
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Time‑optimal motion planning and control
Pham, Tien Hung
2019
Pham, T. H. (2019). Time‑optimal motion planning and control. Doctoral thesis, Nanyang
Technological University, Singapore.
https://hdl.handle.net/10356/83546
https://doi.org/10.32657/10220/49772

Downloaded on 17 Aug 2022 03:10:37 SGT

TIME-OPTIMAL MOTION PLANNING AND CONTROL

PHAM TIEN HUNG

SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

2019

TIME-OPTIMAL MOTION PLANNING AND CONTROL

PHAM TIEN HUNG

School of Mechanical and Aerospace Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

2019

PHAM TIEN HUNG

Time-optimal Motion Planning and Control

Nanyang Technological University

Control Robotics Intelligence Group (CRI)

School of Mechanical and Aerospace Engineering

Robotics Research Centre

50 Nanyang Avenue

N3-01a-01

Singapore 639798

Acknowledgements

I would like to thank my supervisor Quang-Cuong Pham for introducing me to the

wonderful world of scientific research; for teaching me to look for the big picture and

to ask the right questions; and most of all for patiently guiding me through this tiring,

laborious and frustrating but simultaneously rewarding and exciting journey.

I am eternally grateful to my parents for teaching me the value of hard work without

which this thesis would never materialize, to my sister Ngoc who I own great debt and

to my partner Tam for her unwavering trust and support when I need them the most.

Last but not least, I would like to thank my friends at CRI group–Huy Nguyen,

Jian Hui Lim, Xu Zhang, Francisco Suárez-Ruiz, Puttichai Lertkultanon, Xuan Hien

Bui, Nicholas Adrian and many others–for the stimulating discussions and all the fun

during our lab trips. You guys have made this journey infinitely more memorable.

9

Abstract

The recent years have seen rapid growth in the adoption of robotics technologies. This

welcoming development has led to increasingly complex applications with stringent

requirements, motivating research on time-optimal motion planning and control for

robots.

This thesis presents developments that extend the state-of-the-art in time-optimal

motion planning and control for robots. I first revisit a classical problem in the robotic

literature–computing the Time-Optimal Path Parameterization along a specified path–

which was posed more than 30 years ago by Bobrow et al. [16]. The presented new

approach to the problem, as suggested by experimental evaluations, outperforms ex-

isting solutions in both computational complexity and robustness. Next, I discuss

an experimental case study of an industrial task: planning critically fast motions for

robots transporting objects with suction cups. Experimental results suggest that by ap-

propriately modelling of “suction cup constraints”, one can control an industrial robot

at high speed (near the robot hardware speed limit) and still achieve 100% transport

success rate. Finally, I discuss and present solutions to two issues that are commonly

associated with the use of Time-Optimal Path Parameterizations: (i) the existence of

switching points with infinite joint jerk and (ii) the poor regulation of tracking error.

11

Contents

1. Introduction 17

1.1. Motivation . 17

1.2. Contributions . 21

1.2.1. Time-Optimal Path Parameterization based on Reachability Anal-

ysis . 21

1.2.2. Critically fast pick-and-place with suction cups 21

1.2.3. Structure of the Time-Optimal Path Parameterization Problem

with Third-Order Constraints 22

1.2.4. Time-Optimal Path Tracking via Reachability Analysis 22

1.3. Outline of the Thesis . 22

2. Literature Review 23

2.1. Path parameterization overview . 23

2.2. Time-optimal path parameterization (TOPP): Algorithms 25

2.2.1. Numerical integration . 25

2.2.2. Dynamic Programming . 26

2.2.3. Convex optimization . 26

2.2.4. Non-convex optimization . 27

2.3. Time-Optimal Path Parameterization in robotic applications 27

2.4. Time-Optimal Path Parameterization with third-order constraints . . . 28

2.5. Time-optimal Path Tracking . 30

2.6. Summary . 32

3. Time-Optimal Path Parameterization based on Reachability Anal-

ysis 33

3.1. Introduction . 33

3.2. Problem formulation . 35

3.2.1. Generalized constraints . 35

3.2.2. Projecting the constraints on the path 36

3.2.3. Path discretization . 37

3.3. Reachability Analysis of the path-projected dynamics 38

3.3.1. Admissible states and controls 38

3.3.2. Reachable sets . 39

3.3.3. Controllable sets . 40

3.4. TOPP by Reachability Analysis . 41

3.4.1. Algorithm . 41

3.4.2. Correctness of TOPP-RA . 42

3.4.3. Asymptotic optimality of TOPP-RA 42

3.4.4. Complexity analysis . 43

13

Contents

3.5. Simulations . 44

3.5.1. Experiment 1: Pure joint velocity and acceleration bounds . . 44

3.5.2. Experiment 2: Legged robot in multi-contact 49

3.6. Additional benefits of TOPP by Reachability Analysis 52

3.6.1. Admissible Velocity Propagation 53

3.6.2. Robustness to parametric uncertainty 53

3.7. Summary . 55

3.8. Additional remarks and proofs . 55

3.8.1. Relation between TOPP-RA and TOPP-NI 55

3.8.2. Proof of optimality (case with no zero-inertia point) 57

3.8.3. Proof of asymptotic optimality (case with zero-inertia points) 60

3.8.4. Error analysis of discretization schemes 64

4. Critically fast pick-and-place with suction cups 67

4.1. Introduction . 67

4.2. Grasp Stability for suction cups . 69

4.2.1. Background 1: Linearized friction cone 69

4.2.2. Background 2: Polyhedral computations 70

4.2.3. A model for suction cup grasping 71

4.2.4. Approximating the grasp stability constraint 72

4.3. Planning critically fast movements 74

4.3.1. Motion planning pipeline . 74

4.3.2. Reduction of the grasp stability constraint 75

4.4. Experiments . 76

4.4.1. Experimental setup . 76

4.4.2. Trajectory quality . 77

4.4.3. Computational performance 77

4.5. Summary . 79

5. On the Structure of Time-Optimal Path Parameterization with

Third-Order Constraints 81

5.1. Introduction . 81

5.1.1. Main Contributions . 82

5.2. Structure of TOPP with third-order constraints 82

5.2.1. Problem setting . 82

5.2.2. Introducing TOPP3 . 84

5.2.3. Remarks . 85

5.3. Connecting profiles using Multiple Shooting 86

5.4. Characterizing and addressing singularities 88

5.4.1. Maximum and Minimum Acceleration Surfaces 88

5.4.2. Characterizing third-order singularities 90

5.4.3. Extending a profile through a singularity 91

5.5. Simulation results . 93

5.5.1. Simulation results . 93

5.5.2. Singularities caused by third-order constraints 94

5.6. Summary . 95

5.7. Additional proofs and remarks . 96

5.7.1. Some proofs regarding third-order singularities 96

14

Contents

6. Time-Optimal Path Tracking via Reachability Analysis 99

6.1. Introduction . 99

6.1.1. Contributions of the chapter 99

6.1.2. Notation . 100

6.2. Background: Path Tracking problem and controllers 101

6.2.1. Path Tracking problem . 101

6.2.2. Path Tracking controllers . 102

6.2.3. Difficulties with designing path controllers 104

6.3. Solving the Time-Optimal Path Tracking problem 104

6.3.1. Exponential stability with robust feasible control laws 104

6.3.2. Characterizing robust feasible control laws 105

6.3.3. A control law for time-optimal path tracking 108

6.4. Simulation results . 109

6.5. Summary . 111

7. Conclusion 113

A. Publications 119

15

Chapter 1.

Introduction

1.1. Motivation

The recent years have seen a tremendous growth of robotic adoption in different in-

dustries. The International Federation of Robotics (IFR) reported an increase of 30%

in the total number of industrial robot sales in 2017, continuing an upward trend since

2010 [60]. The main drivers of this growth are the automotive industry, the electri-

cal/electronics industries and the metal industry [60]. The impacts of robotics, how-

ever, extend well beyond the traditionally known factories setting, penetrating other

areas including logistics [19]. To name a few, Automated Guidance Vehicles [81, 126]

(AGV) have been used in large warehouses [129] for autonomously moving pack-

ages in between areas or on the streets for last-mile delivery [21]; in the forthcoming

years, automated bin-picking with industrial robots is expected to bring the operational

throughput of warehouses [30, 85] to the next level.

Not limiting to the industrial settings that it originated from, robotics has also

been recognized and hence, widely applied in other non-industrial contexts as well.

For instance, looking at surveillance and rescue, legged robots such as quadrupedal

robots [59, 87] and humanoids [45, 57] are currently used to provide services on dif-

ficult terrains which are inaccessible to traditional wheeled alternatives (e.g. stairs,

rocks or ragged surfaces). Autonomous driving [4] is another exciting non-industrial

field that has enjoyed advanced technologies that have been built upon many years of

robotic research.

However, to deploy these novel robotic applications in practice, the traditional ap-

proach to robotic development does not suffice. Indeed, comparing to the traditional

applications, these modern applications have become much more complex: There are

challenges that render the conventional approach inadequate. Before going into details

17

Chapter 1. Introduction

about these challenges, let us first take a look at the conventional approach.

Traditional industrial robotic applications are relatively simple: a fixed surrounding

environment with precisely known geometries in an isolated cell. Examples include

pick-and-place/material handling from one fixed position to another, welding along

fixed paths and assembly parts with precise position measurements. In this class of

applications, engineers “teach” robots fixed motion trajectories by specifying way-

points [77], which are then executed repetitively by simple conditionals. Having the

robots repeating a set of pre-defined motions is not only sufficient for these traditional

applications but also advantageous, as it leads to a higher level of predictability and

a lower failure rate. Nonlinear optimization (e.g. simulated annealing, genetic algo-

rithms) can be performed offline to enhance the motion trajectories [49] with respect

to certain optimization objectives and constraints.

In the modern applications, however, one can no longer assume that the external en-

vironments surrounding the robots will remain fixed. Indeed, an example is the collab-

orative human-robot work cells [27]; here the operator is an extremely unpredictable

component of the environment. Similarly, environments such as warehouses (AGVs,

pick-and-place robots) and streets (autonomous vehicles, delivery mobile robots) are

both unstructured, varying and sometimes uncertain. Furthermore, many applications

have non-trivial task dynamics. Consider bin picking, a challenge in this task is to

respect the frictional constraints between the end-effector and the object in order to

successfully and robustly transport objects. With this understanding, it is clear that

the traditional approach of teaching robots manually is rather impractical for the mod-

ern applications. Additionally, in many applications, the initial and target poses of

the robots are only known during execution, further emphasizing the impracticality of

the manual teaching approach. At this point of writing, the alternative of computa-

tional motion planning is also not a straightforward solution for modern applications.

The main reason is the computational challenges associated with handling complex

and non-linear robot and task dynamics in motion planning. On top of that, the strin-

gent requirements of low computational complexity and high robustness in industrial

applications are other hurdles that need to be addressed.

The above elaboration is far from being an exhaustive list of the challenges. In-

deed, deploying robotic systems that are sufficiently efficient and robust for modern

applications requires breakthroughs on multiple fronts of robotics: motion planning,

control, manipulation and computer vision. Motion planning and control are the main

focuses of this thesis. In the following, I discuss how the challenges of modern robotic

applications affect these two sub-fields in more detail:

1. Achieve high throughput while satisfying hard constraints

In many industrial tasks, the most important metric is the total throughput, e.g.

18

1.1. Motivation

the number of successfully picked items in bin-picking or miles travelled in au-

tonomous vehicle. This is because this metric directly correlates with the return

on investment of the robotic system. Hence, moving the robots in a time-optimal

manner, which subsequently maximizes the total throughput, is desirable.

At the same time, robotic systems need to satisfy multiple hard constraints–

constraints that lead to system failure or poor performance if violated. An ex-

ample is the motors’ joint current limits. If the robot executes a motion while

carrying a heavy payload, some motor currents might violate the respective lim-

its which, in many industrial robots, causes the control system to shutdown to

prevent further damage. Another example is the grasp stability constraint: the

contact force between the suction cup/ gripper with the object being transported

must satisfies frictional limits throughout the movements. A robot moving too

fast could violate this constraints and thus risks failing the grasp.

The key challenge is to plan the fastest or time-optimal motion that still guar-

antees constraint satisfaction. Another associated challenge is to track these

time-optimal motions, which is notoriously known to be difficult.

2. Handle complex robot and task dynamics

Robot dynamics is nonlinear, complex and generally difficult to handle compu-

tationally. Most robots consist of multiple links, which are rigid bodies, joint

together via rotational or transnational joints [116]. The dynamics of a robot

with n degree-of-freedom (joints) [79] is:

M(q)q̈+ q̇⊤C(q)q̇+ g(q) = τ ,

where M,C,g are matrix, third-order tensor and vector functions of the robot

physical parameters and joint position; q, τ are respectively the joint positions

and the joint torque. The above dynamical equation is multi-dimensional, non-

linear and usually is unavailable in closed-form.

In addition, to guarantee successful execution in many tasks such as bin-picking

and legged robot locomotion, robot motions have to satisfy additional task-

specific constraints such as frictional constraints. In bin picking, the contact be-

tween the suction cup and the object might fail if the maximal frictional contact

force is insufficient to hold the object [98]. Similarly, in legged robot locomo-

tion, if frictional forces between the robot and the environment cannot support

the robot in its movement, slippage or lost of contact will occur [26], leading to

failure. To generate truly dynamic motions for these complex tasks, the motion

planner needs to account for the task constraints simultaneously with the robot’s

19

Chapter 1. Introduction

rigid body dynamics.

3. Achieve high operational performance: low computational complexity and high

robustness

Computational complexity and robustness are in some sense new challenges in

robotics. In a traditional robotic system, the robot mostly repeats pre-defined

motions; there is very little online computation. In a modern robotic system, on

the other hand, motion planning must be performed online due to the complexity

of the applications. However, numerical algorithms can be slow and prone to

failure. Both are detrimental to the overall performance of a robotic system, and

therefore require special attention.

Most robotic tasks are cyclic: a control/task cycle consists of computational

time and execution time. The benefit of using time-optimal motions can be out-

weighted by the high computational cost. For instance, if the an optimal motion

that lasts 1 seconds is computed in 5 seconds, it is probably better to choose a

non-optimal motion that lasts 3 seconds with only 0.5 seconds of computational

time. Therefore, computational cost is a critical factor that one has to account

for in designing time-optimal motion planning algorithms.

In addition, a motion planning instance could fail, either because the task is

physically impossible, or because of numerical issues. Both cases are unde-

sirable, as they require manual intervention from operators or additional error

recovering procedures. Ensuring that there exists at least a physically possible

motion is the easier job, since industrial robots are capable of very rapid and

smooth movements. On the other hand, it is much harder to ensure that a nu-

merical algorithm always work correctly for ill-conditioned inputs.

The three aforementioned difficulties are long standing problems in robotics. In this

thesis, I will present developments that seek to address them. The first contribution is

an efficient and robust algorithm for computing the time-optimal path parameterization

for a wide class of robots and tasks. The second contribution is an experimental case

study of the challenging task of transporting objects with suction cup critically fast.

As the third and fourth contributions, I will present analyses of two well-known issues

associated with time-optimal motions in practice: infinite joint jerk at the switching

points of time-optimal trajectories and poor tracking performance of time-optimal tra-

jectories. The next section discusses each contribution in more detail.

20

1.2. Contributions

1.2. Contributions

1.2.1. Time-Optimal Path Parameterization based on

Reachability Analysis

Time-Optimal Path Parameterization (TOPP)–the problem of computing the time-

optimal parameterization of a geometric path–is a classical problem in the robotic

literature [16]. It is a key step in the Path-Velocity Decomposition motion planning

principle [61] that is widely used in industrial robotics. There are two main families

of methods to solve TOPP: Numerical Integration [16, 119, 99] and Convex Optimiza-

tion [125]. Numerical Integration-based methods are fast but are difficult to implement

and suffer from robustness issues. Whereas Convex Optimization-based methods are

relatively more robust but significantly slower.

A contribution of this thesis is a new approach to TOPP based on Reachability Anal-

ysis [10]. The proposed algorithm achieves the best of both worlds: it is faster than

Numerical Integration-based methods and as robust as Convex Optimization-based

ones, as confirmed by extensive numerical evaluations. Moreover, the proposed ap-

proach offers unique additional benefits: Admissible Velocity Propagation [101] and

robustness to parametric uncertainty as demonstrated in Chapter 4 and [97] can be

derived in a simpler and more natural way.

1.2.2. Critically fast pick-and-place with suction cups

Pick-and-place with suction cups is a typical application of robotics, in both factories

and logistic settings [30, 85]. Here, we aim to plan “critically fast” motions, which are

motions that are the fastest possible for transporting an object while maintaining the

object-suction cup contact throughout the motion.

The main difficulties of planning critically fast motions are: (i) accounting for the

contact stability constraints that arise from maintaining the object-suction cup contact

while (ii) achieving a low computational cost and a high level of robustness. To ad-

dress these difficulties, the following developments were made: (a) a model for object-

suction cup contacts, (b) a procedure to identify contact stability constraints, and (c) a

procedure to parameterize time-optimally arbitrary geometric paths while accounting

for contact stability constraints. A series of experimental evaluations demonstrates that

an industrial robot, by accounting for suction cup-object contact stability constraints,

can achieve 100% success rate; when contact stability constraints are not accounted

for, the success rate plunges to merely 20%. The full pipeline is released as open-

source for the robotics community.

21

Chapter 1. Introduction

1.2.3. Structure of the Time-Optimal Path Parameterization

Problem with Third-Order Constraints

Time optimal motions contain switching points [84]: points at which one or multiple

joints switch from maximally accelerating to maximally decelerating or vice versa.

Executing time-optimal motions on industrial robots, therefore, damages the motors

and causes vibrations, especially for large robotic arms [86]. Here, we approach this

problem by computing time-optimal parameterizations that also account for joint jerk

or torque-rate constraints.

This thesis presents an investigation on the structure of the Time-Optimal Path Pa-

rameterization problem with third-order constraints and shows that there are two major

difficulties: (i) how to smoothly connect optimal profiles, and (ii) how to address sin-

gularities, which stop profile integration prematurely. Resulting from this investigation

is a development of a new algorithm which addresses these two difficulties and thereby

constitutes an important milestone towards an efficient computational solution to the

Time-Optimal Path Parameterization with third-order constraints.

1.2.4. Time-Optimal Path Tracking via Reachability Analysis

Another issue commonly associated with time-optimal motions is the difficulty in reg-

ulating tracking error during execution. The problem lies in the bang-bang property of

time-optimal motions [84]: at any moment, there is at least one saturated constraint.

While this is normally inconsequential, when the saturated constraint is a joint torque

limit, the robot controller is incapable of producing additional torque to regulate track-

ing error, hence leading to poor tracking performance.

The fourth contribution is a new solution for the Time-Optimal Path Tracking prob-

lem: design a path tracking controller (also known as path following controller [1])

that traverses the path time-optimally. Existing solutions are either unable to guar-

antee exponential convergence of tracking error (Online Scaling controllers [33]) or

overly conservative and require hand-designed terminal sets (Model Predictive Con-

trol [40]). The proposed solution can guarantee exponential convergence of tracking

error and at the same time achieve near time-optimal trajectory duration.

1.3. Outline of the Thesis

Related literature are reviewed in Chapter 2. Chapters 3, 4, 5, and 6 present the main

contributions. Conclusion and perspective on future research are given in Chapter 7.

A list of publications that results from this thesis can be found in Appendix A.

22

Chapter 2.

Literature Review

In this chapter, I review the literature related to the time-optimal path parameterization

problem and discuss the position of the contributions of this thesis to this broader

literature.

2.1. Path parameterization overview

In many industrial robotic systems, motion planning follows the Path-Velocity Decom-

position principle, which was introduced by Kant and Zucker [61]. In this principle,

one computes a joint trajectory for a robot with n degrees-of-freedom (dof) in two

consecutive stages: geometric path planning and path parameterization. In geometric

path planning, a path planner (e.g. RRT [69], CHOMP [132]) plans a collision-free

geometric path, which is a continuous function of a scalar path position variable s:

q(s) ∈ R
n, s ∈ [0, 1].

Here q(s) maps the path position s to the joint configuration of the robot. In path

parameterization, a second planner retimes the geometric path by computing a time

parameterization s(t) ∈ [0, 1], t ∈ [0, Tend]. This is commonly known as the path

parameterization problem [16]. The composition of the geometric path q(s) and the

time parameterization s(t) is the final trajectory

q(t) := q(s(t)) ∈ R
n, t ∈ [0, Tend].

Robot and task constraints are handled in the path parameterization stage.

In the robotic literature, researchers have investigated path parameterization prob-

23

Chapter 2. Literature Review

lems with various kinds of constraints. These constraints come from the need to plan

motions for increasingly complex robotic systems. In the pioneering papers, Bobrow

et al. [16], Shin and McKay [113], Slotine and Yang [119] considered joint torque

and acceleration limits for fully-actuated robotic manipulators. Subsequently, Zla-

jpah [131] and Kunz and Stilman [66] considered path parameterization problems

with additionally joint velocity constraint and proposed solutions. More recently, to

plan motion for humanoids and redundant manipulators interacting with the environ-

ment, Pham and Stasse [100], Bobrow et al. [17], Larochelle et al. [68] investigated the

joint torque bound constraint for redundantly actuated robots. Subsequently, Hauser

[55], Caron et al. [26] considered constraints resulting from frictional contact such as

in humanoid contacts for balancing, fast non-prehensile object transportation [78, 31]

or pick-and-place with suction cup [98]. To obtain smoother motions, Debrouwere

et al. [34], Pham and Pham [95], Kaserer et al. [62] investigated jerk or torque rate

constraints. Recently, Pham [99] introduced a constraint class that consists of many

constraints frequently occurred in practice and can be handled efficiently. This class

was later extended in Chapter 3.

Researchers have also formulated path parameterization problems with different op-

timizing objectives. In his seminal work, Bobrow et al. [16] introduced the minimum-

time criterion for computing path parameterizations. The minimum-time criterion re-

mains the most commonly studied objective in the literature [113, 131, 99, 54, 96].

One reason is that time-optimality corresponds directly to the maximal production

output. Subsequently, Shiller [109] introduced the time-energy objective and showed

that by trading execution speed, smoother trajectories can be achieved. With the same

goal of improving smoothness, Kyriakopoulos and Saridis [67], Bianco [13], Piazzi

and Visioli [102] considered minimum-jerk (the third derivative of joint position) ob-

jective. However, minimal-jerk trajectories can be overly conservative and the high

level of smoothness might not bring significant improvement to the control 1. General

cost functions were also considered. By discretizing the state-space and using Dy-

namic Programming, Shin and McKay [114] considered very general cost functions.

More recently, Verscheure et al. [125] reformulates the path parameterization problem

as a convex optimization problem, which naturally allow the consideration of generic

convex objectives.

In subsequent sections of the chapter, we review different aspects of Time-Optimal

Path Parameterization (TOPP)–the problem of computing the fastest possible time pa-

rameterization for a given geometric path without violating constraints. In particular,

we first discuss different approaches to solving TOPP, including the approach proposed

in this thesis (Section 2.2). Next, we discuss applications of TOPP, both as a proce-

1Notice that this is different from generating trajectories with bounded jerk

24

2.2. Time-optimal path parameterization (TOPP): Algorithms

dure to plan motion directly and as a sub-routine supporting other motion planning

algorithms (Section 2.3). Literature on smooth path parameterization by including

third-order constraints, e.g. joint jerk and torque-rate bounds, is in Section 2.4. Lastly,

we discuss issues related to tracking time-optimally parameterized geometric paths

(Section 2.5).

2.2. Time-optimal path parameterization (TOPP):

Algorithms

In the literature, there are three main approaches to TOPP that guarantee finding the

optimal solution: Numerical Integration (NI), Dynamics Programming (DP) and Con-

vex Optimization (CO). We discuss each approach in the respective order. We also

discuss the non-convex optimization approach, which does not guarantee finding the

optimal solution.

2.2.1. Numerical integration

Bobrow et al. [16] proved that the optimal time-parameterization consists of alter-

natively maximally accelerating and decelerating segments and suggested the first

NI-based algorithm to solve TOPP. Around the same period, Pfeiffer and Johanni

[94], Shin and McKay [113] developed other NI-based algorithms that follow the

same basic principle. All of these initial NI-based algorithms involve expensive com-

putations for finding switching points–which are points at which the velocity profile

changes from maximally decelerating to maximally accelerating [16]. A development

was made by Slotine and Yang [119], who classified the switch points into tangent,

singular and discontinuous switch points and introduced procedures for finding them.

This development leads to significant improvement in computational cost. Later on,

Zlajpah [131] introduced trap regions to handle joint velocity constraints in NI-based

algorithms.

These initial NI-based algorithms, however, were prone to failure in the presence

of singular switch points, also known as zero-inertia points [119]. Only until re-

cently, Kunz and Stilman [66] developed an NI-based algorithm that can handle sin-

gular switch points for robots subject to joint velocity and acceleration constraints in a

realiable manner. Subsequently Pham [99] proposed a more general approach that can

account for singular switch points resulting from “Second-Order Constraints”, which

include joint torque bound, Zero Moment Point constraint, frictional constraint in ad-

dition to joint acceleration bounds.

The state-of-art NI-based algorithm proposed by Pham [99] is fast (terminate in

25

Chapter 2. Literature Review

milliseconds) and relatively robust (failure rate in a randomized test with 1000 trajec-

tories is 0.1% [99]). Yet, it has two weaknesses. First, computing the switch points

is difficult and numerically sensitive. While the proposed solutions [99, 66] are effec-

tive to a certain extent, this remains a major implementation difficulty as well as the

main cause of failure. Second, finding the switch points and computing the Maximum

Velocity Limit curve become computationally expensive for complex constraints with

many inequalities [96, 98].

2.2.2. Dynamic Programming

The Dynamic Programming algorithm, discovered by Bellman [5], is among the most

important tools in computer science [29], operational research [9], optimal control [121]

and reinforcement learning [123]. Shin and McKay [114] were the first researchers

who used Dynamic Programming to solve TOPP. They discretized uniformly the path

interval [0, send] and the path velocity interval into grids with finite points and applied

the DP algorithm to solve the discretized problem. This approach has two advantages:

simple implementation and the ability to account for general cost functions and con-

straints, including third-order constraints. The main disadvantage, however, is the high

computational cost required to solve finely discretized instances, which are compul-

sory for generating high quality trajectories.

2.2.3. Convex optimization

Convex optimization [20] is a branch of mathematical programming dealing with opti-

mization problems that have convex constraints and objectives. These problems are of

special interest in many branches of engineering because “there are effective methods

for solving them” [20]. Another important advantage of convex problems is that any

local optimal solution is also globally optimal [20].

In 2008, Verscheure et al. [125] showed that TOPP can be formulated as a second-

order cone (convex) program. With the availability and maturity of second-order cone

solvers, this approach can reliably and robustly solve TOPP. The main disadvantage

is computational cost, which can be order of magnitude greater than NI-based ap-

proaches. Subsequent developments by Hauser [54], Lipp and Boyd [75] further re-

duce computational cost. Hauser [54] proposed an iterative Linear Programming al-

gorithm [122], which was combined with a pruning procedure to significant reduce

computational cost. Recently, Nagy and Vajk [88] showed that using a special dis-

cretization scheme, the globally optimal solution is found by solving a single Linear

Program.

The best computational complexity achieved by a CO-based approach at the current

26

2.3. Time-Optimal Path Parameterization in robotic applications

point of writing is the same as solving a single Linear Program [88], whose decision

variables are the squared path velocities at each grid point. This computational com-

plexity is O(mN3) [96] where N is the number of grid points and m is number of

scalar constraints. Comparing to the state-of-art NI-based algorithm [99], which has

computational complexity O(m2N), this is still order of magnitude slower because

the number of gridpoints N is often higher than the number of constraints m. This

makes CO-based algorithms inappropriate for online motion planning or as subrou-

tine to kinodynamic motion planners [101]. This thesis presents a new approach that

further lowers the computational complexity O(m2N) of [99].

2.2.4. Non-convex optimization

For arbitrary dynamic constraints and optimization objective, one can always formu-

lates TOPP as a non-convex nonlinear constrained optimization problem:

min f(s(t))

s(t) ∈ S.
(2.1)

Here, S is the set of feasible velocity profiles s(t) that satisfies all system constraints.

In principle, this optimization problem can be solved with nonlinear programming [8].

Several researchers have taken this approach to TOPP: Constantinescu and Croft [28],

Gasparetto and Zanotto [47, 47] proposed to represent the time parameterization as a

spline in the velocity phase plane and use the spline coefficients as the optimization

variables. The optimization objective and constraints are translated to objective and

constraints on the spline coefficients. A nonlinear constrained optimizer is then used

to solve the resulting optimization problem.

This approach is general, but has two principal disadvantages. First, there is no guar-

antee that the solution is a globally optimal one. This is different from the CO-based

approaches that we discussed in Section 2.2.3. As a result, the quality of solutions

(which are locally optimial) depends heavily on the initial guesses, leading to incon-

sistency in motion quality. Second, non-convex optimization is time consuming and

sometimes requires manual hyper parameter tuning to achieve good results.

2.3. Time-Optimal Path Parameterization in

robotic applications

The TOPP problem has appeared in many applications of robotics and control engi-

neering, ranging from humanoid locomotion [23], robotic pick-and-place [98] to ma-

27

Chapter 2. Literature Review

glev positioning control system [90]. This section surveys the literature and discusses

the relevant applications.

A fruitful approach to planning highly dynamic robot motions is to reformulate it

as a TOPP instance. Bobrow et al. [16], McCarthy and Bobrow [84] planned motions

for robots with limited joint torque transporting heavy payloads by formulating and

solving TOPP. In more recent works, researchers proposed different TOPP formula-

tions to solve the “waiter motion” problem [70, 43, 78, 31]. This problem consists in a

robot, equipped with a flat plate as its end-effector, transports an object using only fric-

tional and gravitational forces. Lertkultanon and Pham [70] included the Zero Moment

Point [128] constraint in their TOPP formulation to ensure that the object does not fall.

Additionally, Csorvási et al. [31], Debrouwere et al. [34] proposed to include both dry

and viscous friction constraints to prevent slipping. Luo and Hauser [78] developed an

iterative learning procedure to learn the coefficient of friction between the plate and the

object in multiple trials. Following this line of work, in Chapter 4, I present a method

to plan critically fast motions for transporting objects with suction cup by formulating

and solving TOPP. Finally, it has also been demonstrated that one can plan highly dy-

namic motions for humanoids with frictional and balance constraints [54, 53, 100] by

formulating and solving TOPP instances.

Multiple researchers have formulated TOPP instances in sub-routines of their high-

level motion planning algorithms. Caron and Pham [23] proposed a Model-Predictive

Control controller that solves a TOPP instance in every control cycle. Pham et al.

[101] developed the Admissible Velocity Propagation (AVP) algorithm for kinody-

namic motion planning [69], which grows a RRT tree [65] whose nodes are associated

with reachable velocities from the initial state. AVP solves multiple TOPP instances

to compute the interval of admissible velocities.

In control engineering, the fundamental idea underlying TOPP–decomposing a tra-

jectory into the underlying geometric path and the time-parameterization–has also ap-

peared as the path tracking problem [1, 90]. Tracking geometric paths is, in many

cases, a more natural control objective than tracking trajectories [40]. Some represen-

tative applications are path tracking for autonomous vehicles [1], maglev positioning

control system [90], underwater vehicles [39] and ships [36]. A discussion of the

relationship between TOPP and path tracking is given in Section 2.5.

2.4. Time-Optimal Path Parameterization with

third-order constraints

The methods surveyed in the Section 2.2 can handle TOPP instances with first-order

constraints (e.g. velocity bounds, momentum bounds) and second-order constraints

28

2.4. Time-Optimal Path Parameterization with third-order constraints

(e.g. joint torque bound, acceleration bounds). However, problems with third-order

constraints, are much less understood. We survey some of the attempts in the literature

below.

Shin and McKay [114] proposed the first approach to TOPP with third-order con-

straints based on Dynamic Programming. However, it was noted in [114]: “To solve

the optimization problem with jerk constraints using dynamic programming, a three-

dimensional grid is required...”. As a result, the computational cost significantly in-

creases, presenting a significant obstacle to its adoption in practice. Recently, Kaserer

et al. [62], Oberherber et al. [91] extended this approach. They proposed to use splines

to interpolate in the two-dimensional velocity space, thereby avoiding discretizing the

acceleration dimension. This approach reduces computational cost, but the final solu-

tion is not the true optimal solution.

Tarkiainen and Shiller [124] initiated the use of the Numerical Integration approach.

In the seminal paper [124], they used Pontryagin’s Maximum Principle to show that,

similar to TOPP with only first-order and second-order constraints, the optimal trajec-

tory is necessarily bang-bang. At any moment, at least one constraint saturates. This

result is central to the Numerical Integration-based algorithm proposed by Tarkiainen.

However, this algorithm has two limitations:

• It assumed that the optimal velocity profile has a maximum-minimum-maximum

jerk structure. In generally, this is only true for the simplest cases.

• Path parameterization instances often contain multiple singularities that stop

numerical integrations prematurely, hence, causing failure [94]. Tarkiainen’s

algorithm can not account for singularities.

In the robotic literature, there is surprisingly little research on these limitations.

In 2009, Mattmüller and Gisler [82] proposed an approximate method to compute

near-optimal profiles: they introduced “split points” artificially to “guide” the pro-

files away from singularities. While their method has the advantage of simplicity, it

is sub-optimal and does not help understanding the structure of the true time-optimal

solutions. Further, the points must be chosen manually, hence, requiring manual in-

tervention for each new path. In Chapter 5, I present (i) an analysis of third-order

singularities and a method to address them as well as (ii) an algorithm that can realize

more general switching structures.

Dong et al. [38] developed an interesting solution to this problem. Computations are

divided into two phases. In the first phase, using a Numerical Integration-based algo-

rithm, a velocity profile that satisfies first-order and second-order constraints is com-

puted. Necessarily this profile violates third-order constraints at certain points. In the

second phase, the authors proposed to scan this velocity profile for “jerk-discontinuations”

29

Chapter 2. Literature Review

and fix these points locally. An assumption of this algorithm is that the jerk-limited

solution is similar to the one found in the first phase. However, this might not hold

true in cases that third-order constraints are very restrictive.

The presence of third-order constraints also causes difficulties to optimization-based

approaches: Verscheure et al. [125] showed that the resulting optimization problem is

not convex. The advantages of convex optimization: global optimality, feasibility and

robustness are, therefore, no longer guaranteed. Alternatively, Zhang et al. [130] ap-

proximated jerk constraint by linear functions, effectively convexified the problem.

More recently, Singh and Krishna [118] proposed a representation of velocity profiles

by a class of C∞ functions. This representation ensures the continuities of higher-

order derivatives such as jerk, snap, etc., while still allowing for efficient solutions

via convex optimization. Nonlinear non-convex programming-based approaches were

proposed by several researchers [28, 12, 76, 46]. In general, velocity profiles are ap-

proximated by piece-wise polynomials. Nonlinear programming is then used to find

the locally optimal polynomial coefficients. Remark that since the optimization is

non-convex, there is no guarantee of global optimality.

2.5. Time-optimal Path Tracking

Tracking time-optimally parameterized geometric paths on a real robot is difficult. An

intuitive explanation of this issue is that if the robot is lagged behind, it can never

“catch up” because the reference trajectory is time-optimal. More precisely, note that

time-optimal trajectories are bang-bang [84]: At any moment, the feed-forward torque

of at least one joint is at the joint’s maximum or minimum limits. As a result, there

is no available torque to correct tracking errors or to reject disturbances, resulting

in poor tracking performance. A simple solution, therefore, is to consider a more

conservative torque bounds during planning, “reserving” some torques for tracking

during execution [64]. This approach has the advantage of simplicity, but the resulting

motion could be conservative.

An alternative approach [33] is to modify the time-parameterization online in order

to, for instance, slow down the reference trajectory to allow the robot to catch up. In

fact, the reference time-parameterization is not necessarily time-optimal but can be a

nominal time-parameterization [15]. Researchers have also considered the problem of

purely tracking the geometric path [1, 40] without a pre-defined time-parameterization.

All three problems can be classified as instances of the path tracking (also known as

“ Path-Following”) problem [1], which in many cases is a more natural description

of the control problem, compared to trajectory tracking or set-point tracking [40].

Several applications in control engineering demonstrate this point: Autonomous ve-

30

2.5. Time-optimal Path Tracking

Robot
Tracking

controller

Path

controller
Predefined

path

q, q̇, q̈
τ

s, ṡ, s̈

qd

q̇d

q̈d

[
q

q̇

]

Figure 2.1.: Block diagram of an Online Scaling controller.

hicles [1], ships [36], autonomous aerial vehicles [103], underwater vehicles [39] and

tower cranes [18].

An overview of Dahl and Nielsen [33]’s approach, Online Scaling, is shown in Fig-

ure 2.1. The path tracking controller consists of two sub-controllers: a path controller

and a tracking controller. The path controller generates a time-parameterization s(t)

(“online scaling”) by controlling the path acceleration s̈(t) online, from which a refer-

ence state (qd(t), q̇d(t) is computed using the relations

qd(t) = q(s(t)), q̇d(t) = q′(s(t))ṡ(t).

The tracking controller receives as input the reference state (qd(t), q̇d(t)) and com-

putes the tracking joint torques τ using a computed-torque tracking control law with

fixed Proportional-Derivative gains [120, 79] or a PID control law [92]. Researchers

have proposed many extensions to Online Scaling. Gerelli and Bianco [50, 51, 52]

developed nonlinear discrete-time filters to modify time-parameterizations online that

accounts for additionally joint jerk and torque rate. Recently, Bianco and Ghilardelli

[15] generalized these developments to a new controller architecture that can account

for generic high-order kinematic constraints.

However, the Online Scaling controllers share a common problem: There is no

guarantee that the path controller will always be able to find feasible path accelerations

online. Most papers on Online Scaling recognize this issue. Dahl and Nielsen [33]

proposed to use the nominal path acceleration if there is no feasible control. Bianco

and Gerelli [14] asserted that: “since [the path control] bounds are online evaluated

[. . .], it is not possible to guarantee [. . . that] a feasible solution exists [. . .]”. Yet,

employing arbitrary controls when infeasible results in large path tracking errors, as

demonstrated in the experiments in Chapter 4 and [97]. For time-optimal path tracking,

this feasibility issue is even more serious, because by Pontryagin’s Maximum Principle

at least one joint torque limit is saturated at any time instance.

31

Chapter 2. Literature Review

In the control literature, Model-Prediction Control (MPC) has been proposed to

solve Path Tracking. In this approach, researchers formulated an augmented optimal

control problem, whose state vector includes the robot’s state (q, q̇) and the path con-

troller’s state (s, ṡ) and control includes the robot’s joint torque in addition to the path

acceleration command (τ, s̈) [1, 40, 41]. A known advantage of MPC controllers is

the ability to account for hard constraints on state and control despite the system non-

linear dynamics. Yet, the feasibility issue that Online Scaling controllers face also

exist [40]. To address this issue, Faulwasser and Findeisen [40] proposed to design by

hand terminal sets for the optimal control instances that are solved at each time step.

The resulting closed-loop dynamics can then be proven to be exponentially stable;

however, designing terminal sets by hand is tedious and most likely conservative.

