
Time Optimal Algorithms for Black Hole Search

in Rings ⋆

B. Balamohan1, P. Flocchini1, A. Miri2, and N. Santoro3

1 University of Ottawa, Ottawa, Canada,
{bbala078,flocchin}@site.uottawa.ca

2 Ryerson University, Toronto, Canada. samiri@scs.ryerson.ca
3 Carleton University, Ottawa, Canada,

santoro@scs.carleton.ca.

Abstract. In a network environments supporting mobile entities (called
robots or agents), a black hole is harmful site that destroys any incoming
entity without leaving any visible trace. The black-hole search problem
is the task of a team of k > 1 mobile entities, starting from the same safe
location and executing the same algorithm, to determine within finite
time the location of the black hole. In this paper we consider the black
hole search problem in asynchronous ring networks of n nodes, and focus
on the time complexity.
It is known that any algorithm for black-hole search in a ring requires at
least 2(n − 2) time in the worst case. The best algorithm achieves this
bound with a team of n − 1 agents with an average time cost 2(n − 2),
equal to the worst case. In this paper we first show how the same number
of agents using 2 extra time units from optimal in the worst case, can
solve the problem in only 7

4
n−O(1) time on the average. We then prove

that the optimal average case complexity 3

2
n − O(1) can be achieved

without increasing the worst case using 2(n−1) agents Finally we design
an algorithm that achieves asymptotically optimal both worst case and
average case time complexity employing an optimal team of k = 2 agents,
thus improving on the earlier results that required O(n) agents.

1 Introduction

1.1 The Problem

Black Hole Search (Bhs) is a multi-agents problem set in graph G: a team of
(identical) cooperating mobile entities called agents (or robots) must determine
the location in G of a black hole (Bh): a node where any incoming agent is
destroyed without leaving any detectable trace. The problem is solved if at least
one agent survives and knows the location of the black hole.

A black hole can model several types of faults, both hardware and software,
arising in networked systems with code mobility. For example, the crash failure of
a site in an asynchronous network turns such a site into a black hole; similarly,

⋆ Research partially supported by NSERC.

the presence at a site of a malicious process (e.g., a virus) that thrashes any
incoming message (e.g., by classifying it as spam) also renders that site a black
hole. Clearly, in presence of such a harmful host, the first step must be to identify

it, if possible; i.e., to determine and report its location; following this phase, a
“rescue” or “repair” activity would conceivably be initiated [16]. The black hole
search problem is also theoretically interesting because it is a generalization of
the classical problem of graph exploration (e.g., see [1, 7, 17]). In fact, it is easy
to see that to locate a black hole the agents have to necessarily “explore” all
safe nodes; in this exploration process some agents may disappear in the black
hole. In other words, while the existing wide body of literature on exploration
assumes that the graph is safe, Bhs opens the problem of the exploration of
dangerous graphs.

In this paper we consider the Black Hole Search problem in a ring network.

1.2 Related Work

This black hole search problem has been originally studied in ring networks [12]
and has been extensively investigated in various settings since then (e.g., see
[4, 6, 8, 10, 13, 14, 19, 24]).

In order to locate the black hole, some of the agents of the team will necessar-
ily have to enter the dangerous site. The goal of all location algorithms studied
in the literature is to minimize the size of the exploring team, the number of
moves performed by the agents and the time spent in the search.

The main distinctions made in the literature are whether the system is syn-
chronous or asynchronous, and whether the agents communicate through white-
boards or by using tokens.

