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�e aim of this paper is to determine the feedforward and state feedback suboptimal time control for a subset of bilinear systems,
namely, the control sequence and reaching time. �is paper proposes a method that uses Block pulse functions as an orthogonal
base. �e bilinear system is projected along that base. �e mathematical integration is transformed into a product of matrices. An
algebraic system of equations is obtained. �is system together with speci	ed constraints is treated as an optimization problem.
�e parameters to determine are the 	nal time, the control sequence, and the states trajectories. �e obtained results via the newly
proposed method are compared to known analytical solutions.

1. Introduction

Most engineering applications are aimed at solving complex
mathematical models. �is usually comes with a computa-
tional burden and is of a major concern. Researchers are
therefore striving to reduce that burden. �is is particularly
true for minimum time optimal control problems. Using
Pontryagin maximum principle, the solution to this problem
is known to be Bang-Bang, that is, control values switches be-
tween lower and upper boundaries.�is type of control is re-
quired in some types of systems such as the thermostat
switching between the on- and o
-position. Time optimal
control problems’ aim is driving systems from an initial state
to a desired 	nal state inminimum timewhile satisfying given
constraints. To this day, time optimal control problem still
attracts interest among researchers [1–3].

Most engineering systems are interpreted as models.
�ese models o�en feature nonlinear components which
are challenging during the resolution process. �us, simpli-
	ed nonlinear representations such as bilinear models have
gained momentum. Bilinear models have been introduced
since the 1960s and are approximate representations for a
wide range of systems. �e bilinear structure can be used
to describe a nonlinear system while maintaining a linear
structure: the bilinearity expresses a double linearity with res-
pect to the state vector and [4]. A detailed review of bilinear
systems can be found in [5]. �is type of representation has

been used extensively by researchers during the previous de-
cade for a variety of 	elds: engineering, biology, and eco-
nomics [6, 7].

Solving the minimum time control problem analytically
means 	nding switching times through the resolution of the
Hamiltonian equation. �is is a computationally intensive
task. Some researchers tried to solve it analytically through
the determination of switching surfaces [8].Due tomathema-
tical di�culty, numerical algorithms have been developed
and introduced such as GPOPS-II, which is based on orthog-
onal collocation at Legendre–Gauss or Legendre–Gauss–
Radau points [9]. Other tools are based on the control para-
metrization enhancing technique [10] and the optimal switch-
ing (TOS) algorithm [11].

In this paper, we use orthogonal functions to solve the
minimum time control problem. In fact, this mathematical
tool was widely used in the past and still is in di
erent ways
such as solution determination for optimal control problems
[12–14]. Using this technique, a transposition of state space
equation on an orthogonal base of functions and transforma-
tion of bilinear nonlinearity and integration operation into
a matrical product is made. �ese approximations bypass all
the mathematical di�culties associated with nonlinearities.

Generally, two types of orthogonal base of functions are
considered in the literature: piecewise orthogonal functions
such as Walsh [15], Haar wavelets [16], and Block pulse func-
tions [17] and orthogonal polynomials such as Legendre [18],
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Chebyshev [19], and Lagerre polynomials [20]. In [21] authors
used Chebyshev polynomials and expanded linear systems
in that base to determine the time optimal control input.
In this paper piecewise orthogonal functions, namely, Block
pulse functions, are used to capture the Bang-Bang control
nature associated with bilinear systems.

�e determination of minimum time control problem
is generally done in open loop which can easily be altered
by perturbation. �us, many suboptimal structures and
formulations were introduced for linear systems [22].

�e main contributions in this work are (1) determining
an open loop time optimal control solution for bilinear
systems through orthogonal functions and numerical res-
olution; (2) determining a state suboptimal time feedback
controller (see Table 2) using a new formulation based on
Kronecker product for that class of systems.

�e remainder of the paper is organised as follows. In the
second section, formulation of time optimal control is pre-
sented. In the third section, orthogonal functions and their
properties are introduced. �e optimization model for an
open loop minimum time control is presented in the fourth
section. In the 	�h section, theminimum time state feedback
control is formulated and a solution is proposed. Finally,
concluding remarks and some open problems are presented.