In Chapter 7 of this thesis, I will present an analysis of the feasibility issue that

both existing approaches, Online Scaling and MPC, face. I will show that by applying

robust optimization and the idea proposed in Chapter 3, one can design automatically

terminal sets based on the expected levels of uncertainty.

2.6. Summary

In this chapter, I have given a brief description of the Time-Optimal Path Parametriza-

tion problem. Subsequently I discussed the strengths and weaknesses of current state-

of-art approaches, focusing specifically on the research gap and thereby potential

venue for improvement. In addition I have also discussed the applications of the

Time-Optimal Path Parameterization algorithms in different use contexts, the issue

of third-order constraints and finally the problem of accureate trajectory tracking of

time-optimally parametrized trajectories.

32

Chapter 3.

Time-Optimal Path Parameterization

based on Reachability Analysis

3.1. Introduction

Time-Optimal Path Parameterization (TOPP) is the problem of finding the fastest way

to traverse a path in the configuration space of a robot system while respecting the

system constraints [16]. This classical problem has a wide range of applications in

robotics. In many industrial processes (cutting, welding, machining, 3D printing, etc.)

or mobile robotic applications (driverless cars, warehouse UGVs, aircraft taxiing, etc.),

the robot paths may be predefined, and optimal productivity implies tracking those

paths at the highest possible speed while respecting the process and robot constraints.

From a conceptual viewpoint, TOPP has been used extensively as a subroutine to kin-

odynamic motion planning algorithms [110, 101]. Because of its practical and theoret-

ical importances, TOPP has received considerable attention since its inception in the

1980’s.

In this chapter, we develop a new approach to TOPP based on Reachability Analysis

(RA), a standard concept from control theory. The principal insight is: given an inter-

val of squared velocities Is at some position s on the path, the reachable set Is+∆ (the

set of all squared velocities at the next path position that can be reached from Is follow-

ing admissible controls) and the controllable set Is−∆ (the set of all squared velocities

at the previous path position such that there exists an admissible control leading to a

velocity in Is) can be computed quickly and robustly by solving a few small Linear

Programs (LPs). By recursively computing controllable sets at discretized positions

on the path, one can then extract the time-optimal parameterization in time O(mN),

where m is the number of constraint inequalities and N the discretization grid size,

33

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

0 1 2 3 4 5 6 7 8

(bw)(fw)

s

ṡ

ṡ20
ṡ2N

Figure 3.1.: Time-Optimal Path Parameterization by Reachability Analysis (TOPP-

RA) computes the optimal parameterization in two passes. In the first

pass (backward), starting from the last grid point N , the algorithm com-

putes controllable sets (red intervals) recursively. In the second pass (for-

ward), starting now from grid point 0, the algorithm repeatedly selects the

highest controls such that resulting velocities remain inside the respective

controllable sets.

see Fig. 3.1 for an illustration.

As compared to Numerical Integration (NI)-based methods, the proposed approach

has a better time complexity (Actual computation time is similar for problem instances

with few constraints, and becomes significantly faster for instances with > 20 con-

straints. Note that a robot arm with joint velocity, acceleration and torque constraints

can have up to 30 constraints in the TOPP problem. Most applications have more con-

straints.). More importantly, the proposed method is much easier to implement and

has a success rate of 100%, while state-of-the-art NI-based implementations (e.g., [99])

comprise thousands of lines of code and still report failures on hard problem instances.

As compared to Convex Optimization (CO)-based methods, the proposed approach en-

joys the same level of robustness and ease-of-implementation while being significantly

faster.

Besides the gains in implementation robustness and performance, viewing TOPP

from the proposed new perspective yields the following additional benefits:

• redundantly-actuated systems can be easily handled: there is no need to project

the constraints to the plane (path acceleration × control) at each path position,

as done in [54, 100];

• Admissible Velocity Propagation [101], a recent concept for kinodynamic mo-

tion planning (see Section 3.6.1 for a brief summary), can be derived “for free”;

• robustness to parametric uncertainty, e.g. uncertain coefficients of friction or

uncertain inertia matrices, can be obtained readily.

34

3.2. Problem formulation

More details regarding the benefits as well as definitions of relevant concepts will be

given in Section 3.6.

Organization of the chapter

The rest of the chapter is organized as follows. Section 3.2 formulates TOPP in a gen-

eral setting. Section 3.3 applies Reachability Analysis to the path-projected dynamics.

Section 3.4 presents the algorithm to compute the time-optimal path parameterization.

Section 3.5 reports extensive experimental results to demonstrate the gains in robust-

ness and performance permitted by the new approach. Section 3.6 discusses the addi-

tional benefits mentioned previously: Admissible Velocity Propagation and robustness

to parametric uncertainty. Finally, Section 3.7 offers some concluding remarks and

directions for future research.

3.2. Problem formulation

3.2.1. Generalized constraints

Consider a n-dof robot system, whose configuration is denoted by a n dimensional

vector q ∈ R
n. A geometric path P in the configuration space is represented as

a function q(s)s∈[0,send]. We assume that q(s) is piece-wise C2-continuous. A time

parameterization is a piece-wise C2, increasing scalar function s : [0, T] → [0, send],

from which a trajectory is recovered as q(s(t))t∈[0,T].

In this chapter, we consider generalized second-order constraints of the following

form [54, 100]

A(q)q̈+ q̇⊤B(q)q̇+ f(q) ∈ C(q), where (3.1)

• A,B, f are continuous mappings from R
n to R

m×n,Rn×m×n and R
m respec-

tively;

• C(q) is a convex polytope in R
m.

Implementation remark 1. The above form is the most general in the TOPP literature

to date and can account for many types of kinodynamic constraints, including veloc-

ity and acceleration bounds, joint torque bounds for fully- or redundantly-actuated

robots [100], contact stability under Coulomb friction model [54, 24, 26].

Consider the equation of motion of a fully-actuated manipulator with bounded torques

M(q)q̈+ q̇⊤C(q)q̇+ g(q) = τ, (3.2)

τmin
i ≤ τi(t) ≤ τmax

i , ∀i ∈ [1, . . . , n], t ∈ [0, T], (3.3)

35

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

where M,C,g capture respectively the mass, Coriolis and gravitational terms. This

can be put in the form of Eq. (3.1) with A := M, B := C, f := g and

C(q) := [τmin
1 , τmax

1]× · · · × [τmin
n , τmax

n].

For closed-chain manipulators with bounded torques, one can not use Eq (3.2)

and (3.3) directly to form generalized second-order constraints. One method, pro-

posed in [100], is to use the equation of motion of an open-chain manipulator obtained

by cutting the closed-chain manipulator at specific joints. In particular, let qO denote

the configuration of the open-chain. Suppose both chains have the same motion, [89]

showed that τ is a feasible torque if

MO(qO)q̈O + q̇⊤
OCO(qO)q̇O + gO(qO) = τO,

S⊤
τ = W⊤

τO,

τmin
i ≤ τi(t) ≤ τmax

i , ∀i ∈ [1, . . . , n], t ∈ [0, T],

where S and W are the sentivity matrices, computed from the kinematics of the closed-

chain manipulator and the selection of joints. See [89] for more details.

For legged robots, TOPP under contact-stability constraints with linearized friction

cones was shown to be reducible to a generalized second-order constraint (3.1) [54,

100, 24].

If the friction cones are not linearized, then the set C(q) in (3.1) is still convex,

but not polytopic. The developments in the present chapter that concern reachable

and controllable sets (Section 3.3) are still valid in the convex, non-polytopic case.

The developments on time-optimality (Section 3.4) is however only applicable to the

polytopic case. ♦

Finally, we also consider first-order constraints of the form

Av(q)q̇+ fv(q) ∈ Cv(q),

where the coefficients are matrices of appropriate sizes and Cv(q) is a convex set.

Direct velocity bounds and momentum bounds are examples of first-order constraints.

3.2.2. Projecting the constraints on the path

Differentiating successively q(s), one has

q̇ = q′ṡ, q̈ = q′′ṡ2 + q′s̈, (3.4)

36

3.2. Problem formulation

where the superscript �′ denotes differentiation with respect to the path parameter s,

while the superscript �̇ denotes differentiation with respect to time. From now on, we

shall refer to s, ṡ, s̈ as the position, velocity and acceleration respectively.

Substituting Eq. (3.4) to Eq. (3.1), one transforms generalized second-order con-

straints into constraints on s, ṡ, s̈ as follows

a(s)s̈+ b(s)ṡ2 + c(s) ∈ C(s), where (3.5)

a(s) := A(q(s))q′(s),

b(s) := A(q(s))q′′(s) + q′(s)⊤B(q(s))q′(s),

c(s) := f(q(s)),

C(s) := C(q(s)).
Similarly, first-order constraints are transformed into

av(s)ṡ+ bv(s) ∈ Cv(s), where (3.6)

av(s) := Av(q(s))q′(s),

bv(s) := fv(q(s)),

Cv(s) := Cv(q(s)).

3.2.3. Path discretization

As in the CO-based approach, we divide the interval [0, send] into N segments and

N + 1 grid points

0 =: s0, s1 . . . sN−1, sN := send.

Denote by ui the constant path acceleration over the interval [si, si+1] and by xi the

squared velocity ṡ2i at si. One has the following relation

xi+1 = xi + 2∆iui, i = 0 . . . N − 1, (3.7)

where ∆i := si+1 − si. This relation is obtained by noting that

dṡ2

ds
= 2ṡ

dṡ

ds
= 2s̈ = 2u.

In the sequel, we refer to si as the i-stage, ui and xi as respectively the control and

state at the i-stage. Any sequence x0, u0, . . . , xN−1, uN−1, xN that satisfies the linear

relation (3.7) is referred to as a path parameterization.

A parameterization is admissible if it satisfies the constraints at every points in

[0, send]. One possible way to bring this requirement into the discrete setting is through

37

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

a collocation discretization scheme: for each position si, one evaluates the continuous

constraints and requires the control and state ui, xi to verify

aiui + bixi + ci ∈ Ci, (3.8)

where ai := a(si),bi := b(si), ci := c(si), Ci := C(si).
Since constraints (3.8) are enforced only at a finite number of points, the continuous

constraints (3.5) and (3.6) are not satisfied everywhere along [0, send]
1. Therefore, it is

important to characterize satisfaction errors. We show in Appendix 3.8.4 that the col-

location scheme has satisfaction errors of order O(∆i). Appendix 3.8.4 also presents

another discretization scheme with satisfaction errors of order O(∆2
i) but which in-

volves more variables and constraints than the collocation scheme.

3.3. Reachability Analysis of the path-projected

dynamics

The key to our analysis is that the “path-projected dynamics” (3.7), (3.8) is a discrete-

time linear system with linear control-state inequality constraints. This observation

immediately allows us to take advantage of the set-membership control problem stud-

ied in the Model Predictive Control (MPC) literature [63, 10, 104].

3.3.1. Admissible states and controls

We first need some definitions. Denote the i-stage set of admissible control-state pairs

by

Ωi := {(u, x) | aiu+ bix+ ci ∈ Ci}.

One can see Ωi as the projection of Ci on the (s̈, ṡ2) plane [54]. Since Ci is a polytope,

Ωi is a polygon. Algorithmically, the projection can be obtained by, e.g., the recursive

expansion algorithm [22].

Next, the i-stage set of admissible states is the projection of Ωi on the second axis

Xi := {x | ∃u : (u, x) ∈ Ωi}.

The i-stage set of admissible controls given a state x is

Ui(x) := {u | (u, x) ∈ Ωi}.
1This limitation is not specific to the proposed approach as all NI-based and CO-based algorithms

require discretization at some stages.

38

3.3. Reachability Analysis of the path-projected dynamics

Note that, since Ωi is convex, both Xi and Ui(x) are intervals.

Classic terminologies in the TOPP literature (e.g., Maximum Velocity Curve, α and

β acceleration fields) can be conveniently expressed using these definitions. See the

first part of Appendix 3.8.1 for more details.

Implementation remark 2. For redundantly-actuated manipulators and legged robots

with contact-stability constraints, both NI-based and CO-based algorithms must com-

pute Ωi at each discretized position i along the path, which is costly. Our proposed

approach avoids performing this 2D projection: instead, it will only require a few 1D

projections per discretization step. Furthermore, each of these 1D projections amounts

to a pair of LPs and can be performed extremely quickly. ♦

3.3.2. Reachable sets

A key notion in Reachability Analysis is the i-stage reachable set.

Definition 1 (i-stage reachable set). Consider a set of starting states I0. The i-stage

reachable set Li(I0) is the set of states x ∈ Xi such that there exist a state x0 ∈ I0 and

a sequence of admissible controls u0, . . . , ui−1 that steers the system from x0 to x. ♦

To compute the i-stage reachable set, one needs the following intermediate repre-

sentation.

Definition 2 (Reach set). Consider a set of states I. The reach set Ri(I) is the set of

states x ∈ Xi+1 such that there exist a state x̃ ∈ I and an admissible control u ∈ Ui(x̃)
that steers the system from x̃ to x, i.e.,

x = x̃+ 2∆iu. ♦

Implementation remark 3. Let us note Ωi(I) := {(u, x̃) ∈ Ωi | x̃ ∈ I}. If I is convex,

then Ωi(I) is convex as it is the intersection of two convex sets. Next,Ri(I) can be seen

as the intersection of the projection of Ωi(I) onto a line and the interval Xi+1. Thus,

Ri(I) is an interval, hence defined by its lower and upper bounds (x−, x+), which can

be computed as follows

x− := min
(u,x̃)∈Ωi(I), x−∈Xi+1

(x̃+ 2∆iu),

x+ := max
(u,x̃)∈Ωi(I), x+∈Xi+1

(x̃+ 2∆iu).

Since Ωi(I) is a polygon, the above equations constitute two LPs. Note finally that

39

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

there is no need to compute explicitly Ωi(I), since one can write directly

x+ := max
(u,x̃)∈R2

(x̃+ 2∆iu),

subject to: aiu+ bix̃+ ci ∈ Ci, x̃ ∈ I and x+ ∈ Xi+1,

and similarly for x−. ♦

The i-stage reachable set can be recursively computed by

L0(I0) = I0 ∩ X0,

Li(I0) = Ri−1(Li−1(I0)).
(3.9)

Implementation remark 4. If I0 is an interval, then by recursion and by application of

Implementation remark 3, all the Li are intervals. Each step of the recursion requires

solving two LPs for computing Ri−1(Li−1(I0)). Therefore, Li can be computed by

solving 2i+ 2 LPs. ♦

The i-stage reachable set may be empty, which implies that the system cannot evolve

without violating constraints: the path is not time-parameterizable. One can also note

that

Li(I0) = ∅ =⇒ ∀j ≥ i, Lj(I0) = ∅.

3.3.3. Controllable sets

Controllability is the dual notion of reachability, as made clear by the following defi-

nitions.

Definition 3 (i-stage controllable set). Consider a set of desired ending states IN . The

i-stage controllable set Ki(IN) is the set of states x ∈ Xi such that there exist a state

xN ∈ IN and a sequence of admissible controls ui, . . . , uN−1 that steers the system

from x to xN . ♦

The dual notion of “reach set” is that of “one-step” set.

Definition 4 (One-step set). Consider a set of states I. The one-step setQi(I) is the set

of states x ∈ Xi such that there exist a state x̃ ∈ I and an admissible control u ∈ Ui(x)
that steers the system from x to x̃, i.e.

x̃ = x+ 2∆iu. ♦

The i-stage controllable set can now be computed recursively by

KN(IN) = IN ∩ XN ,

Ki(IN) = Qi(Ki+1(IN)).
(3.10)

40

3.4. TOPP by Reachability Analysis

Implementation remark 5. Similar to Implementation remark 4, every one-step set

Qi(I) is an interval, whose lower and upper bounds (x−, x+) can be computed as

follows

x+ := max
(u,x)∈R2

x,

subject to: aiu+ bix+ ci ∈ Ci and x+ 2∆iu ∈ I,

and similarly for x−. Thus, computing the i-stage controllable set will require solving

2(N − i) + 2 LPs. ♦

The i-stage controllable set may be empty, in that case, the path is not time-parameterizable.

One also has

Ki(IN) = ∅ =⇒ ∀j ≤ i, Kj(IN) = ∅.

3.4. TOPP by Reachability Analysis

3.4.1. Algorithm

Armed with the notions of reachable and controllable sets, we can now proceed to

solving the TOPP problem. The Reachability-Analysis-based TOPP algorithm (TOPP-

RA) is given in Algorithm 1 below and illustrated in Fig. 3.1.

Algorithm 1: TOPP-RA

Input : Path P , starting and ending velocities ṡ0, ṡN
Output: Parameterization x∗

0, u
∗
0, . . . , u

∗
N−1, x

∗
N

/* Backward pass: compute the controllable sets

*/

1 KN := {ṡ2N}
2 for i ∈ [N − 1 . . . 0] do

3 Ki := Qi(Ki+1)
4 if K0 = ∅ or ṡ20 /∈ K0 then

5 return Infeasible

/* Forward pass: select controls greedily */

6 x∗
0 := ṡ20

7 for i ∈ [0 . . . N − 1] do

8 u∗
i := max u, subject to: x∗

i + 2∆iu ∈ Ki+1 and (u, x∗
i) ∈ Ωi

9 x∗
i+1 := x∗

i + 2∆iu
∗
i

The algorithm proceeds in two passes. The first pass goes backward: it recursively

computes the controllable sets Ki({ṡ2N}) given the desired ending velocity ṡN , as de-

scribed in Section 3.3.3. If any of the controllable sets is empty or if the starting state

ṡ20 is not contained in the 0-stage controllable set, then the algorithm reports failure.

Otherwise, the algorithm proceeds to a second, forward, pass. Here, the optimal

states and controls are constructed greedily: at each stage i, the highest admissible

41

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

control such that the resulting next state belongs to the (i+1)-stage controllable set is

selected.

Note that one can construct a “dual version” of TOPP-RA as follows: (i) in a forward

pass, recursively compute the i-stage reachable sets, i ∈ [0, . . . , N]; (ii) in a backward

pass, greedily select, at stage i, the lowest control such that the previous state belongs

to the (i− 1)-stage reachable set.

In the following sections, we show the correctness and optimality of the algorithm

and give a detailed complexity analysis.

3.4.2. Correctness of TOPP-RA

We show that TOPP-RA is correct in the sense of the following theorem.

Theorem 1. Consider a discretized TOPP instance. TOPP-RA returns an admissible

parameterization solving that instance whenever one exists, and reports Infeasible

otherwise.

Proof. (1) We first show that, if TOPP-RA reports Infeasible, then the instance

is indeed not parameterizable. By contradiction, assume that there exists an admissi-

ble parameterization ṡ20 = x0, u0, . . . , uN−1, xN = ṡ2N . We now show by backward

induction on i that Ki contains at least xi.

Initialization: KN contains xN by construction.

Induction: Assume that Ki contains xi. Since the parameterization is admissible,

one has xi = xi−1+2∆iui−1 and (ui−1, xi−1) ∈ Ωi−1. By definition of the controllable

sets, xi−1 ∈ Ki−1.

We have thus shown that none of the Ki is empty and that K0 contains at least

x0 = ṡ20, which implies that TOPP-RA cannot report Infeasible.

(2) Assume now that TOPP-RA returns a sequence (x∗
0, u

∗
0, . . . , u

∗
N−1, x

∗
N). One

can easily show by forward induction on i that the sequence indeed constitutes an

admissible parameterization that solves the instance.

3.4.3. Asymptotic optimality of TOPP-RA

We show the following result: as the discretization step size goes to zero, the traversal

time of the parameterization returned by TOPP-RA converges to the optimal value.

Unsurprisingly, the main difficulty in proving asymptotic optimality comes from the

existence of zero-inertia points [94, 112, 99]. Note however that this difficulty does

not affect the robustness or the correctness of the algorithm.

To avoid too many technicalities, we make the following assumption.

42

3.4. TOPP by Reachability Analysis

Assumption 1 (and definition). There exist piece-wise C1-continuous functions ã(s)s∈[0,1],

b̃(s)s∈[0,1], c̃(s)s∈[0,1] such that for all i ∈ {0, . . . , N}, the set of admissible control-

state pairs is given by

Ωi = {(u, x) | uã(si) + xb̃(si) + c̃(si) ≤ 0}.

Augment ã, b̃, c̃ into ā, b̄, c̄ by adding two inequalities that express the condition x+

2∆iu ∈ Ki+1. The set of admissible and controllable control-state pairs is then given

by

Ωi ∩ (R×Ki) = {(u, x) | uā(si) + xb̄(si) + c̄(si) ≤ 0}. ♦

The above assumption is easily verified in the canonical case of a fully-actuated

manipulator subject to torque bounds tracking a smooth path. It allows us to next

conveniently define zero-inertia points.

Definition 5 (Zero-inertia points). A point s• constitutes a zero-inertia point if there is

a constraint k such that ā(s•)[k] = 0. ♦

We have the following theorem, whose proof is given in Appendix 3.8.2 (to simplify

the notations, we consider uniform step sizes ∆0 = · · · = ∆N−1 = ∆).

Theorem 2. Consider a TOPP instance without zero-inertia points. There exists a ∆thr

such that if ∆ < ∆thr, then the parameterization returned by TOPP-RA is optimal.

The key hypothesis of this theorem is that there is no zero-inertia points. In practice,

however, zero-inertia points are unavoidable and in fact constitute the most common

type of switch points [99]. The next theorem, whose proof is given in Appendix 3.8.3,

establishes that the sub-optimality gap converges to zero with step size.

Theorem 3. Consider a TOPP instance with a zero-inertia point at s•. Denote by

J∗ the cost of the parameterization returned by TOPP-RA
∑N+1

i=0
∆√
x∗
i

and by J† the

minimum cost at the same step size. Then one has

J∗ − J† = O(∆).

This theorem implies that, by reducing the step size, the cost of the parameterization

returned by TOPP-RA can be made arbitrarily close to the minimum cost.

3.4.4. Complexity analysis

We now perform a complexity analysis of TOPP-RA and compare it with NI and CO-

based methods. For simplicity, we shall restrict the discussion to fully-actuated ma-

nipulators (the redundantly-actuated case actually brings an additional advantage to

TOPP-RA, see Implementation remark 3).

43

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

Assume that there are m constraint inequalities and that the path discretization grid

size is N . As a large part of the computation time is devoted to solving LPs, we need

a good estimate of the practical complexity of this operation. Consider a LP with ν

optimization variables and m inequality constraints. Different LP methods (ellipsoidal,

simplex, active sets, etc.) have different complexities. For the purpose of this section,

we consider the best practical complexity, which is realized by the simplex method, in

O(ν2m) [20].

• TOPP-RA: The LPs considered here have 2 variables and m + 2 inequalities.

Since one needs to solve 3N such LPs, the complexity of TOPP-RA is O(mN).

• Numerical integration approach: The dominant component of this approach, in

terms of time complexity, is the computation of the Maximum Velocity Curve

(MVC). In most TOPP-NI implementations to date, the MVC is computed, at

each discretized path position, by solving O(m2) second-order polynomials [16,

94, 119, 112, 99], which results in an overall complexity of O(m2N).

• Convex optimization approach: This approach formulates the TOPP problem as

a single large convex optimization program with O(N) variables and O(mN)

inequality constraints. In the fastest implementation we know of, the author

solves the convex optimization problem by solving a sequence of linear pro-

grams (SLP) with the same number of variables and inequalities [54]. Thus, the

time complexity of this approach is O(KmN3), where K is the number of SLP

iterations.

This analysis shows that TOPP-RA has the best theoretical complexity. The next

section experimentally assesses this observation.

3.5. Simulations

We implement TOPP-RA in Python. All LPs are solved with qpOASES [42]. Experi-

ments were performed on a machine running Ubuntu with an Intel i7-4770(8) 3.9GHz

CPU and 8Gb RAM. The implementation and test cases are available at https:

//github.com/hungpham2511/toppra.

3.5.1. Experiment 1: Pure joint velocity and acceleration

bounds

In this experiment, we compare TOPP-RA against TOPP-NI – the fastest known im-

plementation of TOPP, which is based on the NI approach [99]. For simplicity, we

44

https://github.com/hungpham2511/toppra
https://github.com/hungpham2511/toppra

3.5. Simulations

consider pure joint velocity and acceleration bounds, which involve the same diffi-

culty as any other types of kinodynamic constraints, as far as TOPP is concerned.

Effect of the number of constraint inequalities

We considered random geometric paths with varying dimensions n ∈ [2, 60]. Each

path was generated as follows: 5 random waypoints were sampled, then interpolated

by cubic spline interpolation. For each path, velocity and acceleration bounds were

also randomly chosen such that the bounds contain zero. This ensures that all gen-

erated TOPP instances are feasible. Each instance thus has m = 2n + 2 constraint

inequalities: 2n inequalities corresponding to acceleration bounds (no pruning was ap-

plied, contrary to [54]) and 2 inequalities corresponding to velocity bounds (the joint

velocity bounds could be immediately pruned into one lower and one upper bound

on ṡ2). According to the complexity analysis of Section 3.4.4, we consider the num-

ber of inequalities, rather than the dimension, as independent variable. Finally, the

discretization grid size was chosen as N = 500.

Fig. 3.2 shows the time-parameterizations and the resulting trajectories produced

by TOPP-RA and TOPP-NI on an instance with (n = 6,m = 14). One can observe

that the two algorithms produced nearly identical results, hinting at the correctness of

TOPP-RA.

5

0

5

50

25

0

25

50

0.0

0.2

0.4

0.6

0.0 0.5 1.0 1.5 2.0 2.5

5

0

5

0.0 0.5 1.0 1.5 2.0 2.5
50

25

0

25

50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

A B C

q̇
(t
)(
ra
d
s−

1
)

q̇
(t
)(
ra
d
s−

1
)

q̈
(t
)(
ra
d
s−

2
)

q̈
(t
)(
ra
d
s−

2
)

ṡ(
s)
(s

−
1
)

ṡ(
s)
(s

−
1
)

Time (s) Time (s) Path position

T
O

P
P

-R
A

T
O

P
P

-N
I

Figure 3.2.: Time-optimal parameterization of a 6-dof path under velocity and accel-

eration bounds (m = 14 constraint inequalities and N = 500 grid points).

TOPP-RA and TOPP-NI produce nearly identical results. (A): joint ve-

locities. (B): joint accelerations. (C): velocity profiles in the (s, ṡ) plane.

Note the small chattering in the joint accelerations produced by TOPP-NI,

which is an artifact of the integration process. This chattering is absent

from the TOPP-RA profiles.

Fig. 3.3 shows the computation time for TOPP-RA and TOPP-NI, excluding the

“setup” and “extract trajectory” steps (which takes much longer in TOPP-NI than in

45

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

TOPP-RA). The experimental results confirm our theoretical analysis in that the com-

plexity of TOPP-RA is in linear in m while that of TOPP-NI is quadratic in m. In

terms of actual computation time, TOPP-RA becomes faster than TOPP-NI as soon as

m ≥ 22.

Perhaps even more importantly than mere computation time, TOPP-RA was ex-

tremely robust: it maintained 100% success rate over all instances, while TOPP-NI

struggled with instances with many inequality constraints (m ≥ 40), see Fig. 3.4.

Since all TOPP instances considered here were feasible, an algorithm failed when it

failed to return a parameterization.

Table 3.1 reports the different components of the computation time. In addition to

TOPP-RA and TOPP-NI, we considered TOPP-RA-intp. This variant of TOPP-RA

employs the first-order interpolation scheme (see Appendix 3.8.4) to discretize the

constraints, instead of the collocation scheme introduced in Section 3.2.3.

6 22 42 62 82 102 122
0.0

0.1

0.2

0.3

0.4

0.5

0.6 TOPP-RA
TOPP-NI

No. of inequalities

S
o

lv
e

ti
m

e
p

er

g
ri

d
p

o
in

t
(m

s)

Figure 3.3.: Solve time per grid point of TOPP-RA (solid blue) and TOPP-NI (solid

orange), excluding the “setup” and “extract trajectory” steps, as a func-

tion of the number of constraint inequalities. Confirming our theoretical

complexity analysis, time complexity of TOPP-RA is linear in the num-

ber of constraint inequalities m (linear fit in dashed green), while that of

TOPP-NI is quadratic in m (quadratic fit in dashed red). In terms of ac-

tual computation time, TOPP-RA becomes faster than TOPP-NI as soon

as m ≥ 30.

Effect of discretization grid size

Discretization grid size (or its inverse, discretization step) is an important parameter

for both TOPP-RA and TOPP-NI as it affects running time, success rate and solution

quality, as measured by constraint satisfaction error and sub-optimality. Here, we

assess the effect of grid size on success rate and solution quality. Remark that, based

on our complexity analysis in Section 3.4.4, running time depends linearly on grid size

in both algorithms.

46

3.5. Simulations

Table 3.1.: Breakdown of TOPP-RA, TOPP-RA-intp and TOPP-NI total computation

time to parameterize a path discretized with N = 500 grid points, subject

to m = 30 inequalities.

Time (ms)

TOPP-RA TOPP-RA-intp TOPP-NI

setup 1.0 1.5 123.6

solve TOPP 26.1 29.1 28.3

backward pass 16.5 19.9

forward pass 9.6 9.2

extract trajectory 2.7 2.7 303.4

total 29.8 33.3 455.3

6 22 42 62 82 102 122
0 %

25 %

50 %

75 %

100 %
TOPP-RA TOPP-NI

S
u

cc
es

s
ra

te

No. of inequalities

Figure 3.4.: Success rate for TOPP-RA and TOPP-NI. TOPP-RA enjoys consistently

100% success rate while TOPP-NI reports failure for more complex prob-

lem instances (m ≥ 40).

47

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

90 %
92 %
94 %
96 %
98 %

100 %

10 4

10 3

10 2

10 1

100 200 300 400 500 600 700 800 900 1000

10 3

10 2

TOPP-RA TOPP-RA-intp TOPP-NI

Grid size

S
u

cc
es

s
ra

te
(%

)
R

el
at

iv
e

co
n

-

st
ra

in
t

sa
t.

er
ro

r
|J

∗
−

J
†
|

A

B

C

Figure 3.5.: (A): effect of grid size on success rate. (B): effect of grid size on rela-

tive constraint satisfaction error, defined as the ratio between the error and

the respective bound. TOPP-RA-intp returned solutions that are orders of

magnitude better than TOPP-RA and TOPP-NI. (C): effect of grid size

on difference between the average solution’s cost and the optimal cost,

which is approximated by solving TOPP-RA-intp with N = 10000. So-

lutions produced by TOPP-RA-intp had higher costs than those produced

by TOPP-RA as those instances were more highly constrainted.

We considered different grid sizes N ∈ [100, 1000]. For each grid size, we gener-

ated and solved 100 random TOPP instances; each instance consists of a random path

with n = 14 subject to random kinematic constraints, as in the previous experiment.

Fig. 3.5-A shows success rates versus grid sizes. One can observe that TOPP-RA and

TOPP-RA-intp maintained 100% success rate across all grid sizes, while TOPP-NI

reported two failures at N = 100 and N = 1000.

Next, to measure the effect of grid size on solution quality, we looked at the relative

greatest constraint satisfaction errors, defined as the ratio between the errors, whose

definition is given in Appendix 3.8.4, and the respective bounds. For each instance,

we sampled the resulting trajectories at 1ms and computed the greatest constraint

satisfaction errors by comparing the sampled joint accelerations and velocities to their

respective bounds. Then, we averaged instances with the same grid size to obtain the

average error for each N .

Fig. 3.5-B shows the average relative greatest constraint satisfaction errors of the

48

3.5. Simulations

three algorithms with respect to grid size. One can observe that TOPP-RA and TOPP-

NI had constraint satisfaction errors of the same order of magnitude for N < 500,

while TOPP-RA demonstrated better quality for N ≥ 500. TOPP-RA-intp produced

solutions with much higher quality. This result confirms our error analysis of different

discretization schemes in Appendix 3.8.4 and demonstrates that the interpolation dis-

cretization scheme is better than the collocation scheme whenever solution quality is

concerned.

Fig. 3.5-C shows the average difference between the costs of solutions returned by

TOPP-RA and TOPP-RA-intp with the true optimal cost, which was approximated

by running TOPP-RA-intp with grid size N = 10000. One can observe that both

algorithms are asymptotically optimal. Even more importantly, the differences were

relatively small even at coarse grid sizes.

3.5.2. Experiment 2: Legged robot in multi-contact

Here we consider the TOPP problem for a 50-dof legged robot subject to joint torque

bounds and contact stability constraints with linearized friction cones.

Formulation

We now give a brief description of our formulation, for more details, refer to [54, 100].

Let wi denote the net contact wrench (force-torque pair) exerted on the robot by the i-

th contact at point pi. Using the linearized friction cone, one obtains the set of feasible

wrenches as a polyhedral cone

{wi | Fiwi ≤ 0},

for some matrix Fi. This matrix can be found using the Cone Double Description

method [44, 26]. Combining with the equation governing rigid-body dynamics, one

obtains the full dynamic feasibility constraint as follows

M(q)q̈+q̇⊤C(q)q̇+ g(q) = τ +
∑

i=1,2

Ji(q)
⊤wi,

Fiwi ≤ 0,

τmin ≤ τ ≤ τmax,

where Ji(q) is the wrench Jacobian. The convex set C(q) in Eq. (3.1) can now be

identified as a multi-dimensional polyhedron.

We considered a simple swaying motion: the robot stands with both feet lie flat on

two uneven steps and shift its body back and forth, see Fig. 3.6. The coefficient of fric-

49

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

tion was set to µ = 0.5. Start and end path velocities were set to zero. Discretization

grid size was N = 100. The number of constraint inequalities was m = 242.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

0

200

400

600 Fx
Fy
Fz

A

B

C

C
o

n
ta

ct

fo
rc

e
(N

)
P

at
h

v
el

.
(s

−
1
)

Time (s)

Path position

0.0 s 0.57 s 0.82 s

1.2 s 1.7 s 2.04 s

Figure 3.6.: Time-parameterization of a legged robot trajectory under joint torque

bounds and multi-contact friction constraints. (A): Snapshots of the re-

timed motion. (B): Optimal velocity profile computed by TOPP-RA (blue)

and upper and lower limits of the controllable sets (dashed red). (C): The

optimal joint torques and contact forces are obtained “for free” as slack

variables of the optimization programs solved in the forward pass. Net

contact forces for the left foot are shown in colors and those for the right

foot are shown in transparent lines.

Results

Excluding computations of dynamic quantities, TOPP-RA took 267ms to solve the

TOPP instance. The parameterization is shown in Fig. 3.6. Computation time is given

in Table 3.2.

Compared to TOPP-NI and TOPP-CO, TOPP-RA had significantly better computa-

tion time, chiefly because both existing methods require an expensive polytopic pro-

jection step. Indeed, [54] reported projection time of 2.4 s for a similar sized problem,

which is significantly more expensive than TOPP-RA computation time. Notice that

50

3.5. Simulations

in [54], computing the parameterization takes an addition 2.46 s which leads to a total

computation time of 4.86 s.

To make a more accurate comparison, we implement the pipeline given in [100] to

solve the TOPP instance

1. project the constraint polyhedron Ci onto the path using Bretl’s polygon recur-

sive expansion algorithm [22];

2. parameterize the resulting problem using TOPP-NI.

This pipeline turned out to be much slower than TOPP-RA. We found that the num-

ber of LPs the projection step solved was nearly 8 times the number of LPs solved by

TOPP-RA (which is fixed at 3N = 300). For a more detailed comparison of computa-

tion time and parameters of the LPs, refer to Table 3.2.

Obtaining joint torques and contact forces “for free”

Another interesting feature of TOPP-RA is that the algorithm can optimize and obtain

joint torques and contact forces “for free” without additional processing. Concretely,

since joint torques and contact forces are slack variables, one can simply store the op-

timal slack variable at each step and obtain a trajectory of feasible torques and forces.

To optimize the torques and forces, we can modify the i-th step of the forward pass to

solve the following quadratic program (QP)

min − u+ ǫ‖(w, τ)‖22
s.t. x = xi

(u, x) ∈ Ωi

x+ 2∆iu ∈ Ki+1,

where ǫ is a positive scalar. Recall that w denotes the contact wrenches and τ denotes

the joint torques. Figure 3.6’s lower plot shows computed contact wrench for the left

leg. We note that both existing approaches, TOPP-NI and TOPP-CO are not able to

produce joint torques and contact forces readily as they “flatten” the constraint polygon

in the projection step.

In fact, the above formulation suggests that time-optimality is simply a specific

objective cost function (linear) of the more general family of quadratic objectives.

Therefore, one can in principle depart from time-optimality in favor of more realis-

tic objective such as minimizing torque while maintaining a certain nominal velocity

51

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

xnorm as follow

min ‖xi + 2∆iu− xnorm‖22 + ǫ‖(w, τ)‖22
s.t. x = xi

(u, x) ∈ Ωi

x+ 2∆iu ∈ Ki+1.

Finally, we observed that the choice of path discretization scheme has noticeable

effects on both computational cost and quality of the result. In general, TOPP-RA-intp

produced smoother trajectories and better (lower) constraint satisfaction error at the

cost of longer computation time. On the other hand, TOPP-RA was faster but produced

trajectories with jitters 2 near dynamic singularities [99] and had higher constraint

satisfaction error.

Table 3.2.: Computation time (ms) and internal parameters comparison between

TOPP-RA, TOPP-RA-intp and TOPP-NI in Experiment 2.

TOPP-RA TOPP-RA-intp TOPP-NI

Time (ms)

comp. dynamic quantities 181.6 193.6 281.6

polytopic projection 0.0 0.0 3671.8

solve TOPP 267.0 1619.0 335.0

extract trajectory 3.0 3.0 210.0

total 451.6 1815.6 4497.8

Parameters

joint torques / yes yes no

contact forces avail.

No. of LP(s) solved 300 300 2110

No. of variables 64 126 64

No. of constraints 242 476 242

Constraints sat. error O(∆) O(∆2) O(∆)

3.6. Additional benefits of TOPP by Reachability

Analysis

We now elaborate on the additional benefits provided by the Reachability Analysis

approach to TOPP.

2Experiments prove that singularities do not cause failures for TOPP-RA. The jitters can usually be

removed easily,.i.e, using cubic splines interpolation to smooth the parametrization locally around

jitters.

52

3.6. Additional benefits of TOPP by Reachability Analysis

3.6.1. Admissible Velocity Propagation

Admissible Velocity Propagation (AVP) is a recent concept for kinodynamic motion

planning [101]. Specifically, given a path and an initial interval of velocities, AVP

returns exactly the interval of all the velocities the system can reach after traversing

the path while respecting the system kinodynamic constraints. Combined with exist-

ing geometric path planners, such as RRT [65], this can be advantageously used for

kinodynamic motion planning: at each tree extension in the configuration space, AVP

can be used to guarantee the eventual existence of admissible path parameterizations.

Suppose that the initial velocity interval is I0. It can be immediately seen that,

what is computed by AVP is exactly the reachable set LN(I0) (cf. Section 3.3.2).

Furthermore, what is computed by AVP-Backward [70] given a desired final velocity

interval IN is exactly the controllable set K0(IN) (cf. Section 3.3.3). In terms of

complexity, RN(I0) and K0(IN) can be found by solving respectively 2N + 2 and

2N + 2 LPs. We have thus re-derived the concept of AVP at no cost.