The majority of the work focuses on the asynchronous whiteboard model,
which is the one considered in this paper. In this model, there are no assump-
tions on the time required for each operation or movement other than it is finite.
Each network node provides a shared memory area, the whiteboard, which vis-
iting agents can access (in fair mutual exclusion) to write on and/or read from.
The communication and coordination between agents takes place solely via the
whiteboards. Within this model, a complete characterization has been done for
the localization of a black hole in ring networks [12], providing protocols that
are optimal in size, time, and asymptotically move-optimal number of moves.
In [10], arbitrary topologies have been considered and asymptotically optimal
location algorithms have been proposed under a variety of assumptions on the
agents’ knowledge (knowledge of the topology, presence of sense of direction).
An improved algorithm when the topology is known has been described in [11],
while optimal algorithms for common interconnection networks have been stud-
ied in [8]. In [19] the effects of knowledge of incoming link on the optimal team
size has been studied and lower bounds provided. The case of black links in
arbitrary networks has been studied in [2, 15], respectively for anonymous and
non-anonymous nodes. Black hole search in directed graphs has been investi-
gated for the first time in [4], where it is shown that the requirements in number
of agents change considerably. A variant of dangerous node behavior has been

studied in [22], where the authors introduce black holes with Byzantine behav-
ior (they do not always destroy a passing agent) and consider the periodic ring
exploration problem.

In the asynchronous token model, there are no whiteboards, but each agent
is provided with pebbles that it can place on (and pick up from) a node; the
communication and coordination among agents is achieved solely by placing on
the nodes. This model has been investigated in [9, 13, 14, 24].

In synchronous networks, where movements are synchronized and it is as-
sumed that it takes one unit of time to traverse a link, the techniques and the
results are quite different. Tight bounds on the number of moves have been es-
tablished for some classes of trees [6]. In the case of general networks finding the
optimal strategy is shown to be NP-hard [5, 20] and approximation algorithms
are given in [20,21]. The case of multiple black holes have been investigated in [3]
where a lower bound on the cost and close upper bounds are given.

1.3 Main Contributions

In this paper we turn our attention to the time complexity of locating a black
hole in a ring of n nodes using a team of k > 1 asynchronous agents communi-
cating by means of whiteboards (shared memory available at each node). The
asynchrony of the computational entities means that the algorithm must work
regardless of the time required for each computation or movement, which is fi-
nite but a priori unknown (i.e., determined by an adversary); however, the time
complexity of the algorithm is measured only over those executions where time
delays are unitary (i.e., determined by a synchronous scheduler), as traditional
in distributed computing (e.g., [12, 18, 23]).

It has been shown in [12] that any asynchronous black hole search algorithm
for rings requires Tworst(n, k) = 2(n− 2) time in the worst case regardless of the
number k > 1 of agents. The best algorithm achieves this bound with a team of
k = n−1 agents with an average time cost 2(n−2), equal to the worst case [12].

In this paper we first show how the same number of agents can solve the
problem using on the average only 7

4n time, and in the worst case 2 extra time
units from optimal. We also show that any asynchronous black hole search algo-
rithm for rings requires Taverage(n, k) = 3

2n time regardless of the number k > 1
of agents, and then prove that, with 2(n − 1) agents, the optimal average case
complexity 3

2n−O(1) can be achieved without increasing the worst case. Finally,
observing that all considered protocols achieve (worst and average) Θ(n) time
using O(n) agents, we prove that it is possible to locate a black hole in asymptot-
ically optimal (worst and average) Θ(n) time with just k = 2 agents. In fact, we
design an algorithm that uses 8n+O(1) time in the worst case and 15

2 n+O(1) on
the average, employing an optimal team of 2 agents thus improving the earlier
result that employed n−1 agents. These results are summarized in Table 1. The
costs in terms of moves of all these algorithms is O(n2), the same as that of the
algorithm in [12] they improve upon.

.

Algorithm Agents Time Complexity
Average Worst

[12] n − 1 2(n − 2) 2(n − 2) (⋆)

Group n − 1 7
4 n − O(1) 2(n − 1)

OptAvgTime 2(n − 1) 3
2 n − O(1) (⋆) 2(n − 2) (⋆)

OptTeamSize 2 (⋆) 15
2 n + O(1) 8n + O(1)

Table 1. Summary of results; (⋆) indicates an optimal exact bound.