2. Time-Optimal Constrained Feedforward
Control Problem

Consider the bilinear systems described by the following state
space form:

�̇ (�) = �0� (�) + �∑
�=1

� �� (�) �� (�) + �� (�)
= �0� (�) + � (� (�) ⊗ � (�)) + �� (�) ,

(1)

where � ∈ R
� is the state vector, � = [�1, . . . , ��]� ∈ R

� is
the input control vector, �0 and � �,�=1,...,�, are square (� × �)
matrices, � is an (� × �) matrix and � = [�1 �2 ⋅ ⋅ ⋅ ��]
and � = [�1 �2 ⋅ ⋅ ⋅ ��], ��,�=1,...,�, are the column of the
matrix �, and ⊗ is the Kronecker product [24].

We assume that the input variables �� satisfy the instanta-
neous constraint

��min
≤ �� (�) ≤ ��max

. (2)

�e target state being the origin

� (��) = 0. (3)

To minimize the 	nal time, the cost function is taken as [25]:

� = �� − �0 = ∫��
�0

� ⋅ ��, (4)

where � = 1.

Applying the Pontryagin Maximum Principle (PMP)
[26], we de	ne the Hamiltonian [27] equation for system (1)

�(⋅) = −1
+ ��(�0� (�) + �∑

�=1
� �� (�) �� (�) + �� (�)) . (5)

�e canonical Hamilton equations are given by

�̇ = ����
�̇ = − ����.

(6)

Maximizing the Hamiltonian equation, one obtains the fol-
lowing control law:

�� (�) = {{{{{{{
�min, if

����� = �� (� �� + ��) < 0
�max, if

����� = �� (� �� + ��) > 0. (7)

�us, the obtained control is Bang-Bang which is a feedfor-
ward controller that switches abruptly between two states.

�emain di�culty related to this control law formulation
is the determination of the switching times ���. ��� are the times
when the quantity ��/��� changes sign. It is still until today
a di�cult task to solve this problem. Even for linear systems
only reduced-order systems as second-order systems have
been treated in the literature [28]. To overcome this di�culty
for the class of bilinear systems, an original approach, based
on the formulation of the studied system and the associated
optimization problem in an orthogonal functions base, is
proposed and developed in the following sections. In the
next section, themain properties of the orthogonal functions,
which will be used to derive our main results, are recalled.

3. Orthogonal Functions-Block
Pulse Functions

Orthogonal functions and their operational matrices have
been used for modeling dynamic systems [29] and iden-
ti	cation [15]. �ey have been largely used in quadratic
optimal control for di
erent dynamic systems [30, 31]. To our
knowledge, until today, there are no works dealing with the
problem of minimum time control for bilinear systems using
orthogonal functions.

3.1. General Idea. Let {"�(�), # ∈ N} be a set of orthogonal
polynomials or piecewise functions. Any analytical function
absolutely integrable on the time interval [�0, ��] can be
expanded by the following in	nite series:

$ (�) = ∞∑
�=0

$�"� (�) , (8)
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where the coe�cients $� are evaluated by the following scalar
product:

$� = ∫��
�0

$ (%) "� (%) �%. (9)

For numerical purposes, a truncation of (8) until a convenient
number & of elementary functions is considered.

$ (�) ≅ 
−1∑
�=0

$�"� (�) = *�
Φ
 (�) , (10)

where Φ�
 = [30, 31, . . . , 3
−1] is the orthogonal base and*�
 = [$0$1 ⋅ ⋅ ⋅ $
−1] is the coe�cient vector.
Integrating (10), one obtains

∫�
0
$ (%) �% ≅ *�
4
Φ
 (�) , (11)

where 4
 ∈ R
�×� is the operational matrix of integration

depending on the considered orthogonal base [17].
As a result, the di
erential equations describing dynamic

processes can be reduced into algebraic relations allowing
important simpli	cations in problem synthesis.

�e considered piecewise orthogonal functions and pre-
cisely the Block pulse functions are described in the following
section.

3.2. Properties of Block Pulse Functions. Block pulse functions
constitute a complete set of orthogonal functions. �ey are
de	ned as follows [32]:

3� (�) = {{{
1 if � ∈ [ #& (�� − �0) , (# + 1)& (�� − �0)] # = 0, . . . , & − 1
0 otherwise.

(12)

A function $(�) can be approximated by relation (10), whereΦ
 is a vector of& Block pulse functions and the coe�cients$� of the vector *
 are given by the following formula:

$� = &�� − �0 ∫
(�+1)((��−�0)/
)

�((��−�0)/
)
$ (�) ��. (13)

Many interesting properties and tools of the approximation of
an analytic function by a series of Block pulse functions have
been de	ned in literature, as the operational matrix of inte-
gration, the operational matrix of product, the operational
matrix of delay, and the operational matrix of derivative [17].