3.6.2. Robustness to parametric uncertainty

In most works dedicated to TOPP, including the development of the present chapter up

to this point, the parameters appearing in the dynamics equations and in the constraints

are supposed to be exactly known. In reality, those parameters, which include inertia

matrices or payloads in robot manipulators, or feet positions or friction coefficients in

legged robots, are only known up to some precision. An admissible parameterization

for the nominal values of the parameters might not be admissible for the actual values,

and the probability of constraints violation is even higher in the optimal parameteriza-

tion, which saturates at least one constraint at any moment in time.

TOPP-RA provides a natural way to handle parametric uncertainties. Assume that

constraints appear in the following form

aiu+ bix+ ci ∈ Ci,
∀(ai,bi, ci, Ci) ∈ Ei,

(3.11)

where Ei contains all the possible values that the parameters might take at path position

si.

Implementation remark 6. Consider for instance the manipulator with torque bounds

of equation (3.2). Suppose that, at path position i, the inertia matrix is uncertain, i.e.,

that it might take any values Mi ∈ B(Mnominal
i , ǫ), where B(Mnominal

i , ǫ) denotes the

ball of radius ǫ centered around Mnominal
i for the max norm. Then, the first component

of Ei is given by {Miq
′(si) |Mi ∈ B(Mnominal

i , ǫ)}, which is a convex set.

53

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

In legged robots, uncertainties on feet positions or on friction coefficients can be

encoded into a “set of sets”, in which Ci can take values. ♦

TOPP-RA can handle this situation by suitably modifying its two passes. Before

presenting the modifications, we first give some definitions. Denote the i-stage set of

robust admissible control-state pairs by

Ω̂i := {(u, x) | Eq. (3.11) holds}.

The sets of robust admissible states X̂i and robust admissible controls Ûi(x) can be

defined as in Section 3.3.1.

In the backward pass, TOPP-RA computes the robust controllable sets, whose defi-

nition is given below.

Definition 6 (i-stage robust controllable set). Consider a set of desired ending states

IN . The i-stage robust controllable set K̂i(IN) is the set states x ∈ X̂i such that there

exists a state xN ∈ IN and a sequence of robust admissible controls ui, . . . , uN−1 that

steers the system from x to xN . ♦

To compute the robust controllable sets, one needs the robust one-step set.

Definition 7 (Robust one-step set). Consider a set of states I. The robust one-step

set Q̂i(I) is the set of states x ∈ X̂i such that there exists a state x̃ ∈ I and a robust

admissible control u ∈ Ûi(x) that steers the system from x to x̃. ♦

Finally, in the forward pass, the algorithm selected the greatest robust admissible

control at each stage.

Implementation remark 7. Computing the robust one-step set and the greatest robust

admissible control involves solving LPs with uncertain constraints of the form (3.11).

In the mathematical optimization literature, they are known as “Robust Linear Pro-

grams”, and specific methods have been developed to handle them efficiently, when

the robust constraints are [6]

1. polyhedra;

2. ellipsoids;

3. Conic Quadratic re-presentable (CQr) sets.

The first case can be treated as normal LPs with appropriate slack variables, while the

last two cases are explicit Conic Quadratic Program (CQP). For more information on

this conversion, refer to the first and second chapters of [6]. ♦

54

3.7. Summary

3.7. Summary

We have presented a new approach to solve the Time-Optimal Path Parameterization

(TOPP) problem based on Reachability Analysis (TOPP-RA). The key insight is to

compute, in a first pass, the sets of controllable states, for which admissible controls

allowing to reach the goal are guaranteed to exist. Time-optimality can then be ob-

tained, in a second pass, by a greedy strategy. We have shown, through theoretical

analyses and extensive experiments, that the proposed algorithm is extremely robust

(100% success rate) and competitive in terms of computation time as compared to the

fastest known TOPP implementation [99], and produces solutions with high quality.

Finally, the new approach yields additional benefits: no need for polytopic projection

in the redundantly-actuated case, Admissible Velocity Projection, and robustness to

parameter uncertainty.

A recognized disadvantage of the classical TOPP formulation is that the time-optimal

trajectory contains hard acceleration switches, corresponding to infinite jerks. Solving

TOPP subject to jerk bounds, however, is not possible using the CO-based approach

as the problem becomes non-convex [125]. Some prior works proposed to either ex-

tend the NI-based approach [124, 96] or to represent the parameterization as a spline

and optimize directly over the parameter space [28, 91]. Exploring how Reachabil-

ity Analysis can be extended to handle jerk bounds is another direction of our future

research.

Similar to the CO-based approach, Reachability Analysis can only be applied to

instances with convex constraints [125]. Yet in practice, it is often desirable to consider

in addition non-convex constraints, such as joint torque bounds with viscous friction

effect. Extending Reachability Analysis to handle non-convex constraints is another

important research question.

3.8. Additional remarks and proofs

3.8.1. Relation between TOPP-RA and TOPP-NI

TOPP-RA and TOPP-NI are subtly related: they compute the same velocity profiles,

but in different orders. Let us first recall some terminologies from the literature of the

NI-based approach to TOPP (see [99] for more details):

• Maximum Velocity Curve (MVC): mapping from path position to the highest

dynamically feasible path velocity;

• integrate forward (or backward) following α (or β): for each tuple (s, ṡ), α(s, ṡ)

55

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

and β(s, ṡ) are the smallest and largest controls respectively; forward and back-

ward integrations are done following the respective controls;

• α → β switch points: there are three kinds of α → β switch points: tangent,

singular, discontinuous;

• ṡbeg, ṡend: starting and ending velocities at sbeg and send.

Note that α, β functions recalled above are different from the functions defined in

Definition 8 (Appendix 3.8.2). The formers maximize over the set of feasible states

while the laters maximize over the set of feasible and controllable states.

TOPP-NI proceeds as follows:

1. determine the α→ β switch points;

2. from each α → β switch point, integrate forward following β and backward

following α to obtain the Limiting Curves (LCs);

3. take the lowest value of the LCs at each position to form the Concatenated Lim-

iting Curve (CLC);

4. from (0, ṡbeg) integrate forward following β; from (send, ṡend) integrate back-

ward following α until their intersections with the CLC; then return the com-

bined β − CLC− α profile.

We now rearrange the above steps into a backward pass and a forward pass in order

to highlight the relation with TOPP-RA.

Backward pass

1) determine the α→ β switch points;

2a) from each α → β switch point, integrate backward following α to obtain the

Backward Limiting Curves (BLCs);

2b) from the point (send, ṡend) integrate backward following α to obtain the last

BLC;

3) take the lowest value of the BLC’s and the MVC to form the upper boundary of

the controllable sets.

Forward pass

4a) set the current point to the point (sbeg, ṡbeg);

56

3.8. Additional remarks and proofs

4b) repeat until the current point is the point (send, ṡend), from the current point

integrate forward following β until hitting a BLC, set the corresponding switch

point as the new current point.

See Fig. 3.7 for a visualization of the rearrangement.

α-profile
β-profile

MVC

ṡend

{ṡ2end}

ṡbeg

{ṡ2beg}

ṡ

ṡ2

s

s

α → β
switch point

A

B

(3)
(1)

(2)

(4)

(3) (2)
(4)

(1)

Figure 3.7.: TOPP-NI (A) and TOPP-RA (B) compute the time-optimal path parame-

terization by creating similar profiles in different ordering. (1,2,3,4) is the

order in which TOPP-RA computes the profiles.

The key idea in this rearrangement is to not compute β profiles immediately for

each switch point, but delay until needed. The resulting algorithm is almost identical

to TOPP-RA except for the following points

• since TOPP-RA does not require explicit computation of the switch points (they

are implicitly identified by computing the controllable sets) the algorithm avoids

one of the major implementation difficulties of TOPP-NI;

• TOPP-RA requires additional post-processing to remove jitters. See the footnote

in Section 3.5.2 for more details.

3.8.2. Proof of optimality (case with no zero-inertia point)

The optimality of TOPP-RA relies on the properties of the maximal transition func-

tions.

Definition 8. At a given stage i, the minimal and maximal controls at state x are

57

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

defined by 3

αi(x) := min{u | āiu+ b̄ix+ c̄i ≤ 0},
βi(x) := max{u | āiu+ b̄ix+ c̄i ≤ 0}.

The minimal and maximal transition functions are defined by

T α
i (x) := x+ 2∆αi(x), T β

i (x) := x+ 2∆βi(x). ♦

The key observation is: if the maximal transition function is non-decreasing, then

the greedy strategy of TOPP-RA is optimal. This is made precise by the following

lemma.

Lemma 1. If for all i, the maximal transition function is non-decreasing, i.e.,

∀x, x′′ ∈ Ki, x ≥ x′ =⇒ T β
i (x) ≥ T β

i (x
′),

then TOPP-RA produces the optimal parameterization.

Proof. Consider an arbitrary admissible parameterization ṡ20 = x0, u0, . . . , uN−1, xN =

ṡ2N . We show by induction that, for all i = 0, . . . , N , x∗
i ≥ xi, where the sequence

(x∗
i) denotes the parameterization returned by TOPP-RA (Algorithm 1).

Initialization: One has x0 = ṡ20 = x∗
0, so the assertion is true at i = 0.

Induction: Steps 8 and 9 of Algorithm 1 can in fact be rewritten as follows

x∗
i+1 := min{T β

i (x
∗
i),max(Ki+1)}.

By the induction hypothesis, one has x∗
i ≥ xi. Since x∗

i , xi ∈ Ki, one has

T β
i (x

∗
i) ≥ T β

i (xi) ≥ xi+1.

Thus,

min{T β
i (x

∗
i),max(Ki+1)} ≥ min{xi+1,max(Ki+1)}, i.e.

x∗
i+1 ≥ xi+1.

We have shown that at every stage the parameterization x∗
0, . . . , x

∗
N has a higher veloc-

ity than that of any admissible parameterization, hence it is optimal.

Unfortunately, the maximal transition function is not always non-decreasing, as

made clear by the following lemma.

3These definitions differ from the common definitions of maximal and minimal controls. See Ap-

pendix A for more details.

58

3.8. Additional remarks and proofs

Lemma 2. Consider a stage i, there exists xβ
i such that, for all x, x′ ∈ Ki

x ≤ x′ ≤ xβ
i =⇒ T β

i (x) ≤ T β
i (x

′),

xβ
i ≤ x ≤ x′ =⇒ T β

i (x) ≥ T β
i (x

′).

In other words, T β
i is non-decreasing below xβ

i and is non-increasing above xβ
i .

Similarly, there exists xα
i such that for all x, x′ ∈ Ki

xα
i ≤ x ≤ x′ =⇒ T α

i (x) ≤ T α
i (x

′),

x ≤ x′ ≤ xα
i =⇒ T α

i (x) ≥ T α
i (x

′).

γ
v1

v2

xβ
i

xα
i

u

x

Figure 3.8.: At any stage, the polygon of controllable states and controls Ωi∩(R×Ki)

contains xβ
i : the highest state under which the transition function T β

i is

non-decreasing and xα
i : the lowest state above which the transition func-

tion T α
i is non-decreasing.

Proof. Consider a state x. In the (u, x) plane, draw a horizontal line at height x. This

line intersects the polygon Ωi ∩ (R × Ki) at the minimal and maximal controls. See

Fig 3.8.

Consider now the polygon Ωi ∩ (R × Ki). Suppose that one enumerates the edges

counter-clockwise (ccw), then the normals of the enumerated edges also rotate ccw.

For example in Fig. 3.8, the normal v1 of edge 1 can be obtained by rotating ccw the

normal v2 of edge 2.

Let γ denote the angle between the vertical axis and the normal vector of the active

constraint k at (x, β(x)). One has cot γ = b̄i[k]/āi[k].

As x increases, γ decreases in the interval (π, 0). Let xβ
i be the lowest x such that,

for all x > xβ
i , γ < cot−1 (1/(2∆)) (xβ

i := maxKi if there is no such x).

Consider now a x > xβ
i , one has, by construction

b̄i[k]

āi[k]
>

1

2∆
, (3.12)

59

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

where k is the active constraint at (x, βi(x)). The maximal transition function can be

written as

T β
i (x) = x+ 2∆βi(x)

= x+ 2∆
−c̄i[k]− b̄i[k]x

āi[k]

= x

(
1− 2∆

b̄i[k]

āi[k]

)
− 2∆

c̄i[k]

āi[k]
.

(3.13)

Since the coefficient of x is negative, T β
i (x) is non-increasing. Similarly, for x ≤ xβ

i ,

T β
i (x) is non-decreasing.

We are now ready to prove Theorem 2.

Proof of Theorem 2. As there is no zero-inertia point, by uniform continuity, the ā(s)[k]

are bounded away from 0. We can thus chose a step size ∆thr such that

1

2∆thr

> max
s,k

{
b̄(s)[k]

ā(s)[k]
| ā(s)[k] > 0

}
.

For any step size ∆ < ∆thr, there is by construction no constraint that can have an

angle γ < cot−1 (1/(2∆)). Thus, for all stages i, one has xβ
i = maxKi, or in other

words, that T β
i (x) is non-decreasing in the whole set Ki. By Lemma 1, TOPP-RA

returns the optimal parameterization.

3.8.3. Proof of asymptotic optimality (case with zero-inertia

points)

In the presence of a zero-inertia point, one cannot bound the ā(s)[k] away from zero.

Therefore, for any step size ∆, there is an interval around the zero-inertia point where

the maximal transition function is not monotonic over the whole controllable set Ki.

Our strategy is to show that the sub-optimality gap caused by that interval decreases to

0 with ∆.

We first identify a “perturbation interval”. For simplicity, assume that the zero-

inertia point s• is exactly at si• .

Lemma 3. There exists an integer l such that, for small enough ∆, the maximal tran-

sition function is non-decreasing at all stages except in [i• + 1, . . . , i• + l].

Proof. Consider the Taylor expansion around s• of the constraint that triggers the zero-

inertia point

ā(s)[k] = A′(s− s•) + o(s− s•),

b̄(s)[k] = B +B′(s− s•) + o(s− s•).

60

3.8. Additional remarks and proofs

Without loss of generality, suppose A′ > 0. Eq. (3.12) can be written for stage i•+r

as follows

2∆(B +B′r∆) > A′r∆+ o(r∆).

Thus, in the limit ∆→ 0, for r > l := ceil(2B/A′), Eq. (3.12) will not be fulfilled by

constraint k. Using the construction of ∆thr in the proof of Theorem 2, one can next

rule out all the other constraints at all stages.

We now construct a “perturbation strip” by defining an upper and an lower bound-

aries. See Fig. 3.9 for an illustration.

Definition 9. Define states (κi)i∈[i•+1,i•+l+1] by

κi•+1 := xβ
i•+1,

κi := min(Ti−1
β(κi−1), x

β
i), i = i• + 2, . . . , i• + l + 1.

Next, define (λi)i∈[i•+1,i•+l+1] by

λi•+1 = κi•+1,

λi = min(T α
i−1(κi−1), x

β
i), i = i• + 2, . . . , i• + l + 1.

Finally, define (µi)i∈[i•+1,i•+l+1] as the highest profile that can be obtained by re-

peated applications of T β and that remains below the (λi). ♦

i• + 1 i• + 2 i• + 3 i• + 4 i• + 5

κi•+5

λi•+5

µi•+5

xβ
i•+4

Figure 3.9.: The “perturbation strip” contains three vertical boundaries: (κi) [red

dots], (λi) [orange dots] and (µi) [green dots]. The states (xβ
i) [thick

horizontal black lines] and the controllable sets (Ki) [vertical intervals]

are both shown.

The (κi) and (µi) form respectively the upper and the lower boundaries of the “per-

turbation strip”. Before going further, let us establish some estimates on the size of the

strip.

61

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

Lemma 4. There exist constants Cκ and Cµ such that, for all i ∈ [i• + 1, i• + l + 1],

maxKi•+1 − κi ≤ lCκ∆, (3.14)

maxKi•+1 − µi ≤ lCµ∆. (3.15)

Proof. Let C be the upper-bound of the absolute values of all admissible controls α, β

over whole segment. One has

Ki•+1 − κi•+1 = Ki•+1 − xβ
i•+1 ≤

(βi(x
β
i•+1)− αi(x

β
i•+1)) tan(γ) ≤ 2C∆.

Next, by definition of κ, one can see that the difference between two consecutive

κi, κi+1 is bounded by 2C∆. This shows Eq. (3.14).

Since (µi) is the highest profile below (λi), there exists one index p such that µp =

λp. Thus, κp − µp = κp − λp ≤ 2C∆, where the last inequality comes from the

definition of λ. Remark finally that the difference between two consecutive µi, µi+1 is

also bounded by 2C∆. This shows Eq. (3.15).

We now establish two properties of the “perturbation strip”.

Lemma 5 (and definition). Let J∗
i (x) denote TOPP-RA’s cost-to-go: the cost of the

profile produced by TOPP-RA starting from x at the i-stage, and J†
i (x) the optimal

cost-to-go.

(a) In the interval [minKi, µi], J
∗
i (x) equals J†

i (x) and is non-increasing;

(b) For all i ∈ [i• + 1, . . . , i• + l],

x ∈ [µi, κi] =⇒ T †
i (x), T

β
i (x) ∈ [µi+1, κi+1], (3.16)

where T †
i (x) is the optimal transition.

Proof. (a) We use backward induction from i• + l to i• + 1.

Initialization: One has x ≤ µi•+l ≤ λi•+l ≤ xβ
i•+l. It follows that T β

i•+l(x) is

non-decreasing over the interval [minKi•+l, µi•+l].

As there is no constraint verifying Eq. (3.12) at stages i = i• + l + 1, . . . , N , the

cost-to-go J∗
i•+l+1(x) is non-increasing and equals the optimal cost-to-go J†

i•+l+1(x)

by Theorem 2. Choosing the greedy control at the i• + l-stage is therefore optimal.

Next, note that

J∗
i•+l(x) =

∆√
x
+ J∗

i•+l+1(T
β
i•+l(x)), (3.17)

62

3.8. Additional remarks and proofs

since J∗
i•+l+1(x) and T β

i•+l(x) are non-increasing and non-decreasing respectively over

[minKi•+l+1, µi•+l+1] and [minKi•+l, µi•+l], it follows that J∗
i•+l(x) is non-increasing

over the interval [minKi•+l, µi•+l].

Induction: Suppose the hypothesis is true for i + 1 ∈ {i• + 2, . . . , i• + l}. Since

x ≤ µi ≤ λi ≤ xβ
i , one has that T β

i (x) ≤ µi+1 and that T β
i (x) is non-decreasing over

the interval [minKi, µi]. Note that

J∗
i (x) =

∆√
x
+ J∗

i+1(T
β
i (x)). (3.18)

By the induction hypothesis, J∗
i+1(T

β
i (x)) is non-increasing, it then follows that J∗

i (x)

is non-decreasing and that βi(x) is the optimal control and thus J∗
i (x) = J†

i (x).

(b) The part that T †
i (x), T

β
i (x) ≤ κi+1 is clear from the definition of κ. We first

show µi+1 ≤ T β
i (x).

Suppose first x ≤ xβ
i . Then T β

i is non-decreasing in [µi, x], which implies T β
i (x) ≥

T β
i (µi) = µi+1.

Suppose now x ≥ xβ
i . One can choose a step size ∆ such that xα

i < xβ
i , which

implies x > xα
i . One then has T β

i (x) ≥ T α
i (x) ≥ T α

i (x
β
i) ≥ λi+1 ≥ µi+1.

Finally, to show that µi+1 ≤ T †
i (x), we reason by contradiction. Suppose T †

i (x) <

µi+1. By (a), J†
i+1 is non-increasing below µi+1, thus J†

i+1(T
†
i (x)) > J†

i+1(µi+1) (*).

On the other hand, since T †
i (x) < µi+1 ≤ T β

i (x), there exists an admissible control

that steers x towards µi+1. Since T †
i is the true optimal transition from x, J†

i+1(µi+1) ≥
J†
i+1(T

†
i (x)). This contradicts (*).

We are now ready to prove Theorem 3.

Proof of Theorem 3. Recall that (ṡ20 = x∗
0, . . . , x

∗
N) is the profile returned by TOPP-

RA and (ṡ20 = x†
0, . . . , x

†
N) is the true optimal profile. By definition of the time-optimal

cost functions, we can expand the initial costs J∗
0 (ṡ

2
0) and J†

0(ṡ
2
0) into three terms as

follows

J∗
0 (ṡ

2
0) =

i•∑

i=0

∆√
x∗
i

+
i•+l∑

i=i•+1

∆√
x∗
i

+ J∗
i•+l+1(x

∗
i•+l+1), (3.19)

and

J†
0(ṡ

2
0) =

i•∑

i=0

∆√
x†
i

+
i•+l∑

i=i•+1

∆√
x†
i

+ J†
i•+l+1(x

†
i•+l+1), (3.20)

(a) Applying Theorem 2, for small enough ∆, one can show that

∀i ∈ [0, . . . , i• + 1], x∗
i ≥ x†

i . (3.21)

Thus, the first term of J∗
0 (ṡ

2
0) is smaller than the first term of J†

0(ṡ
2
0).

63

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

(b) Suppose x∗
i•+1, x

†
i•+1 ∈ [µi•+1, κi•+1]. From Lemma 5(b), one has for all i ∈

[i•+1, . . . , i•+ l], x∗
i , x

†
i ∈ [µi, κi]. Thus, using the estimates of Lemma 4, the second

terms can be bounded as follows

i•+l∑

i=i•+1

∆√
x∗
i

≤ l∆√
maxKi•+1 − Cµ∆l

, and

i•+l∑

i=i•+1

∆√
x†
i

≥ l∆√
maxKi•+1 + Cκ∆l

.

Thus
i•+l∑

i=i•+1

∆√
x∗
i

−
i•+l∑

i=i•+1

∆√
x†
i

≤ (Cµ + Cκ)∆
2l2

2
√
maxKi•+1 − Cµ∆l

.

If x∗
i•+1, x

†
i•+1 < µi•+1, by Lemma 5(a) it is easy to see that J∗

0 (ṡ
2
0) = J†

0(ṡ
2
0).

If x∗
i•+1 ≥ µi•+1 > x†

i•+1, then by Lemma 5, x∗
i•+l+1 ≥ µi•+l+1 > x†

i•+l+1, which

implies next that J∗
0 (ṡ

2
0) < J†

0(ṡ
2
0), which is impossible.

(c) Regarding the third terms, observe that, by applying Theorem 2 over [i• + l +

1, . . . , N], one has J∗
i•+l+1(x) = J†

i•+l+1(x) for all x ∈ Ki•+l+1. Thus

J∗
i•+l+1(x

∗
i•+l+1)− J†

i•+l+1(x
†
i•+l+1) =

J†
i•+l+1(x

∗
i•+l+1)− J†

i•+l+1(x
†
i•+l+1) ≤

CJ† |x∗
i•+l+1 − x†

i•+l+1| ≤ CJ†(Cµ + Cκ)∆l,

where CJ† is the Lipshitz constant of J†.

Grouping together the three estimates (a), (b), (c) leads to the conclusion of the

theorem.

3.8.4. Error analysis of discretization schemes

First-order interpolation scheme

In the main text the collocation discretization scheme was presented to discretize the

constraints over N + 1 grid points. We now introduce another scheme: first-order

interpolation scheme.

In this scheme, at stage i, we require (ui, xi) and (ui, xi + 2∆iui) to satisfy the

constraints at s = si and s = si+1 respectively. That is, for i = 0, . . . , N − 1

[
a(si)

a(si+1) + 2∆b(si+1)

]
u+

[
b(si)

b(si+1)

]
x+

[
c(si)

c(si+1)

]
∈
[
C(si)
C(si+1)

]
(3.22)

64

3.8. Additional remarks and proofs

At i = N , one uses only the top half of the above equations. By appropriately rear-

ranging the terms, the above equations can finally be rewritten as

aiu+ bix+ ci ∈ Ci. (3.23)

Error analysis

For simplicity, suppose Assumption 1 holds. That is, there exists ã(s)s∈[0,1], b̃(s)s∈[0,1], c̃(s)s∈[0,1]

which define the set of admissible control-state pairs. Consider the interval [s0, s1], the

parameterization is given by

x(s; u0, x0) = x0 + 2su0,

where x0 is the state at s0 and u0 is the constant control along the interval. Note that

s0 = 0, s1 = ∆.

Define the constraint satisfaction function by

ǫ(s) := u0ã(s) + x(s)b̃(s) + c̃(s). (3.24)

The greatest constraint satisfaction error over [s0, s1] is

max

{
max

k,s∈[s0,s1]
ǫ(s)[k], 0

}
.

Different discretization schemes enforce different conditions on ǫ(s). In particular,

one has for

• collocation scheme: ǫ(s0) ≤ 0;

• first-order interpolation scheme: ǫ(s0) ≤ 0, ǫ(s1) ≤ 0.

Using the classic result on Error of Polynomial Interpolation [122, Theorem 2.1.4.1],

one obtains the following estimate of ǫ(s) for the collocation scheme:

ǫ(s) = ǫ(s0) + (s− s0)ǫ
′(ξ) = sǫ′(ξ),

for ξ ∈ [s0, s]. Suppose the derivatives of ã(s), b̃(s), c̃(s) are bounded, one has

max
s∈[s0,s1]

ǫ(s) = O(∆).

Thus the greatest constraint satisfaction error of the collocation discretization scheme

has order O(∆).

65

Chapter 3. Time-Optimal Path Parameterization based on Reachability Analysis

Using the same theorem, one obtains the following estimation of ǫ(s) for the first-

order interpolation scheme:

ǫ(s) =ǫ(s0) + (s− s0)
ǫ(s1)− ǫ(s0)

s1 − s0
+

(s− s0)(s− s1)ǫ
′′(ξ)

2!

=
s(s−∆)ǫ′′(ξ)

2!
,

for some ξ ∈ [s0, s1]. Again, since the derivatives of ã(s), b̃(s), c̃(s) are assumed to

be bounded, one has

max
s∈[s0,s1]

ǫ(s) = O(∆2).

Thus the greatest constraint satisfaction error of the first-order interpolation discretiza-

tion scheme has order O(∆2).

66

Chapter 4.

Critically fast pick-and-place with suction

cups

4.1. Introduction

Suction cups have proved to be some of the most robust and versatile devices to grasp a

variety of objects, and are therefore used in a large proportion of automation solutions

in logistics (factory lines, e-commerce, etc.) In addition to robustness and versatility,

cycle time is another key driver in the development of automation: how fast automated

systems can pick and place objects is a decisive economic question.

In this chapter, we are interested in planning and executing critically fast pick-and-

place movements with suction cups. By “critically fast” we mean the fastest possible

movements for transporting an object such that it does not slip or fall from the suction

cup. Another major concern is to also minimize the planning time. Indeed, in a ma-

jority of e-commerce scenarios, the robot movements must be computed based on the

dynamically perceived positions of the objects to be transported, which implies that

both planning and execution times contribute to the total cycle time.

Note that, to focus on the planning and execution aspects, we assume in this chap-

ter that the perception problem has been solved upstream: (i) a good model of the

environment is available, (ii) the geometries, weight distribution, and initial posi-

tions/orientations of the objects are given and accurate.

Essentially, ensuring that the object being transported does not slip or fall amounts

to guaranteeing that, at every moment, the net inertial wrench acting on the object

can be physically “realized” by its contact with the suction cup (weak contact sta-

bility [93, 25]). Since inertial wrenches can be easily computed given a sufficiently

accurate model of the object, this task is reduced to identifying the set of wrenches

67

Chapter 4. Critically fast pick-and-place with suction cups

Figure 4.1.: Critically fast pick-and-place of a box with a suction cup. The

full video of the experiment is available at https://youtu.be/

b9H-zOYWLbY.

that are physically realizable for the given suction cup contact. A procedure for do-

ing this is among the contributions of this chapter. In the following, we will refer to

this objective as satisfying the suction cup grasp stability constraint, or simply grasp

stability constraint.

In industrial robotic pick-and-place systems, a popular approach to maintaining suc-

tion cup grasp stability is to uniformly restrict the robot’s joint velocity and acceler-

ation. The velocity and acceleration limits can be tuned by executing multiple test

trajectories, then selecting the set of limits at which there is no failure and the aver-

age duration is the shortest. A drawback of this approach is that testing must be done

for each object/suction cup combination, and therefore, is tedious and time consum-

ing. Furthermore, it is certain that the resulting movements are not optimal, since the

kinematic limits are chosen with respect to all testing trajectories. Also, there is no

guarantee that the robot can successfully execute any new, untested trajectory during

its actual operation.

An equally important concern is that the computational cost of planning should

be small, as otherwise it would undermine the benefit of controlling the robot to move

critically fast. For example, suppose one is capable of computing the true time-optimal

trajectories, but requires a few seconds per trajectory. In this case, it might be more

reasonable to use a sub-optimal approach that has cheaper computational cost, such

as limiting the robot’s joint velocity and acceleration. In the same way, the planning

procedure needs to be reliable: it has to detect infeasible instances correctly, and is

robust against numerical errors.

In this chapter, we propose an approach for planning critically fast movements for

robotic pick-and-place with suction cups. This approach is computationally efficient

68

https://youtu.be/b9H-zOYWLbY
https://youtu.be/b9H-zOYWLbY

4.2. Grasp Stability for suction cups

and robust, and is verified experimentally to be capable of producing near time-optimal

movements. This performance is achieved by means of three main technical contribu-

tions:

• A model for suction cup contacts (Section 4.2.3);

• A procedure to compute and approximate the contact stability constraint based

on that model (Section 4.2.4);

• A procedure to parameterize, in a time-optimal manner, arbitrary geometric

paths under the identified contact stability constraint (Section 4.3).

The full pipeline is available as open-source1. Experimental results are reported and

discussed in Section 4.4.

4.2. Grasp Stability for suction cups

4.2.1. Background 1: Linearized friction cone

In suction cup grasping, frictional forces exist between the suction cup’s pad and the

object; these forces are fundamental for maintaining a stable grasp. These frictional

forces are modelled using the Colomb friction model. Let f = (fx, fy, fz) denote

a friction force vector, µ denote the coefficient of friction and let the Z-axis be the

normal contact direction, the Colomb friction model states

‖(fx, fy)‖2 ≤ µfz. (4.1)

The set of feasible friction forces, or equivalently the feasible set of inequality (6.20),

is a Second-Order cone2 [20] and hence, can be approximated by a polyhedral cone

with arbitrary precision [7]. For instance, an approximation with 4 linear inequalities

is given as follows:

−1 −1 −µ
−1 1 −µ
1 1 −µ
1 −1 −µ

fx

fy

fz

 ≤ 04. (4.2)

This approximation is known as the linearized friction cone. This is also the approxi-

mation we use in this chapter.

1https://github.com/hungpham2511/rapid-transport
2Also known as a Lorentz cone or an ice-cream cone.

69

https://github.com/hungpham2511/rapid-transport

Chapter 4. Critically fast pick-and-place with suction cups

{O}
{c}
{b}

A

Figure 4.2.: Diagram of a robotic system for pick-and-place.

4.2.2. Background 2: Polyhedral computations

A polytope can be defined as the feasible set of a system of linear equalities and in-

equalities:

Ap ≤ b, Cp = d,

where A,b,C,d are matrices of suitable dimensions. This representation is known as

the H-representation, where H stands for halfspace. Alternatively, a polytope can also

be defined as the Minkowski sum3 of the convex hull of a finite number of points and

the conic hull of a finite number of rays:

{
∑

i

θipi |
∑

i

θi = 1; ∀i, θi ≥ 0

}
+

{
∑

i

θili | ∀i, θi ≥ 0

}
.

The vertices pi (resp. rays li) are referred to as the generating vertices (resp. rays).

This representation is known as the V-representation, where V stands for vertex.

A seminal result in the theory of polyhedral computation, discovered by Minkowski

and Weyl, is that any polytope has both a H-representation and a V-representation [44].

The problem of computing the V-representation given the H-representation is vertex

enumeration; and the dual problem is facet enumeration. Even though both problems

are known to be NP-hard, algorithms, such as the Double Description method [44] or

the Reversed Search algorithm [3], have been developed to solve them in reasonable

times. Both algorithms have publicly available implementations.

70

4.2. Grasp Stability for suction cups

{1}

{2} {3}

{4}

{5}

{6}

{0} ≡ {c}

Figure 4.3.: Cross-sectional view (cross section A in Fig. 4.2) of the contact between

the cup and the object. The physical contact area is modelled by m point

forces following the linearized Colomb friction model and 1 point force

capturing the suction force due to negative pressure. A local frame is

defined at each point contact.

4.2.3. A model for suction cup grasping

The interface between the suction cup on the object is modelled as consisting of a

collection of point forces: one suction force and m contact points 4 (See Fig. 4.3). The

suction force, denoted by f (0), satisfies

f
(0)
0 = [0, 0, PA]⊤, (4.3)

where P is the negative pressure in Pa and A is the area of the suction cup in m2. At

the i-th contact point, the cup exerts on the object a force f (i) that follows the linearized

Colomb friction model (4.2). The suction and contact forces f (i), i = 0, . . . ,m with

the corresponding local frames {i}, i = 0, . . . ,m are depicted in Fig. 4.3.

The contact wrench exerted on the object by the cup depend on the suction and

contact forces. Indeed, let {c} denote a frame that is attached rigidly to the suction

cup. By transforming all individual forces to frame {c} and adding them together, one

3The Minkoski sum of two sets G,H is defined as

{x+ y | x ∈ G, y ∈ H}

4From [25], adopting the point-force formulation does not incur any loss in generality as compared to

the surface-force formulation

71

Chapter 4. Critically fast pick-and-place with suction cups

obtains the net wrench wc:

wc =
m∑

i=0

Gcif
(i)
i , (4.4)

where the matrix Gci is defined via the position vector pci and rotational matrix Rci

of frame {i} in frame {c} as below

Gci =

[
[pci×]Rci

Rci

]
.

We make an assumption concerning the realizability of a contact wrench: a contact

wrench wc is physically realizable if there exists a set of individual contact forces

f (0), . . . , f (m) that satisfies Equation (4.2) and (4.3). This condition is often used in

humanoid locomotion [26] and is known as the weak contact stability condition [93].

The exact grasp stability constraint can now be shown to have the form

Fcwc ≤ gc, (4.5)

where Fc and gc are matrices of appropriate sizes. We demonstrate this result by

presenting the below constructive procedure:

1. let F̂ be the set of feasible values of f̂ := {f (0), . . . , f (m)}; form the H-representation

of F̂ ;

2. compute the corresponding V-representation, which is a set of generating ver-

tices5 (f̂1, . . . , f̂l);

3. use Equation (4.4) to transform (f̂1, . . . , f̂l) to (ŵ1, . . . , ŵl); Wc is the convex

hull of (ŵ1, . . . , ŵl);

4. compute the H-representation of Wc, which are the coefficient matrices Fc,gc

in Equation (4.5).

Refer to Section 4.2.2 for a discussion on transforming between the two representa-

tions (H and V) of a polytope. A more detail application of this technique applied in

the context of legged locomotion can be found in [24].

4.2.4. Approximating the grasp stability constraint

In practice, Fc might have many rows, causing computational difficulties during mo-

tion planning. We alleviate this issue by approximating the set of physically realizable

wrenches as the convex hull of a set of points Y that (i) is a subset of Wc and (ii)

5There can not be generating rays since F̂ is bounded.

72

4.2. Grasp Stability for suction cups

iter 0 iter 1

iter 2 iter 3

Figure 4.4.: Application of the proposed procedure for approximating grasp stability

constraint on a planar data set. Vertices ŵi are shown as gray crosses;

guiding samples are shown as red dots. The proposed procedure finds 3

vertices (iter 3) whose convex hull covers the guiding samples completely.

In comparison, the dashed grey polygon, representing the exact constraint,

has four times as many edges.

contains interacting wrenches that are the most likely to be realized during execution.

To achieve the latter objective, we randomly sample potentially interacting wrenches,

referred to as guiding samples. This can be done offline by generating a few random

trajectories in the same workspace, sample a number of points in each trajectory, and

for each point compute the interacting wrench using the Newton-Euler equations. Sub-

sequently, we extend Y from a simple initial guess to cover more guiding samples in

an interative fashion.

Concretely, the procedure proceeds as follows:

1. randomly sample Nw guiding samples; only samples that belongs to Wc are

retained;

2. initialize Y as a simplex with 7 randomly chosen guiding samples as vertices;

3. compute the convex hullH of Y;

4. choose the face h∗ of H that contains the most guiding samples in its infeasible

halfspace;

5. add to Y the vertex inWc that is in the infeasible halfspace of h∗ and is furthest

away from it;

73

Chapter 4. Critically fast pick-and-place with suction cups

6. repeat from step 3 until the number of vertices in Y is greater than a specified

value.

Remark that in step 2 since the wrench space is 6 dimensional, a simplex in this space

has 7 vertices. Hence, this step amounts to choosing randomly 7 guiding samples.

After each iteration, a point in (ŵ1, . . . , ŵl) \ Y is added to Y . We found that after

about 50 iteration, the convex hull of Y covers a significant portion of the guiding

samples and contains approximately 3000-4000 faces. In contrast, the original H-

representation can have up to 150000 faces.

An application of this procedure on a planar data set is demonstrated in Fig. 4.4.

There, the green triangle representing the approximate grasp constraint that has only 3

edges but cover all guiding samples. This result is computed in 3 extending iterations.

In comparison, the dashed grey polygon, representing the exact constraint, has four

times as many edges.

4.3. Planning critically fast movements

4.3.1. Motion planning pipeline

We implement a pipeline for planning critically fast movements following the decou-

pling approach:

1. Find a collision-free path using standard geometric planners (e.g. RRT [65]);

2. Time-parameterize the collision-free path to minimize traversal time under kin-

odynamic constraints (in our case: joint velocity and acceleration bounds and

suction cup constraints).

Although the decoupling approach does not generally produce optimal nor even

locally-optimal trajectories, it has the distinctive advantage of being robust and fast.

This is due to the highly mature states of collision-free path planning and path time-

parameterization techniques [101].

Regarding the latter, the problem of finding the time-optimal time-parameterization

of a geometric path subject to kinodynamic constraints is a classical problem in robotics [16].

If the constraints under consideration are of First- or Second-Order (see below and

also in [96]), then this problem can be solved extremely efficiently using the recently-

developed Time-Optimal Path Parameterization via Reachability Analysis (TOPP-RA)

algorithm [96].

In the next section, we show that the grasp stability constraint is a Second-Order

constraint.

74

4.3. Planning critically fast movements

4.3.2. Reduction of the grasp stability constraint

A Second-Order constraint has the following form [96]

A(q)q̈+ q̇⊤B(q)q̇+ f(q) ∈ C (q), (4.6)

• A,B, f are continuous mappings from R
n to R

m×n,Rn×m×n and R
m respec-

tively;

• C (q) is a convex polytope in R
m.

To establish that any grasp stability constraint can be reformulated as a Second-Order

constraint, recall first the following relationships between the robot’s joint position and

the object’s motion [58]:

ωb = Jrot(q)q̇, αb = Jrot(q)q̈+ q̇⊤Hrot(q)q̇, (4.7)

vb = Jtrans(q)q̇, ab = Jtrans(q)q̈+ q̇⊤Htrans(q)q̇, (4.8)

where Jtrans,Htrans,Jrot,Hrot are the translational and rotational Jacobians and Hes-

sians, vb,ωb denote the object’s translational and rotational velocities and ab,αb de-

note the translational and rotational accelerations; all are in the object’s body frame

{b}. Next, combining Equations (4.7) and (6.16) with the Newton-Euler equations in

the body frame, which are

wb +

[
03

gbm

]
=

[
Ibαb + ωb × Ibωb

mab,

]
. (4.9)

It follows that the interaction wrench in frame {b} has the following form

wb(q, q̇, q̈) = Θ1(q)q̈+ q̇⊤Θ2(q)q̇+Θ3(q),

where Θ1,Θ2,Θ3 are tensors depending on the geometry of the robot and the inertial

properties of the object. The left hand-side shows clearly that wb also depends on

q, q̇, q̈.