2 Preliminaries

2.1 Definitions and Notations

The network environment is a ring R of n anonymous nodes (for simplicity
indicated as 0, 1, · · · , n − 1 in clockwise direction). Each node has two ports,
labelled left and right. Without loss of generality we assume that this labeling is
globally consistent and the ring is oriented (if it is not the case, orientation can
be easily obtained) . Each node is equipped with a limited amount of storage,
called whiteboard. For all our algorithms O(log n) bits of storage are sufficient

In this network there is a set A of anonymous (i.e., identical) mobile agents,
which are all initially located on the same node, called the homebase (w.l.g. node
0). The topology is known to the agents, as well as the number of nodes (as shown
in [12] not knowing the number of nodes make the location process impossible).
The agents can move from node to neighboring node in R and have computing
capabilities and bounded storage. The agents obey the same set of behavioral
rules, the protocol, and all their actions are performed asynchronously, i.e., they
take a finite but unpredictable amount of time. The agents communicate by writ-
ing on and reading from the whiteboards. Access to the whiteboards is governed
by fair mutual exclusion.

A black hole (BH) is a stationary process located at a node, which destroys
any agent arriving at the node; no observable trace of such a destruction will
be evident external to the node in which black hole is located. The Black Hole

Search problem is the one of finding the location of the black hole. More precisely,
the black hole search problem is solved if at least one agent survives, and all
surviving agents know the location of the black hole within a finite amount of
time.

We evaluate the efficiency of our solutions based on the following measures:

1. Number of agents used/needed in the protocol.
2. Total number of moves performed by all agents.
3. The amount of time between the earliest start time of the protocol by any

agent and the time all the agents that started the protocol have terminated
the execution of protocol. Since the system is asynchronous, when evaluating
the time complexity we will employ ideal time; i.e., we will assume that it
time delays are unitary (e.g., see [12, 18, 23]).

2.2 Cautious Walk

We first recall the cautious walk technique, which is central to the algorithms
presented in this paper, and the existing asymptotically optimal algorithm of
[12].

At any time during the search for the black hole, the ports (corresponding
to the incident links) of a node can be classified as follows:

1. unexplored: if no agent has moved across this port.
2. safe: if an agent arrived via this port.
3. active: if an agent departed via this port, but no agent has arrived via it.

Clearly, both unexplored and active links are dangerous in that they might lead
to the black hole; however, active links are being explored, so there is no need
for another agent to go there unless it is declared safe. Cautious walk is defined
by the following two rules:

1. when an agent moves from node u to v via an unexplored port (turning it
into active), if it does not disappears (i.e., v is not the black hole) the agent
immediately returns to u (making the port safe), and only then resumes its
execution;

2. no agent leaves via an active port.

3 Improved Algorithm

In this section we improve on the average time complexity of [12]. We describe
an algorithm that uses only n− 1 agents, as in [12], but only 7

4n + O(1) time on
the average (instead of 2(n−2)). The worst case is 2(n−1) (instead of 2(n−2)).

The idea is to determine the location of the black hole on some node by
having a particular pair of agents (witnessing pair) returning successfully to the
homebase after exploring a subset of nodes that does not include the black hole.
The way subsets of nodes are associated to agents is complicated by the objective
of reducing the number of agents entering the black hole.

We recall that node 0 indicates the homebase and the other nodes are indi-
cated as 1, 2, . . . , n − 1 in clockwise direction. For simplicity of description let
n = 4q + 1. The 4q agents are divided into four groups: Left, Right, Middle and
TieBreakers.

The groups Left and Right contain q agents each. The Middle group consists
of q + 1 agents and the TieBreakers group consists of q − 1 agents.

The witnessing pairs are chosen in a different way depending on the poten-
tial location of the black hole. If the black hole is far from the homebase, it
will be witnessed by a pair from Left and Middle or from Right and Middle. If
instead, the black hole is closer to the homebase the witnessing pair will belong
to TieBreakers and Right or to TieBreakers and Left.