3.2.1. Block Pulse Operational Matrix of Integration. �e
integration of an analytic function $(�) using the operational
matrix of integration for Block pulse functions is given by [17]

4
 = �� − �0&

[[[[[[[[[[[[[[
[

12 1 1 ⋅ ⋅ ⋅ 1
0 12 1 ⋅ ⋅ ⋅ 1
... d

12 ⋅ ⋅ ⋅ 1
... d d

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 12

]]]]]]]]]]]]]]
]

. (14)

3.2.2. Block Pulse OperationalMatrix of Product. �eproduct
of orthogonal base vectors can be approximated through
operational matrix of product denoted @�
. It is de	ned by

[33]: ∀#, B ∈ {0, 1, . . . , & − 1}, 3�(�)3�(�) ≅ C���Φ
(�), one has
3� (�) Φ
 (�) ≅ @�
Φ
 (�) (15)

with @�
 = [C0� ⋅ ⋅ ⋅ C
−1,�].
Using (15), one may obtain

"
 ⊗ "
 ≃
[[[[[[
[

3031...
3
−1

]]]]]]
]

⊗ "
 (�) ≃
[[[[[[
[

30"
 (�)
31"
 (�)

...
3
−1"
 (�)

]]]]]]
]

≅
[[[[[[
[

@0
@1
...
@
−1


]]]]]]
]

"
 (�) ≅ @
"
 (�) .

(16)

4. Synthesis of an Open Loop Minimum Time
Control Using Orthogonal Functions

In this workwe have chosen to use the Block pulse orthogonal
functions due to the fact that solutions for minimum time
problems are of type Bang-Bangwhich has the same structure
as Block pulse functions.

4.1. Studied System Transposition on Orthogonal Base. Con-
sider bilinear system (1). To make use of the orthogonal
functions properties and mainly the operational matrix of
integration one needs to know the operating time interval[�0, ��]. For simplicity, in the rest of the work and without loss
of generality, let �0 = 0. We introduce here the following time
variable change:

� = E��, (17)

where �� denotes the 	nal time to be minimized.
�is change of variable allows a transformation of the

time domain from � ∈ [0, ��] to E ∈ [0, 1]. �en system state
becomes

� (�) = �̃ (E) . (18)

Notice that the latter variable change leads to a constant time
interval [0, 1] for the used series. �e 	nal time �� becomes
an additional unknown variable.

Consequently, we deduce

�̇ (�) = ��̃ (E)�E ⋅ �E�� = 1�� ̇̃� (E) . (19)

�e original state equation of system (1) is now equivalent to

1�� ̇̃� (E) = �0�̃ (E) + � (�̃ (E) ⊗ �̃ (E)) + ��̃ (E) . (20)
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�e development of the state and input vectors on the
considered base of Block pulse functions with the new time
variable E can be written as

�̃ (E) = �̃�
 ⋅ "
 (E)
�̃ (E) = �̃�
 ⋅ "
 (E) . (21)

Integrating equation (20) leads to

1�� (�̃ (E) − �̃ (0)) = �0 ∫�
0
�̃ (%) �%

+ �∫�
0
�̃ (%) ⊗ �̃ (%) �%

+ �∫�
0
�̃ (%) �%.

(22)

Introducing coe�cients of �̃(E) and �̃(E) and operational
matrix of integration one obtains

∫�
0
�̃ (%) �% = �̃
∫�

0
"
 (%) �% = �̃
4
"
 (E) . (23)

Knowing that [33]

�̃� (E) ⊗ �̃� (E) = (�̃�
 ⋅ "
 (E)) ⊗ (�̃�
 ⋅ "
 (E))
= (�̃�
 ⊗ �̃�
 (E)) ⋅ ("
 (�) ⊗ "
 (E))
= (�̃�
 ⊗ �̃�
 (E)) ⋅ @
"
 (E)

(24)

one can write

�̃�
 − �̃�
,0
= �� (�0�̃�
4
 + � (�̃�
 ⊗ �̃�
)@
4
 + ��̃�
4
) , (25)

where �̃
0 is the transposition of the initial state over orthog-
onal functions. It depends on the chosen set of functions.