Next, let Gcb be the constant matrix that transforms a wrench from the object’s body

frame {b} to the suction cup’s frame {c}. Substituting to Equation (4.5), grasp stability

constraint can then be written as

FcGcb

{
Θ1(q)q̈+ q̇⊤Θ2(q)q̇+Θ3(q)

}
≤ gc. (4.10)

It follows immediately that Equation (6.18) is a Second-Order constraint. Indeed,

75

Chapter 4. Critically fast pick-and-place with suction cups

Θ1,Θ2,Θ3 take the place of A,B, f respectively and the fixed convex polytope

{wb | FcGcbwb ≤ gc}.

takes the place of C (q).

4.4. Experiments

Two aspects of the proposed approach were experimentally investigated. First, we

evaluate the quality of the trajectories for transporting object by looking at the rate of

successful transport and the trajectories’ durations in 20 randomly generated instances

(4.4-A). Second, we report the actual computational cost of the proposed pipeline in a

realistic pick-and-place scenario (4.4-B).

4.4.1. Experimental setup

The same equipment was employed throughout the experiments. These include a

position-controlled industrial robot Denso VS-060, equipped with a suction cup con-

nected to a vacuum pump. The robot is controlled at 125Hz. The suction cup has

a radius of 12.5mm and the vacuum pump generates a negative pressure of approxi-

mately 30 kPa. Objects considered in the experiments have varying weights ranging

from 0.2 kg to 0.6 kg; all objects have known weights and moment of inertia. All com-

putations were done on a single core of a laptop running Ubuntu 16.04 at 3.800GHz.

Collision-free paths between two robot configurations were all computed using

OpenRAVE’s implementation [35] of biRRT algorithm [65].

For time-parameterization, we used the same approximation of the grasp stability

constraint in all experiments. The coefficients matrices Fc,gc were identified follow-

ing the procedure given in Section 4.2 with the following parameters: m = 6 points

are used to approximate the surface area contact; coefficient of friction µ = 0.3 (iden-

tified in prior using a Force-Torque sensor); suction cup radius is 12.5mm; maximum

number of vertices is 60. The resulting coefficient matrices have 3099 rows, which

is significantly less than the number of rows of the exact coefficient matrices (130000

rows). All TOPP instances are discretized with 100 gridpoints, using the first-order

interpolation scheme [96]. The code is written mostly in Python, with the most com-

putationally demanding components written in Cython and C++. TOPP-RA solves the

LPs using a custom LP solver based on Seidel’s algorithm [108].

76

4.4. Experiments

4.4.2. Trajectory quality

We first looked at the likelihood of the objects falling, slipping or twisting when ex-

ecuting the trajectories found by our pipeline. As a baseline for comparison, we also

considered an alternative strategy, where one computes time-optimal time-parameterizations

subject only to the robot’s kinematic constraints, without taking into account the suc-

tion cup constraint.

Twenty geometric paths were randomly generated and tested. To mimic actual pick-

and-place settings, we adopted the following procedure:

1. sample randomly the object’s starting and goal poses, each in a dedicated region

of the workspace;

2. use OpenRAVE’s inverse kinematics to find the corresponding robot’s starting

and goal configurations;

3. find a path between the starting and goal configurations using OpenRAVE.

In all trials, a rectangle notebook (See Fig. 4.5) with weight 0.551 kg and moment

of inertia diag(9.28, 21.10, 29.80)× 10−4 kgm2 was transported with the suction cup.

The contact point is 12.5mm above the notebook’s center of mass.

It was found that, by considering grasp stability, the object could be transported

without slipping or falling for all 20 paths (Table 4.1). On the other hand, trajectories

retimed without suction cup constraint had a much lower success rate: only 4 out of

20 paths could be executed successfully. Remarkably, trajectories computed consid-

ering grasp stability were not significantly slower. For example, slowing respectively

trajectory number 2 by 6.3% and trajectory 14 by 20% made those trajectories safe.

A second experiment was performed to examine the degree of sub-optimality. We

took paths number 12 and 18, parameterized both subject to grasp stability constraint

and executed them at three levels of speed: 100%, 120%, 140%. We then inspected

the pose of the object relative to the suction cup after each execution. Significant

slipping of nearly 1 cm and 10 deg were found at the trials executed at 120% and 140%

speed, see Fig. 4.5 and first part of the experimental video https://youtu.be/

b9H-zOYWLbY.

4.4.3. Computational performance

To investigate the computational cost of the proposed approach, we considered a pick-

and-place scenario that involves the robot picking objects using the suction cup from a

bin and stacking them at a distant goal position (Fig. 4.1). The objective is to complete

77

https://youtu.be/b9H-zOYWLbY
https://youtu.be/b9H-zOYWLbY

Chapter 4. Critically fast pick-and-place with suction cups

Table 4.1.: Trajectory duration (in seconds) and success rate of 20 randomly generated

trajectories retimed without and with suction cup constraints (SCC).

without SCC with SCC time ext. (%)

0 0.432 ✗ 0.672 ✓ 35.71

1 0.568 ✗ 0.832 ✓ 31.73

2 0.944 ✗ 1.008 ✓ 6.35

3 0.504 ✗ 0.688 ✓ 26.74

4 0.728 ✗ 0.952 ✓ 23.53

5 0.504 ✗ 0.672 ✓ 25.00

6 1.064 ✓ 1.064 ✓ 0.00

7 0.520 ✗ 0.688 ✓ 24.42

8 1.136 ✗ 1.344 ✓ 15.48

9 0.496 ✗ 0.744 ✓ 33.33

10 0.632 ✓ 0.728 ✓ 13.19

11 0.520 ✗ 0.648 ✓ 19.75

12 0.440 ✗ 0.728 ✓ 39.56

13 0.824 ✓ 0.896 ✓ 8.04

14 1.104 ✗ 1.392 ✓ 20.69

15 0.528 ✗ 0.664 ✓ 20.48

16 0.520 ✗ 0.736 ✓ 29.35

17 1.344 ✗ 1.848 ✓ 27.27

18 0.472 ✗ 0.760 ✓ 37.89

19 0.512 ✓ 0.600 ✓ 14.67

initial pose final pose (×100%)

final pose (×140%)final pose (×120%)

Figure 4.5.: Executing a retimed trajectory at 120% and 140% speed led to visible

twisting and slipping.

78

4.5. Summary

Table 4.2.: Breakdown of cycle times (in seconds)

obj 1 obj 2 obj 3 obj 4

APPROACH plan 0.018 0.053 0.016 0.041

REACH plan 0.029 0.034 0.040 0.034

MOVE plan 0.183 0.101 0.147 0.198

MOVE retime 0.111 0.111 0.124 0.137

Total plan 0.341 0.299 0.327 0.410

APPROACH exec. 0.438 0.747 0.550 0.531

REACH exec. 0.306 0.368 0.415 0.436

ATTACH delay 1 1 1 1

MOVE exec. 0.841 0.729 1.062 1.371

DETACH delay 1 1 1 1

Total exec. 3.585 3.844 4.027 4.338

Total (plan + exec.) 3.926 4.143 4.354 4.748

the task as fast as possible, planning and execution time included. The object proper-

ties, initial poses and final desired poses were determined prior to the experiment. The

objects weighted between 0.204 kg and 0.551 kg.

A pick-and-place cycle consisted of several phases. First, the robot approaches a

pose that is directly on top of the bin. Then, it reaches for the topmost object, closes the

vacuum valve, waits for 1 second for the object to attach to the suction cup, and finally

moves to the given destination. When the robot arrives at the destination, it opens the

valve and waits for 1 second for the object to completely detach before starting the

next cycle. Note that the waiting times of 1 second could be reduced.

All collision-free paths were planned online using OpenRAVE. Time-parameterization

was also performed online subject to the grasp stability constraint in addition to the

robot’s kinematic limits.

The experiment can be visualized in the second part of the experimental video. Ta-

ble 4.2 reports our findings. Pick-and-place cycles were less than 5 sec for all objects.

On average, the cycle time was 4.29 sec, of which 0.34 sec was for trajectory planning

(including path planning and time-parameterization), 1.95 sec was for robot motion,

and 2 sec was for waiting for the pump.

4.5. Summary

We have proposed an approach for planning critically fast trajectories for manipulators

performing pick-and-place with suction cup. Before execution, we identify the grasp

stability constraint, the constraint that the object must not fall from or slip or twist

79

Chapter 4. Critically fast pick-and-place with suction cups

relatively to the suction cup, as a system of linear inequalities. During execution,

we plan collision-free geometric paths for transporting objects and retime these paths

time-optimally subject to the identified grasp stability constraint using the TOPP-RA

algorithm.

Experiments were conducted to assess the performance of the proposed approach.

The results suggest that the approach is capable of producing high-quality trajectories:

these trajectories can be executed successfully without causing the object to fall or slip

and have duration that were close to the true time-optimal values. Further, we also

found that the proposed approach has a low computational cost, making it suitable for

online motion planning for logistics applications.

There are two limitations that we are actively investigating:

• Our approach requires exact knowledge of the object’s inertial properties: center-

of-mass position, mass and moment of inertia and the robot’s geometry. Yet, in a

practical setting, identification and modelling errors always exist. Usually, only

approximations of objects’ properties are available. This observation leads to

two questions: 1) what are the effects of identification errors on motion quality

and 2) how to handle these errors;

• The approximation step presented in Section 4.2.4 reduces computational time

significantly as the size of the grasp stability constraint is much smaller. How-

ever, its effects on motion quality is, in general, not completely understood.

80

Chapter 5.

On the Structure of Time-Optimal Path

Parameterization with Third-Order

Constraints

5.1. Introduction

Given a robot and a smooth path in the robot’s configuration space, the problem of

finding the Time-Optimal Parameterization of that Path (TOPP) with second-order

constraints (e.g. bounds on acceleration, torques, contact stability) is an important and

well-studied in robotics. An efficient algorithm to solve this problem was first pro-

posed in the 1980’s [16, 115] and has been continuously perfected since then, see [99]

for a historical review. The algorithm has also been extended to handle a wide range of

problems, from manipulators subject to torque bounds [16, 112] to vehicles or legged

robots subject to balance constraints [111, 100, 100, 24], to kinodynamic motion plan-

ning [101], etc.

According to Pontryagin’s Maximum Principle, time-optimal trajectories are bang-

bang, which implies instantaneous switches in the second-order quantities that are

constrained [16]. For instance, time-optimal trajectories with acceleration constraints

will involve acceleration switches, which in turn implies infinite jerk. This is one of

the drawbacks of TOPP with second-order constraints.

To address this issue, one can consider TOPP with third-order constraints. In many

industrial applications, constraining third-order quantities such as jerk, torque rate or

force rate is also part of the problem definition [124]. For instance, a hydraulic ac-

tuator exerts forces by forcing oil to travel through its piston and gets compressed,

which results in the actuating force rate being restricted. As another example, DC

81

Chapter 5. On the Structure of Time-Optimal Path Parameterization with Third-Order Constraints

electric motors have bounds on input voltages, which translate directly to torque rate

constraints.

5.1.1. Main Contributions

In this chapter, we follow the Numerical Integration approach and investigate the struc-

ture of the time-optimal solutions. Specifically, our contribution is threefold:

1. we propose a Multiple Shooting Method (MSM) to smoothly connect two max-

imum jerk profiles by a minimum jerk profile. This method is more efficient and

stable than the the one proposed in [124];

2. we analyze third-order singularities, which arise very frequently and systemati-

cally stop profile integration, leading to algorithm failure. We propose a method

to address such singularities;

3. based on the above contributions, we implement TOPP3, which solves TOPP

with third-order constraints efficiently and yields true optimal solutions in a

number of situations.

For simplicity, this chapter focuses on pure third-order constraints. Taking into

account first- and second-order constraints (e.g. bounds on velocity and acceleration)

is possible but will significantly increase the complexity of the exposition.

The remainder of the chapter is organized as follows. In Section 5.2, we introduce

the basic notations and formulate the problem. In Section 5.3, we introduce our method

to smoothly connect two maximum jerk profiles. In Section 5.4, we propose a solution

to the problem of singularities. In Section 5.5, we present the numerical experiments.

Finally, in Section 5.6, we offer some discussions and directions for future work.

5.2. Structure of TOPP with third-order

constraints

5.2.1. Problem setting

Consider a n dof robotic system whose configuration is a vector q ∈ R
n. A geo-

metric path P is a mapping q(s)s∈[0,send] from [0, send] to the configuration space. A

time-parameterization of the path P is an increasing scalar mapping s(t)t∈[0,T]. Differ-

82

5.2. Structure of TOPP with third-order constraints

entiating successively q(s(t)) with respect to t yields

q̇ =q′ṡ

q̈ =q′′ṡ2 + q′s̈
...
q =q′′′ṡ3 + 3q′′ṡs̈+ q′...s ,

(5.1)

where the superscript �̇ denotes time-derivative and the superscript �′ denotes differ-

entiation with respect to the path position s.

From here on, we shall refer to the first, second and third time-derivatives of the

path parameter s as velocity, acceleration and jerk respectively. The time-derivatives

of the configuration q will be called joint velocity, acceleration and jerk.

The boundary conditions of a TOPP with third-order constraints consist of config-

uration velocities and accelerations at both the start and the goal. Combining with

equation (5.1), one can compute the corresponding initial velocities and accelerations

as

s0 = 0, ṡ0 =
‖q̇(0)‖
‖q′(0)‖ , s̈0 =

‖q̈(0)− q′′(0)ṡ20‖
‖q′(0)‖ ,

where q̇(0) and q̈(0) are the initial joint velocity and acceleration respectively. The

end conditions (s1, ṡ1, s̈1) can be computed similarly.

We consider third-order constraints of the form

a(s)
...
s + b(s)ṡs̈+ c(s)ṡ3 + d(s) ≤ 0, (5.2)

where a(s),b(s), c(s),d(s) are m-dimensional vectors.

As in the second-order case, the bounds (5.2) can represent a wide variety of con-

straints, from direct jerk bounds to bounds on torque rate or force rate 1. For instance,

direct jerk bounds (jmin ≤
...
q ≤ jmax) can be accommodated by setting a, b, c, d as

follows

a(s) =

(
q′(s)

−q′(s)

)
, b(s) =

(
3q′′(s)

−3q′′(s)

)
,

c(s) =

(
q′′′(s)

−q′′′(s)

)
, d(s) =

(
−jmax

jmin

)
.

Similar to the classical TOPP algorithm with second order constraints [16, 99], one

can next define, at any state (s, ṡ, s̈), the minimum jerk γ(s, ṡ, s̈) and maximum jerk

1In fact, torque rate and force rate involve an additional term ṡe(s), but their treatment is not funda-

mentally different from what is presented in this chapter.

83

Chapter 5. On the Structure of Time-Optimal Path Parameterization with Third-Order Constraints

η(s, ṡ, s̈) as follows

γ(s, ṡ, s̈) := max
i

{−bj(s)ṡs̈− cj(s)ṡ
3 − dj(s)

aj(s)
| aj(s) < 0

}
,

η(s, ṡ, s̈) := min
j

{−bj(s)ṡs̈− cj(s)ṡ
3 − dj(s)

aj(s)
| aj(s) > 0

}
.

(5.3)

Here the subscript j denote the j-th component of a vector. Note that the above defi-

nitions neglect the case where some aj are zero. As in the case of second-order con-

straints, a path position s where at least one of the ai(s) is zero can trigger a singularity.

A profile is is a curve in the (s, ṡ, s̈)-space where s is always increasing. A time-

parameterization of q corresponds to a profile connecting (s0, ṡ0, s̈0) to (s1, ṡ1, s̈1).

From the definition of γ and η, a time-parameterization of q satisfies the constraints (5.2)

if and only if the jerk
...
s along the corresponding profile satisfies γ ≤ ...

s ≤ η.

Next, we define a minimum jerk (respectively maximum jerk) profile as a profile

along which
...
s = γ(s, ṡ, s̈) (respectively

...
s = η(s, ṡ, s̈)). From Pontryagin’s Maxi-

mum Principle, the time-optimal profile follows successively maximum and minimum

jerk profiles [124]. Finding which profiles to follow and when to switch between two

consecutive profiles is therefore the fundamental issue underlying TOPP with third-

order constraints.

5.2.2. Introducing TOPP3

If there is no singularity, the optimal profile has a max-min-max structure [124]. Thus,

to find the optimal profile, one can proceed as follows, see Fig. 5.1 for an illustration

1. integrate forward the maximum jerk profile (following η) from (s0, ṡ0, s̈0);

2. integrate backward the maximum jerk profile (following η) from (s1, ṡ1, s̈1);

3. find a minimum jerk profile that starts from one point on the first profile and

ends at one point on the second one.

All profiles are integrated until failure unless otherwise specified.

To find the connecting profile of step (3), Tarkiainen and Shiller proposed to step

along the first profile, integrate following minimum jerk and check whether it connects

to the second profile. This exhaustive procedure is computationally inefficient and

numerically unstable. We propose, in Section 5.3, a more efficient way (bridge) to

perform the connection.

In the presence of singularities (ai(s) = 0), the max-min-max procedure just de-

scribed will fail, irrespective of the connection method. This is because the integrated

profiles diverge as they approach a singularity and quickly terminate, see Fig. 5.3A.

84

5.2. Structure of TOPP with third-order constraints

Maximum-jerk Minimum-jerk

Figure 5.1.: An optimal parametrization with max-min-max structure.

This behavior is the same as in the second-order case [99]. To address this issue, we

propose, in Section 5.4, a method (extend) that allows extending profiles through

singularities. Note that the structure of the final profile will no longer be max-min-

max but max-min-max-. . . -min-max.

The above discussion can be encapsulated into Algorithm 2, which we call TOPP3.

In the next sections, we shall discuss in detail the two main components of TOPP3,

namely bridge and extend.

Algorithm 2: TOPP3

Input : Initial and final conditions (s0, ṡ0, s̈0), (s1, ṡ1, s̈1)
Output: The optimal profile Popt

1 Pforward ← integrate forward from (s0, ṡ0, s̈0) following maximum jerk until

termination

2 while found next singularity do

3 Pforward ← extend(Pforward, singularity)

4 end

5 Pbackward ← integrate backward from (s1, ṡ1, s̈1) following maximum jerk

until termination

6 while found next singularity do

7 Pbackward ← extend(Pbackward, singularity)

8 end

9 Popt ← bridge(Pforward, Pbackward)

5.2.3. Remarks

Optimality of the connection

In the absence of singularities, the max-min-max structure described earlier is only

a necessary condition for optimality and not a sufficient one. Theoretically, to find

85

Chapter 5. On the Structure of Time-Optimal Path Parameterization with Third-Order Constraints

the true optimal solution, it suffices to enumerate all candidates having max-min-max

structure and select the one with the shortest time duration.

Next, since the first and last maximum jerk profiles are well-determined (their start-

ing (respectively ending) conditions are given), different solutions only differ by the

connecting minimum jerk profile. If there exists one unique minimum jerk profile that

can connect the two maximum jerk profiles, then the corresponding solution is auto-

matically the optimal one. In practice, we have never encountered the case when there

are more than one possible connecting minimum jerk profile. Note that Tarkiainen and

Shiller [124] implicitly assumed that there exists one unique connecting minimum jerk

profile.

Other switching structures

The TOPP problem with second-order constraints involves three types of switch points,

i.e., points where the optimal profile changes from minimum acceleration to maximum

acceleration and vice-versa (cf. [99]): (a) singular (b) discontinuous and (c) tangent

points. These switch points, in general, lie on the Maximum Velocity Curve (MVC).

We argue that TOPP with third-order constraints similarly involves singular, dis-

continuous and tangent switch points, and that those points, in general, lie on the

Maximum and Minimum Acceleration Surfaces (MaAS and MiAS).

In Section 5.4, we shall discuss the singular switch points, which are the most com-

monly encountered and harmful (if inappropriately treated) switch points. As in the

case of second-order constraints, discontinuous switch points can always be avoided if

the path is sufficiently smooth. Finally, tangent switch points are left for future work.

Let us simply note here that they occur much less frequently than singular switch

points.

Another type of switching structure arises when constraints of different orders in-

teract. For instance, in the classic TOPP problem, when an integrated profile hits a

first-order constraint (e.g. direct velocity bound), then it must “slide” along the bound-

ary defined by that first-order constraint, giving rise to a different type of switch point.

We envisage that such switching behavior can also happen when first, second, and

third-order constraints interact. The study of these interactions is also left for future

work.

5.3. Connecting profiles using Multiple Shooting

Instead of the exhaustive search suggested in [124], we propose here a method, termed

bridge, which is based on Multiple Shooting to find a minimum jerk profile that can

connect two maximum jerk profiles. Specifically, consider the problem of connecting

86

5.3. Connecting profiles using Multiple Shooting

two maximum jerk profilesM andN . We define a potential solution Γ as a (2N +4)-

dimensional vector

Γ := [ṡ0, s̈0, ..., ṡN , s̈N , sM, sN],

where ṡi, s̈i, i ∈ [0, N] are the guessed velocities and accelerations at the i-th point

and (sM, sN) are the guessed starting and ending positions on profiles M and N
respectively. We consider a uniform grid, i.e.

si := sM +
i

N
(sN − sM).

Next, assume that we integrate following minimum jerk from (si, ṡi, s̈i) until sj . We

define the function X : R4 → R
2 as

X(si, ṡi, s̈i, sj) := (ṡj, s̈j),

where ṡj, s̈j are the corresponding velocity and acceleration at sj . This allows us to

define the defect function by

F (Γ) :=

X(s0, ṡ0, s̈0, s1)− [ṡ1, s̈1]
T

X(s1, ṡ1, s̈1, s2)− [ṡ2, s̈2]
T

...

X(sN−1, ṡN−1, s̈N−1, sN)− [ṡN , s̈N]
T

rM(sM)− [ṡ0, s̈0]
T

rN (sN)− [ṡN , s̈N]
T

, (5.4)

where rM(sM) (respectively rN (sN)) are the velocity and acceleration on profileM
(respectively N) at position sM (respectively sN).

The connection problem can now be formulated as

solve F (Γ) = 0

subject to sM,beg ≤ sM ≤ sM,end,

sN ,beg ≤ sN ≤ sN ,end,

(5.5)

where (sM,beg, sM,end) denote positions of profileM’s end points (respectively profile

N).

To solve (5.5), we employ the Newton method. Although the problem is non-linear

and non-convex, the algorithm still converges very quickly to a solution. Fig. 5.2

shows a particular instance where a solution can be found in 4 iterations.

Regarding computational cost, we found that it correlates to the magnitude of jerk

bounds. For instance, at 1000 rads−3 a bridge function call takes only 10ms while at

87

Chapter 5. On the Structure of Time-Optimal Path Parameterization with Third-Order Constraints

Iter:1 Iter:2

Iter:3 Iter:4

Figure 5.2.: Using MSM to find a minimum jerk profile connecting two maximum jerk

profiles (purple). Note that the profiles are in 3D but projected to 2D for

convenience. The number of segments is N = 3. The algorithm took 4

iterations to converge.

100 rads−3, it is approximately 200ms. How jerk bounds precisely affect computation

time is left for future investigations.

5.4. Characterizing and addressing singularities

Singularities in the third-order case are very similar to those in the second-order case:

(i) they arise at positions s where the minimum and maximum jerk γ and η cannot be

properly defined because of the division by ak(s) = 0 for some k; (ii) they cause pro-

files to terminate prematurely, causing algorithm failure (see Fig. 5.3). In the sequel,

we discuss how to characterize third-order singularities and how to address singulari-

ties, taking much inspiration from the second-order case [99].

5.4.1. Maximum and Minimum Acceleration Surfaces

In the second-order case, singularities mostly appear on the Maximum Velocity Curve

(MVC) [99, 94, 112]. Here, we define the Maximum and Minimum Acceleration

Surfaces (MaAS and MiAS), which are the third-order counterparts of the MVC.

Definition 10 (MaAS/MiAS). Consider the set of feasible accelerations

J (s, ṡ) := {s̈ | ∃...s , a(s)...s + b(s)ṡs̈+ c(s)ṡ3 + d(s) ≤ 0}.

88

5.4. Characterizing and addressing singularities

s

ṡ

Maximum Singular Curve

Minimum Singular Curve

collapsing gap

Maximum Acceleration Surface
Minimum Acceleration Surface

A

B

Figure 5.3.: A: Profiles approaching singularities (purple dashed lines) diverge and

terminate early. The diverging directions include both vertical (along ṡ
axis) and lateral (along s̈ axis, which is not shown). However, profiles

(purple solid lines) starting from a point lying between the singular curves

(green dashed lines) are not affected by the singularities. B: Singularities

consist of maximum or minimum singular curves lying on the maximum

or minimum acceleration surfaces (MaAS/MiAS) respectively.

We define the MaAS and MiAS by

MaAS(s, ṡ) := max
s̈∈J (s,ṡ)

s̈

MaAS(s, ṡ) := min
s̈∈J (s,ṡ)

s̈.
(5.6)

If J (s, ṡ) is empty then the surfaces are not defined at (s, ṡ). ♦

This definition does not use the maximal controls γ and η but directly uses the

constraints (5.2). The advantage is that even in the presence of a constraint k such

that ak(s) = 0, the surfaces are still well-defined. Additionally, on both surfaces, the

maximum and minimum jerks are equal almost everywhere except on singular curves

(see Prop. 4 in the Appendix).

89

Chapter 5. On the Structure of Time-Optimal Path Parameterization with Third-Order Constraints

5.4.2. Characterizing third-order singularities

Definition 11 (Singular curve). We say that the k-th constraint triggers a singularity

at s∗ if ak(s
∗) = 0 and the set C(s∗) defined by

C(s∗) := {(s∗, ṡ, s̈) | ∃...s :

ak(s
∗)

...
s + bk(s

∗)ṡs̈+ ck(s
∗)ṡ3 + dk(s

∗) = 0,

aj(s
∗)

...
s + bj(s

∗)ṡs̈+ cj(s
∗)ṡ3 + dj(s

∗) ≤ 0, j 6= k

}
(5.7)

is non-empty. We say C(s∗) is the singular curve at s∗. ♦

We show in the Appendix that all singular curves lie on either the MaAS or MiAS

(Prop. 6). Furthermore, a singular curve lies on the MaAS if bk(s
∗) > 0 and on the

MiAS if bk(s
∗) < 0. We shall also refer to singular curves on MaAS and MiAS as

maximum and minimum singular curves respectively.

As in the second-order case, we can note the following behaviors:

• Forward integrations following maximum jerk and backward integrations fol-

lowing minimum jerk diverge when they approach a minimum singular curve;

• Forward integrations following minimum jerk and backward integrations fol-

lowing maximum jerk diverge when they approach a maximum singular curve;

• Forward and backward integrations following either maximum jerk or minimum

jerk starting from a feasible point at s∗ are not affected by the singular curves.

To understand these observations, we note that at fixed velocity ṡ = ṡ0, constraints (5.7)

has the same form as second order-constraints

a2nd(s)s̈+ b2nd(s)ṡ
2 + c2nd(s) ≤ 0, (5.8)

where a2nd,b2nd, c2nd are the corresponding vectors. In the second-order case, con-

straints (5.8) cause integrations to diverge. It therefore suggests that integrations (third-

order) projected on to a fixed velocity surface would likely diverge, which is consistent

with our observations. A more rigorous analysis is left for future work.

To compute a singular curve C at s∗, we simply find the maximum and minimum ve-

locities ṡ∗max, ṡ
∗
min of each curve and compute s̈∗ by the equality constraint in Eq. (5.7).

This procedure correctly returns C because a singular curve is connected (See Prop. 3

in the Appendix).

90

5.4. Characterizing and addressing singularities

To compute ṡ∗max, ṡ
∗
min one needs to solve a pair of linear programming problems

maximize [0, 0, 1]T [
...
s , ṡs̈, ṡ3]

subject to (5.7)

and

maximize [0, 0,−1]T [...s , ṡs̈, ṡ3]
subject to (5.7).

5.4.3. Extending a profile through a singularity

0.00 0.05 0.10 0.15 0.20 0.25

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ṡ

cubic singularity

stopped
forward integration

Maximum

singular

curve

Stopped forward

integration

Figure 5.4.: Comparison of the conjectured time-optimal extension (via the yellow

point) with an extension computed by picking a feasible point lying at s∗

(black point) and uses it to extend the forward integration. Note that the

profiles are projected onto the (s, ṡ) plane.

We now describe a method, termed extend, to extend a forward maximum jerk

profile through a singularity s∗. As noted before, integrating forward following max-

imum jerk from s∗ is not problematic, so the main difficulty consists of connecting

backwards to the initial forward profile.

Note first that there exists a family of possible backward connections, obtained as

below

1. choose a feasible point at s∗ (i.e. a point (s∗, ṡ, s̈) for which there exists a feasible

jerk);

2. integrate backward following maximum jerk from this point;

3. connect the original forward maximum jerk profile to the new backward maxi-

mum jerk profile by the bridge procedure of Section 5.3.

We conjecture that, within this family of possible connections, the optimal connec-

tion has the following properties

91

Chapter 5. On the Structure of Time-Optimal Path Parameterization with Third-Order Constraints

1. the starting point at s∗ belongs to the maximum singular curve;

2. there is no backward maximum jerk profile: in other words, the connecting min-

imum jerk profile starts directly at s∗;

3. as a consequence, the min-to-max switch happens directly at s∗ and not before,

as in the generic case above.

See Fig. 5.4 for an illustration.

Accordingly, we propose the following strategy to perform the backward connection

using MSM. Using subscript A and C to denote the forward profile and the singular

curve, we define a solution Γ ∈ R
2N+4 as

Γ := [ṡ0, s̈0, ..., ṡN , s̈N , sA, ṡC],

where ṡi and s̈i are the velocity and acceleration at si, sA and ṡC are the guessed

starting position and ending velocity on A and C respectively. This gives the defect

function

F (Γ) :=

X(s1, ṡ1, s̈1, s0)− [ṡ0, s̈0]
T

X(s2, ṡ2, s̈2, s1)− [ṡ1, s̈1]
T

...

X(sN , ṡN , s̈N , sN−1)− [ṡN−1, s̈N−1]
T

rA(sA)− [ṡ0, s̈0]
T

r̄C(ṡC)− [ṡN , s̈N]
T

, (5.9)

where rA(sA) and r̄C(sC) give the velocity and acceleration on the profile and the

curve. Again, Newton’s method can be employed to find the root of (5.9).

There exists an additional difficulty with respect to Section III: the optimal jerk is

ill-defined on the singular curves because of a division by zero: ak(s
∗) = 0. Taking

again inspiration from [99], we can show that the optimal jerk on the singular curves

is in fact given by the following singular jerk

...
s sglr = −

d′k(s
∗) + c′k(s

∗)ṡ3 + 3ck(s
∗)ṡs̈+ b(s∗)(ṡs̈+ s̈2/ṡ)

a′k(s
∗) + bk(s∗)

. (5.10)

This expression can be derived similarly as in [99].

Fig. (5.4) compares the conjectured optimal connection with a generic connection.

One can note that the conjectured profile has a higher velocity at any position, which

implies time-optimality.

The case of a backward extension can be treated similarly.

92

5.5. Simulation results

Table 5.1.: Kinematic limits for Denso robot arm

Limits J1 J2 J3 J4 J5 J6

Vel (rads−1) 3.92 2.61 2.85 3.92 3.02 6.58

Accel (rads−2) 19.7 16.8 20.7 20.9 23.7 33.5

Jerk (rads−3) 100. 100. 100. 100. 100. 100.

s

ṡ

Time(s)

Jo
in
t
je
rk

(r
a
d
/s

3
)

A

B C

Figure 5.5.: A: Snapshots of the robot. B: The profile constrained at 100 rad/s3 (blue),

the profile constrained at 1000 rad/s3 (purple) and the profile with uncon-

strained jerk (light blue). Singularities are plotted as green lines. Note that

the profiles are projected onto the (s, ṡ) plane. C: Joint jerks versus time.

5.5. Simulation results

5.5.1. Simulation results

We implemented and tested TOPP3 on a random geometric path subjecting to con-

straints on joint velocities, accelerations and jerks (Table 5.1). Implementation of

acceleration and velocity constraints follows [99].

Different scenarios were considered. In the first one, we set restrictive bounds on

joint jerks at 100 rad/s3. There were several singularities which are plotted as green

lines in Fig. 5.5. Despite the existence of these singularities, TOPP3 was able to com-

pute the time-optimal parametrization. We note that TOPP3 extended the forward

profile once via the maximum singular curve on the left.

Next, we considered a more practical set of bounds at 1000 rad/s3 on joint jerks. In

this case, TOPP3 also terminated successfully. Moreover, we found that singularities

did not affect the profiles: the final profile was computed without having to extend any

profile via any singularities.

Lastly, we compared these profiles with one that does not subject to bounds on

93

Chapter 5. On the Structure of Time-Optimal Path Parameterization with Third-Order Constraints

A1

A2

A3

B1

B2

B3

C1

C2

C3

Figure 5.6.: Comparing the resulting trajectories from TOPP3 with 100 rad/s3 bound

on joint jerks (A1-3), 1000 rad/s3 bound on joint jerks (B1-3) and one

from TOPP without any bound on jerk (C1-3). Note that, when there is no

bound on jerk, the latter reaches extremely high values (C3).

joint jerks (computed with the original TOPP algorithm). We observed that the profile

bounded at 100 rad/s3 appears to be a smoothed version of the profile bounded at

1000 rad/s3, which in turn is a smoothed version of the one not subject to any jerk

bound (Fig. 5.5).

Fig. 5.6 shows the joint trajectories computed from these profiles. We note that

the profiles are bang-bang, satisfy all kinematic constraints and have different total

duration. In particular, they last 1.36 sec, 1.19 sec and 1.18 sec. Note that, when there

is no bound on jerk, the latter reaches extremely high values (Fig. 5.6-C3).

Table 5.2 reports computation time for the three scenarios respectively. The ex-

periments were ran on a single core at 2.00GHz and 8Gb of memory. We remark

that the pre-processing – computation of singularities and switch points – is written

in Python and is significantly slower than the integration and MSM procedures which

are written in Cython. Therefore, we only compared the total time∗ which neglects

pre-processing. In this regard, computing the first and second profiles took 83 times

and 19 times longer than the third one.

5.5.2. Singularities caused by third-order constraints

Third-order singularities appear quite frequently, almost as frequent as singular switch

points which are many [99]. In the Fig. 5.5, one can see that the singular curves (green

lines) correspond to points where the MVC is continuous but is not differentiable,

which are singular switch points [99].

We observed that in the second scenario (1000 rad/s3), singularities did not affect

integrations. We found that this phenomenon only appears when the bounds on joint

94

5.6. Summary

Table 5.2.: Computation time for different levels of bound on joint jerks

Jerk bound (rad/s−3) 100 1000 ∞
Time step (ms) 1 1 1

Total (ms) 754 181 72

integrate 4.05 2.36 2.24

bridge 364 42.2 0.3

extend 134 73.2 3.50

Pre-process 243 63.7 65.9

Total*2(ms) 511 118 6.1

83x 19x 1x

jerks are high in comparison with the bounds on joint accelerations. Here is one possi-

ble explanation: at high jerk bounds, the singular curves have high acceleration. How-

ever, as second-order constraints restrict integrations from having high acceleration,

the integrations will not come close to these curves. Now, as analyzed, we observe

that integrations only diverge near to the singular curves; therefore, these integrations

are not affected. The precise conditions at which this happens is left for future work.

5.6. Summary

In this chapter, we have studied the structure of the Time-Optimal Path Parameteri-

zation (TOPP) problem with third-order constraints. We have argued that the opti-

mal profile can be obtained by integrating alternatively maximum and minimum jerk,

yielding a max-min-max-. . . -min-max structure. We have identified two main difficul-

ties in the integration process: (i) how to smoothly connect two maximum jerk profiles

by a minimum jerk profile, and (ii) how to extend the integration through singulari-

ties which, if not properly addressed, would systematically cause integration failure.

We proposed some solutions to these two difficulties and, based on these solutions,

implemented an algorithm – TOPP3 – to solve the TOPP problem with third-order

constraints in a number of representative scenarios.

There are still a number of open theoretical and practical questions, which we are

currently actively investigating. For instance,

1. Under which condition the profile returned by the connection procedure (bridge)

is unique? Alternatively, can we enumerate all connecting profiles?

2. Similarly, under which condition the profile returned by the extension procedure

(extend) is unique?

2Not including time to compute singularities and switch points.

95

Chapter 5. On the Structure of Time-Optimal Path Parameterization with Third-Order Constraints

3. How to characterize and address the tangent switch points (which probably exist

in the form of tangent curves)?

Addressing all these (difficult) questions will enable us to implement TOPP3 in

a fast and robust manner, which in turn can be useful for a wide range of robotics

applications.

5.7. Additional proofs and remarks

5.7.1. Some proofs regarding third-order singularities

Proposition 1. All singular curve lies on either the MaAS or the MiAS. Furthermore,

a singular curve lies on the MaAS if bk(s
∗) > 0 and on the MiAS if bk(s

∗) < 0.

We assume bk(s
∗) 6= 0 since it is fairly rare for both ak and bk to become zero.

Proof. We will prove the first proposition by contradiction. Consider a singular curve

C triggered by the k-th constraint, there exists a point (s∗, ṡ∗, s̈∗) ∈ C that do not lie

on either the MaAS or MiAS. That is

MaAS(s∗, ṡ∗) < s̈∗ < MaAS(s∗, ṡ∗).

It follows that we can always find s̈1 and s̈2 such that

MaAS(s∗, ṡ∗) < s̈2 < s̈∗ < s̈1 < MaAS(s∗, ṡ∗).

Now, by equation (5.7), we have the equality

bk(s
∗)ṡ∗s̈∗ + ck(s

∗)ṡ∗3 + dk(s
∗) = 0, (5.11)

since ak(s
∗) = 0. Now, if bk(s

∗) > 0, we replace s̈∗ with s̈1 and notice that ṡ > 0

to see that equation (5.11) is strictly positive. Similarly if bk(s
∗) < 0 then we replace

s̈∗ with s̈2 to see that equation (5.11) is strictly negative. Both are contradictions. We

neglect the case where bk(s
∗) = 0.

Finally, to prove the second proposition, we simply remark that if bk(s
∗) > 0, then

there must not exists any feasible s̈1 that is greater than s̈∗. It therefore follows that

s̈∗ = MaAS(s∗, ṡ∗).

The case where bk(s
∗) < 0 is proven similarly.

Proposition 2. The maximum and minimum jerks are equal almost everywhere on the

MaAS and the MiAS except on singular curves.

96

5.7. Additional proofs and remarks

Proof. Considering a point at (s0, ṡ0, s̈0) on the MaAS which does not lie on any

singular curve, by definition, s̈0 is the maximum acceleration for s = s0, ṡ = ṡ0

subjecting to constraints (5.7). Since all constraints (5.7) are linear the set of feasible

(s̈,
...
s) is a convex polygon on the plane.