More precisely, the idea is that the agents of the Left, Right and Middle groups
explore each a region of size 3q appropriately chosen in such a way that the 2q
nodes farthest from the homebase are endpoints of complements of explored
areas of some agents. In other words, the presence of the black hole in one of
those 2q nodes would be witnessed by a pair of agents being able to successfully
return after their exploration.

The agents of the Tiebreakers group are instead used to pair themselves either
with an agent from Right or with one from Left to locate the black hole when
it is within q nodes from the homebase. The details are given in Algorithm 1.

Algorithm 1 Algorithm Group

1. The Left group consists of lefti for 1 ≤ i ≤ q. An agent lefti in this group
explores all node except the nodes {i, i+1, i+2, · · · , i+ q−1}. It moves left
first, then right and then returns to homebase. (See Figure 3).

2. The Right group consists of righti for 1 ≤ i ≤ q. An agent righti in this
group explores all node except the nodes {n− i− q, n− i− q+ 1, · · · , n− i}.
It moves right first, then left and then returns to homebase.

3. The Middle group consists of middlei for 1 ≤ i ≤ q +1. An agent middlei in
this group explores all node except the nodes {q + i−1, q + i, · · · , 2q + i−1}.
It moves left first, then right and then returns to homebase. (See Figure 3).

4. The Tiebreaker group consists of tiebreakeri for 1 ≤ i ≤ q − 1. An agent
tiebreakeri in this group explores all nodes except nodes {i, i−1, i−2, · · · , 1}
at the right of the homebase starting as soon as either righti+1 or lefti+1

passes through the homebase. (See Figure 3).
5. The black hole is located on node i iff one of the following witnessing

pairs return safely: (lefti,middlei), (righti, middleq−i), (tiebreakeri,lefti),
(tiebreakeri,righti).

We have that:

Theorem 1. Algorithm Group solves the black hole search problem with aver-

age time 7n
4 + O(1) and worst case time 2(n − 1).

Proof. Let us first consider the correctness of the algorithm. If the black hole is
one of nodes {q, q+1, q+2, · · · , 2q} then it is the unique node in the intersection
of the excluded segments of a pair of agents lefti and middlei from the Left and

i
i − 1

i + q − 1
i + q

b
b

b
b

r

Fig. 1. Algorithm Group: Protocol For Left Group

i + 2q − 1

i + 2q
i + q − 1
i + q − 2

b
b

b
b

r

Fig. 2. Algorithm Group: Protocol For Middle Group

i
i + 1

righti+1 passes

b
b

r

Fig. 3. Algorithm Group: Protocol For Tie-Breaker Group

the Middle groups. (for example, q + 1 is the only node not explored by the
pair left2, middle2). In such a case the black hole is located by the return of
such a witnessing pair and the location takes 3

2 (n− 2) time units as both agents
lefti and middlei explore all but q = 1

4 (n − 1) agents. If the black hole is in
node i with i < q then agent righti+1, after exploring the i nodes on the right
of the homebase, passes back through the homebase. At this moment, by the
rules of the algorithm, agent tiebreakeri starts exploring all the nodes (except
node i and the i − 1 nodes between node i and homebase) moving to the right
of the homebase. If also agent lefti returns, it means that node i contains the
black hole because it is the only unexplored node. Hence, the return of the pair
tiebreakeri,lefti (or tiebreakeri,righti) signals the presence of the black hole in
node i.

Consider now the time complexity of the algorithm. Agent tiebreakeri begins
the execution after 2i time units, and it explores all but i nodes. Hence it returns
back to the homebase 2(n− 1) time units after the start of the execution of the
first agent. So, when the black hole is one of the q − 1 nodes closest to the
homebase, it will be located within 2(n − 1) units. A similar argument apply
when the blackhole is symmetrically placed on the other (right) half of the ring,
and the worst case result follows.