4.2. Optimization Problem Formulation Using Orthogonal
Functions. To 	nd the transition time from the initial to
the target position, we need to solve the following nonlinear
problem.

OP1: Original Optimization Problem

min (�$) (26)

subject to: �̇ (�)
= �0� (�) + � (� (�) ⊗ � (�)) + �� (�)
� ∈ [�min, �max]
� (0) = �0,
� (��) = ��.

(27)

�e problem transposition over Block pulse base leads
to the following nonlinear optimization problem named

“orthogonal functions optimization problem.”�is algorithm
determines the time optimal input for given bilinear system.

OP2: Orthogonal Functions Optimization Problem

min (�$)
̃�,�̃�,��

(28)

is subject to the following constraints:

(i) Initial condition is

�̃
0 = [�̃ (0) �̃ (0) ⋅ ⋅ ⋅ �̃ (0)] . (29)

(ii) Equality constraint is

�̃
� = [0 0 ⋅ ⋅ ⋅ �̃�] ; (30)

�̃
,� denotes the transposition of the 	nal sate over
the orthogonal functions base.

(iii) Inequality constraint is

�̃
min ≤ �̃�
 ≤ �̃
max. (31)

(iv) Nonlinear equality constraint is

�̃�
 − �̃�
,0
= �� (�0�̃�
4
 + � (�̃�
 ⊗ �̃�
)@
4
 + ��̃�
4
) . (32)

To solve this optimization problem, an interior point method
such as the one implemented in the function “fmincon” under
“Optimization” Toolbox of Matlab environment is used.

4.3. Simulation Results. In this subsection, two examples of
bilinear systems are presented to evaluate the e
ectiveness of
our developed approach.

4.3.1. Example 1: First-Order Bilinear System. Consider the
following bilinear system:

�̇ = �� + � (33)

�e system needs to be shi�ed from �0 = 1 to the origin; the
input � must be within interval [−1, 1].

To validate the proposed approach, a comparative study
between the theoretical method and the developed Block
pulse functions approach is presented.

Applying both methods on the studied system, we get
the optimal minimum time value �� = ln(2) = 0.69 s with�(�) = −1 for � ∈ [0, ��] and so without switching time. From
Table 1, it is clear that the obtained result thought the BPF
algorithm meets the analytic one. Figure 1(a) shows that the
control lawwith BPF approach has the same control sequence
as the analytical method. �e state trajectory of the system
provided by optimal control input is given in Figure 1(b).
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Figure 1: Open loop optimal time control for example 1 with the developed BFP approach.

Table 1: Minimum time results with theoretical and BPF approach-
es.

�eoretical result BPFs method

Final time �� ln(2) = 0.69 s 0.6986 s

Table 2: Table comparing the theoretical and BPF obtained results.

Method in [8] BPFs method

Final time �� 1.4 pu 1.41 pu

4.3.2. Example 2: Boost Converter Bilinear System. Consider
now the bilinear system representing a boost converter
described in [8] and shown in Figure 2, where J1, J2, andJ� are inductor, capacitor, and load resistance, respectively.
Also, situations of switches are presented by �(�); therefore,
for zero value of input control, K1 and K2 are open and
closed, respectively. K1 and K2 are two main switches which
are connected with two antiparallel diodes.

Determining state space representation for the boost
converter and transposing it in per-unit system are done in
[8] where state variables of the system are chosen as

�0 = [�1 (�)�2 (�)] = [[
[

1N√ PQ 0
0 1N

]]
]

[#� (�)
V0 (�)] , (34)

where #�(�) and V0(�) are the inductor current and capacitor
voltage and N are a constant uncontrolled input voltages.
Also, Q and P are output capacitor and inductor of the
converter, respectively. �e normalisation of the state-space
model of the boost converter can be expressed as

�̇1 (E) = (� (E) − 1) �2 (E) + V (E)
�̇2 (E) = (1 − � (E)) �1 (E) − �2 (E)R

(35)

with E = �/√PQ being normalized time and R = J�√Q/P
being quality factor of the boost converter.

�us, the state space form of the system is given by

�̇ = �0� + ��� + ��, (36)

where

�0 = [0 −1
1 −0.48] ,

� = [ 0 1
−1 0] ,

� = [10] .

(37)

�e system needs to be shi�ed from �0 = [1.4, 2]� to �� =[1.93, 2]� and the input � must be within interval [0, 1].
Note that the optimal control problem of this system has

been treated analytically in [8]. Using the Block pulse func-
tions optimization (OP2) developed in this paperwe obtained
the same results.