Now, since this polygon does not contain any edge that is parallel to the s̈-axis

((s0, ṡ0, s̈0) does not lie on any singular curve), s̈ = s̈0 is maximized at a single vertex

of the polygon. Therefore there is only one feasible jerk for s̈ = s̈0.

A similar proof can be written for the MiAS.

Proposition 3. Singular curves are connected.

Proof. Consider a singular curve C in the (s, ṡ, s̈) space triggered by the k-th con-

straint. Let the convex set defined by the feasibility condition (5.7) be A and the

mapping from A using the equality

bk(s
∗)ṡs̈+ ck(s

∗)ṡ3 + dk(s
∗) = 0.

to the singular curve C be f . By definition, f(A) = C.

Now, since A is convex and thus connected and f is also continuous for bk(s
∗) 6=

0, ṡ∗ 6= 0, using Theorem 4.22 in [106], it follows that C is connected.

97

Chapter 6.

Time-Optimal Path Tracking via

Reachability Analysis

6.1. Introduction

Time-optimal motion planning and control along a predefined path are fundamental

and important problems in robotics, motivated by many industrial applications, rang-

ing from machining, to cutting, to welding, to painting, etc.

The planning problem is to find the Time-Optimal Path Parameterization (TOPP) of

a path under kinematic and dynamic bounds. The underlying assumptions are that the

robot is perfectly modeled, no perturbations during execution and no initial tracking

errors. This problem has been extensively studied since the 1980’s [16], see [99, 100]

for recent reviews.

The control problem, which looks for a control strategy to time-optimally track

the path while accounting for model inaccuracies, perturbations and initial tracking

errors, is comparatively less well understood. We refer to this problem as the Time-

Optimal Path Tracking problem, or “path tracking problem” in short.

6.1.1. Contributions of the chapter

To guarantee that the path controller will always find feasible controls requires a cer-

tain level of foresight: one needs to take into account all possible perturbations along

the path. In this chapter, we build on the recent formulation of TOPP by Reachability

Analysis [96] to provide such foresight. Specifically, we compute sets of robust con-

99

Chapter 6. Time-Optimal Path Tracking via Reachability Analysis

Robot
Tracking

controller

Path

controller
Predefined

path

q, q̇, q̈
τ

s, ṡ, s̈

qd

q̇d

q̈d

[
q

q̇

]

Figure 6.1.: Block diagram of an Online Scaling controller.

trollable states 1 that guarantee the existence of feasible controls for bounded tracking

errors. From these sets, a class of path tracking controllers that have exponential sta-

bility and feasiblity guarantees is identified. The time-optimal controller is then found

straightforwardly.

The rest of the chapter is organized as follows. Section 6.2 provides the background

on the path tracking problem and the path tracking controller. Section 6.3 presents the

main contributions. Section 6.4 reports experimental results, demonstrating the effec-

tiveness of the proposed approach. Finally, Section 6.5 delivers concluding remarks

and sketches directions for future research.

6.1.2. Notation

We adopt the following conventions. Vectors are denoted by bold letters: x. The i-th

component of a vector is denoted using subscript i: xi. A vector quantity at stage

j is denoted by bold letters with subscript j: xj , its i-th component is denoted by

adding a second subscript i: xji. Define function φ(s, sd;p) := [p(s)⊤,p′(s)⊤sd]⊤,

argument p will be neglected if clear from context. If x,y are two vectors, (x,y)

denote the concatenated vector (x⊤,y⊤)⊤. Values of differential quantities, such as q̇,

have superscript d: qd
0.

1These are parameterization states, which are defined as squared path velocities. In Section 6.3, precise

definitions are given.

100

6.2. Background: Path Tracking problem and controllers

6.2. Background: Path Tracking problem and

controllers

6.2.1. Path Tracking problem

Path tracking is the problem of designing a controller to make the robot’s joint posi-

tions follow a path parameterization of a predefined path. The path parameterization

is not fixed but is generated by the controller in an online manner.

Specifically, we consider a n-dof manipulator with the dynamic equation

M(q)q̈+ q̇⊤C(q)q̇+ h(q) = τ, (6.1)

where q ∈ R
n and τ ∈ R

n denote the vectors of joint positions and joint torques;

M,C,h are appropriate functions. The joint torques are bounded:

τmin ≤ τ ≤ τmax. (6.2)

A geometric path is a twice-differentiable function p(s)s∈[0,1] ∈ R
n. Notice that in

contrast with the previous chapter, here a different letter is used to denote the path,

distinguished with from the trajectory. We make this choice to improve the clarify

of later presentation. A path parameterization is a twice-differentiable non-decreasing

function s(t)t∈[0,T] ∈ [0, 1]. Path parameterizations are also subject to terminal velocity

constraints of the form ṡ(T) ∈ Iend, where Iend is called the terminal set. To generate

the parameterization, one directly controls the path acceleration. Let u denote the path

parameterization control: s̈ = u.

The state-space equation of the coupled system consisting of the manipulator and

the path parameterization reads

d

dt

q

q̇

s

ṡ

=

q̇

M(q)−1(τ − q̇⊤C(q)q̇− h(q))

ṡ

u

. (6.3)

Let y denote the state of the coupled system [q, q̇, s, ṡ], Eq. (6.3) can be written con-

cisely as

ẏ = f(y) + g(y)

[
τ

u

]
.

Consider a control law [τ , u] = π(y) that always satisfies the torque bounds, one

101

Chapter 6. Time-Optimal Path Tracking via Reachability Analysis

obtains the autonomous dynamics

ẏ = f(y) + g(y)π(y) = f̂(y). (6.4)

We say that y(t)t∈[0,T] ∈ R
2n+2 is a solution of Eq. (6.4) if

ẏ(t) = f̂(y(t)), y2n+1(t) ∈ [0, 1], ∀t ∈ [0, T].

It is a feasible solution if additionally,

y2n+2(t) ≥ 0, ∀t ∈ [0, T],

y2n+1(T) = 1, y2n+2(T) ∈ Iend.

It is a solution with initial value y0 if y(0) = y0.

The coupled system is stable at (s0, s
d
0) ∈ [0, 1] × [0,∞] if for any R > 0, there

exist r > 0 such that if ‖(q0,q
d
0) − φ(s0, s

d
0;p)‖2 ≤ r, the solution y =: (q, q̇, s, ṡ)

with initial value (q0,q
d
0, s0, s

d
0) exists and

‖(q(t), q̇(t))− φ(s(t), ṡ(t))‖2 < R, ∀t ∈ [0, T].

See Section 6.1.2 for the definition of the function φ. The coupled system is expo-

nentially stable at (s0, s
d
0) ∈ [0, 1] × [0,∞] if it is stable and there exist re > 0 such

that if ‖(q0,q
d
0) − φ(s0, s

d
0;p)‖2 ≤ re, the solution y = (q, q̇, s, ṡ) with initial value

(q0,q
d
0, s0, s

d
0) exists and satisfies

‖(q(t), q̇(t))− φ(s(t), ṡ(t))‖2 < Ke−λt, 0 ≤ t ≤ T,

for some positive real numbers K,λ.

The idea of agumenting to the path tracking problem the path velocity and acceler-

ation variableshas been proposed earlier in the literature, in the context of non time-

optimal path tracking [14, 39] or nonlinear trajectory tracking [80].

6.2.2. Path Tracking controllers

A path tracking controller consists of a path controller, which controls the path accel-

eration to generate a desired joint trajectory qd(t) := p(s(t)), and a tracking controller

that controls the joint torques to track the desired joint trajectory.

A common control objective is to track a predefined reference path parameterization.

Here we consider the time-optimal objective, which is to traverse the path as fast as

possible.

102

6.2. Background: Path Tracking problem and controllers

Similar to [33] and subsequent developments presented in [32, 14], we employ the

computed-torque trajectory tracking scheme for the tracking controller. This scheme

implements the following control law

τ =M(q)[q̈d +Kpe+Kdė]

+ q̇⊤C(q)q̇+ h(q),
(6.5)

where e denote the joint positions error vector, defined as e := qd(t) − q(t), Kp and

Kd are the PD gain matrices. The vector (e, ė) is called the tracking error. The first

and second time derivatives of the desired joint trajectory, which are used in (6.5), are

given by

q̇d(t) = p′(s(t))ṡ(t),

q̈d(t) = p′(s(t))s̈(t) + p′′(s(t))ṡ(t)2.

Rearranging Eq. (6.5), one obtains a formula for joint torques:

τ = â(y)s̈+ b̂(y)ṡ2 + ĉ(y), (6.6)

where

â(y) = M(p(s) + e)p′(s),

b̂(y) = M(p(s) + e)p′′(s) + p′(s)⊤C(p(s) + e)p′(s),

ĉ(y) = M(p(s) + e)[Kpe+Kdė]

+ 2ė⊤C(p(s) + e)p′(s)ṡ+ h(p(s) + e).

We observe that if the tracking error is zero, the coefficients â, b̂, ĉ depend only on

the path position s and not on the path velocity ṡ. Indeed in this case, the coefficients

reduce to

a(s) = M(p(s))p′(s),

b(s) = M(p(s))p′′(s) + p′(s)⊤C(p(s))p′(s),

c(s) = h(p(s)).

We call a,b, c the nominal coefficients. Additionally, by inspection, we see that the

coefficients â, b̂, ĉ are continuous with respect to the tracking error e, ė.

It follows from the definition of continuous functions that for any pair (s, sd) ∈
[0, 1]×[0,∞] and any positive number R there exists r > 0 such that for all i ∈ [1 . . . n]

∥∥∥∥∥

[
e

ė

]∥∥∥∥∥
2

< r =⇒

∥∥∥∥∥∥∥

âi(q, q̇, s, s

d)− ai(s)

b̂i(q, q̇, s, s
d)− bi(s)

ĉi(q, q̇, s, s
d)− ci(s)

∥∥∥∥∥∥∥
2

< R. (6.7)

This result implies that for tracking errors with sufficiently small magnitude, the co-

efficients â, b̂, ĉ vary around the nominal coefficients a,b, c. Furthermore, since the

103

Chapter 6. Time-Optimal Path Tracking via Reachability Analysis

path velocity can always be assumed to be bounded, we can strengthen this result:

there exists r̄ > 0 such that Eq. (6.7) holds for any pair (s, sd).

6.2.3. Difficulties with designing path controllers

The fundamental difficulty with designing path controllers is that the coefficients â, b̂, ĉ

are only available online. Hence, it is non-trivial to avoid situations in which there is

no path acceleration that satisfies Eq. (6.6). A consequence of this infeasibility is that

exponential convergence of the actual joint trajectory to the desired joint trajectory

is not guaranteed because of saturating torque bounds. This difficulty also renders

reaching the terminal set challenging.

6.3. Solving the Time-Optimal Path Tracking

problem

6.3.1. Exponential stability with robust feasible control laws

In the last section, it was shown that if tracking errors have small magnitude, the

coefficients of Eq. (6.6) vary around the nominal coefficients. Motivating by this ob-

servation, we introduce the notion of robust feasible control laws. Note that in this

section, control laws refer to control laws for selecting path parameterization controls

u, not the coupled control [τ , u].

Specifically, a control law is a function that computes the path acceleration from the

current path position, the current path velocity and the coefficients:

u(t) = π(s(t), ṡ(t), â(t), b̂(t), ĉ(t)).

The control law π is robust feasible at the pair (s0, s
d
0) if there exists R > 0 such that

for any set of coefficients

â(t) := a(s(t)) +∆a(t), b̂(t) := b(s(t)) +∆b(t),

ĉ(t) := b(s(t)) +∆c(t),

where the perturbations ∆a,∆b,∆c are arbitrary continuous functions satisfying

‖(∆a,i(t),∆b,i(t),∆c,i(t))‖2 < R, ∀t, i ∈ [1, . . . , n], (6.8)

104

6.3. Solving the Time-Optimal Path Tracking problem

the generated parameterization s(t) is feasible, that is

s(0) = s0, ṡ(0) = sd0, (6.9)

∃T, s(T) = 1, ṡ(t) ∈ Iend, (6.10)

∀t ∈ [0, T], ṡ(t) ≥ 0 (6.11)

∀t ∈ [0, T],Eq. (6.8) holds. (6.12)

The following result shows that a robust feasible control law ensures exponentially

stable path tracking.

Proposition 4. Consider a path tracking controller with (path acceleration) control

law π. If π is robust feasible at (s0, s
d
0) then the coupled system is exponentially stable

at (s0, s
d
0).

Proof. Let R denote the bound on the magnitude of the perturbations such that π is

robust feasible. Select r̄ > 0 such that Eq. (6.7) holds for R being the scalar bound in

Eq. (6.19) and for all (s, sd). Select (q0,q
d
0) such that the norm of the initial tracking

error is less than r̄.

Suppose we remove the torque bounds, the computed-torque tracking controller is

exponentially stable. Thus, the tracking error converges exponentially to zero and its

norm remains smaller than r̄. Again using Eq. (6.7), it follows that the norm of the

perturbations is always smaller than R.

Since π is robust feasible at (s0, s
d
0) for R being the upper bound on the magnitude

of the perturbations, the resulting parameterization s(t) is feasible. It follows that the

torque bounds are always satisfied. Therefore, the coupled path tracking system is

exponentially stable at (s0, s
d
0) according to the definition given in Section 6.2.1.

Notice that the definition of robust feasible control laws does not require a specific

R. In fact, as seen in the proof of Proposition 4, continuity of the coefficients guaran-

tees the existence of r̄ such that Eq. (6.8) holds for any value of R. It can be observed

that r̄ is the radius of a ball lying inside the region of attraction of the path tracking

controller.

6.3.2. Characterizing robust feasible control laws

We now provide a characterization of robust feasible control laws. This development

follows and extends the analysis of the Time-Optimal Path Parameterization problem

in [96].

Discretize the interval [0, 1] into N + 1 stages

0 =: s0, s1, . . . , sN := 1.

105

Chapter 6. Time-Optimal Path Tracking via Reachability Analysis

Define the state xi and the control ui as the squared velocity at si and the constant

acceleration over [si, si+1]. One obtains the transition function

xi+1 = xi + 2∆iui, (6.13)

where ∆i := si+1 − si. We say that ui “steers” xi to xi+1. See [96] for a derivation of

Eq. (6.13).

At each stage, there are n pairs of torque bounds. The j-th pair of torque bounds at

stage i is

τmin,j ≤ τij = âijui + b̂ijxi + ĉij ≤ τmax,j. (6.14)

The coefficients âij, b̂ij, ĉij are assumed to vary around known nominal coefficients

aij, bij, cij:

âij = aij +∆a,ij, b̂ij = bij +∆b,ij, ĉij = cij +∆c,ij, (6.15)

‖(∆a,ij,∆b,ij,∆c,ij)‖2 ≤ R. (6.16)

The terms (∆a,ij,∆b,ij,∆c,ij) are also called the perturbations. R is a parameter that

be tuned to account for the magnitude of initial tracking errors. See the discussion

at the end of Section 6.3.1 for more details. A control is feasible if it satisfies the

constraints and is robust feasible if it satisfies all realizations of the constraints. Finally,

the terminal velocity constraint is transformed to

xN ∈ Xf := {x :
√
x ∈ Iend}.

We say that a state is robust controllable at stage i if there exists a sequence of robust

feasible controls that steers it to Xf . The set of robust controllable states at stage i is

called the i-stage robust controllable set Ki.

In this discrete reformulation, the control law becomes a function π that maps the

stage index, the state and the constraint coefficients (i, xi, âi, b̂i, ĉi) to a control. Sim-

ilarly, a control law is robust feasible at (i, xi) if it steers xi to the terminal set from

stage i for any realization of the constraints with feasible controls.

We now give a characterization of robust feasible control laws.

Proposition 5. For any state in Ki and any realization of the constraints, there exists

at least one feasible control that steers that state to Ki+1. If at any stage i, a control

law steers states in Ki to Ki+1, it is robust feasible at all robust controllable states at

all stages.

This characterization of robust feasible control laws is only useful if one can com-

pute the robust controllable sets. To do so, we first introduce the notion of the robust

106

6.3. Solving the Time-Optimal Path Tracking problem

one-step set. Given a target set I ⊆ R, the i-stage robust one-step set Qi(I) is the set

of states such that at each state, there is a robust feasible control that steers it to I.

Proposition 6. The i-stage robust controllable sets, for i ∈ [0, . . . , N], can be com-

puted recursively by

KN = Xf , Ki = Qi(Ki+1). (6.17)

A proof of this statement is omitted due to space constraints. Interested readers can

refer to [96] for the proof of a similar result. We can now give a proof of Proposition 5

below.

Proof of Proposition 5. Let xi be a state in Ki. Since xi is robust controllable, there

exists a sequence of controls (ui, . . . , uN−1) that are robust feasible and the resulting

sequence of states (xi+1, . . . , xN) satisfies xN ∈ XN . Observe that this implies xi+1 is

robust controllable, and hence, ui is a robust feasible control that steer xi to Ki+1.

Consider a control law that steers states in Ki for any stage i to Ki+1. It is clear that

this control law steers any robust controllable states to KN . Since KN = Xf , see (6),

the control law is robust feasible.

A class of convex sets that can be handled quite efficiently is the class of Conic-

Quadratic representable (CQr) sets [6]. A set of vectors ǫ is CQr if it is defined by

finitely many conic-quadratic constraints

∥∥∥∥∥Di

[
ǫ

ν

]
− di

∥∥∥∥∥
2

≤ p⊤
i

[
ǫ

ν

]
− qi, i ∈ [1, . . . , k].

Proposition 7. If I is an interval, the set of state and robust feasible control pairs

(x, u) that satisfies x+ 2∆iu ∈ I is a CQr. Furthermore, Qi(I) is an interval.

Indeed, from Eq. (6.14) and Eq. (6.15), the j-th joint torque is given by

τij =
[
aij bij cij

]

ui

xi

1

+

[
∆a,ij ∆b,ij ∆c,ij

]

ui

xi

1

 .

Since the norm of the perturbation is bounded, see Eq. (6.16), one obtains the inequal-

ity

τij ≤
[
aij bij cij

]

ui

xi

1

+R

∥∥∥∥∥∥∥

ui

xi

1

∥∥∥∥∥∥∥
2

. (6.18)

107

Chapter 6. Time-Optimal Path Tracking via Reachability Analysis

It is clear that if and only if the right-hand side is not greater than τmax,j , the pair (ui, xi)

satisfies all realizations of this constraint. One obtains the conic-quadratic constraint

R

∥∥∥∥∥∥∥

1 0

0 1

0 0

[
ui

xi

]
+

0

0

1

∥∥∥∥∥∥∥
2

≤ −
[
aij bij

] [ui

xi

]
− ci + τmax,j. (6.19)

Note that the lower bound can be handled in a similar way. Instead of finding the upper

bound of τij , one derives the lower bound

τij ≥
[
aij bij cij

]

ui

xi

1

−R

∥∥∥∥∥∥∥

ui

xi

1

∥∥∥∥∥∥∥
2

. (6.20)

By requiring the right-hand side to be greater than or equal to τmin,j , one obtains an-

other conic-quadratic constraint.

Finally, if I is an interval, the constraint x + 2∆iu ∈ I is equivalent to two linear

inequalities, which are clearly CQr. Qi(I) being an interval is a simple corollary.

From Proposition 7, one can formulate a pair of conic-quadratic optimization pro-

grams to compute the robust one-step set for any given target set. One program maxi-

mizes x while one program minimizes. Computing the robust controllable sets is then

possible with Proposition 6.

6.3.3. A control law for time-optimal path tracking

Proposition 5 can be used to identify a class of control laws that are robust feasible,

which, by Proposition 4 are exponentially stable. What is then the control law that

realizes the shortest traversal time in this class? We give the following conjecture.

Conjecture 1. In the class of control laws that for all i steers states in Ki to Ki+1, the

control law that always chooses the greatest feasible controls is time-optimal.

We current do not have a proof of this conjecture. Regardless, in our experiments,

the conjecture is verified by comparing the traversal time with the duration of the time-

optimal path parameterization.

108

6.4. Simulation results

s = 0 s = 0.16 s = 0.3

s = 0.55 s = 0.85 s = 1.0

Figure 6.2.: The swinging motion used in the experiment.

6.4. Simulation results

We simulated a 6-axis robotic arm and controlled it to track a geometric path p(s)s∈[0,1]

with zero terminal velocity constraint. The torques bounds are

τmax = −τmin = [120., 280., 280., 120., 80., 80.](Nm).

Fig. 6.2 visualizes the swinging motion. Initially the robot was at rest and had an

initial joint positions error with magnitude 0.1 rad. Forward dynamic computations

were performed using OpenRAVE [35] and the dopri5 solver. We sampled joint

torques at sample time 1ms.

We implemented the time-optimal path tracking controller conjectured in Section 6.3.3,

with the bounds on the norm of the perturbations R set uniformly to 0.5. The number

of discretization step N was set to 100.

Computing the robust controllable sets excluding computations of the coefficients

took 120ms using our package toppra. We solved the conic-quadratic programs using

the Python interface of ECOS [37]. Note that computing the coefficients involves

evaluating the inverse dynamics twice per stage [99], which had a total running time

of 40ms. Online computations of the controls (τ , u) took 0.50ms per time step. All

computations were done on a single core of a laptop at 3.800GHz.

We compared our controller, called the Time-Optimal Path Tracking controller (TOPT),

with the Online Scaling controller (OS) in [32] and the Computed-Torque Trajectory

Tracking controller (TT) in [120]. The OS controller tracked the time-optimal path

109

Chapter 6. Time-Optimal Path Tracking via Reachability Analysis

parameterization of the given geometric path, while the TT controller tracked the time-

optimal trajectory.

Table 6.1.: Tracking duration and max position errors

TOPT OS TT

Max pos. err. (rad) 0.10 0.491 0.493
Tracking dur. (sec) 1.021 1.017 1.017

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Robust controllable sets

Parameterization OS

Parameterization TOPT

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5
TT

OS

TOPT

Path position

A

N
o

rm
o

f
p

o
si

ti
o

n
er

ro
rs

(r
a
d
)

Path position

B

S
q

u
ar

ed
p

at
h

v
el

o
ci

ty

Figure 6.3.: A: Norms of joint position errors of three controllers: TOPT, OS and TT.

B: The path position-squared path velocity space showing parameteriza-

tions (solid lines) generated online by the TOPT and OS controllers, the

robust controllable sets (dashed lines).

We observe that the TT controller was incapable of handling the initial position

error: Fig. 6.3A shows that position errors increased quickly reaching a maximum

norm of 0.49 rad before stabilizing.

The OS controller was only able to regulate position errors during the initial seg-

ment. At s ≈ 0.18, position errors increased sharply. See Fig. 6.3A. We note that at

this instance, the OS controller was not able to find any feasible path acceleration. This

event can be observed in Fig. 6.3B as a sharp spike on the generated parameterization.

The TOPT controller did not show any of the above problems. The joint positions

converged quickly to zero. The total tracking duration of the TOPT controller was

110

6.5. Summary

slightly higher than the optimal duration: about 1% longer. See Table 6.1 for the

durations.

Finally, we observed that the parameterization generated by the TOPT controller

differed from the parameterization generated by the OS controller mostly during de-

celerating path segments. See for instance the path position interval s ∈ [0.05, 0.15] in

Fig. 6.3. Specifically, it can be seen that the TOPT controller “slowed down” in order

to stay within the robust controllable sets. This helped the TOPT controller avoids the

infeasibility at s = 0.18.

6.5. Summary

In this chapter, we considered the Time-Optimal Path Tracking problem: given a ge-

ometric path, find the control strategy to traverse the path time-optimally while regu-

lating tracking errors. We have introduced the Time-Optimal Path Tracking controller

and shown that the controller outperforms existing methods. The key innovation is the

use of robust controllable sets, which intuitively define the sets of “safe” path param-

eterizations that can be tracked while accounting for possible variations of the coeffi-

cients. The technique used in this chapter is Reachability Analysis, a new method for

analyzing path parameterization problems [96].

Several matters have been left for future investigations. Important questions include

how to evaluate and optimize the region of attraction of path tracking controllers. An-

other direction is extending the approach to handle industrial manipulators with posi-

tion or velocity interfaces and to account for higher-ordered constraints such as joint

jerk bounds.

111

Chapter 7.

Conclusion

The recent recognition of robotics [60, 19, 48] has led to new challenges on motion

planning and control. With the goal of resolving these challenges, this thesis has pre-

sented four contributions. The first is an efficient and robust algorithm that solves

the Time-Optimal Path Parameterization (TOPP) problem for a wide class of robots

and tasks. The second is an experimental case study of the challenging task of trans-

porting objects with suction cup critically fast. As the third and fourth contributions, I

have presented analyses and solutions for two well-known issues associated with time-

optimal motions in practice: infinite joint jerk at switching points and poor tracking

performance.

Looking back at the original TOPP problem formulated by Bobrow et al. [16]–

computing the time-optimal path parameterization for robots subject to joint torque

limits–it is not an overstatement to say that the problem has been solved and that there

is little one could do to further improve the existing solutions. Sounding as audacious

as it is, we can now solve TOPP for robots subject to, in addition to joint torque

limits, joint acceleration limits, joint velocity limits, Cartesian acceleration limits,

Cartesian velocity limits, (frictional) contact stability constraints and Zero Moment

Point constraint in a robust and efficient manner. Furthermore, the TOPP algorithm

presented in Chapter 3 has an expected computational complexity of O(Nm), where

N is the number of grid-points and m is the number of constraints. This computational

complexity can be said to be optimal, because it is exactly the complexity of verifying

whether a path parameterization satisfies all constraints 1.

With that said about the original TOPP problem, the general TOPP problem, which

contains constraints other than those listed above, remains challenging. The algo-

rithm presented in Chapter 5, as well as other Numerical Integration based algo-

1One needs to evaluate all m constraints at each grid-point and there are N grid-points.

113

Chapter 7. Conclusion

rithms [38, 95], have edge cases that are difficult to solve robustly. Optimization based

algorithms can produce locally optimal solutions robustly, but are slow. A fast and

robust solution to this general TOPP problem, which has eluded researchers for years,

might lie at a more fundamental level: analytical results on optimality of optimal con-

trol problems [74]. Considering the wealth of applied mathematical research literature

on optimal control, it is hard to not suspect that the solution is lying somewhere, wait-

ing to be discovered. Fortunately, the lack of an efficient solution for the general

problem is not a major hurdle to a majority of robotic applications.

Even up until recently, computational robotic motion planning had yet been widely

applied in the industries. One of the main reasons is the difficulty in computing path

parameterizations that satisfy task constraints robustly and efficiently. I believe that the

introduction of TOPP-RA–the TOPP algorithm in Chapter 3–has provided this miss-

ing piece and thereby enabled computational robotic motion planning in the industries.

Indeed, we have seen how the challenging task of transporting objects with suction cup

critically fast can be solved reliably in Chapter 4. The suction cup constraint, which

guarantees that frictional and suction forces are within limits, has more than 3000 in-

equalities; and yet TOPP-RA consistently terminated in approximately 100 ms 2. Our

implementation of TOPP-RA on GitHub (https://github.com/hungpham2511/toppra)

has also gained interests from robotic researchers developing commercial and research

robotic applications.

Despite this welcoming achievement, research in motion planning and control for

industrial robotics is far from lacking interesting open problems. Not considered in

this thesis, motion planning and control for human-robot collaboration [83, 27] is one

such problem. The most important requirement is to ensure that robots do not cause

serious injuries to the human operators working alongside them. This requirement

leads to several challenges. One group of challenges include modelling and predicting

human operators’ intentions and behaviors. Another is formulating appropriate safety

constraints in order to maximize safety without affecting severely the optimality of

the solutions. Principal solutions for these challenges would be beneficial even to

fields extending far from industrial robotics where the ability to reason about optimal

movements while maintaining high safety in the presence of human agents is greatly

appreciated.

In recent years, research on robotic motion planning has been shifting toward non-

linear trajectory optimization and Deep Reinforcement Learning. The underlying

trends motivating this shift are (i) the consideration of larger and more complex dy-

namic systems (e.g. legged robots, flexible robotics arms) and (ii) the availability of

large quantities of data in the latter case. To fully utilize TOPP algorithms in consid-

2This implementation of TOPP-RA is in Python/Cython, which is not as efficient as C or C++.

114

https://github.com/hungpham2511/toppra

eration of both trends, there are two important questions to address:

1. What is the role of TOPP algorithms in complex robotic systems that employ

nonlinear trajectory optimization or Deep Reinforcement Learning?

2. How can we leverage available data from real executions to improve the quality

of motion computed with TOPP algorithms?

Below I briefly discuss both questions.

As demonstrated in this thesis, motion planning based on TOPP is highly efficient

and robust; however, it is only applicable to robots and tasks with first-order and

second-order constraints. On the other hand, nonlinear trajectory optimization is appli-

cable to a much larger class of constraints and objectives [11, 127, 107] (unfortunately

with higher computational cost and lost of optimality guarantee). TOPP can provide

complementary information useful to the trajectory optimizer:

1. One can use a TOPP algorithm to solve a simplified model of the task that has

only first-order and second-order constraints. The resulting time-optimal trajec-

tories (both minimum-time and maximum-time) can be used as initial guesses

for the trajectory optimizer. In addition, the respective minimal and maximal tra-

jectory durations can provide upper and lower bounds of achievable trajectories

respectively.

2. Given the same computational budget, one can solve TOPP for a longer horizon

than what is possible for nonlinear trajectory optimization. Hence, we can use

a motion planner based on TOPP to plan strategic motions, taking advantage of

the longer horizon, while employ nonlinear trajectory optimization to compute

shorter but more accurate control input trajectories.

3. The set of controllable path velocities, which can be computed using TOPP-RA,

defines a controllable manifold in the state-space. Any state on this manifold can

be “controlled” to reach the desired goal state. Therefore, this manifold can be

used as a terminal set for a trajectory optimizer to “guide” the system toward the

desired goal state, which is possibly far in the future.

The recent advances in Deep Reinforcement Learning, or Deep Learning in general,

have had great impacts on robotics. Researchers have demonstrated that Deep Rein-

forcement Learning algorithms can solve manipulation tasks end-to-end with no prior

knowledge [71, 72], achieve large scale grasping with state-of-art performance [73]

and perform dexterous in-hand manipulation [2]. These developments have shown

clearly the advantages of Deep Reinforcement Learning. First, these algorithms are

115

Chapter 7. Conclusion

applicable to very general situations, with almost no restriction on system dynam-

ics nor constraints. Second, end-to-end algorithms have a straightforward pipeline

for training and autonomously improving performance. Taking into consideration the

cheaply available data from both real experiments and simulations, this is perhaps the

strongest advantage of Deep Reinforcement Learning. Finally, Deep Reinforcement

Learning algorithms are capable of seamlessly integrating motion planning, control

and computer vision in a single place (i.e. a neural network), taking full advantage

of the superiority of deep convolutional neural networks in understanding visual in-

puts [117, 56]. Achieving the same level of integration in non end-to-end robotic

systems requires significant engineering effort. At this point, one is naturally inclined

to ask: What are the advantages of motion planning with TOPP comparing to Deep

Reinforcement Learning algorithms, which apparently can account for a much higher

level of complexity?. In my opinion, motion planning based on TOPP has key advan-

tages that are unlikely to be overcome in near future:

1. As discussed in the introduction of this thesis, robotic applications often have

“hard” constraints, which if not satisfied cause failure. Motion planning systems

that are based on TOPP can guarantee constraint satisfaction mathematically. On

the other hand, for Deep Reinforcement Learning algorithms, it is much harder

to achieve the same goal: the only option available to the learning algorithm

developer is to collect more data and feed these data to the algorithm. How

much data are sufficient to achieve the desired level of performance is often

unknown.

2. Motion planners based on TOPP can perform very fast collision-free path plan-

ning using the RRT algorithm [69] or CHOMP [132]. On the other hand, there is

no evidence that an end-to-end algorithm can perform fast collision-free motion

planning.

3. Suppose that a collision-free path is already known, what about using Deep Re-

inforcement Learning for speed planning? As the matter of fact, Reinforcement

Learning was proposed earlier [114] (referred to as Dynamic Programming) to

solve TOPP. The resulting algorithm, however, requires far greater computa-

tional cost and achieves lower quality solution comparing to state-of-art TOPP

algorithms. Moreover, researchers have recently suggested that for problems

with known analytical solutions, Deep Reinforcement Learning algorithms can

hardly beat analytical solutions in term of efficiency and robustness [105].

Nonetheless, the ability of learning-based methods to autonomously improve perfor-

mance from data is desirable. We will next discuss how this property can be realized

for a motion planning system based on TOPP.

116

In order to autonomously improve motion quality from data, the key ingredient is a

module for estimating task and robot constraints. Indeed, recall that a TOPP algorithm

receives as inputs the geometric path, a list of constraints and outputs the final trajec-

tory. In most cases, the list of constraints is kept fixed, hence one can interpret TOPP

as a computational layer with the constraints being the parameters. Motion quality–

the likelihood of constraint violation and the level of sub-optimality–depends only on

these parameters, which can be learned from data collected during execution. In par-

ticular, we can record trajectory execution results: joint measurements, object index,

wrench measurements, grasping position and a Boolean output indicating whether the

attempt is successful. Using these data, we can use techniques from Machine Learn-

ing to infer first-order and second-order constraints (the parameters) directly. These

constraints can then be used to compute robot motions that are closer to the limits

imposed by the task, which are executed to collect more data and obtain better estima-

tions. Such a hybrid system can potentially leverage the best of both worlds to achieve

(i) fast execution, robustness and guarantee of constraint satisfaction (from a TOPP

algorithm) and (ii) realistic constraints inferred from data (using Machine Learning).

With some engineering effort, it should not be difficult to automate the whole process,

realizing an autonomously improving motion planning system.

In the above concluding remarks, I have argued that computational motion planning

has sufficiently matured for industrial applications. An enabling factor is the intro-

duction of fast and robust TOPP algorithms. The usefulness of these TOPP algorithms

could extend far out of industrial robotics, with potential use cases even in highly com-

plex systems that rely chiefly on nonlinear trajectory optimization for motion planning.

Finally, leveraging TOPP algorithms with Machine Learning is an interesting direction

that can further enhance the performance and streamline the development of future

robots.

117

Appendix A.

Publications

The main Chapters 3, 4, 5, and 6 have been published as articles J2, C3, C1, and C2

respectively. Other articles are attached in this appendix after this page.

Journal papers

J1 Hung Pham and Quang-Cuong Pham. Robotic Manipulation of a Rotating Chain.

IEEE Transactions on Robotics, Apr 2018.

J2 Hung Pham and Quang-Cuong Pham. A New Approach to Time-Optimal Path

Parameterization Based on Reachability Analysis. IEEE Transactions on Robotics,

Jul 2018.

J3 Xu Zhang, Mingyang Li, Jian Hui Lim, Yiwei Weng, Yi Wei Daniel Tay, Hung Pham

and Quang-Cuong Pham. Large-scale 3D printing by a team of mobile robots.

Automation in Construction, Aug 2018.

Conference papers

C1 Hung Pham and Quang-Cuong Pham. On the Structure of the Time-Optimal

Path Parameterization Problem with Third-Order Constraints. In 2017 IEEE

International Conference on Robotics and Automation (ICRA), 2017.

C2 Hung Pham and Quang-Cuong Pham. Time-Optimal Path Tracking via Reach-

ability Analysis. In 2018 IEEE International Conference on Robotics and Au-

tomation (ICRA), 2018.

C3 Hung Pham and Quang-Cuong Pham. Critically fast pick-and-place with suc-

tion cups. Accepted at 2019 IEEE International Conference on Robotics and

Automation (ICRA), 2019.

119

Appendix A. Publications

C4 Hung Pham, Lim Jian Hui and Quang-Cuong Pham. Robotic 3D-printing for

building and construction. In Proceedings of the 2nd International Conference

on Progress in Additive Manufacturing (Pro-AM 2016), 2016.

C5 Puttichai Lertkultanon, Jingyi Yang, Hung Pham, and Quang-Cuong Pham. De-

parture and Conflict Management in Multi-Robot Path Coordination. In 2018

IEEE International Conference on Robotics and Automation (ICRA), 2018.

120

IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 1, FEBRUARY 2018 139

Robotic Manipulation of a Rotating Chain
Hung Pham and Quang-Cuong Pham

Abstract—This paper considers the problem of manipulating a
uniformly rotating chain: the chain is rotated at a constant angular
speed around a fixed axis using a robotic manipulator. Manipula-
tion is quasi-static in the sense that transitions are slow enough
for the chain to be always in “rotational equilibrium.” The curve
traced by the chain in a rotating plane—its shape function—can be
determined by a simple force analysis, yet it possesses a complex
multisolutions behavior that is typical of nonlinear systems. We
prove that the configuration space of the uniformly rotating chain
is homeomorphic to a two-dimensional surface embedded in R

3 .
Using that representation, we devise a manipulation strategy for
transiting between different rotation modes in a stable and con-
trolled manner. We demonstrate the strategy on a physical robotic
arm manipulating a rotating chain. Finally, we discuss how the
ideas developed here might find fruitful applications in the study
of other flexible objects, such as in circular aerial manipulation
with UAVs.

Index Terms—Dynamics, path planning, shape control.

I. INTRODUCTION

A
N IDLE person with a chain in her hand will likely at some

point start rotating it around a vertical axis, as in Fig. 1(A).

After a while, he/she might be able to produce another mode of

rotation, whereby the chain would curve inward, as in Fig. 1(B),

instead of springing completely outward. With sufficient dexter-

ity, he/she might even reach more complex rotation modes, such

as in Fig. 1(C). Transitions into such complex rotation modes

are, however, difficult to reproduce reliably as instabilities can

quickly lead to unsustainable rotations [see Fig. 1(D)]. This

paper investigates the mechanics of the transitions between dif-

ferent rotation modes and proposes a strategy to perform those

transitions in a stable and controlled manner.

A. Context

There are several reasons why this problem is hard to solve.

First, there are multiple solutions for a given control input

Manuscript received March 23, 2017; revised September 4, 2017; accepted
October 26, 2017. Date of publication December 21, 2017; date of current
version February 5, 2018. This paper was recommended for publication by As-
sociate Editor K. Hauser and Editor A. Billard upon evaluation of the reviewers’
comments. This work was supported in part by Grant ATMRI:2014-R6-PHAM
(awarded by the NTU and the Civil Aviation Authority of Singapore) and in
part by the Medium-Sized Centre funding scheme (awarded by the National
Research Foundation, Prime Minister’s Office, Singapore). (Corresponding au-

thor: Hung Pham.)

The authors are with the Air Traffic Management Research Institute and
Singapore Centre for 3D Printing, School of Mechanical and Aerospace
Engineering, Nanyang Technological University, Singapore 639798 (e-mail:
pham0074@e.ntu.edu.sg; cuong.pham@normalesup.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2017.2775650

Fig. 1. Manual rotation of a chain around a vertical axis. A, B, and C: Uniform
rotation modes 0, 1, and 2, respectively. D: Unstable behavior.

(distance r between the attached end of the chain and the rotation

axis, and angular speed ω). This ambiguity makes it difficult to

devise a manipulation strategy directly in the control space. Sec-

ond, some control inputs can quickly lead to “uncontrollable”

behaviors of the chain, as illustrated in in Fig. 1(D).