As for the average time complexity, we have two situations: when the black
hole is within q nodes of the homebase, the time for locating it is 2(n − 1);
otherwise, it is 3

2 (n− 2) time units. Hence the average ideal time complexity is:

2(q − 1)(2(n − 1)) + 2(q + 1)(3(n−2)
2)

4q
=

7(n − 1)

4
− O(1).

4 Optimal Average Time

In this section we show that, by using 2(n − 1) agents, it is possible to achieve
simultaneously optimal time both in the average and in the worst case, estab-
lishing a lower bound on the average time complexity of black hole search.

The idea of the algorithm is to identify pairs of agents (lefti, righti, i ≤
1 ≤ n − 1) among the 2(n − 1) available, and to assign each pair to “check”
a node of the ring. To check node i, an agent of the pair would move to node
i − 1 clockwise (thus exploring nodes 1, 2, . . . , i − 1) and the other would move
to node i + 1 counterclockwise (thus exploring nodes i + 1, i + 2, . . . n − 1). The
presence of the black hole in the ring insures that only one pair will come back
to the homebase intact while one agents of each of the other pairs will disappear
in the black hole. Once the successful pair returns, the black hole is located.

Theorem 2. Algorithm OptAvgTime solves the black hole location problem.

in average ideal time complexity 3
2n+O(1) and worst case ideal time complexity

2(n − 2). Both complexities are optimal.

Proof. Correctness follows from the fact that for each node i there are two agents,
namely lefti and righti such that the singleton set {i} is the intersection of the
areas that they do not explore.

Algorithm 2 Algorithm OptAvgTime

2(n − 1) co-located agent lefti, righti, i ≤ 1 ≤ n − 1 at homebase node 0.

1. Agent lefti explores nodes (0, 1, 2, · · · , i − 1) and returns.
2. Agent righti explores nodes (n − 1, n − 2 · · · , i + 2, i + 1) and returns.
3. Let (leftj, rightj) be the only full pair safely returning. The black hole is

node j.

Let us now consider worst case time complexity: The time spent by lefti and
righti to reach it and come back is 2Max{i − 1, n − i}; the worst case clearly
occurs when the black hole is located on node 1 (or n−2) and the corresponding
time complexity is 2(n − 2), which is optimal [12].

As for the average time. The presence of the black hole at a node i is witnessed
by agents reaching nodes i− 1 and n− i− 1. Hence, the ideal time delay for the
algorithm when the black hole is located at node i is 2Max{i − 1, n − 1 − i}.
2(i − 1) is greater than or equal to 2(n− 1− i) whenever i ≥ n

2 . Since all nodes
other than the homebase are equally likely to contain the black hole, the average
time complexity is:

∑n

2
−1

i=1 2(n − 1 − i) +
∑n−1

i= n

2

2(i − 1)

n − 1

=
(n − 1)(n − 2) +

∑n

2
−1

i=1 −2i +
∑n−1

n

2

2i

n − 1

=
(n − 1)(n − 2) − (n

2 − 1)n + (n − 1)n

n − 1
=

3

2
n + O(1)

Notice that nodes on either side of the black hole have necessarily to be
reached by some agents and their visit reported back. Hence the time when the
black hole is located at node i must be greater than or equal to both 2(i−1) and
2(n−1− i), which precisely corresponds to the time complexity of our algorithm
for node i. We can then conclude that our bound is optimal.

5 Optimal Team Size

The algorithm of Dobrev et al [12] as well as the improvements presented here
have optimal time complexities both in the worst and in the average case; how-
ever they all use O(n) agents, which is order of magnitude larger that than the
optimal team size k = 2. One might think that this large number of agents used
by time-optimal solutions is necessary. This is however not true, as we show in
this section.

In the following, we present an algorithm that allows k = 2 agents to locate
the black hole with asymptotically optimal time in both the worst and the av-
erage case. The cost in terms of messages of this algorithm is O(n2), the same
as all the others considered here.

