the following problem instances: In our base
case, the number of requests per time slot is binomially
distributed with parameters (80, 0.05). The results for
this base case are depicted in Figure 2. We explore the
effect of increased demand variance in Figure 3. We
also explore the effect of decreased expected demand
in Figure 4. Figure 5 depicts the effect of considering
a budget of 0.5, for which equation (4) holds true.

Duration 1 2 3 4 5 6 7 8 9
Probability 0.26 0.22 0.15 0.07 0.07 0.07 0.07 0.04 0.04

Extension Prob. 0.10 0.05 0.03 0.03 0.02 0.02 0.01 0.01 0.01

Size (demand units) 0 1 2 3
Probability 0.53 0.27 0.13 0.07

Cancel Prob. 0.10 0.05 0.03 0.03

TABLE I
DISTRIBUTION OVER DURATION (IN TIME SLOTS) AND SIZE (IN

log2 NODES) OF REQUESTS

We first note that the average improvement in Customer
Satisfaction over the set of problem instances that we
considered is 3-8 %. We next note that our pricing policy
does indeed flatten demand not only improving user
satisfaction but also enhancing mean fill rates. Further,
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Fig. 2. Mean Fill Rate and fraction of Unsatisfied Customers for
Heuristic and Fixed prices, when demand distribution is binomial
(80, 0.05). Results are based on simulation over 200 days.

Fig. 3. Mean Fill Rate and fraction of Unsatisfied Customers for
Heuristic and Fixed prices, when demand distribution is binomial
(400, 0.01). Results are based on simulation over 200 days.

each of three perturbations in the problem parameters
(Figures 3-5) result in an improvement in Customer
Satisfaction over the base case, as expected.

B. Deployment Plan

The pricing approach outlined in this paper is to be
deployed as part of the Deep Cloud pilot at KAUST. This
university hosts a 16-rack IBM Blue Gene/P supercom-
puter equipped with 4 gigabyte memory per node and

Fig. 4. Mean Fill Rate and fraction of Unsatisfied Customers for
Heuristic and Fixed prices, when demand distribution is binomial
(40, 0.05) and budget is 0.1. Results are based on simulation over
200 days.

Fig. 5. Mean Fill Rate and fraction of Unsatisfied Customers for
Heuristic and Fixed prices, when demand distribution is binomial
(80, 0.05) and budget is 0.5. Results are based simulation over 200
days.

capable of 222 teraflops, the fastest supercomputer in the
Middle East and the 14th on the TOP500 list worldwide.
Access to the supercomputer is to be shared by a large
number of faculty, students and researchers. In consul-
tation with Subject Matter Experts, we have developed
business rules to accommodate new users, cancelation
and extension requests, etc. Further, a deployment plan
has been developed to learn user preferences and de-
mand.
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