The theoretical study of the rotating chain and, in particu-

lar, of its rotation modes, has a long and rich history in the

field of applied mathematics [1]–[7], which we will review in

Section II-A. Here, by devising and implementing a manipula-

tion strategy to stably transit between different rotation modes,

we hope to provide a new, robotics-enabled, understanding of

this problem. Indeed, at the core of our approach lie concepts

specifically forged in the field of robotics, such as “configuration

space,” “stable configurations,” “path-connectivity,” etc.

As opposed to rigid bodies, flexible objects are generally char-

acterized by an infinite number of degrees of freedom, which

entails significant challenges when it comes to manipulation.

Therefore, specific approaches have been developed in the field

of robotics to study the manipulation of flexible objects, as re-

viewed in Section II-B.

The above studies are motivated by a number of practical

applications. For the rotating chain in particular, applications

include aerial manipulation by unmanned air vehicles (UAVs),

which has recently received some attention, as discussed in more

detail in Section II-C.

B. Contribution and Organization of the Paper

Our contribution in this paper is threefold. First, we study the

case of arbitrary nonzero attachment radii r (see Section IV).

This extends and generalizes existing works, which all focus on

the case of zero attachment radius, and sets the stage for stable

transitions between different rotation modes, which specifically

require manipulating the attachment radius. In particular, we

determine in that section the number of solutions to shape the

equation for given values, i.e., r and ω.

1552-3098 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

140 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 1, FEBRUARY 2018

Second, we show that the configuration space of the uniformly

rotating chain with variable attachment radius is homeomorphic

to a two-dimensional surface embedded in R
3 (see Section V).

We study the subspace of stable configurations and establish

that it is not possible to stably transit between rotation modes

without going back to the low-amplitude regime.

Third, based on the above results, we propose a manipulation

strategy for transiting between rotation modes in a stable and

controlled manner (see Section VI). We show the strategy in

action in a physical experiment where a robotic arm manipulates

a rotating chain and makes it reliably transit between different

rotation modes.

Before presenting our contribution, we review related works

(see Section II) and recall Kolodner’s equations of motion of

the rotating chain (see Section III). Finally, we discuss possible

applications and extensions and sketch some perspectives for

future work (see Section VII).

II. RELATED WORKS

The manipulation of the rotating chain is relevant to a num-

ber of fields such as 1) applied mathematics, 2) flexible object

manipulation in robotics, and 3) aerial manipulation. We now

review the literature and describe the position of the current

work with respect to each of those fields.

A. Theoretical Studies of the Rotating Chain

In applied mathematics, the study of the rotating chain was

initiated in 1955 by a remarkable paper by Kolodner [1]. He

established the existence of critical speeds (ωi)i∈N such that

there are no uniform rotations if ω < ω1 , and there are exactly

n rotation modes for ωn < ω < ωn+1 . In [2], Caughey studied

the rotating chain with small but nonzero attachment radii. The

results obtained by Caughey extend Kolodner’s and agree with

our study of the low-amplitude regime. In [3], Caughey inves-

tigated the rotating chain with both ends attached. In [5], Stuart

considered the original rotating chain problem using bifurcation

theory, and arrived at the same results as Kolodner. In [4], Wu

considered the large angular speeds regime. In [7], Toland initi-

ated a new approach based on the calculus of variation, but did

not obtain new significant results, as compared to Kolodner.

The common point of all previous works is that the chain is

attached to the rotation axis, or very close to it [2]. Yet, reli-

ably observing and transiting between different rotation modes

precisely require using arbitrary nonzero attachment radii r, the

distance between the attached end, and the rotation axis. The

current paper extends previous studies by specifically consider-

ing arbitrary attachment radii.

B. Robotic Manipulation of Flexible Objects

Within the field of robotics, the manipulation of flexible ob-

jects is studied along two main directions. A first direction is

topological: one is mainly interested in the order and sequence

of the manipulation rather than in the precise behavior of the

flexible object. Examples include origami folding [8], laundry

folding [9], or rope-knotting [10], [11].

The second research direction is concerned with the pre-

cise shape and dynamics of the manipulated object. Within this

research direction, one can distinguish two main approaches.

The first approach discretizes the flexible object into a large

number of small rigid elements, and subsequently carries out

finite-element calculations, see, e.g., [6], [12], and [13] for in-

extensible cables or [14] and [15] for concentric tube robots.

This approach can be applied to any type of flexible objects

as long as a dynamical model is available. However, it usually

yields no qualitative understanding of the manipulation. For ex-

ample, while finite-element calculations can compute the shape

of the rotating chain for various control inputs, they can estab-

lish neither the existence of different rotation modes, nor the

manipulation strategies to transit between different modes.

By contrast, the second approach considers the flexible ob-

ject as the solution of a (partial) differential equation and tries

to establish qualitative properties of this solution. While this

approach is harder to put in place—usually because of the com-

plex mathematical calculations and concepts involved—it can

lead to stunning and insightful results. For example, Bretl and

McCarthy [16] and Bretl and Borum [17] established that the

configuration space of the Kirchhoff elastic rod is of dimension 6

and that it is path-connected. Such results would be impossible

to obtain via finite-element methods.

The present study of the rotating chain is inscribed within this

analytical approach. From the dynamic model of the rotating

chain, we investigate qualitative properties of its configuration

space: dimension, connectivity, and stability. These properties

are in turn crucial to devise a manipulation strategy to stably

transit between different rotation modes.

C. Aerial Manipulation

Although the study of the rotating chain first stemmed out

of scientific curiosity, it has recently found applications in

aerial manipulation. In [13] and [18], Murray and Williams

and Trivailo considered a fixed-wing aircraft towing a long ca-

ble whose other end is free. The circular flying pattern imprints

a pseudo-stationary shape to the cable, which in turn allows

precisely controlling the position of the free end. Practical ap-

plications of this scheme include remote sensing in isolated

areas [18], payload delivery and pickup [12], [18], [19], mobile

3-D printing [20] or more recently, recovery of micro air vehi-

cles [21]–[23]. In the latter application, the micro vehicles are

able to attach themselves to the towed end, which moves at a rel-

atively slower speed than that of the aircraft. The recent surge of

interest in UAVs also offers many potential applications: Merz

and Johansen [19] studied a single UAV flying circularly while

towing a cable, Sreenath et al. [24] deals with general (non-

circular) aerial manipulation, while Michael et al. [25] targets

cooperative manipulation using a team of UAVs.

The above works are based on dynamic simulation [6], [12],

[26], or numerical optimal control [23], [27]. Physical exper-

iments were found to agree with simulations [18]. However,

there are a number of questions these works are unable to ad-

dress, for instance: 1) under which conditions are there multiple

solutions to the same set of controls (fly radius and angular

PHAM AND PHAM: ROBOTIC MANIPULATION OF A ROTATING CHAIN 141

Fig. 2. Chain rotating around a fixed vertical axis. At a time instant t, the
chain describes a 3-D curve parameterized by s: s = 0 at the free end, s = L
at the attached end, where L is the length of the chain.

speed)? 2) how to avoid or initiate “jumps” between different

quasi-static rotational solutions [6]? Here, we precisely answer

these questions for the case of a simple rotating chain, without

considering aerodynamic drag or end mass. We also discuss

how the method can be extended to include these effects, of-

fering thereby solid theoretical foundations for developing safe

and stable applications in circular aerial manipulation.

III. BACKGROUND AND PROBLEM SETTING

A. Equations of Motion of the Rotating Chain

Here we recall the main equations governing the motion of the

rotating chain initially obtained by Kolodner [1]. Fig. 2 depicts

an inextensible and homogeneous chain of length L and linear

density µ that rotates around a vertical Z-axis. One end of the

chain is maintained at the attachment radius r from the rotation

axis, while the other end is free. Note that the case of a chain

with tip mass can be reduced to this case, see Appendix A.

Let x(s, t) := [x(s, t), y(s, t), z(s, t)]⊤ ∈ R
3 denote a length

-time parameterization of the chain where s equals zero at the

free end and equals L at the attached end (see Fig. 2). Next, let

F (s, t) ≥ 0 be the tension of the chain. Neglecting aerodynamic

effect, one writes the equation of motion for the chain as

µẍ = (Fx′)′ + µg (1)

where �̇ and �′ denote differentiation with respect to t and s,

respectively; g := [0, 0,−g]⊤ is the gravitational acceleration

vector. The inextensibility constraint can be written as

‖x(s, t)′‖2 = 1. (2)

We seek solutions that are uniform rotations: those which

have constant shape in a plane that rotates around the Z-axis. In

this case, the motion of the chain becomes

x(s, t) = ρ(s) cos(ωt),

y(s, t) = ρ(s) sin(ωt),

z(s, t) = z(s) (3)

where the function ρ(s) is called the shape function of the chain.

Directly from the inextensibility constraint (2), one has

‖(ρ(s), z(s))‖2 =
√

ρ′(s)2 + z′(s)2 = 1. (4)

From the uniform rotation assumption, the tension of the

chain F (s, t) is in fact time independent.

Substituting the above expressions into (1) yields

(Fρ′)′ + µρω2 = 0, (5)

(Fz′)′ − µg = 0 (6)

where F, ρ, z are functions of s. Integrating (6) and noting that

the tension at the free end vanishes (i.e., F (0) = 0) yield

Fz′ =

∫ s

0

µg dλ = µgs. (7)

Next, by the inextensibility constraint (4), one has

F =
µgs

z′
=

µgs√
1− ρ′2

. (8)

Substituting (8) into (5) yields the governing equation for the

shape function ρ(s)

d

ds

(
µgs√
1− ρ′2

ρ′
)

+ µρω2 = 0 (9)

subject to the following boundary condition:

ρ(L) = r. (10)

Remark that we have applied two boundary conditions:)

tension at the free end must be zero: F (0) = 0; and 2) x(L, t)
equals the reference trajectory traced by the robotic manipulator

(or the aircraft trajectory in the towing problem).

B. Problem Formulation

We can now define the configurations and the control inputs

of a rotating chain.

Definition 1: (Configuration) A configuration of the rotating

chain is a pair q := (ω, ρ), where ω ≥ 0 is a rotation speed and

ρ is a shape function satisfying the governing equation (9) and

that ρ(0) ≥ 0. The set of all such configurations is called the

configuration space of the rotating chain and denoted as sC.

Definition 2: (Control input) A control input is a pair (r, ω),
where r ≥ 0 is an attachment radius and ω ≥ 0 is a rotation

speed. The set of all inputs is called the control space and de-

noted as V . If (9) has nontrivial solutions with boundary condi-

tions and parameters defined by the input (r, ω) then the input

is called admissible.

Note that the condition ρ(0) ≥ 0 in Definition 1 precludes

duplicate solutions. Any configuration (ω, ρ) corresponds to two

possible solutions: one has shape function ρ, while the other has

shape function −ρ, both rotating at angular speed ω. The later

142 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 1, FEBRUARY 2018

solution can be obtained by rotating the former solution by 180◦.

A similar remark applies to the definition of the control space V
where we require positive attachment radii.

We can formulate the chain manipulation problem as follows:

given a pair of starting goal configurations (qinit , qgoal) find a

control trajectory (0, 1) → V that brings the chain from qinit
to qgoal without going through instabilities (instabilities will be

discussed in Section V-C).

IV. FORWARD KINEMATICS OF THE ROTATING CHAIN WITH

NON-ZERO ATTACHMENT RADIUS

A. Dimensionless Shape Equation

Still following Kolodner, we convert (9) into a dimensionless

equation, more appropriate for subsequent analyses. Consider

the changes of variable

u :=
ρ′√

1− ρ′2
sω2

g
, s̄ :=

sω2

g
(11)

which, by combining with (9), leads to

du

ds̄
+ ρ

ω2

g
= 0. (12)

One can now differentiate (12) with respect to s̄ to arrive at

d2

ds̄2
u+ ρ′ = 0

which is combined with the relation

ρ′ =
u√

s̄2 + u2
(13)

to yield the dimensionless differential equation

d2

ds̄2
u(s̄) +

u(s̄)√
s̄2 + u(s̄)2

= 0. (14)

We first consider the boundary condition at s̄ = 0. By def-

inition of u, one has u(0) = 0. The end boundary condition

ρ(L) = r implies that

u′
(
L
ω2

g

)

= −r
ω2

g
(15)

where �′ denotes in this context differentiation with respect

to s̄.

We summarize the boundary conditions on u as

u(0) = 0, u′(L̄) = r̄ (16)

where

L̄ := Lω2/g, r̄ := −rω2/g. (17)

This is the standard form of a boundary value problem (BVP).

Remark: The distance from the free end to the Z-axis is

denoted by ρ0 . Using (12), one has

u′(0) = a (18)

where a = −ρ0ω
2/g.

Fig. 3. A: Shooting from different initial guesses of u′(0) = a. There might
be more than one initial value (green and red) that satisfy the end condition
u′(L̄) = r̄. B: a1 , a2 , ... are different initial values of u′(0) that yield u′(L̄) =
0; ai denotes the initial guess such that the ith zero of u′ coincides with L̄

Remark: Applying L’Hôpital rule twice, one finds that

lim
s̄→0

u(s̄)
√

s̄2 + u(s̄)2
=

a√
1 + a2

.

Thus, the differential equation (14) is well-defined at s̄ = 0.

B. Shooting Method

We numerically solve the BVP posed in the last section using

the simple shooting method [28]. Given a control input (r, ω),
the method finds resulting configurations as follows:

1) compute (r̄, L̄) from (r, ω) using (17);

2) repeat until convergence:

a) guess an initial value a ∈ R for u′(0) or use the

value from the last iteration;

b) integrate (14) from the initial condition

(u(0), u′(0)) = (0, a) at s̄ = 0 to s̄ = L̄;

c) check whether u′(L̄) = r̄;

d) if not, refine the guess a by, e.g., Newton’s method;

3) recover ρ(s) from u′
last iter(s̄).

One can then recover z(s) using ρ(s), the inextensibility

constraint (4), the boundary condition z(L) = 0 and the fact that

z′(s) ≥ 0 [see, (7)]. Also, for a given tuple (r̄, L̄), there might

be multiple solutions to the BVP which translates into multiple

configurations for a given control input [see Fig. 3(A)].

Remark: It is straightforward to see that if u(s̄)s̄∈[0,L̄] is a

solution of (14), then −u(s̄)s̄∈[0,L̄] is also a solution. Therefore,

there is no loss of generality to consider only non-negative values

of a, as integrating from −a leads to the same configuration.

C. Number of Configuration

We now analyze the number of solutions for different pa-

rameters. The function u′(s̄) obtained by integrating from

(u(0), u′(0)) = (0, a) is denoted by u′
a(s̄). Following Kolod-

ner, let ζi(a) be the ith zero of u′
a(s̄). The function ζi(a) has

the following properties ([1, Th. 2]):

PHAM AND PHAM: ROBOTIC MANIPULATION OF A ROTATING CHAIN 143

Fig. 4. Graph of |u′
a (L̄)| versus |a|. The main text shows that if r̄i+1 < |r̄| <

r̄i , then there are 2i + 1 nontrivial solutions. The green line illustrates the case
r̄3 < |r̄| < r̄2 where there are five nontrivial solutions (green disks).

1) ζi(a) is well-defined for all i ∈ N and is a strictly increas-

ing function of a over (0,+∞);
2) lima→0 ζi(a) = h2

i /4 =: λi where hi is the ith zero of the

Bessel function J0 (Appendix B);

3) lima→+∞ ζi(a) = +∞.

Next, let us define ai as the absolute value of a such that

ζi(a) = L̄, i.e.,

ai := |ζ−1
i (L̄)|. (19)

By the properties of ζi , ai exists if and only if λi ≤ L̄ and when

it exists, it is unique since ζi(a) is a strictly increasing function

of a.

Fig. 3(B) shows the construction of a1 , a2 , and a3 . One can

also observe that the ai’s form a decreasing sequence, i.e.,

a1 > a2 > a3 > . . . > an

where n is the largest i so that λi ≤ L̄.

We now turn to the general case when r̄ is not necessarily zero.

For a given value of (r̄, L̄), it can be seen that the number of

configurations equals the number of intersections that the graph

of u′
a(L̄) versus a makes with the horizontal lines u′

a(L̄) = r̄
and u′

a(L̄) = −r̄.

Further, since r̄ and −r̄ refer to the same radius and that

ρ(s) and −ρ(s) refer to the same shape function, the number of

intersections the graph of |ρ̄a(L̄)| versus |a| makes with the hor-

izontal line |u′
a(L̄)| = |r̄| equals the number of configurations

(see Fig. 4).

By inspecting Fig. 4, |u′
a (L̄)| is zero atai andai+1 ; note more-

over that |u′
a(L̄)| increases as a increases from ai+1 , reaches a

maximum at some a∗i , and then decreases as a increases from a∗i
to ai .

1 Let us denote the maximum reached by |u′
a(L̄)| between

ai and ai+1 by r̄i , i.e.,

r̄i := |u′
a∗
i
(L̄)| = max

a i+ 1<a<a i

|u′
a(L̄)|, for i < n; (20)

r̄n := max
0<a<an

|u′
a(L̄)|. (21)

1This claim is based on numerical observations.

One can next observe that the r̄i’s form a decreasing sequence,2

i.e.,

r̄1 > r̄2 > r̄3 > . . . > r̄n .

We can now state the following proposition, whose proof

results directly from the examination of Fig. 4.

Proposition 1: Let n be the largest i so that λi ≤ L̄. The

number of nontrivial configurations of a uniformly rotating

chain depends on |r̄| as follows:

1) if |r̄| = 0, there are n nontrivial solutions;

2) if 0 < |r̄| < r̄n , there are 2n+ 1 nontrivial solutions;

3) if r̄i+1 < |r̄| < r̄i for i ∈ [1, n− 1], there are 2i+ 1 non-

trivial solutions;

4) if |r̄| = r̄i for i = [1, n], there are 2i nontrivial solutions;

5) if |r̄| > r̄1 , there is one nontrivial solution.

D. Rotation Modes

By the change of variable (11), u′ = ρω2/g, the number of

zeros of u′(s̄)s̄∈(0,L̄) , corresponds to the number of times the

chain crosses the rotation axis. We can now give an operational

definition of rotation modes.

Definition 3 (Rotation modes): A chain is said to be rotating

in mode i if its shape crosses the axis exactly i times or, in other

words, if the function u′(s̄)s̄∈(0,L̄) has exactly i zeros.

Let us reinterpret Proposition 1 in terms of rotation modes.

Consider a positive r̄ verifying r̄i+1 < r̄ < r̄i . In Fig. 4, the

horizontal line |u′(L̄)| = r̄ intersects the graph of |ρ̄a(L̄)| versus

|a| at 2i+ 1 points. Call the X-coordinates of these points b1 >
b2 > · · · > b2i+1 . Remark that

1) b1 > a1 , thus by definition of a1 , the function u′
b1
(s̄) has

no zero in (0, L̄), i.e., the chain rotates in mode 0;

2) a1 > b2 > b3 > a2 , thus by definition of a1 , a2 , the func-

tions u′
b2
(s̄) and u′

b3
(s̄) have each one zero in (0, L̄), i.e.,

the chain rotates in mode 1;

3) more generally, for any k ∈ [1, i], ak−1 > b2k > b2k+1 >
ak , thus by definition of ak−1 , ak , the functions u′

b2 k
(s̄)

and u′
b2 k + 1

(s̄) have each k zeros in (0, L̄), i.e., the chain

rotates in mode k.

Fig. 5 illustrates the above discussion for i = 2.

V. ANALYSIS OF THE CONFIGURATION SPACE OF THE

ROTATING CHAIN

In the previous section, we have established a relationship

between the control inputs and the configurations. Here, we in-

vestigate the properties of the configuration space and of the

subspaces of stable configurations. In particular, a crucial ques-

tion for manipulation, which we address, is whether the stable

subspace is connected, allowing for stable and controlled tran-

sitions between different modes.

A. Parameterization of the Configuration Space

From now on, we make two technical assumptions: 1) the

distance ρ(0) from the free end of the chain to the rotation axis

2We have not yet been able to prove rigorously that the sequence is indeed
decreasing.

144 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 1, FEBRUARY 2018

Fig. 5. Rotation modes for r̄ where r̄3 < r̄ < r̄2 (i = 2). According to Proposition 1, there are 2i + 1 = 5 solutions, depicted in A–E. A rotation is said to be
in mode i if the chain shape crosses the rotation axis (dashed line) i times. A: solution in mode 0, corresponding to b1 (for the explanation of the numbers bi , see
main text). B, C: solutions in mode 1, corresponding to b2 , b3 . D, E: solutions in mode 2, corresponding to b4 , b5 . In addition, the analysis of Section V-C shows
that A, B, and D are stable, while C and E are unstable.

is upper-bounded by some ρmax ; and 2) the rotation speed ω
is upper-bounded by some ωmax . Note that these two assump-

tions do not reduce the generality of our formulation since they

simply assert that there exist some finite bounds, which could

be arbitrarily large. From (17) and (18), the two assumptions

next imply that a and L̄ are upper-bounded by some constants

amax and L̄max . We can now prove a first characterization of

the configuration space.

Proposition 2 (and definition): Define the parameter space

A by

A := (0, amax)× (0, L̄max).

There exists a homeomorphism f : A → C.

This proposition implies that, despite 1) the potentially in-

finite dimension of the space of all shape functions ρ and 2)

the one-to-many mapping between control inputs and configu-

rations, the configuration space of the rotating chain is actually

of dimension 2 and has a very simple structure: A is simply a

2D box.

The first dimension, a, is proportional to the distance of the

free end to the rotation axis. Thus, choosing the free end rather

than the attached end as reference point allows finding a one-to-

one mapping with the shape function. The second dimension,

L̄, is defined by L̄ := Lω2/g. Since the length L of the chain is

fixed, L̄ changes as a function of the angular speed ω.

To simplify the notations, we define u := (u, u′) and rewrite

(14) as a dimensionless ODE

du

ds̄
= X(u, s̄). (22)

We can now give a proof for Proposition 2.

Proof: The mapping f is essentially the shooting method

described in Section IV-B. Given a pair (a, L̄) ∈ A, we first

obtain ω from L̄ using the relationship L̄ = Lω2/g. Next, we

integrate the ODE (22) from the initial condition

u(0) = (0, a)

until s̄ = L̄ to obtain u′(s̄) for s̄ ∈ (0, L̄). Finally, we obtain ρ
from u′ using (11).

1) Surjectivity of f . Let (ω, ρ) ∈ C. Since ρ verifies (9), one

can perform the change of variables (11) and obtain u and

u′. Next, consider a = u′(0) and L̄ = Lω2/g. One has

clearly a ∈ (0, amax), L̄ ∈ (0, L̄max), and f((a, L̄)) =
(ω, ρ).

2) Injectivity of f . Assume that there are (a1 , L̄1) = (a2 , L̄2)
such that f(a1 , L̄1) = f(a2 , L̄2) = (ω, ρ). One has a1 =
a2 = −ρ(0)ω2/g and L̄1 = L̄2 = Lω2/g, which implies

the injectivity.

3) Continuity of f . We show in the Appendix C that the

ODE (22) is Lipschitz. It follows that the functionu′(s̄) for

0 ≤ s̄ ≤ L̄ depends continuously on its initial condition,

which implies that ρ(s) depends continuously on a.

4) Continuity of f−1 . It can be seen from the injectivity proof

that a and L̄ depend continuously on ω and ρ(0), and the

latter depends in turn continuously on ρ.

�

Next, we establish a homeomorphism between the parameter

space and a smooth surface in 3-D, which allows an intuitive

visualization of the configuration space.

Proposition 3 (and definition): For a given a ∈ (0, amax),
integrate the differential equation (22) from (0, a) until s̄ =
L̄max . The set (s̄, u(s̄), u′(s̄))s̄∈(0,L̄m a x) is then a 1-D curve in

R
3 . The collection of those curves for a varying in (0, amax) is

a 2-D surface in R
3 , which we denote by S (see Fig. 6).

There exists a homeomorphism l : A → S .

Proof: The construction of l follows from the definition:

given a pair (a, L̄) ∈ A, integrate (22) from (0, a) until s̄ = L̄.

Then define l(a, L̄) := (L̄,u(L̄)).
1) Surjectivity of l. Consider a point (L̄,u) ∈ S. By def-

inition of S , there exists a ∈ (0, amax) so that inte-

grating (22) from (0, a) reaches u at s̄ = L̄. Clearly,

l(a, L̄) = (L̄,u).
2) Injectivity of l. This results from the Uniqueness theorem

for ODEs, see Appendix C.

3) Continuity of l. From the Continuity theorem for ODEs

(Appendix C), it is clear that the end point (L̄,u(L̄)) ∈ S
depends continuously on the initial condition a.

4) Continuity of l−1 . Consider two points (L̄1 ,u
∗
1),

(L̄2 ,u
∗
2) ∈ S that are sufficiently close to each other, i.e.,

|L̄1 − L̄2 | ≤ δ, ‖u∗
1 − u∗

2‖ ≤ δ,

for some δ that we shall choose later. Consider the curves

u1 ,u2 such that u1(L̄1) = u∗
1 and u2(L̄2) = u∗

2 . By the

Continuity theorem (Appendix C) one has, for some

PHAM AND PHAM: ROBOTIC MANIPULATION OF A ROTATING CHAIN 145

Fig. 6. Surface S that is homeomorphic to the configuration space C. We
depict two solution curves on the surface S (dashed lines), integrated from two
different values of a (large and medium). Red, blue, green, and purple lines
represent, respectively, the first, second, third, and fourth zero-radius loci (see
Proposition 4).

appropriate constant M

‖u1(0)− u2(0)‖ ≤ eM L̄1 ‖u1(L̄1)− u2(L̄1)‖

≤ eM L̄1
(

‖u1(L̄1)− u2(L̄2))‖+ ‖u2(L̄2)− u2(L̄1)‖
)

≤ eM L̄1 (δ +M |L̄1 − L̄2 |) = eM L̄1 (M + 1)δ,

where the last inequality come from the uniform bound-

edness of u. For any ǫ, it suffices therefore to choose

δ := ǫe−M L̄ 1

M+1 so that |a1 − a2 | = ‖u1(0)− u2(0)‖ ≤ ǫ,

which proves the continuity of l−1 .

�

Combining Propositions 2 and 3, we obtain the following

theorem.

Theorem 1: The configuration space C of the rotating chain

is homeomorphic to the 2-D surface S represented in Fig. 6.

B. Zero-Radius Loci and Low-Amplitude Regime

Before studying the stable subspaces, we need first to de-

fine the zero-radius loci and the low-amplitude regime in the

configurations space.

Proposition 4 (and definition): Zero-radius loci are config-

urations whose corresponding attachment radii verify r = 0.

Define L̄i := Lω2
i /g where ωi is the ith discrete angular speed

(Appendix B). One has the following properties about the sur-

face S:

1) The ith zero-radius locus is an infinite curve that branches

out from the s̄-axis at (L̄i , 0, 0), see Fig. 6;

2) The ith zero-radius locus separates configurations in ro-

tation mode i− 1 from those in rotation mode i.
Proof: 1) This property is implied by Kolodner’s results, see

the first paragraph of Section IV-C for more details.

2) Consider a rotation in mode i− 1 and the corresponding

curve (s̄, u1(s̄), u
′
1(s̄))s̄∈[0,L̄1] . By definition, u′

1(s̄) has i− 1

zeros in the interval [0, L̄1]. Equivalently, we see that the 3-D

curve (s̄, u1(s̄), u
′
1(s̄)) crosses the first, second, ... i− 1th zero-

radius loci. Now, since the loci start infinitely near the s̄-axis

[cf. point 1) above] and extend to infinity, any curve continu-

ously deformed from (s̄, u1(s̄), u
′
1(s̄))s̄∈[0,L̄1] will also cross the

same loci.

Consider now another rotation, which is in mode i, and the

corresponding curve (s̄, u2(s̄), u
′
2(s̄))s̄∈[0,L̄2] . By Theorem 1,

one can associate the two rotations with their endpoints A :=
(L̄1 , u1(L̄1), u

′
1(L̄1)) and B := (L̄2 , u2(L̄2), u

′
2(L̄2)) on the

surface S .

Assume by contradiction that there exists a continuous curve

Γ that connects A and B without crossing the ith zero-radius

locus. Consider the curve Γ′ formed by the concatenation of

(s̄, u1(s̄), u
′
1(s̄))s̄∈[0,L̄1] and Γ. By construction, Γ′ is a contin-

uous curve that connects the origin and B without ever crossing

the ith zero-radius locus. This contradicts the first paragraph of

point 2). We have thus established that the ith zero-radius locus

separates configurations of rotation mode i− 1 from those in

rotation mode i. �

Proposition 5 (and definition): The low-amplitude regime

corresponds to configurations associated with infinitely small

values of u(s̄) and u′(s̄), for all s̄ ∈ (0, L̄).
1) The low-amplitude regime corresponds to points on the

surface S that are infinitely close to the s̄-axis (see Fig. 6).

2) Moreover, this regime corresponds to points on the pa-

rameter space A that have small values of a.

Proof: 1) It is clear that a low-amplitude rotation has u(L̄)
and u′(L̄) infinitely small. Conversely, if u(L̄) and u′(L̄) are

infinitely small, by the continuity of the mapping l−1 in the

proof of Proposition 3, the initial condition a is also infinitely

small. Finally, integrating from an infinitely small a will yield

u(s̄) and u′(s̄) infinitely small for all s̄ ∈ (0, L̄).
2) This follows from 1). �

The low-amplitude rotations with zero attachment radius thus

correspond to (L̄i , δu, 0), i ∈ N for small values of |δu|. In the

sequel, we shall refer to the ith small-amplitude rotation with

zero radius as the point (L̄i , 0, 0) instead of the more correct

phase “(L̄i , δu, 0) for small values of |δu|.”

C. Stability Analysis

So far we have considered the space of all configurations

of the rotating chain, that is, all solutions to the equation

of motion (1). However, not all configurations are stable; in

fact, experiments show that many are not. This section investi-

gates the structure of the stable subspace—the subset of stable

configurations— and discuss stable manipulation strategies.

To analyze the stability of configurations, we model the chain

by a series of lumped masses, connected by stiff links, see Fig. 7.

Denote the position of the ith mass in the rotating frame {F}
by xi ∈ R

3 . The attached end is fixed in {F} at xN . The state of

the discretized chain is then given by a 6N -dimensional vector

consisting of the positions and velocities of the masses

y := [x0 , ẋ0 , . . . ,xN−1 , ẋN−1]. (23)

146 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 1, FEBRUARY 2018

Fig. 7. Discretized chain model with N masses.

Applying Newton’s laws to the masses (see details in

Appendix D), one can obtain the dynamical equation

ẏ = f(y). (24)

From Proposition 2, the configurations of the rotating chain

can be represented by a pair (a, L̄), which is associated

with the position of the free end x0 . Next, we discretize

(0, amax)× (0, L̄max) into a 2-D grid. For each (a, L̄) in the

grid, we integrate, from the free end x0 , the shape function of

the discretized chain (23) at rotational equilibrium—in the same

spirit as in Proposition 2. This discretized shape function corre-

sponds to a state vector yeq := [xeq
0 ,0, . . . ,xeq

N−1 ,0]. Finally,

we assess the stability of yeq by looking at the Jacobian

J(yeq) :=
df

dy
(yeq).

Specifically, if the largest real part λmax := maxi Re(λi) of the

eigenvalues of J(yeq) is positive, then the system is unstable at

yeq ; if it is negative, then the system is asymptotically stable at

yeq [29, Th. 3.1].

Fig. 8(A) depicts the values of λmax for (a, L̄) ∈ (0, 5)×
(0, 40). One can observe an interesting distribution of these

values; in particular, the sharp transitions around the zero-radius

loci (black lines). However, even though λmax gets very close

to zero on the left side of the zero-radius loci or in the low-

amplitude regime, it is never negative, hinting that the system

is at best marginally stable. While this could be expected from

our model, which does not include any energy dissipation, it

is contrary to the experimental observation of stable rotation

states.

We need therefore to take into account aerodynamic forces

in the chain dynamics, see details in Appendix D. Note that

aerodynamic forces do not significantly affect the analysis of

the previous sections, as their effect on the shape of the chain

is negligible: for example, for a chain of length 0.76 m and

Fig. 8. (Best viewed in color) Maps of λmax , the largest real part of the
eigenvalues of the linearized dynamics of two 10-link lumped-mass models
at equilibrium: (A) model without aerodynamic forces and (B) model with
aerodynamic forces. Positive values (red color) indicate unstable behaviors,
while negative values (blue color) indicate asymptotically stable behaviors. Most
configurations that are stable in the presence of aerodynamic forces cannot be
concluded to be stable when there is no aerodynamic forces. Black lines: zero-
radius loci—configurations whose attachment radii are zeros. Green arrow: A
path in the chain’s configuration space that contains only stable configurations.
Black dashed arrow: A path that contains unstable configurations.

parameters (a, L̄) = (2.0, 10.0), the changes in the equilibrium

positions are less than 1 mm, which is 0.14% of the chain length.

Fig. 8(B) depicts the values of λmax for the system with

aerodynamic forces. One can note that the overall distribution

of λmax is very similar to that of the system without aerodynamic

forces [see Fig. 8(A)], but with the key difference that the regions

in Fig. 8(A) with low but positive values now contain negative

values of λmax in Fig. 8(B) corresponds to asymptotically stable

states.

One can make three more specific observations:

1) Configurations that are immediately on the right-hand

sides of the zero-radius loci and with a relatively large

are unstable (red color);

2) Configurations that are immediately on the left-hand sides

of the zero-radius loci and with a relatively large are stable

(blue color);

3) Configurations with a small (low-amplitude regime) are

stable (light blue color).

Observation (1) hints that the upper portions of the zero-

radius loci form “unstable barriers” in the configuration space.

Therefore, it is not possible to stably transit between rotation

PHAM AND PHAM: ROBOTIC MANIPULATION OF A ROTATING CHAIN 147

Fig. 9. A: Histories of the control inputs. Red: attachment radius r; blue:
angular speed ω. A: low-amplitude rotation at critical speed ω1 . A → B: moving
deep into rotation mode 0. B: stable rotation at mode 0. B → C: moving back
to the low-amplitude regime with critical speed ω1 and subsequently increasing
the speed to ω2 while staying in the low-amplitude regime. C: low-amplitude
rotation at critical speed ω2 . C → D: moving deep into rotation mode 1. D:
stable rotation at mode 1. E: low-amplitude rotation at critical speed ω3 . F:
stable rotation at mode 2. Note that the attachment radius was not exactly zero
in the low-amplitude regimes, but set to some small values. This was necessary
to physically generate the desired rotation speeds. B: Snapshots of the chain
at different time instants. The labels A–F refer to the same time instants as in
the control inputs plot. A video of the experiment (including more types of
transitions) is available at https://youtu.be/EnJdn3XdxEE.

modes i− 1 and i (which requires crossing the ith zero-radius

locus, see Proposition 4) while staying in the upper portion of the

configuration space [dashed black arrow in Fig. 8(B)]. Obser-

vation (2) implies that transitions between configurations of the

same mode can be stable. Observation (3) hints that a possible

transition strategy might consist in 1) going down to the low-

amplitude regime; 2) traversing the ith zero-radius locus while

remaining in the low-amplitude regime; 3) going up toward the

desired end configuration [see green arrow in Fig. 8(B)]. This

strategy thus traverses only regions with negative λmax and can

be expected to be stable. The next section experimentally as-

sesses this strategy.

VI. MANIPULATION OF THE ROTATING CHAIN

A. Experiment

We now experimentally test the manipulation strategy pro-

posed in the previous section. More precisely, to stably transit

between two different rotation modes i and j, we propose to

[see the green arrow in Fig. 8(B)]

1) Move from the rotation of mode i toward (L̄i+1 , 0, 0)
while staying in the blue region of Fig. 8(B);

2) Move along the L̄-axis toward (L̄j+1 , 0, 0);
3) Move from (L̄j+1 , 0, 0) toward the rotation of mode j

while staying in the blue region of blue region of Fig. 8(B).

In practice, the histories of the control inputs (r and ω) to

achieve the transitions in steps 1 and 3 can be found by simple

linear interpolation, see, e.g., Fig. 9(A).

TABLE I
CRITICAL SPEEDS FOR A CHAIN OF LENGTH 0.76 M

i 1 2 3

ωi (rad s−1) 4.34 9.97 15.64

We performed the transitions

Rest → Mode 0 → Mode 1 → Mode 2

on a metallic chain of length 0.76 m (note that the weight of

the chain is not involved in the calculations). The upper end of

the chain was attached to the end-effector of a 6-DOF industrial

manipulator (Denso VS-060). The critical speeds, calculated

using (36), are given in Table I.

A video of the experiment (including more types of transi-

tions) is available at https://youtu.be/EnJdn3XdxEE. Fig. 9(A)

shows the attachment radius and the angular speed as functions

of time. Fig. 9(B) shows snapshots of the chain at different ro-

tation modes. As can be observed in the video, the chain could

transit between different rotation modes in a stable and con-

trolled manner.

As the final note, we observed that any manipulation sequence

that traverses highly unstable regions (red regions in Fig. 8)

definitely leads to unsustainable rotations, as illustrated by the

last section of the video.

B. Implications for Aerial Manipulation

For a circularly towing system, the ability to transit between

rotation modes is desirable. Indeed, different modes have differ-

ent functions. For instance, mode 0 rotations are most suitable

to initiate a rotation sequence from a straight flying trajectory.

On the other hand, rotations at higher modes such as modes 1

and 2 have more compact shapes, smaller tip radii, and higher

tip velocities, and are therefore more suitable for performing the

actual delivery or exploration.

It is furthermore desirable to switch modes in a quasi-static

manner, as studied in this paper. Indeed, the transient dynam-

ics of a heavily underactuated system such as the chain can be

difficult to handle. The infinite dimensionality of the system,

unavoidable modeling errors and aerodynamic effects make

it challenging to design and reliably execute nonquasi-static

mode-switching trajectories.

However, our result suggests that it is not possible to realize

quasi-static mode transitions with fixed-wing aircraft. Indeed,

since the turning radii of such aircraft are lower-bounded, the re-

sulting rotations cannot enter the low-amplitude regime, which

is necessary for quasi-static mode transition, as shown in the

above development. Therefore, although nonquasi-static mode

transitions are more challenging to plan and execute, they must

be studied in future works.

VII. CONCLUSION

The study of the rotating chain has a long and rich history.

Starting from the 1950’s, a number of researchers have described

148 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 1, FEBRUARY 2018

its behavior, and identified the existence of rotation modes. In

this paper, we have investigated for the first time the manipula-

tion problem, i.e., how to stably transit between different rotation

modes. For that, we developed a framework for understanding

the kinematics of the rotating chain with nonzero attachment

radii and its configuration space. Based on this understanding,

we proposed a manipulation strategy for transiting between dif-

ferent rotation modes in a stable and controlled manner. In turn,

on the practical side, this result has some implications for aerial

manipulation.