The algorithm, called OptTeamSize, is as follows. At each point in time
the nodes of the ring are partitioned into an Explored area and an Unexplored

one. The explored area has been already visited by some agent and it is known
to be safe, the unexplored area is still to be visited and contains the black hole.
Moreover, during the algorithm, the unexplored area is partitioned between the
two agents. More precisely, it is always divided into two disjoint areas of different
sizes to which agents are assigned: one part containing a single node and the other
containing all other unexplored nodes. In each step of the algorithm one of the
agents (called small) is given the task to explore the area containing a single
node, while the other (called big) has to explore the other area. The exploration
proceeds with cautious walk. Since the two areas are disjoint, one of the agents
will certainly succeed in its exploration. If the big agent succeeds, the blackhole is
obviously located and the algorithm terminates. On the other hand, if the small

agent returns successfully, it further divides the remaining unexplored area and
notifies the big agent of the update by leaving a message on the whiteboard
of the last node successfully visited by the other agent. The way the update
of the unexplored area is performed is such that an agent stays small for two

consecutive steps before switching role. A stage of the algorithm consists of these
two consecutive steps and the algorithm is a sequence of stages which terminates
when n − 1 nodes are known to be safe.

This division process is preceded by a preprocessing phase where the two
agents divide the ring in two disjoint parts of almost equal size: only when one
of the two returns to the homebase the asymmetric workload division starts to
take place.

In the following when we say that an agent acts as big we mean that it
cautiously explores all but the last nodes of the unexplored area. When an agent
acts as small it cautiously explores the first node of the unexplored area. The
location of the homebase in the various steps of the algorithms is variable and
it is always the central node of the current explored area. An update message
contains the update information about the current unexplored area and the
current location of the homebase.

We now prove that the algorithm terminates correctly and we study its com-
plexity.

Theorem 3. Algorithm OptTeamSize solves the black hole search in optimal

time Θ(n) using 2 agents and performing O(n2) moves.

Proof. After the end of the preprocessing phase at least one agent, say right,
survives and returns. Since the segments of the ring explored by each agent are
always disjoint, at least one agent survives every stage. If the big agent survives,
the algorithm terminates correctly, if the small agent survives the size of the
unexplored area decreases by one and the algorithm correctly moves to the next
stage (or it terminates if the new size is equal to one). Hence, one of the agents
eventually discovers the location of the black hole.

To prove that the algorithm has Θ(n) time complexity, we first observe that
when the exploration phase of the algorithm begins the explored area is at least

Algorithm 3 Algorithm OptTeamSize

Two co-located agents l and r . E = {vh}. U = V − E.

1. Preprocessing Phase: Agent l (resp. r) explores cautiously the leftmost (resp.
rightmost) ⌊|U |/2⌋ nodes of the unexplored area and when finished returns
to the homebase vh.

2. Exploration Phase: One of the agents (say l) arrives at the homebase and
becomes small. Agent l moves to the last explored node on agent r’s side, it
leaves an update message to r indicating to act as big. Agent l then moves
to its side and act as small. Stage 1 of Phase 2 begins.

3. Stage i of Phase 2:
(a) If the big agent (say r) returns to the homebase (or the small agent

returns and the size of the unexplored area is one) then the blackhole is
located and the algorithm terminates.

(b) Otherwise, the small agent l returns, it moves to the last explored node
on agent r’s side, it leaves an update message for r indicating to maintain
the same role big.

(c) Agent l moves back to its side and it acts as small.
(d) If r returns, then the blackhole is located and the algorithm terminates.
(e) Otherwise agent l returns, it moves to the last explored node on agent

r’s side, it leaves an update message for r instructing to reverse role.
Agent l then moves to the other side and it changes role acting as big.

(f) If l returns the blackhole is located and the algorithm terminates.
(g) Otherwise Agent r returns and becomes small; it moves to agent l’s side,

it leaves an update message for agent l instructing it to act as big. Agent
r then moves back to its side and acts as small.