�e behaviors of the input and states variables are shown
in Figures 3(a) and 3(b), respectively. �e 	nal time is �� =1.41. From Figure 3(a), the control input is equal to 1 for � ∈[0, 0.9] and −1 for � ∈ [0.9, 1.41].

It is clear that the obtained results are similar to the one
in [8]. �us, the proposed approach is demonstrated.

Figure 3(b) shows the state variables evolution of the con-
sidered system with the obtained optimal control signal.
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Figure 3: Open loop optimal time control for example 2 with BPF approach.

5. State Feedback Suboptimal Time Control

In this part, an original state feedback suboptimal control
approach is developed. �e idea is based on the work in [22].
�e formulation is done in Block pulse base and Kronecker
product is used in order to determine the suboptimal con-
troller.

Now consider the time optimization of the bilinear
system provided with a state feedback control law � = −C�.
Hence, the feedback control gainChas to be determined such
that the 	nal time is minimized.�en, the elaborated control
structure is suboptimal.

5.1. Suboptimal Time Control Problem Formulation. Consider
system (1) with the time variable change (17) and let �̃∗
 and�̃∗
 be the optimal coe�cients of the Bang-Bang control and
system states, respectively. In this part of the work, we aim to

derive a constant vector C which confers the optimal open
loop state trajectories to the considered closed loop. Hence,
we state that

�̃∗
 = −C�̃∗
. (38)

Replacing the control law by its feedback form (38) in (25),
one obtains

�̃∗�
 − �̃�
,0 = �� (�0�̃∗�
 4

+ � (−C�̃∗�
 ⊗ �̃∗�
 )@
4
 − �C�̃∗�
 4
) . (39)

Note here that for matrices X, N, *, and Y with appropriate
dimensions one has [24]

(X ⊗ N) (* ⊗ Y) = (X*) ⊗ (NY) ; (40)
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using this property one has

(C ⋅ �̃∗�
 ) ⊗ (Z
 ⋅ �̃∗�
 ) = (C ⊗ Z
) (�̃∗�
 ⊗ �̃∗�
 ) (41)

From (41) and (39), one obtains

�̃∗�
 − �̃�
,0 = �� (�0�̃∗�
 4

− � (C ⊗ Z
) (�̃∗�
 ⊗ �̃∗�
 )@
4
 − �C�̃∗�
 4
) . (42)

�is can be rewritten as follows:

� (C ⊗ Z
) (�̃∗�
 ⊗ �̃∗�
 )@
4
 + �C�̃∗�
 4

= �0�̃∗�
 4
 + 1�� (�̃�
,0 − �̃∗�
 ) . (43)

Applying that, for any matrices\, ^, and _ with appropriate
dimensions [24]

vec (\^_) = (_� ⊗ \) vec (^) , (44)

one obtains

[((�̃∗�
 ⊗ �̃∗�
 ) (@
4
))� ⊗ �] vec (C ⊗ Z
)
+ ((�̃∗�
 4
)� ⊗ �) vec (C)

= vec(�0�̃∗�
 4
 + 1�� (�̃�
,0 − �̃∗�
 )) .
(45)

Note that vec(C⊗Z�) = ∏�,�(Z�)vec(C), where∏�,�(Z�) is the
matrix de	ned by

∏
�,�

(Z�) = [vec (N�×�11 ⊗ Z�) ⋅ ⋅ ⋅ vec (N�×��1 ⊗ Z�) ⋅ ⋅ ⋅ vec (N�×��2 ⊗ Z�) ⋅ ⋅ ⋅ vec (N�×��� ⊗ Z�)] ,
N�×��,� = h�� ⊗ h��� ,

(46)

where h�� denotes the i-dimension unit vector which has 1
in the #th element and zero elsewhere. Equation (45) can be
expressed as follows:

AΘ = B (47)

Θ = vec(C);
A = k∏�,�(Z�) + l;
B = vec(�0�̃∗�
 4
 + (1/��)(�̃�
,0 − �̃∗�
 ));
k = [((�̃∗�
 ⊗ �̃∗�
 )(@
4
))� ⊗ �];
l = 4�
�̃∗
 ⊗ �.