It can be shown (see Appendix A) that all the previous de-

velopments can be extended to the case of the chain with non-

negligible tip mass. The key enabling notion here is that of dif-

ferential flatness [13], with the flat output being the state of

the free end. By differential flatness, given any trajectory of the

free end, one can reversely compute the state trajectory and the

control trajectory of the whole system. In fact, the property that

we have “manually” discovered in this paper—the configura-

tion space of a rotating chain is parameterized by the parameter

space A—might be related to the differential flatness of the ro-

tating chain system. Indeed, each point (a, L̄) corresponds to

a circular motion of the free end, which in turn, by differen-

tial flatness, corresponds to the state and control trajectory of

the whole chain, which in turn defines the configuration. This

observation suggests two possible extensions as follows:

1) the motion of the free end can be more general (e.g., an el-

lipse), and can thereby lead to more practical applications,

such as swinging to hit a target with the tip mass;

2) other differentially flat systems, whose flat output can be

parameterized.

Another idea developed here, namely the visualization of the

configuration space based on forward integration of the shape

function, might find fruitful applications in the study of other

flexible objects with “mode transition,” such as elastic rods or

concentric tubes subject to “snapping.” Our future work will

explore these possible extensions.

APPENDIX

A. Chain With Non-Negligible Tip Mass

Suppose that the free end of the chain carries a drogue of

mass M . We show here that all the previous development can

be extended to this more general problem.

We first proceed similarly to Section III and derive the dy-

namical equation of the rotating chain with tip mass. Writing

the force equilibrium equation at the tip mass yields

F (0)z′(0) = Mg, (25)

F (0)ρ′(0) = −Mρ(0)ω2 . (26)

Next, integrating (25) to obtain

F (s)z(s)′ = g(µs+M) (27)

where µ is again the linear density of the chain. This equation

leads to

F (s) = g
µs+M√
1− ρ′2

. (28)

One arrives at the governing equation

d

ds

(
ρ′

µs+M√
1− ρ′2

)
+ ρ

µω2

g
= 0, (29)

with boundary condition ρ(L) = r where r is the attachment

radius. One can now convert (29) to a dimensionless equation

d2u

ds̄2
+

u√
(s̄+Mω2/µg)2 + u2

= 0 (30)

by the following changes of variable:

u := ρ′
µs+M√
1− ρ′2

ω2

µg
,

s̄ :=
sω2

g
.

(31)

The boundary conditions are

u′(0) = a, (32)

u(0) = a
Mω2

µg
, (33)

u′(L̄) = r̄ (34)

where a = −ρ(0)ω2/g and r̄ = −rω2/g.

Equation (30) is a BVP that can be solved using the shoot-

ing method as described in Section IV-B. Moreover, we see

that (a, L̄) also parameterizes the solution space, which is the

configuration space of the rotating chain with tip mass.

B. Low-Amplitude Regime

Here we recall the results obtained by Kolodner [1] for the

low-amplitude regime. Low-amplitude rotations are defined by

a zero attachment radius r = 0 and infinitely small values for the

shape function ρ. Linearizing equation (9) about ρ = 0 yields

ρw2/g + ρ′ + sρ′′ = 0, (35)

with the boundary condition ρ(L) = 0.

By a change of variable v := 2
√

sω2/g, one can rewrite the

above equation as

ρv + ρv + ρvvv = 0

which has solutions of the form

ρ(v) = cJ0(v), i.e.,

ρ(s) = cJ0(2ω
√

s/g)

where J0 is the zeroth-Bessel function. The boundary condition

ρ(L) = 0 then implies that the angular speed can only take

discrete values (ωi)i∈N where

ωi =
hi

2

√
g/L (36)

where hi is the ith zero of the Bessel function J0 .

PHAM AND PHAM: ROBOTIC MANIPULATION OF A ROTATING CHAIN 149

C. Useful Results From the Theory of Ordinary Differential

Equations

Lemma 1 (Lipschitz): The ordinary differential equa-

tion (22) satisfies Lipschitz condition in some convex bounded

domain D that contains S .

Proof: Note first that |u′′(u, s̄)| < 1 for all u, s̄ ∈ R, which

implies that S is bounded. Set now

D := (0, L̄max)× (uinf , usup)× (u′
inf , u

′
sup)

where uinf , usup , u′
inf , u′

sup are bounds on S . Clearly, D
is bounded, convex, and contains S . Next, all partial deriva-

tives ∂X i

∂xj
are continuous in D (with continuation at s̄ = 0, see

Remark in Section IV-A). This implies that X is Lipschitz in

D [30]. �

We now recall two standard theorems in the theory of Ordi-

nary Differential Equations, see, e.g., [30].

Theorem 2 (Uniqueness): If the vector field X(u, t) satisfies

Lipschitz condition in a domain D, then there is at most one

solution u(t) of the differential equation

du

dt
= X(u, t)

that satisfies a given initial condition u(a) = c ∈ D.

Theorem 3 (Continuity): Let u1(t) and u2(t) be any two

solutions of the differential equation X(u, t) in T1 ≤ t ≤ T2 ,

where X(u, t) is continuous and Lipschitz in some domain D
that contains the region where u1(t) and u2(t) are defined.

Then, there exists a constant M such that

‖u1(t)− u2(t)‖ ≤ eM |t−a |‖u(a)− y(a)‖
for all a, t ∈ [T1 , T2].

D. Discretized Chain Model

Here we describe the procedure to obtain (24), which is the

dynamical equation of the discretized chain model employed in

Section V-C, see also Fig. 7.

The net force Fi acting on the ith mass is the sum of the

following three components:

1) fictitious forces, which include the Coriolis force and cen-

trifugal force associated with the rotating frame;

2) constraint forces generated by the ith and i+ 1th links;

3) aerodynamic forces, which include drag and lift.

Fictitious forces are computed using standard formulae,

which can be found in any textbook on classical mechanics.

To compute the constraint forces, we model the links as stiff lin-

ear springs whose stiffness approximates that of the chain used

in the experiment of Section VI, which was ≃ 8× 107 N/m.

Constraint forces are then computed using Hooke’s law.

Next, to compute aerodynamic forces, we follow the mod-

elling choices of [18], i.e., the aerodynamic forces acting on

the ith link, which is modelled as a cylinder, is placed entirely

on the ith mass. Specifically, define the link length vector as

li := xi − xi−1 and denote by vi the actual air speed of the ith
mass. The angle of attack of the ith link is given by

cos ξi = − li · vi

‖li‖‖vi‖
.

The drag and lift acting on the ith link are then given by

FD
i = 0.5ρaCD‖li‖d‖vi‖2eD ,

FL
i = 0.5ρaCL‖li‖d‖vi‖2eL

where the directions and coefficient of drag and lift are

eD = − vi

‖vi‖
, eL = − (vi × li)× vi

‖(vi × li)× vi‖
,

CD = Cf + Cn sin
3(ξi), CL = Cn sin

2 ξi cos ξi .

In the above equations, d denotes the diameter of the chain, Cf

and Cn are, respectively, the skin-friction and crossflow drag

coefficients, and ρa is the air density. As in [18], we use the

following numerical values:

d = 1 mm, ρa = 1.225 kg/m3,

Cf = 0.038, Cn = 1.17.

Summing the components, we obtain the ith net force Fi ,

from which the acceleration of the ith mass can be found as

ẍi = Fi/mi

where mi is the mass of the ith mass. Rearranging the terms,

one obtains the dynamical equation (24)

ẏ = f(y).

REFERENCES

[1] I. I. Kolodner, “Heavy rotating string—A nonlinear eigenvalue problem,”
Commun. Pure Appl. Math., vol. 8, no. 3, pp. 395–408, Aug. 1955.

[2] T. K. Caughey, “Whirling of a heavy chain,” in Proc. Third U. S. Nat.

Congr. Appl. Mech., 1958, pp. 101–108.
[3] T. K. Caughey, “ Large amplitude whirling of an elastic string—A nonlin-

ear eigenvalue problem,” SIAM J. Appl. Math., vol. 18, no. 1, pp. 210–237,
Jan. 1970.

[4] C.-H. Wu, “Whirling of a string at large angular speeds—A nonlinear
eigenvalue problem with moving boundary layers,” SIAM J. Appl. Math.,
vol. 22, no. 1, pp. 1–13, Jan. 1972.

[5] C. A. Stuart, “Steadily rotating chains,” in Applications of Methods of

Functional Analysis to Problems in Mechanics. New York, NY, USA:
Springer, 1976, pp. 490–499.

[6] J. J. Russell and W. J. Anderson, “Equilibrium and stability of a circularly
towed cable subject to aerodynamic drag,” J. Aircraft, vol. 14, no. 7,
pp. 680–686, 1977.

[7] J. Toland, “On the stability of rotating heavy chains,” J. Differential Equa-

tions, vol. 32, no. 1, pp. 15–31, Apr. 1979.
[8] D. J. Balkcom and M. T. Mason, “Robotic origami folding,” Int. J. Robot.

Res., vol. 27, no. 5, pp. 613–627, 2008.
[9] S. Miller, J. Van Den Berg, M. Fritz, T. Darrell, K. Goldberg, and

P. Abbeel, “A geometric approach to robotic laundry folding,” Int. J.

Robot. Res., vol. 31, no. 2, pp. 249–267, 2012.
[10] H. Wakamatsu, E. Arai, and S. Hirai, “Knotting/unknotting manipulation

of deformable linear objects,” Int. J. Robot. Res., vol. 25, no. 4, pp. 371–
395, 2006.

[11] Y. Yamakawa, A. Namiki, and M. Ishikaw, “Dynamic high-speed knotting
of a rope by a manipulator,” Int. J. Adv. Robot. Syst., p. 1, 2013.

[12] R. a. Skop and Y. I. Choo, “The configuration of a cable towed in a circular
path.” J. Aircraft, vol. 8, no. 11, pp. 856–862, 1971.

[13] R. M. Murray, “Trajectory generation for a towed cable system using
differential flatness,” in Proc. IFAC World Congr., 1996, pp. 395–400.

[14] H. B. Gilbert, D. C. Rucker, and R. J. W. Iii, “Concentric tube robots: The
state of the art and future directions,” in Proc. Int. Symp. Robot. Res., 2013,
pp. 1–16.

[15] D. C. Rucker, B. A. Jones, and R. J. Webster, “A model for concentric
tube continuum robots under applied wrenches,” in Proc. IEEE Int. Conf.

Robot. Autom., 2010, pp. 1047–1052.

150 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 1, FEBRUARY 2018

[16] T. Bretl and Z. McCarthy, “Quasi-static manipulation of a kirchhoff elastic
rod based on a geometric analysis of equilibrium configurations,” Int. J.

Robot. Res., vol. 33, no. 1, pp. 48–68, 2014.
[17] A. Borum and T. Bretl, “The free configuration space of a kirchhoff elastic

rod is path-connected,” in Proc. IEEE Int. Conf. Robot. Autom., 2015,
pp. 2958–2964.

[18] P. Williams and P. Trivailo, “Dynamics of circularly towed aerial cable
systems, Part I: Optimal configurations and their stability,” J. Guidance,

Control, Dyn., vol. 30, no. 3, pp. 753–765, 2007.
[19] M. Merz and T. A. Johansen, “Feasibility study of a circularly towed

cable-body system for UAV applications,” in Proc. Int. Conf. Unmanned

Aircraft Syst., 2016, pp. 1182–1191.
[20] H. Pham, J. H. Lim, and Q.-C. Pham, “Robotic 3D-Printing for Building

and Construction,” in Proc. 2nd Int. Conf. Progress Additive Manufactur-

ing, Singapore, 2016, pp. 300–305.
[21] M. B. Colton, L. Sun, D. C. Carlson, and R. W. Beard, “Multi-vehicle

dynamics and control for aerial recovery of micro air vehicles,” Int. J.

Vehicle Auton. Syst., vol. 9, pp. 78–107, 2011.
[22] J. Nichols and L. Sun, “Autonomous aerial rendezvous of small unmanned

aircraft systems using a towed cable system,” J. Guidance, Control, Dyn.,
vol. 37, no. 4, pp. 1–12, 2014. [Online]. Available: http://arc.aiaa.org/
doi/abs/10.2514/1.62220

[23] L. Sun, J. D. Hedengren, and R. W. Beard, “Optimal trajectory gener-
ation using model predictive control for aerially towed cable systems,”
J. Guidance, Control, Dyn., vol. 37, no. 2, pp. 525–539, 2014.

[24] K. Sreenath, N. Michael, and V. Kumar, “Trajectory generation and control
of a quadrotor with a cable-suspended load-a differentially-flat hybrid
system,” in Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 4888–4895.

[25] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and trans-
portation with aerial robots,” Auton. Robots, vol. 30, no. 1, pp. 73–86, 2011.

[26] P. Williams, D. Sgarioto, and P. M. Trivailo, “Constrained path-planning
for an aerial-towed cable system,” Aerospace Sci. Technol., vol. 12, no. 5,
pp. 347–354, 2008.

[27] P. Williams and P. Trivailo, “Dynamics of circularly towed cable systems,
Part 2: Transitiional flight and deployment control,” AIAA J. Guidance,

Control, Dyn., vol. 30, no. 3, pp. 766–779, 2007.

[28] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,
New York, NY, USA: Springer Science and Business Media, vol. 12,
2013.

[29] H. K. Khalil, Noninear Systems. Englewood Cliffs, NJ, USA: Prentice-
Hall, 1996.

[30] J. Hu and W.-P. Li. (2005). Theory of ordinary differential equations. [On-
line]. Available: https://www.math.ust.hk/ mamu/courses/303/Notes.pdf

Hung Pham received the Bachelor’s degree in me-
chanical engineering and is currently working toward
the Ph.D. degree in robotics with Nanyang Techno-
logical University, Singapore. His research interests
include in robotic motion planning and its applica-
tions to fields such as air traffic management and 3-D
printing.

Quang-Cuong Pham was born in Hanoi, Vietnam,
and brought up in Vietnam followed by France. He
received the Graduate degree from Ècole Normale
Supèrieure, Paris, France, in 2007. He received the
Ph.D. degree in neuroscience from Universitè Paris 6
and Collège de France, Paris, France, in 2009.

In 2010, he was a Visiting Researcher with Uni-
versity of Sào Paulo, Sào Paulo, Brazil. From 2011
to 2013, he was a Fellow with the Japan Society for
the Promotion of Science, studying robotics at Uni-
versity of Tokyo. He joined Nanyang Technological

University, Singapore, as an Assistant Professor in 2013.

ROBOTIC 3D-PRINTING FOR BUILDING AND CONSTRUCTION

PHAM TIEN HUNG

School of Mechanical and Aerospace Engineering,

Nanyang Technological University,

639798, Singapore

LIM JIAN HUI

School of Mechanical and Aerospace Engineering,

Nanyang Technological University,

639798, Singapore

 QUANG-CUONG PHAM

School of Mechanical and Aerospace Engineering,

Nanyang Technological University,

639798, Singapore

ABSTRACT: In existing 3D printing processes, the size of the printed object cannot be larger than that of the built

chamber or of the delivery system. This makes 3D printing a priori unsuitable for large-sized projects, such as in building

and construction. In this paper, we present a framework based on mobile robotics to address that issue. More precisely, we

propose to mount the delivery system on multiple robotic mobile platforms endowed with localization and precise
placement capabilities. Doing so allows building objects of virtually any size, without compromising printing resolution or

speed. We present the overall 3D printing pipeline, from robots placement optimization to localization and mapping, to

path planning, to trajectory control and execution. We discuss the difficulties arising from both the materials delivery side
and the robotic side. Finally, we give details about our hardware set-up and present some preliminary results.

KEYWORDS: robotics, 3D printing, building and construction

INTRODUCTION

Additive Manufacturing (AM) or 3D printing has been the focus of intense attention in recent

years, with applications ranging from bio-engineering to automobile and aerospace manufacturing

to food processing. In this paper, we explore the application of 3D printing in building and

construction (B&C).

In traditional 3D printing processes, the size of the printed object cannot be larger than that of the

built chamber or of the delivery system. This makes 3D printing a priori unsuitable for

manufacturing large-sized objects, yet it is a requirement of B&C 3D printing. To address the

issue, a mobile robotic framework is presented. The system is proposed to have the print

mechanism mounted on multiple mobile robotic platforms. With locomotion, localization and

precise placement capabilities, allows the printing of objects without dimensional constraints.

This paper is organized as follows. We first briefly review related works in 3D-printing-based

B&C. Next, we present the overall pipeline of robotic 3D-printing for B&C. We then discuss the

hardware and software architectures currently developed in our group to implement the pipeline.

Finally, we conclude and sketch some directions for future work.

Proc. of the 2nd Intl. Conf. on Progress in Additive Manufacturing
Edited by Chee Kai Chua, Wai Yee Yeong, Ming Jen Tan, Erjia Liu and Shu Beng Tor
Copyright © 2016 by Pro-AM 2016 Organizers.
Published by Research Publishing, Singapore
ISSN: 2424-8967 300

Proc. of the 2nd Intl. Conf. on Progress in Additive Manufacturing

RELATED WORK

On related works, we remark on their mechanical system without observations on their printing

material. In literature, there are three main approach to 3D printing involving cement: Contour

crafting (Khoshnevis 2004, Khoshnevis, Kwon et al. 2004, Zhang and Khoshnevis 2013), Concrete

printing (Lim, Le et al. 2009) and D-shape (Le, Austin et al. 2012). Contour crafting and Concrete

printing are primarily extrusion-based techniques, where a nozzle extrudes cement-based material

at predefined location with a large gantry system. Separating the two techniques would their slight

variation in nozzle designs. The other method, D-shape is a large scale 3D printing method in

which sand and magnesium-based materials are bound together to create large stone-like objects.

D-shape also employs a gantry system for delivery of the binder in a control environment.

Common in existing techniques is the use of the large scale gantry system for transport, placement

and control of the material delivering print head. The apparent drawback of a gantry system is the

necessary constraint on the dimension of the print, limiting it to be smaller than the printer, and

also preventing its use in confined environments such as caverns. Secondly, on the gantry systems,

with its belt/ chain driven print head positioning, it may be impossible to install additional

independent print heads, placing a limit on the time require for a print job. Lastly, given the sheer

size of the gantry system, and its need to be robustly secured, restricts its deplorability and makes

installation time and labor intensive.

In our proposed mobile robotic system, the above constraints are addressed as follows (1) As the

print head module is controlled by a robotic arm sitting on a mobile platform, the overall system

remains compact and is able to print without restriction on the size of the print job. (2) The robotic

solution allows multiple printers to work synchronously in the same work environment. (3) Its

mobile platform allows it to be deplored with no installation necessary.

ROBOTIC PRINTING PIPELINE

The pipeline

Figure 1: Process Pipeline Figure 2: Printable area for the manipulator. Blue:

printable areas, Red : non-printables because of collision

or kinematic unreachability.

301

Chee Kai Chua, Wai Yee Yeong, Ming Jen Tan, Erjia Liu and Shu Beng Tor (Eds.)

Figure 1 shows three steps of the pipeline. The first step is to generate printing paths from the 3D

model of the desired object. This process depends heavily on the material deposition strategy

employed. For example, in conventional extrusion 3D printing process, the object is sliced into

thin, closely packed paths. In concrete printing, the path is not deposited from one single nozzle,

but probably from a set of multiple nozzles with variable geometry and large area. In this case, a

wall can be printed using a single print path.

The second step is to find some feasible sets of placements of robots. We define a placement as

feasible if the robot in that placement can deposit material accurately into the desired printing

paths. By formulating a geometrical optimization problem, we take advantage of the advanced

numerical solvers to find the optimal value for positions and orientations of the robots.

The third step is to plan motion and control for robots to deposit material accurately onto the path

in while avoiding collision. We devise our own algorithm to accomplish this task – task-precise

coordinated motion planning. The idea is to decouple the problem into two simpler ones: 1)

planning for individual robot 2) coordination and control for the whole system.

HARDWARE

In this section, we present the hardware components of our robotic setup. These include a robotic

arm, a mobile platform and a 3D stereo camera.

Robotic arm and mobile platform

Our robotic system comprises of a six-axis position controlled robotic arm. The robotic arm is

capable of 7 kg payload - which allows mounting of our complex in-house nozzle design. The

reach of this robotic arm is 900 mm from its base, with a very high repeatability of 0.02 mm.

A mobile platform is used to house and transport the robotic arm in its workspace. This platform

has an omni-directional Mecanum wheel mechanism, which allows it to move in any direction.

Thus maximum flexibility is given to the robotic arm for material deposition material in the

desired path.

Perception

The proposed robotic cement printer is equipped with a 3D stereo camera which employs a

projected texture with active stereo vision method to create a point cloud model of the scene. From

the point cloud model, depth information can be used for pose estimation and simultaneous

localization and mapping (SLAM) problems.

The stereo camera is equipped with random point pattern projector which imposes artificial texture

onto the image scene, solving the problem of homogeneous scene. The artificial texture induces

interest points which facilitate the extraction of depth information based on epipolar constraints.

302

Proc. of the 2nd Intl. Conf. on Progress in Additive Manufacturing

Modular print head

A modular extrusion print head is designed to be attached to the end effector of the robotic arm,

with the idea of granting the proposed robotic printer the option of modular upgrades while the

cost saving of retaining the core robotic framework.

SOFTWARE

In this section, we describe in details the software/algorithms in our framework.

Task-precise coordinated motion planning

The non-robotic audiences might find it beneficial to understand the concepts of path and

trajectory in robotic. Both refer to how the joint values of a robot changes, the latter with respect to

time and the former without time. Particularly, one can simply think of a path as a continuous line

in the joint space of a robot. A trajectory is time-parameterized path, which is simply an indication

of how fast it is being executed. One can easily see that it is possible to re-time a trajectory by

keeping the path the same but changing how fast the robot moves along that path. This is the main

idea behind our method.

In robotic 3D printing, multiple robots must coordinate to print/deposit material precisely at

predefined velocity profile while avoiding collision. Using the terminology just introduced, we

need to find the corresponding trajectories for all robot collision-free and precisely. We use a

decoupled approach in which motion planning for robots is divided into two steps. Firstly, we plan

trajectory for individual robot using a combination of randomized motion planning and closed-

loop differential kinematics techniques, which will not be discussed here due to space constraint.

This step will give us a trajectory for each robot, which might not be collision-free if execute

together. Secondly, we re-coordinate the motions i.e. keeping the path of each trajectory the same

but altering its time-parameterization so that they are collision-free while still, perform the tasks

precisely.

Main idea behind the re-time procedure is to plan another trajectory in the coordination space. The

coordination space can be thought of as a cube with perpendicular axes which are the time-

intervals of each trajectory. Any point inside this cube corresponds to one instance at which the

robots are at a particular combination of configurations. These configurations can be found from

the coordinates of the point with respect to each axis, which is simply the time along the respected

trajectory. By planning a trajectory in this space, starting at the initial time and ending at some end

time, we obtain a full time-parametrization of all robots.

303

Chee Kai Chua, Wai Yee Yeong, Ming Jen Tan, Erjia Liu and Shu Beng Tor (Eds.)

Figure 3: Multiple robots collaborate to print a single

structure.

Placement optimization

Placement Optimization is the module that is responsible for the first step in our pipeline:

calculating the optimal number and position of robots. We re-formulate the task into a geometrical

optimization problem. In particular, the robot’s reaching range is calculated and approximated as

polygons (Figure 2). Next, we define robots’ orientation and position as variables

and formulate the cost function as follow

 (6)

where stands for the set of reachable space of the -th robot, stands for the -th printing

segment and function is assigned some large value if collision happens

and zero if there is no collision. We can formulate the following optimization

(7)

This optimization problem can be solved by general nonlinear solvers at a reasonable speed. While

time might not be a problem, since the calculation of placement can be pre-processed using

powerful servers. In our experiment, 3-placement problems can be solved in less than 2 minutes.

304

Proc. of the 2nd Intl. Conf. on Progress in Additive Manufacturing

Robot pose estimation

Self-localization is a fundamental requirement for the autonomous robot printer, especially when

multiple robots are synchronously printing in the same working environment. It is well understood

that odometry alone is insufficient to solve the localization problem due to its unbounded

uncertainty in pose estimation.

Through the stereo camera and ArUco fiducial markers set in the environment, the robot’s pose

estimates can be updated with observations of the world. In seeing the markers, relative pose

between the camera and the seen object is obtained, and the robot can localize its position

unambiguously.

The ArUco markers contain a 6x6 grid of which the four corners of the black border provide the

necessary number of points for pose estimation with a calibrated camera. The black border also

eases the detection of markers by providing strong contrast. The inner 5x5 region of the ArUco

marker is used for identification of different marker IDs and error detection. Accuracy in pose

estimation may be improved by arranging multiple markers in a board, which allows more points

for the computation of the cameras extrinsic.

CONCLUSION

We have presented a framework for robotic 3D printing for construction. Our idea is to mount the

delivery system on multiple coordinated mobile robots, which allows planning structures

significantly larger than the delivery system itself, without compromising resolution and speed.

Our future work consists in integrating the hardware and software architectures with the material

delivery systems (nozzle, pump, printable cement, etc.) and demonstrating the capability of the

overall framework on a typical construction task.

REFERENCES

Khoshnevis, B. (2004). "Automated construction by contour crafting—related robotics and

information technologies." Automation in construction 13(1): 5-19.

Khoshnevis, B., H. Kwon and S. Bukkapatnam (2004). Automated Construction using Contour

Crafting. IIE Annual Conference. Proceedings, Houston, TX, USA.

Le, T. T., S. A. Austin, S. Lim, R. A. Buswell, R. Law, A. G. F. Gibb and T. Thorpe (2012).

"Hardened properties of high-performance printing concrete." Cement and Concrete Research

42(3): 558-566.

Lim, S., T. Le, J. Webster, R. Buswell, S. Austin, A. Gibb and T. Thorpe (2009). FABRICATING

CONSTRUCTION COMPONENTS. USING LAYERED MANUFACTURING TECHNOLOGY.

Global Innovation in Construction Conference 2009, Loughborough (United Kingdom),

Loughborough University, Civil and Building Engineering.

Zhang, J. and B. Khoshnevis (2013). "Optimal machine operation planning for construction by

Contour Crafting." Automation in Construction 29: 50-67.

305

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

Large-scale 3D printing by a team of mobile robots

Xu Zhang, Mingyang Li, Jian Hui Lim, Yiwei Weng, Yi Wei Daniel Tay, Hung Pham,

Quang-Cuong Pham
⁎

Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

A R T I C L E I N F O

Keywords:

3D cementitious material printing

Additive manufacturing

Building and construction

Multi-robot

Large-scale 3D printing

A B S T R A C T

Scalability is a problem common to most existing 3D printing processes, where the size of the design is strictly

constrained by the chamber volume of the 3D printer. This issue is more pronounced in the building and con-

struction industry, where it is impractical to have printers that are larger than actual buildings. One workaround

consists in printing smaller pieces, which can then be assembled on-site. This workaround generates however

additional design and process complexities, as well as creates potential weaknesses at the assembly interfaces. In

this paper, we propose a 3D printing system that employs multiple mobile robots printing concurrently a large,

single-piece, structure. We present our system in detail, and report simulation and experimental results. To our

knowledge, this is the first physical demonstration of large-scale, concurrent, 3D printing of a concrete structure

by multiple mobile robots.

1. Introduction

Compared to traditional construction techniques, 3D-printing (also

known as Additive Manufacturing) carries the promise of faster, safer,

more customizable, and less labour-intensive operations in multiple

segments of the Building and Construction (B&C) industry [1]. Recent

years have seen rapid developments in 3D-printing for B&C, from the

formulation of printable materials [2–4], to the design of new printing

systems [5–9], to commercialization [10,11].

A major hurdle to the widespread adoption of 3D-printing in B&C is

the limitation on the sizes of the printed structures. As reviewed in

detail in Section 2, most existing 3D-printing systems for B&C are based

on a gantry, which can only print structures whose sizes are at most as

large as that of the gantry itself. Some arm-based systems have been

demonstrated, but the sizes of the printed structures in this case are

limited by the reach of the robotic arm. One workaround consists in

printing smaller pieces, which can then be assembled together. This

workaround generates however additional design and process com-

plexities, as well as creates potential weaknesses at the assembly in-

terfaces.

To overcome this scalability issue, we propose in this paper a 3D-

printing system based on a team of multiple mobile robots. Such a

system can potentially print single-piece structures of arbitrary sizes,

depending on the number of deployed robots. We demonstrate, for the

first time to our knowledge, the actual printing of a single-piece con-

crete structure by two mobile robots operating concurrently (see Fig. 1

and video at https://youtu.be/p_jcG25tUoo). The size of structure is

1.86m×0.46m×0.13m (length, width, height), which is larger than

the reach of each robot arm taken separately (1.74 m), highlighting the

need for multi-robot deployment. According to the classification

method proposed in [12], where concrete 3D-printing techniques are

classified based on object scale (xo), extrusion scale (xe), environment

(e), assembly strategies (a) and support (s), our system of collaborative

printing is categorized as xo
1xe

1e0a0s0 with robotic complexity of r6,

which is higher than all state-of-the-art techniques as recorded in [12].

Note that concurrent printing is important to guarantee good bonding

properties at the junctions: sequential printing would lead to fresh

concrete adjoining hardened concrete at the junctions, weakening

thereby the bonding strength [3,13].

Concurrent 3D printing by multiple mobile robots is difficult for

several reasons. First, the robot motions must be carefully planned and

coordinated to optimize material delivery while avoiding mutual col-

lisions. Second, robot localization must be highly precise to ensure that

the pieces printed by different robots are perfectly aligned. Finally, the

mixing and pumping systems of the robots must be coordinated to de-

liver materials in a synchronized manner.

The remainder of the article is organized as follows. In Section 2, we

review existing 3D-printing systems for B&C. In Section 3, we present in

detail our system based on a team of mobile robots. In Section 4, we

report the results of the multi-robot printing experiment. In Section 5,

we discuss the advantages and limitations of the proposed system. Fi-

nally, in Section 5.1, we conclude and sketch some directions for future

https://doi.org/10.1016/j.autcon.2018.08.004

Received 29 April 2018; Received in revised form 20 July 2018; Accepted 10 August 2018

⁎ Corresponding author.

E-mail address: cuong@ntu.edu.sg (Q.-C. Pham).

Automation in Construction 95 (2018) 98–106

0926-5805/ © 2018 Elsevier B.V. All rights reserved.

T

work.

2. Related works

2.1. Material development of 3D cementitious material printing

In recent years, various 3D concrete printing materials have been

developed, categorized primarily into 3D printable plain concrete

[2,3,14], 3D printable geopolymer [15], 3D printable fibre reinforce-

ment concrete [16,17], 3D printable rapid hardening materials [18,19]

and 3D printable earth-based materials [20]. These materials share a

common emphasis on their rheological performances, which directly

impacts the buildability and printability of 3D concrete printers,

quantified by measurements such as printed height and pumping

pressure respectively.

In the literature, several material models have been developed to

understand material behaviour. Perrot et al. first established a model

correlating yield stress and geometric factor to buildability [21], and

his study was extended by Weng et al. towards more realistic applica-

tion [22]. Weng's built-up model predicts the buildability of hollow

cylinder using material static yield stress and geometric factor of the

printing design. Wolfs et al. have shown that the elastic properties

evolution is also critical in order to avoid structure collapse by buckling

[23]. In another rheology study, Chhabra et al. proposed a model re-

lating pumping pressure to rheological performance [24]. His model

indicates that pumping pressure is governed by material plastic visc-

osity. Concrete is thixotropic [25] due to its continuous hydration, and

this mean that its viscosity becomes less viscous when undergoing shear

stress due to pumping. From these earlier works done, it is clear that the

rheological property and elastic properties evolution of concrete are

essential factors affecting concrete printing in terms of buildability and

pumpability.

2.2. 3D concrete printing systems

Concrete printing systems can be divided based on their system

mechanism, which is primarily gantry systems and robotic arm systems.

2.2.1. Gantry-based systems

The gantry system is widely adopted and uses a gantry to position

the print nozzle in XYZ Cartesian coordinates. The build envelope of the

gantry system is determined by enclosed volume of the gantry. A

number of notable gantry systems include Contour Crafting [5,26–28],

Concrete Printing [2,29,30] and D-shape [6].

These three techniques differ in their printing technique, with

Contour Crafting and Concrete printing using an extrusion-based

method similar to the Fused Deposition Method in additive

manufacturing, and D-shape uses a binder jetting technique to selec-

tively deposit binders on a powder bed made up of magnesium-based

materials and sand. Another difference between Contour Crafting and

Concrete printing is Concrete Printing's use of printing supports, which

allows Concrete Printing to print full 3D topology as compared to

Contour Crafting's vertical extrusion of a planar shape.

2.2.2. Arm-based systems

Robotic arm systems are relatively new compared to the gantry

system counterparts. They provide additional roll, pitch and yaw con-

trols to the end effector (print nozzle), allowing the print nozzle to

perform more articulate print designs, such as printing with the tan-

gential continuity method [7]. The tangential continuity method allows

a smoother transition between print layers by maintaining a continuous

rate of curvature change, giving a more aesthetically pleasing look.

Another robotic arm system by Keating et al. [8] in Digital Construction

Platform (DCP), they mounted the robotic arm on a track driven mobile

platform for on-site fabrication of printed structures. DCP's system is

also self-sufficient by recharging its electrical drive system with solar

panels. One other mounted robotic arm system is Cybe RC 3Dp [31]

which has a 6-axis robotic arm mounted on caterpillar tracks and is

used in 3D printing the R&Drone Laboratory in Dubai [11].

2.2.3. Minibuilders

Minibuilders [9] presents an alternative approach for 3D concrete

printing. They use three small mobile robots in the system. The first

robot is equipped with a sensor that follows an initial marked path and

builds the concrete foundation. The second robot is placed on the

foundation and gripped the foundation with rollers before printing

additional layers of concrete, and building up the structure. The last

robot uses suction cups and pressurized air to print vertically up the

printed structure and reinforced the printed structure which had only

horizontal layers.

2.2.4. Summary

The biggest limitation in literature of printing system is their lack of

scalability. Gantry-based system and stationary robotic arm system re-

quires a massive external framework to support the single print nozzle

in building the structure. While mobile robotic arm system helps extend

the printing range, a single print nozzle still hoards the entire print

space, limiting the efficiency of the printer. Although a multiple agent

system is introduced by Minibuilders, their robots requires a harden

structure for climbing and therefore has limited application as it involve

waiting for the printed concrete to grant sufficient strength before de-

ployment.

This gap in scalability motivates our project of a multi-robot

printing system. Our system utilizes multiple mobile robot printers in a

multi-agent setting to print their individual portion of a large print

structure. They are capable of localization, collision avoidance and ef-

ficient coordinated printing through optimal robot placement. Our

system demonstrate scalability by allowing users to introduces as many

robots as needed in a shared environment for task completion in a fast

and efficient manner.

2.3. Robotics background

Some robotics knowledge of the algorithms used in our proposed

system for robot localization and planning is introduced in this section.

2.3.1. Simultaneous localization and mapping (SLAM)

Self-localization is critical for mobile robots to allow it to navigate

its environment. The common strategy for localization in an un-

structured environment involves using Simultaneous localization and

mapping (SLAM) to construct and or update the map of the environ-

ment while keeping track of the robot in the environment [32–34]. A

recent literature survey on state-of-the-art methodologies for

Fig. 1. Concurrent printing of a large, single-piece, concrete structure by two

mobile robot printers. See the full video of the experiment at https://youtu.be/

p_jcG25tUoo.

X. Zhang et al. Automation in Construction 95 (2018) 98–106

99

implementing solutions to the SLAM problem can be found in [35].

2.3.2. Motion planning

A fundamental motion planning task is to plan collision-free mo-

tions for a robot to move from a start to a goal position among a col-

lection of obstacles [36]. The problem is often solved in configuration

space, which is the set of all possible configurations for the robot.

Low-dimensional problems can be generally solved using grid-based

algorithms that overlay a grid on top of configuration space and map

each configuration to a grid point, or geometric algorithms where shape

and connectivity of free space are computed. However, sampling-based

algorithms are commonly used for high-dimensional problems due to

their higher computational efficiency, where configuration space is

represented with a road map of sampled configurations.

When it comes to path planning for multiple robots, there are ba-

sically two approaches: coupled and decoupled. A coupled planner

treats the robots as a single combined robot and computes a path in a

combined configuration space.

3. Large-scale 3D printing by multiple mobile robots

3.1. System setup

Each mobile robot printer in our setup consists of a holonomic

mobile platform, a 6-axis robotic arm, a stereo camera and a pump as

shown in Fig. 2. The robotic arm is mounted on the holonomic mobile

platform and is equipped with a print nozzle. The robotic arm has a

reach of 0.9m with a repeatability of 0.02mm. The holonomic mobile

platform is equipped with sensors for localization and odometry, which

includes wheel encoders, inertial measurement unit (IMU) and a 2D

laser scanner. Localization is performed using on-board sensors, the

stereo camera and some ArUco markers [37] placed on the platform.

The markers have a black border for fast tracking and an inner binary

matrix which determines its identifier, preventing feature mismatch.

The pump system is responsible for delivering cementitious material to

the print nozzle for selectively concrete deposition to build up the final

print structure.

3.2. Pipeline

The printing pipeline is illustrated in Fig. 3.

Firstly, for a given 3D CAD model, it was sliced into thin, closely

packed paths in a layer wise fashion. The coordinates and normal of the

path were extracted as way points for the robotic arm. Using the

geometry information of each layer, the multi-robot placement situa-

tion was formulated as an optimization problem, which was solved for

finding feasible and reasonable pose for each corresponding robotic

manipulator. A feasible solution is defined if a robot is its placement can

deposit material accurately onto the desired print path without self-

collision or exceeding its joint limit, while a reasonable solution is

defined if the robot is able to avoid potential failure points if there is a

better solution. The algorithm for multi-robot placement optimization

will be illustrated in Section 3.4.

Secondly, with the construction environment and robot placement,

the mobile robots would navigate to their respective target position

accurately and without collision. In this phase, an environment map is

generated with the on-board sensors and feasible paths are planned for

navigation. When the mobile robots are in proximity to their target

position, they are guided to their final position, using the stereo cam-

eras. This methodology will be explained in Section 3.5.

Subsequently, the nozzle trajectory is planned so that it can extrude

cementitious material accurately onto the required path in a time-co-

ordinated manner in order to avoid collision with the environment, the

printed structure and the other robot printers. This trajectory planning

phase is done in parallel while the robot printer is navigating its en-

vironment. The nozzle trajectory planner takes into account the in-

dividual sub-workspace of each robot and the coordinates and normal

of the way points generated in the first module, while correcting for

minor error in the mobile platform localization. The algorithm for the

multi-robot motion will be discussed in Section 3.6.

Finally, with the robot printers in their respective position, the

printing process will begin.

3.3. Materials preparation and extrusion methods

The cementitious materials were designed to meet rheological re-

quirements (yield stress and viscosity) for printing, and this was re-

flected by pumpability during the material delivery phase and build-

ability during the extrusion phase. Two separate materials were chosen

to demonstrate the adaptability of the system towards multi-material

printing. One material consists of ordinary concrete with its mix design

shown in Table 1, and the other material is a fibre reinforced concrete

mix design [22] and shown in Table 2.

Two SoRoTo Forced Action Mixer 80 L were used in mixing. As

mixing factors, such as mixing time, speed and temperature, have been

known to affect cementitious material rheological properties, mixing

Fig. 2. System setup for one robot printer (stereo camera is placed out of the

scene).

Fig. 3. Printing pipeline.