(h) If l returns then the blackhole is located and the algorithm terminates.
(i) Otherwise agent r returns, it changes role becoming big, it moves to

agent l’s side and it leaves a message to agent l at the last explored node
updating the unexplored area and instructing to reverse roles. Agent l
moves to its side and acts as big.

(j) Stage i + 1 starts.

of size n−1
2 . While the big agent, say r, is exploring all but one nodes on its side,

the other agent (if it did not disappear in the blackhole before) performs two
steps as small making at least 3

2 (n − 1) moves (and spending the same amount
of time). By that time, under the ideal time assumption, agent r would have
either i) returned safely determining the location of the black hole, or ii) died
in the black hole. In the first case we obviously have a time complexity of O(n).
In the other case, when agent l switches role becoming big and moves to explore
all but one nodes, it necessarily completes its task locating the black hole, again
with an overall time complexity of O(n).

To show that the worst case move complexity is O(n2), it suffices to notice
that in the worst possible asynchronous execution it is always the small agent
that completes a step, while the big agent is slow on a link. Since the small agent
manages to explore a single node in each step, and the size of the unexplored
area when this procedure starts is n

2 , O(n) steps are necessary to locate the
black hole. In each step however O(n) moves are performed by the small agent
to explore and report the update on the other side of the explored area, for a
total of O(n2) moves.

We now show the exact average and worst case time complexities of the
algorithm.

Theorem 4. Algorithm OptTeamSize solves the black hole search in average

ideal time 15
2 n + O(1) and worst case 8n + O(1).

Proof. By symmetry of the algorithm we may assume that the black hole is
located on the right half of the ring (w.l.g let n be even). We then calculate the
ideal time delay when the black hole is located at node i ≤ n

2 (i.e., n
2 nodes to

the right of the homebase). We consider different cases.

– Case 1: Node i is the border node of the partition between the right and
the left agents. In this case the left agent returns after 3

2n + n
2 time units to

the homebase. In the sum, the first addend is for the cautious exploration
and the second is for the time taken to return to the homebase. Now the left
agents follows the path of the right agent. The right agent must have died
at the last node of its partition. So in another n time units the left agent
will reach the last safe node explored by the right agent and return. So, in
this case the black hole is located in 3n total time units.

– Case 2: Node i is the neighbor of the border node of the partition between
the right and the left agents. Similarly to the previous case, the left agent
will take 3n− O(1) time units to return to the homebase after exploring all
nodes, except the black hole and its neighbor. Now the left agent in the role
of small explores the last safe node and return in further n+O(1) time units.
In this case the black hole is then located in 4n + O(1) time units.

– Case 3: Node i is the third node from the border of the partition between
the right and the left agents. In this case the left agent discovers the black
hole after the end of the second round as small. The total ideal time delay
in this case is 5n + O(1).

– Case 4: Node i is the fourth node or the node further from the border of the
partition between the right and the left agents. In this case the left agent (l)
performs two rounds as small and a round as big. Observe that under ideal
conditions the right agent would die in the black hole and would not return,
so it suffices to count the time taken by the left agent. Agent l explores
(n − i) + O(1) nodes in total and this cautious exploration costs in total
3(n − i) + O(1) time units. Let us now compute the time necessary for the
other movements of the left agent. Agent l takes n

2 + i + O(1) time units for
reaching the last safe node explored by the right agent. Moreover, agent l
takes 4(n

2 + i) + O(1) time unit for the two rounds as small; after becoming
big, agent l reaches the last explored node on its side in n

2 + i time units.
At this point it cautiously explores (the cost of the exploration has been
already accounted for earlier). Finally, the agent returns to the homebase in
n − i + O(1) time units. Thus the total ideal time delay is 7n + 2i + O(1)
time units.

Hence the average ideal time delay is :

12n +
∑i= n

2

i=1 (7n + 2i)
n
2

= 7n +
(n

2)(n
2 + 1)
n
2

=
15

2
n + O(1)

The worst case occurs in correspondence of Case 4, when i = n/2−O(1), which
yields 8n + O(1).