Equation (47) can be solved in the least square sense, when
no constraints are requested for the control:

C = mat (A+B) , (48)

where (⋅)+ stands for Moore–Penrose pseudoinverse of a
matrix and “mat” is the inverse of the “vec” operator

mat (V) = mat

[[[[[[[[[[
[

m1m2...
m�m�

]]]]]]]]]]
]

= [m1 | m2 | ⋅ ⋅ ⋅ | m� | m�] , (49)

where m� are column vectors with same dimensions.
In the case where the feedback control has to respect

upper and lower bounds (2), that is,

��
min,
 ≤ −C� ≤ ��

max,
 (50)

Developing (50) over Block pulse function, within the trans-
formed time interval, yields

�min ≤ −C�̃∗�
 ≤ �max
(51)

Inequality (51) can be written by the following form:

−C�̃∗�
 ≤ ��
max,


C�̃∗�
 ≤ −��
min,
.

(52)

Using the vec and mat operators, system (52) can be written
as follows:

⇐⇒ {{{
− (�̃∗
 ⊗ Z�) vec (C) ≤ vec (��

max,
)
(�̃∗
 ⊗ Z�) vec (C) ≤ −vec (��

min,
) . (53)

�e latter inequality system could be written as

QΘ ≤ � (54)

with

Q = [− (�̃∗
 ⊗ Z�)�̃∗
 ⊗ Z� ] ,

� = [
[
vec (��

max,
)
−vec (��

min,
)]]
.

(55)

A constrained least square problem could be formulated as
follows:

min
Θ

12 ppppΔΘ − rpppp22 , (56)

subject to the constraint
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Figure 4: Open loop optimal time control.

QΘ ≤ �. (57)

�is kind of optimization problem could be solved through
“lsqlin” routine of MATLAB so�ware.

5.2. Simulation Example. �is section evaluates the perfor-
mances of developed suboptimal time control approach. �e
studied system is a chemical reactor detailed in [23]. It is
described by the following state space bilinear model:

�̇ = �0� + �� ⊗ � + �� (58)

with

�0 = [[
[

16 1
0 16

]]
]

,

� = [5 2 4 5
2 1 5 4] ,

� = [−4 2
−2 −2] .

(59)

�e system needs to be shi�ed from �0 = [0, 3]� to the origin
of state space; the input � must be within interval [−4, 4].

In Figure 4(a) simulation results for the control se-
quence show that the 	rst input has two switching points�1 = 4 ⋅ 10−3 s and �2 = 0.063 s, while the second input has
only one switching point � = 0.033 s.

�e state variables’ evolution is given in Figure 4(b). �e
computed 	nal time is �� = 0.15 s.

In [23], authors proposed a linear stabilizing state feed-
back for bilinear systems. Based on results of the chemical re-
actor therein, we propose in this paper to adopt that example

Table 3: Feedback values.

Feedback in [23] BPFs feedback

Controller K = [
[

0.5437 23.8399
−0.6428 −9.5656]]

K = [
[
−6.7517 −11.4278
4.5072 2.4255 ]

]

while constraining control e
ort (−20 ≤ � ≤ 40) to less values
than obtained in [23]. We aim then to derive a state feedback
that could enhance the time response of the system.

Using the suboptimal control structure, we found the sub-
optimal control given in Figure 5(a) and the closed loop tra-
jectory given in Figure 5(b).

�e obtained feedback gain given in Table 3 is clearly
di
erent from the one in [23]. Nevertheless, the obtained re-
sults are better.

In fact, these results are better in term of 	nal time and
overshoot value than those presented in [23]. It is clear that,
for both states, there is less overshoot and better settling time.

Furthermore, we notice that the system trajectories
shapes are too close in both the open loop with Bang-Bang
input and the proposed closed loop state feedback.

6. Conclusion

In this paper a practical approach is developed to solve the
problem of time optimal control of bilinear systems.

�e proposed approach is based on the expansion of the
system model on a complete set of orthogonal Block pulse
functions. Two types ofminimum time control law have been
investigated. In the 	rst time, the method has been imple-
mented to determine the open loop minimum time con-
trol law. In the second time, a state feedback control law has
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Figure 5: Closed loop suboptimal control.

been derived in order to generate the minimum time optimal
states of the considered system.

All the developed algorithms have been illustrated on
di
erent examples of minimum time optimal control and the
obtained results are signi	cant. Indeed they enable shorter
time estimate comparedwith other published techniques [23].

Note that the proposed method can be generalized to
consider other classes of more complex nonlinear systems
and we intend to pursue our work in this way.
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