References

1. M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. P. Vadhan. The power of
a pebble: Exploring and mapping directed graphs. Information and Computation,
176(1):1–21, 2002.

2. J. Chalopin, S. Das, and N. Santoro. Rendezvous of mobile agents in unknown
graphs with faulty links. In 21st International Symposium on Distributed Comput-
ing (DISC), pages 108–122, 2007.

3. C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults in a network
using multiple agents. In 10th International Conference on Principles of Distributed
Systems (OPODIS), pages 320–332, 2006.

4. J. Czyzowicz, S. Dobrev, R. Královic, S. Mikĺık, and D. Pardubská. Black hole
search in directed graphs. In 16th International Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO), pages 182–194, 2009.

5. J. Czyzowicz, D. R. Kowalski, E. Markou, and A. Pelc. Complexity of searching
for a black hole. Fundamenta Informaticae, 71(2–3):229–242, 2006.

6. J. Czyzowicz, D. R. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in
synchronous tree networks. Combinatorics, Probability & Computing, 16(4):595–
619, 2007.

7. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. Graph Theory,
32(3):265–297, 1999.

8. S. Dobrev, P. Flocchini, R. Kralovic, P. Ruzicka, G. Prencipe, and N. Santoro.
Black hole search in common interconnection networks. Networks, 47(2):61–71,
2006.

9. S. Dobrev, P. Flocchini, R. Kralovic, and N. Santoro. Exploring an unknown graph
to locate a black hole using tokens. In 5th IFIP Int. Conference on Theoretical
Computer Science(TCS), pages 131–150, 2006.

10. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole
in arbitrary networks: Optimal mobile agents protocols. Distributed Computing,
19(1):1–19, 2006.

11. S. Dobrev, P. Flocchini, and N. Santoro. Improved bounds for optimal black
hole search with a network map. In 10th International Colloquium on Structural
Information and Communication Complexity (SIROCCO), pages 111–122, 2004.

12. S. Dobrev, P. Flocchini, and N. Santoro. Mobile search for a black hole in an
anonymous ring. Algorithmica, 48:67–90, 2007.

13. S. Dobrev, N. Santoro, and W. Shi. Using scattered mobile agents to locate a black
hole in an un-oriented ring with tokens. Int. J. Found. Comput. S., 19(6):1355 –
1372, 2008.

14. P. Flocchini, D. Ilcinkas, and N. Santoro. Ping pong in dangerous graphs: Op-
timal black hole search with pure tokens. In 22nd International Symposium on
Distributed Computing (DISC), pages 227–241, 2008.

15. P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Map construction and ex-
ploration by mobile agents scattered in a dangerous network. In 24th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pages 1–10,
2009.

16. P. Flocchini and N. Santoro. Distributed Security Algorithms For Mobile Agents.
In J. Cao and S. K. Das, editors, Mobile Agents in Networking and Distributed
Computing, chapter 3. Wiley, 2009.

17. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by
a finite automaton. Theoretical Computer Science, 345(2–3):331–344, 2005.

18. J. A. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm
for minimum-weight spanning trees. SIAM Journal on Computing, 27(1):302–316,
1998.

19. P. Glaus. Locating a black hole without the knowledge of incoming link. In
5th International Workshop on Algorithmic Aspects of Wireless Sensor Networks
(ALGOSENSORS), pages 128–138, 2009.

20. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation
results for black hole search in arbitrary networks. Theoretical Computer Science,
384(2-3):201–221, 2007.

21. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation bounds for
black hole search problems. Networks, 52(4):216–226, 2008.

22. R. Královic and S. Mikĺık. Periodic data retrieval problem in rings containing a
malicious host. In 17th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), to appear, 2010.

23. S. Kutten and D. Peleg. Fast distributed construction of small k-dominating sets
and applications. Journal of Algorithms, 26(1):40–66, 1998.

24. W. Shi. Black hole search with tokens in interconnected networks. In 11th Inter-
national Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS), pages 670–682, 2009.