X. Zhang et al. Automation in Construction 95 (2018) 98–106

100

procedures were strictly standardised and adhered to, so as to ensure

the consistency of rheology performance. Firstly, the powder of all solid

ingredients was dry mixed for 1min at stir speed; water was then added

and mixed for another minute at stir speed. Superplasticizer was added,

and the mixing speed was increased to speed I for 1min, and speed II

for 1min. Finally, the fibre is introduced, and the mixing process

continued for 2min at speed II. On completion of the mixing proce-

dures, the cementitious material was loaded into the pumps' hoppers.

During printing, a rotor/stator pump was used to deliver the ce-

mentitious material through a 5m long 25.4mm diameter hose pipe at

650 rpm. The cementitious material was extruded through a 10mm

tapered diameter print nozzle to build up the designed structure in a

layer wise manner. The choice of a round nozzle also eases the or-

ientation constraint on the nozzle allowing a wider pose solution to be

found, which translates to a bigger printing volume by the robot

printer.

3.4. Robot placement optimization

In literature, there are multiple studies on collision avoidance for

multiple robots working in a shared workspace [38–40] or optimal

robot placement given a prescribed task [41,42] but not the combina-

tion of two situations which is required in our multi-robot printing

system. The multiple robotic printers have to cover the complete work

piece in a collision-free environment yet no overlap of their individual

workspace is allowed. We previously formulated this situation as an

optimization problem that tries to minimize the length of work piece

that is not able to be covered.

However, just satisfying workspace coverage might result in some

robot configurations that would cause potential planning problems. In

this work, we further improve the algorithm by introducing a score

scheme for robot configuration considering its kinematic reachability.

The kinematic reachability of a point in the robot workspace is

given by the number of possible robot configurations which realize this

point. A kinematic reachability database for one robot printer was

generated prior to printing (See Fig. 4).

Kinematic reachability was then normalized to the interval from 0

to 1 and was incorporated to an optimization program to find the op-

timal robot placement. In general, let N denote the number of robot

printers, the optimization objective function is given by

∑− + …
… =

S x C x xargmin () (, ,)
x x ϵSE i

N

i N
, , (2) 1

1

N1 (1)

where xi is the pose of the i-th robot printer, S(xi) evaluates the total

reachability of the i-th robot printer regarding the target object, C(x1,

…,xN) is the cost of collision between the robots, which is assigned to 0

if the system is collision-free and a large value if collisions exist.

3.5. Robot localization

Among the myriad of SLAM algorithms, we have adopted GMapping

[43] for map construction because of its high efficiency and accuracy.

Fig. 5(a) shows a map of our lab constructed with the sensors on board

of the platform using GMapping. The constructed map was then used in

adaptive Monte Carlo localization (AMCL) [44] for robot localization.

In Fig. 5(b) the rainbow colour thin lines were from the sensor data,

while the blue regions are places considered occupied on the occupancy

grid map. It showed the situation that the mobile robot succeeded in

localizing itself in the map using AMCL algorithm, with the sensor

observations fitting the given map well.

With the SLAM and AMCL algorithms, mobile platforms are able to

localize themselves in a rough-scale and navigate in the environment at

a low cost. However, this is far from the precision required for them to

print concurrently on one work piece. Hence, we switched to vision

control when the platform is near to the target printing site for higher

accuracy. ArUco markers were attached on the mobile platforms and

stereo cameras were installed around the construction site, providing

easy and unique features for the camera to identify and avoid feature

mislabels when using nature features in the environment. Upon ob-

servation of the markers, relative pose between the camera and the

detected marker is calculated, and the robot can localize its position

unambiguously.

3.6. Multi-robot motion planning

Motion planning is required for robot navigation and nozzle tra-

jectory planning for multiple robot printers. In this work, we use de-

coupled planning approach since it is generally faster. Before talking

about planning algorithms, it would be helpful to know that in the

syntax of robotics, trajectory is a time-parametrized path, which in-

dicates how fast a path is executed. We first compute a path for each

robot independently, then use a coordination diagram to plan collision-

free trajectories for each robot along its path. The second step can be

thought of as a re-timing process, which is analogical to finding a path

from (0, 0, …, 0) to (l1, l2, …, ln) of a virtual cube with perpendicular

axes representing trajectories of the robots. Each point inside the cube

corresponds to one combination of robot configurations at particular

time instance.

The above stated trajectory planning is a naive process which as-

sumes perfect execution of the trajectory. However, for platform navi-

gation the uncertainty can be significant due to the slippery of the

wheels and imperfect condition of the floor, especially for construction

environment. Therefore, to avoid collision of the mobile platforms and

to navigate to the goal positions accurately, the platforms broadcast

their locations at certain frequency for collision checking, and the tra-

jectory is re-planned upon update of new data.

3.7. Actual printing

We used Ubuntu operating system for system integration [45], ROS

for device control, message-passing between processes and package

management [46], and OpenRAVE for planning and collision checking.

Prior to printing, a kinematic reachability database of the robot

printers was generated. Subsequently, a map of the printing site was

constructed with GMapping by moving a robot printer around the

printing site. Stereo cameras were also set up around the site.

By slicing a 3D model of the target object, the waypoints, each

consists of XYZ coordinates and a normal vector, were generated. This

can be carried out using common slicing programs for 3D printing.

Next, taking as inputs the target printing pattern, the robot printers'

models and their kinematic reachability databases, the algorithm in

Section 3.4 was used to compute the desired placement of the robot

printers.

Subsequent to robot placement optimization, trajectories for the

Table 1

Mixture proportion for robot printer 1 (kg/m3).

Materials Cement Fly ash Silica fume River

Sand

Water

(OPC, ASTM

Type 1)

(Class F) (Undensified,

Elkem)

Proportion 613.7 287.7 57.5 767.2 402.8

Table 2

Mixture proportion for robot printer 2 (kg/m3).

Materials OPC Sand Water Fly ash Silica fume Superplasticizer

Proportion 575.7 590 330.3 575.7 863.4 1.4

Note: All ingredients contents are expressed as weight proportion of cement

content.

X. Zhang et al. Automation in Construction 95 (2018) 98–106

101

print nozzles are planned in OpenRAVE so that they can deliver ma-

terial accurately on the desired paths without causing collisions with

printed parts and other robot printers. Concurrently, the mobile prin-

ters plan their trajectories from home station to target printing positions

using the map of the printing site constructed in earlier stage.

Upon completion of the planning, mobile printers navigate towards

their target printing locations, using AMCL algorithm to track the mo-

bile printers. In an effort to increase the robot localization accuracy,

when the printers are within a pre-defined proximity to their target

position, they will switch to vision-feedback control using the stereo

cameras to track the ArUco markers placed on the mobile platforms. On

reaching their target locations, the printers start to print on the work

piece concurrently following the planned paths. The planned paths may

be re-planned at this stage to compensate for any minor error in plat-

form localization as discussed in Section 3.2.

Upon completion of printing, the robot printers will return to their

home station, using the same navigation strategies when moving to the

printing location. In the entire process, the robot printers will broadcast

their status for collision checking, and also to synchronize the printing

with the pumping system.

4. Results

Results of both simulation and demonstration on actual robotic

system are presented in this section.

4.1. Simulation

In the simulation as shown in Fig. 6, two robot printers were re-

quired to build a large-scale structure whose size is beyond the printing

volume of one single robot printer.

It took 24 s to plan for mobile platform navigation from home sta-

tion to target printing locations, and 25 s from printing location back to

home station. Planning of trajectories for the print nozzles to print 12

layers of the target structure took 11 s.

(a) Isometric view (b) View along the x

Fig. 4. Kinematic Reachability of a robot printer. The colours represent different levels of kinematic reachability: green and orange denoting the highest and lowest

levels respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(b) Robot printer localiza-
tion in the map achieved
by AMCL

(a) Map of the printing site
constructed by GMapping.

Fig. 5. Map construction and robot printer localization.

(a) Concurrent printing of one large-scale structure by two mobile

robot printers.

(b) Robot printers back to home station upon completion of

printing.

Fig. 6. Simulation of multi-robot printing process.

X. Zhang et al. Automation in Construction 95 (2018) 98–106

102

4.2. Execution

The simulation in Section 4.1 has been implemented on actual ro-

botic system with the proposed printing pipeline. Fig. 7 presents an

ordered sequence of intermediate steps during the printing process.1

Given target printing location and printing pattern, placement of

robot printers and their corresponding printing paths were simulated.

The two robot printers navigated from home station to their respective

printing locations. Subsequently they started printing concurrently on

the large structure in a coordinated fashion without collision. Upon

completion of the print, the robot printers return to the home station.

4.3. Printed specimen

The printed structure was 1.86m×0.46m×0.13m (length,

width, height). The specimen was covered by a plastic sheet to simulate

field conditions for ambient curing. After 10 days of curing, we could

turn it over, as shown in Fig. 8.

The mechanical properties of the 3D printed concrete with each of

the two materials can be found in [4,22]. Regarding the junctions, we

did not perform tests (since this would involve cutting the specimen),

but noted that the bonding strength was high enough to easily support

the specimen's own weight when it was placed on its side (Fig. 8(b)).

Informal visual and stress inspections suggested that the bonding was

strong. Extensive and quantitative tests will be performed as part of our

future work.

5. Discussion

The printing demonstration in Section 4.2 serves as a proof of

concept for the multiple mobile robots printing system for printing

concrete structure in an efficient and scalable manner. The printed

design was chosen to incorporate complex curves and internal void that

would be challenging to build using traditional construction methods.

The size of the printed design was also chosen to extend beyond the

workspace of a single robot printer, requiring the concurrent printing

by multiple robots. With the decoupling of printer system from print

material, it allows flexibility for users in selection of materials for dif-

ferent applications such as printing a load bearing structural wall to

wall fillers. Our demonstration has intentionally used two different

materials in showing its non-reliance on material type, as mentioned in

Section 3.3.

As our proposed system has the attribute of arm-based system,

mobile platform and swarm printing, its major advantages over gantry-

based system, stationary printer and single printer are discussed here.

5.1. Advantages over gantry-based system

Robotic arm printers benefit from the greater flexibility of having

full 6 degrees of freedom as compared to 3 or 4 degrees of freedom in

the conventional gantry system.

This extra articulation allows the robotic arm printer to print

complex curved parts using the tangential continuity method [7,47].

This results in a smoother transition between print layers by main-

taining a continuous rate of curvature change, hence giving a structu-

rally more efficient mechanical stability by reducing shear loads be-

tween printed layers.

5.2. Advantages over stationary printer

The mobile platform of our robot printer extends the reachability of

the printer, by allowing the printer to print beyond the fixed

environment it will otherwise be confined to when stationary. On-site

robotic 3D printing is expected to alleviate transportation cost, as

printing large structures on site helps to relieve pressure of transporting

oversized parts that would not fit on a conventional truck.

5.3. Advantages over single printer

Swarm printing affords greater scalability and efficiency as com-

pared to a single printer. It has been shown in our demonstration that

swarm printer can build structure whose size

(1.86 m×0.46m×0.13m) is larger than the reach of a single printer

(1.74 m). When the same structure is to be printed with a single printer,

it took twice the required duration of two printers.

However, there are also challenges for the system to work robustly

for application in B&C industry. A major technical difficulty would be

accurate localization of the robot printer under different terrain con-

ditions. When the terrain is bumpy and dusty, which is common to a

construction site, the mobility scheme for the mobile printer plays a

vital role in the printing system. As Mecanum wheel designs for holo-

nomic mobiles can perform poorly on rough terrains [48], it would be

necessary to investigate alternative wheel schemes to enhance the ro-

bustness of the printing, such as differential tank drive.

6. Conclusion and future works

6.1. Conclusion

In this paper, we have demonstrated a multi-robot printing system

that is capable of on-site printing large structures in a safe, efficient and

scalable manner. The system configuration contains several modules:

planning of robot placement to optimize workspace, mobile robot na-

vigation and localization to reach target printing location, and planning

of manipulator trajectory to deposit material accurately on desired

path.

We presented our results of both simulation and demonstration on

actual robotic system: two mobile robot printers work concurrently on

one structure whose size is twice the printing volume of one single

printer.

Comparing to existing 3D cementitious material printing techni-

ques, experimental results suggest that the proposed system is superior

in its greater practical scalability and higher time efficiency due to the

employment of multiple robot printers, as well as better on-site printing

capability credited with mobility of the system. These advantages make

the proposed system promising to be scaled up for on-site large-scale

printing applications in B&C industry. Both technical and economic

benefits can be evaluated by the Construction Robotic Equipment

Management System (CREMS) [49–52]. Furthermore, using a fleet of

mobile robots for construction could have an extreme potential in other

non-conventional aspects. One such application is to allow automated

construction in hard-to-reach, remote areas, such as underground

caves, the Moon or Mars [53], to which it is inconvenient or even im-

possible to bring other kinds of machine required for existing ce-

mentitious material printing methods.

A technical concern of the proposed system is the complexity in

coordinating such a fleet of mobile robots. However, this paper de-

monstrates that this difficulty can be significantly mitigated by utilizing

standard robotic techniques.

6.2. Future works

With our successful proof-of-concept demonstration of the proposed

multi-robot printing system, our primary future plan is to integrate the

overall system to boost automation to a greater extent.

Moving forward from current printing-on-arrival scheme, where

robot printers navigate towards desired printing locations and start to

print at these stationary locations, our future research direction will

1 Timings taken from the Supplement video material: 10 s to move to printing

position, 470 s for printing (7min 50 s), 10 s to move back to home station.

X. Zhang et al. Automation in Construction 95 (2018) 98–106

103

(caption on next page)

X. Zhang et al. Automation in Construction 95 (2018) 98–106

104

focus on study of printing-while-moving scheme to fully utilize the

advantage of mobile robot printer and further extend the printing scale.

On account of the integration of printing-on-arrival and printing-while-

moving, the study will also involve investigation of trade-off between

workspace size covered by each single mobile robot printer and inter-

layer strength of 3D printed concrete.

Apart from exploring alternative wheel schemes, future work would

include integration of additional sensors that aids in the online de-

termination of nozzle offset distance to compensate for changes in

ground level while printing.

In addition, bonding strategies at the interface of two separate

concrete prints would be carried out to identify the optimal method of

joining, which could be face-to-face joint or finger joints. Such methods

would seek to reduce the degree of material overlapping that could

adversely affect part appearance while maximising interface area for

stronger bond.

Supplementary data to this article can be found online at https://

doi.org/10.1016/j.autcon.2018.08.004.

Acknowledgement

This research is supported by the National Research Foundation,

Prime Ministrer's Office, Singapore under its Medium-Sized Centre

funding scheme, Singapore Centre for 3D Printing, and Sembcorp

Design & Construction Pte Ltd. The authors would like to thank Y. Qian,

B. Panda, W. Lao, Z. Liu, A. Ting, and A. Annapareddy for their helps

with the experiment, Prof. S. Qian and Prof. M. Tan for helpful dis-

cussions.

References

[1] Y.W.D. Tay, B. Panda, S.C. Paul, N.A. Noor Mohamed, M.J. Tan, K.F. Leong, 3D

printing trends in building and construction industry: a review, Virtual Phys.

Prototyp. 12 (3) (2017) 261–276, https://doi.org/10.1080/17452759.2017.

1326724.

[2] T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, R. Law, A.G. Gibb, T. Thorpe, Hardened

properties of high-performance printing concrete, Cem. Concr. Res. 42 (3) (2012)

558–566, https://doi.org/10.1016/j.cemconres.2011.12.003.

[3] B. Zareiyan, B. Khoshnevis, Interlayer adhesion and strength of structures in con-

tour crafting-effects of aggregate size, extrusion rate, and layer thickness, Autom.

Constr. 81 (2017) 112–121, https://doi.org/10.1016/j.autcon.2017.06.013.

[4] Y.W. Tay, B. Panda, S.C. Paul, M.J. Tan, S.Z. Qian, K.F. Leong, C.K. Chua,

Processing and properties of construction materials for 3D printing, Mater. Sci.

Forum 861 (2016) 177–181, https://doi.org/10.4028/www.scientific.net/MSF.

861.177.

[5] B. Khoshnevis, R. Dutton, Innovative rapid prototyping process makes large sized,

smooth surfaced complex shapes in a wide variety of materials, Mater. Technol. 13

(2) (1998) 53–56, https://doi.org/10.1080/10667857.1998.11752766.

[6] G. Cesaretti, E. Dini, X. De Kestelier, V. Colla, L. Pambaguian, Building components

for an outpost on the lunar soil by means of a novel 3D printing technology, Acta

Astronaut. 93 (2014) 430–450, https://doi.org/10.1016/j.actaastro.2013.07.034.

[7] C. Gosselin, R. Duballet, P. Roux, N. Gaudilliere, J. Dirrenberger, P. Morel, Large-

scale 3D printing of ultra-high performance concrete–a new processing route for

architects and builders, Mater. Des. 100 (2016) 102–109, https://doi.org/10.1016/

j.matdes.2016.03.097.

[8] S.J. Keating, J.C. Leland, L. Cai, N. Oxman, Toward site-specific and self-sufficient

robotic fabrication on architectural scales, Science Robotics 2 (5) (2017) eaam8986,

, https://doi.org/10.1126/scirobotics.aam8986.

[9] IAAC, Minibuilders, http://robots.iaac.net , Accessed date: 29 June 2018.

[10] T.C. Nguyen, Yes, that 3D-printed mansion is safe to live in, https://www.

washingtonpost.com/news/innovations/wp/2015/02/05/yes-that-3d-printed-

mansion-is-safe-to-live-in/?utm_term=.2112831042ec , Accessed date: 29 June

2018.

[11] S. Saunders, CyBe construction announces that 3D printing is complete for Dubai's R

&Drone Laboratory, https://3dprint.com/176561/cybe-3d-printed-dubai-

laboratory/ , Accessed date: 29 June 2018.

[12] R. Duballet, O. Baverel, J. Dirrenberger, Classification of building systems for

concrete 3D printing, Autom. Constr. 83 (2017) 247–258, https://doi.org/10.1016/

j.autcon.2017.08.018.

[13] J.G. Sanjayan, B. Nematollahi, M. Xia, T. Marchment, Effect of sur-face moisture on

inter-layer strength of 3D printed concrete, Constr. Build. Mater. 172 (2018)

468–475, https://doi.org/10.1016/j. conbuildmat.2018.03.232.

[14] S.C. Paul, Y.W.D. Tay, B. Panda, M.J. Tan, Fresh and hardened properties of 3D

printable cementitious materials for building and construction, Arch. Civ. Mech.

Eng. 18 (1) (2018) 311–319, https://doi.org/10.1016/j.acme.2017.02.008.

[15] B. Panda, S.C. Paul, L.J. Hui, Y.W.D. Tay, M.J. Tan, Additive manufacturing of

geopolymer for sustainable built environment, J. Clean. Prod. 167 (2017) 281–288,

https://doi.org/10.1016/j.jclepro. 2017.08.165.

[16] B. Panda, S.C. Paul, M.J. Tan, Anisotropic mechanical performance of 3D printed

fiber reinforced sustainable construction material, Mater. Lett. 209 (2017)

146–149, https://doi.org/10.1016/j.matlet.2017.07.123.

[17] M. Hambach, D. Volkmer, Properties of 3D-printed fiber-reinforced Portland ce-

ment paste, Cem. Concr. Compos. 79 (2017) 62–70, https://doi.org/10.1016/j.

cemconcomp.2017.02.001.

[18] N. Khalil, G. Aouad, K. El Cheikh, S. Remond, Use of calcium sulfoaluminate ce-

ments for setting control of 3D-printing mortars, Constr. Build. Mater. 157 (2017)

382–391, https://doi.org/10.1016/j. conbuildmat.2017.09.109.

[19] P. Shakor, J. Sanjayan, A. Nazari, S. Nejadi, Modified 3D printed powder to cement-

based material and mechanical properties of cement scaffold used in 3D printing,

Constr. Build. Mater. 138 (2017) 398–409, https://doi.org/10.1016/j.conbuildmat.

2017.02.037.

[20] A. Perrot, D. Rangeard, E. Courteille, 3D printing of earth-based materials: pro-

cessing aspects, Constr. Build. Mater. 172 (2018) 670–676, https://doi.org/10.

1016/j.conbuildmat.2018.04.017.

[21] A. Perrot, D. Rangeard, A. Pierre, Structural built-up of cement-based materials

used for 3D-printing extrusion techniques, Mater. Struct. 49 (4) (2016) 1213–1220,

https://doi.org/10.1617/s11527-015-0571-0.

[22] Y. Weng, M. Li, M.J. Tan, S. Qian, Design 3D printing cementitious materials via

Fuller Thompson theory and Marson-Percy model, Constr. Build. Mater. 163 (2018)

600–610, https://doi.org/10.1016/j. conbuildmat.2017.12.112.

[23] R. Wolfs, F. Bos, T. Salet, Early age mechanical behaviour of 3D printed concrete:

numerical modelling and experimental testing, Cem. Concr. Res. 106 (2018)

103–116, https://doi.org/10.1016/j.cemconres. 2018.02.001.

[24] R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology:

Engineering Applications, Butterworth-Heinemann, 978-0-7506-8532-0, 2011,

https://doi.org/10.1016/B978-0-7506-8532-0.X0001-7.

[25] N. Roussel, A thixotropy model for fresh fluid concretes: theory, validation and

applications, Cem. Concr. Res. 36 (10) (2006) 1797–1806, https://doi.org/10.

1016/j.cemconres.2006.05.025.

[26] B. Khoshnevis, Automated construction by contour craftingrelated robotics and

information technologies, Autom. Constr. 13 (1) (2004) 5–19, https://doi.org/10.

1016/j.autcon.2003.08.012.

[27] B. Khoshnevis, G. Bekey, Automated construction using contour crafting–applica-

tions on earth and beyond, Nist Special Publication Sp, 2003, pp. 489–494, ,

https://doi.org/10.22260/ISARC2002/0076.

[28] B. Khoshnevis, D. Hwang, K.-T. Yao, Z. Yeh, Mega-scale fabrication by contour

crafting, Int. J. Ind. Syst. Eng. 1 (3) (2006) 301–320, https://doi.org/10.1504/

IJISE.2006.009791.

[29] T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, A.G. Gibb, T. Thorpe, Mix design and

fresh properties for high-performance printing concrete, Mater. Struct. 45 (8)

(2012) 1221–1232, https://doi.org/10.1617/s11527-012-9828-z.

[30] S. Lim, R.A. Buswell, T.T. Le, S.A. Austin, A.G. Gibb, T. Thorpe, Developments in

construction-scale additive manufacturing processes, Autom. Constr. 21 (2012)

262–268, https://doi.org/10.1016/j. autcon.2011.06.010.

[31] Cybe RC 3Dp, https://cybe.eu/3d-concrete-printers/#1520593810901-9a0ee625-

b8d5 , Accessed date: 29 June 2018.

[32] T. Bailey, H. Durrant-Whyte, Simultaneous localization and mapping (SLAM): part

II, IEEE Robot. Autom. Mag. 13 (3) (2006) 108–117, https://doi.org/10.1109/

MRA.2006.1678144.

[33] M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, M. Csorba, A solution

to the simultaneous localization and map building (SLAM) problem, IEEE Trans.

Fig. 7. Snapshots taken during the actual printing process. See the full video of the experiment at https://youtu.be/p_jcG25tUoo. A. Robot printers at home station; B.

Navigating towards target locations; C. Reaching target locations; D. Starting printing; E. Printing in progress; F. Building up layers; G. Finishing printing; H. Robotic

manipulators back to standby pose; I. Navigating back; J. Reaching home station.

Fig. 8. Printed specimen after 10 days of curing.

X. Zhang et al. Automation in Construction 95 (2018) 98–106

105

Robot. Autom. 17 (3) (2001) 229–241, https://doi.org/10.1109/70.938381.

[34] S. Thrun, Simultaneous localization and mapping, Robotics and Cognitive

Approaches to Spatial Mapping, Springer, 978-3-540-75386-5, 2007, pp. 13–41, ,

https://doi.org/10.1007/978-3-540-75388-9_3.

[35] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,

J. Leonard, Past, present, and future of simultaneous localization and mapping:

towards the robust-perception age, IEEE Trans. Robot. 32 (6) (2016) 13091332,

https://doi.org/10.1109/TRO.2016.2624754.

[36] S.M. LaValle, Planning Algorithms, Cambridge University Press, 9780511546877,

2006, https://doi.org/10.1017/CBO9780511546877.

[37] S. Garrido-Jurado, R. Munñoz-Salinas, F.J. Madrid-Cuevas, M.J. Marın-Jimenez,

Automatic generation and detection of highly reliable fiducial markers under oc-

clusion, Pattern Recogn. 47 (6) (2014) 2280–2292, https://doi.org/10.1016/j.

patcog.2014.01.005.

[38] Y. Zhou, H. Hu, Y. Liu, Z. Ding, Collision and deadlock avoidance in multirobot

systems: a distributed approach, IEEE Trans. Syst. Man Cybern. Syst. 47 (7) (2017)

1712–1726, https://doi.org/10.1109/TSMC.2017.2670643.

[39] D. Claes, K. Tuyls, Multi robot collision avoidance in a shared workspace, Auton.

Robot. (2018) 1–22, https://doi.org/10.1007/s10514-018-9726-5.

[40] E. Freund, H. Hoyer, Real-time pathfinding in multirobot systems including obstacle

avoidance, Int. J. Robot. Res. 7 (1) (1988) 42–70, https://doi.org/10.1177/

027836498800700104.

[41] D. Spensieri, J.S. Carlson, R. Bohlin, J. Kressin, J. Shi, Optimal robot placement for

tasks execution, Procedia CIRP 44 (2016) 395–400, https://doi.org/10.1016/j.

procir.2016.02.105.

[42] B. Kamrani, V. Berbyuk, D. Wappling, U. Stickelmann, X. Feng, Optimal robot

placement using response surface method, Int. J. Adv. Manuf. Technol. 44 (1–2)

(2009) 201–210, https://doi.org/10.1007/s00170-008-1824-7.

[43] G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping with

rao-blackwellized particle filters, IEEE Trans. Robot. 23 (1) (2007) 34–46, https://

doi.org/10.1109/TRO.2006.889486.

[44] D. Fox, S. Thrun, W. Burgard, F. Dellaert, Particle filters for mobile robot locali-

zation, Sequential Monte Carlo Methods in Practice, Springer, 2001, pp. 401–428, ,

https://doi.org/10.1007/978-1-4757-3437-9_19.

[45] Ubuntu, https://www.ubuntu.com , Accessed date: 29 June 2018.

[46] A. Koubaa, Robot Operating System (ROS), Springer, 0-470-23457-1, 2017, https://

doi.org/10.1007/978-3-319-26054-9.

[47] P. Bosscher, R.L. Williams II, L.S. Bryson, D. Castro-Lacouture, Cable-suspended

robotic contour crafting system, Autom. Constr. 17 (1) (2007) 45–55, https://doi.

org/10.1016/j.autcon.2007.02.011.

[48] A. Ramirez-Serrano, R. Kuzyk, Modified mecanum wheels for traversing rough

terrains, in: M. Bauer, J.L. Mauri, O. Dini (Eds.), The Sixth International Conference

on Autonomic and Autonomous Systems, IEEE, Cancun, Mexico, 2010, pp. 97–103,

, https://doi.org/10.1109/icas.2010.35.

[49] J.S. Russell, M.J. Skibniewski, J.A. Vanegas, Framework for construction robot fleet

management system, J. Constr. Eng. Manag. 116 (3) (1990) 448–462, https://doi.

org/10.1061/(ASCE)0733-9364(1990)116:3(448).

[50] M.J. Skibniewski, J.S. Russell, Construction robot fleet management system pro-

totype, J. Comput. Civ. Eng. 5 (4) (1991) 444–463, https://doi.org/10.1061/

(ASCE)0887-3801(1991)5:4(444).

[51] M.J. Skibniewski, R. Kunigahalli, J.S. Russell, Managing multiple construction ro-

bots with a computer, Autom. Constr. 2 (3) (1993) 199–216, https://doi.org/10.

1016/0926-5805(93)90041-U.

[52] M.J. Skibniewski, K. Tamaki, Logistics support system for construction robotics

implementation, J. Comput. Aided Civ. Infrastruct. Eng. 9 (1) (1994) 69–81,

https://doi.org/10.1111/j.1467-8667.1994.tb00363.x.

[53] Nasa's centennial challenges: 3-D printed habitat challenge, https://www.nasa.gov/

directorates/spacetech/centennial_challenges/3DPHab/index.html , Accessed date:

29 June 2018.

X. Zhang et al. Automation in Construction 95 (2018) 98–106

106

Departure and Conflict Management in

Multi-Robot Path Coordination

Puttichai Lertkultanon1, Jingyi Yang2, Hung Pham3, and Quang-Cuong Pham3

Abstract— This paper addresses the problem of multi-robot
path coordination, considering specific features that arise in
applications such as automatic aircraft taxiing or driver-less
cars coordination. The first feature is departure events: when
robots arrive at their destinations (e.g. the runway for take-
off), they can be removed from the coordination diagram. The
second feature is the “no-backward–movement” constraint: the
robots can only move forward on their assigned paths. These
features can interact to give rise to complex conflict situations,
which existing planners are unable to solve in practical time.
We propose a set of algorithms to efficiently account for these
features and validate these algorithms on a realistic model of
Charles de Gaulle airport.

I. INTRODUCTION

Consider n robots whose tasks are to move from their

initial positions p
start
i to their respective goal positions p

goal
i ,

where i ∈ {1, 2, . . . , n}. Suppose furthermore that their paths

from p
start
i to p

goal
i are fixed and do not involve any collision

with the environment. Finding the coordinated motions of

the robots to move along their paths while avoiding mutual

collisions is a classical problem in robotics, known as the

multi-robot path coordination problem.

This problem arises in many contexts. In some multi-robot

motion planning instances, the unconstrained problem (i.e.

when the paths are not fixed) is intractable, in particular

because of the high dimensionality of the problem itself,

such that the only practical solution is to decouple it into two

steps [1], [2], [3]: (i) find a path for each robot independently;

(ii) solve the path coordination problem with the paths found

in (i) being fixed. In some other applications, the robots have

to move along predefined “tracks”, e.g. driver-less cars on

city streets, delivery vehicles in an automated warehouse,

or automatic aircraft taxiing on airport tracks. Here, the con-

strains of “staying on the track” makes unconstrained motion

planning inapplicable. A more natural solution consists of

(i) finding the paths for each robot independently using, e.g.

graph search; (ii) solving the path coordination problem with

the paths found in step (i).

This work was partially supported by grant ATMRI:2014-R6-PHAM
awarded by NTU and the Civil Aviation Authority of Singapore.

1Puttichai Lertkultanon was with the School of Mechanical and
Aerospace Engineering, Nanyang Technological University (NTU), Singa-
pore. He is now with Mujin, Inc., 1-1-9 Narihira, Sumida, Tokyo, Japan
(email: L.Puttichai@gmail.com).

2Jingyi Yang was with the School of Mechanical and Aerospace Engi-
neering, NTU, Singapore. She is now with Forming Technology Group,
Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way,
Singapore (candice.yangjingyi@gmail.com).

3Hung Pham and Quang-Cuong Pham are with the School of
Mechanical and Aerospace Engineering, Nanyang Technological
University (NTU), Singapore (email: hungpham2511@gmail.com and
cuong.pham@normalesup.org).

(a)

(b)

Fig. 1: (a) An actual map of the Charles de Gaulle (CDG) airport in Paris,
France. (b) A simplified map of the airport used in the simulations presented
in this paper. The figure includes paths of 25 aircraft, shown in different
colors. Squares indicate start positions and stars indicate goal positions. A
video of a coordination solution of 25 aircraft computed by the proposed
planner can be found at https://youtu.be/hfJeUKpeeD0.

In this paper, we consider the multi-robot path coordi-

nation problem with automatic aircraft taxiing as an in-

tended application (see Fig. 1 for an application scenario

at Charles de Gaulle (CDG) airport in Paris, France). This

application displays two specific features. The first feature

is departure events: when robots arrive at their destinations

(e.g. the runway for take-off), they can be removed from the

coordination diagram, resulting in a change of the structure

of the coordination problem, such as its dimensionality. The

second feature is the “no-backward-movement” constraint:

the robots can only move forward on their assigned paths.

This constraint also arises in driver-less cars applications:

while reversing a car is possible, it should be avoided

in normal driving. Furthermore, these features can interact

to give rise to complex conflict situations, which existing

planners are unable to solve in practical times. The objective

of this paper is to develop a set of algorithms to address

(a) departure events, and (b) the “no-backward-movement”

constraint in the multi-robot path coordination problem.

As reported in Section V, these algorithms help reduce

planning time of a sampling-based planner and endow the

planner with the ability to solve problem instances with

more aircraft. Consequently, they make coordinated motion

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3080-8/18/$31.00 ©2018 IEEE 4327

planning suitable for real-time taxiing applications.

The rest of the paper is organized as follows. In Section II,

we briefly review the multi-robot motion planning problem

and some of its applications. In Section III, we recall the

main concepts of path coordination. In Section IV, we

present our main contributions, namely, a set of new algo-

rithms to handle departure and conflicts, which are specifi-

cally caused by the “no-backward-movement” constraint. In

Section V, we present simulation results based on a realistic

model of Charles de Gaulle airport. Finally, in Section VI,

we discuss the advantages and drawbacks of our approach

and sketch some future research directions.

II. LITERATURE REVIEW

Approaches to the problem of multi-robot motion planning

can be classified as centralized or decentralized. In the

centralized approach, a central computer receives position

information, computes the motion plans, and sends the com-

mands to all robots. On the other hand, in the decentralized

approach, each robot computes its own movement based on

the information at its disposal.

In the context of aircraft taxiing, the centralized approach

is currently in use in most airports (air traffic controllers

play the role of the central computer), which prompts us to

focus on this approach in this paper. Within the centralized

approach, one can further distinguish decoupled methods,

which we have mentioned previously, from non-decoupled

methods, where trajectories (paths and timings) are com-

puted in a single step.

A. Non-Decoupled Methods

Applying classical robot motion planning methods, such

as probabilistic roadmap (PRM) [4] or rapidly-exploring

random tree (RRT) [5], directly to the product configu-

ration space is highly inefficient. Similarly, graph search-

based methods (see, e.g. [6]) will suffer from the curse of

dimensionality. Therefore, most non-decoupled methods are

found in the operation research literature, and are based in

particular on Mixed Integer Linear Programming (MILP).

In [7], [8], Marı́n formulated the problem as a multi-

commodity flow network model, which is then solved via

MILP. In particular, a planning horizon is first defined and

then discretized into a number of intervals with the horizon

often lasts 30 min while the intervals is approximately 30 s.

Then a spatial-time graph is constructed from the original

spatial graph by creating multiple instances of each node

corresponding to the number of time interval. The author then

solved the resulting network flow problem with constraints

via CPLEX. This formulation has the ability to consider

general objective function. Note that recent developments

on Lagrangian decomposition [8] yield significant improve-

ments in terms of computation time.

A different formulation that also utilizes MILP was re-

ported in [9]. Instead of time-discretization, binary variables

were used to indicate the order with which aircraft pass

through a given landmark. The authors reported that their

implementation can plan motions for 30 aircraft in a reason-

able amount of time (less than 100 s), but computation time

increased significantly (more than 1000 s) for 50 aircraft.

B. Decoupled Methods

O’Donnell and Lozano-Pérez [1] were the first to introduce

the idea of coordination diagram, which encodes the relative

motions of the robots on their assigned paths (see Section III-

A for more details). The authors then proposed to compute

the obstacle regions in the coordination diagram explicitly

via discretization and subsequently to find a collision-free

path by a greedy algorithm.

In [3], Siméon et al. considered the problem of multiple

mobile vehicles moving along straight lines or arcs. This

particular path geometry allows them to efficiently compute

the bounding box representation of the obstacle regions in

the coordination diagram.

In [10], Peng and Akella considered the problem of time-

optimal path coordination subject to velocity and acceleration

constraints. The authors formulated the problem using Mixed

Integer Nonlinear Programming and were able to compute

sub-optimal but feasible coordinations.

In [2], Svetska and Overmars introduce the idea of

roadmap coordination. Instead of moving on an assigned

path, a robot can move within a roadmap. The coordination

diagram then becomes a composite roadmap. This can be

seen a generalization of both the non-decoupled and de-

coupled methods: if the roadmaps are infinitely dense, then

roadmap coordination is equivalent to the former approach;

if each roadmap contains only one path, then roadmap

coordination is equivalent to the latter. Next, using roadmap

coordination, it is possible to decompose the global coordi-

nation problem into several connected components.

More recently, in [11], Solovey et al. used RRT to find

collision-free paths in the coordination diagram and obtained

promising results in terms of computation time.

C. Specificity of Our Approach

Our approach is inscribed within the coordination dia-

gram framework. In particular, as in [11], we use RRT to

find collision-free paths in the coordination diagram. Our

specificity consists of the departure and conflict management

features. As we shall demonstrate, taking these features into

account significantly improves the performance with respect

to using a vanilla motion planner. Note that the development

presented here can be easily combined with existing decou-

pled planning heuristics (e.g. roadmap coordination [2]).

In absence of standardized test cases, it is difficult to

establish quantitative comparisons with the non-decoupled

approaches based on MILP discussed previously. Indeed, the

hardness of a motion planning instance not only depends

on the number of aircraft, but more fundamentally, on

the existence of “narrow passages”. Our problem instances

are associated with a large number of shared tracks and

potential deadlocks, yielding particularly narrow passages

in the coordination diagram, which are hard to overcome

without the proposed conflict management.

4328

(a) (b)

Fig. 2: (a) Three robot paths in the physical map. Squares are the start
positions and Stars are the goal positions. Note that robots 1 and 2 share a
common segment of their paths, on which they travel in opposite directions.
(b) The corresponding coordination diagram. The obstacle induced by the
shared path segment is depicted in dark gray. Note that for simplicity, the
collision radius in this case was supposed to be very small. Otherwise, the
obstacle would be thicker. The search tree is depicted in green and the
solution path is highlighted in red.

III. BACKGROUND: MULTI-ROBOT PATH COORDINATION

WITHOUT BACKWARD MOVEMENTS

A. Coordination Diagram

Consider n robots traveling on n given paths

P1, P2, . . . , Pn with path lengths of sgoal
1

, sgoal
2

, . . . , sgoal
n ,

respectively. The positions of the robots on their respective

paths can be given by an n-tuple q = (s1, s2, . . . , sn),
where si ∈ [0, sgoal

i], 1 ≤ i ≤ n. Thus, one can represent this

vector, which we will refer to as a configuration, as a point

in an n-orthotope C := [0, sgoal
1

]× [0, sgoal
2

]× . . .× [0, sgoal
n],

also called the coordination diagram (CD) [1], [2], [3].

As two paths Pi and Pj may intersect or even share

some track segments, robots i and j may collide with each

other while traversing their paths. For simplicity, robots are

assumed to be identical and are represented as disks of radius

r/2. One can thus define the obstacle set in C as

O = {q | ∃i, j, ‖pi(si)− pj(sj)‖2 ≤ r}, (1)

where pi(s) is the 2D physical position of the robot i when

it has traveled a distance s along its path.

The problem of path coordination—finding the motions

for all robots along their paths so that they (i) start from

the origin of their paths; (ii) eventually reach the end of

their paths; and (iii) never collide with one another—can

now be cast as a classical motion planning problem: find

a collision-free continuous path between (0, 0, . . . , 0) and

(sgoal
1

, sgoal
2

, . . . , sgoal
n) in the CD. Fig. 2 shows an example

of coordination diagram and a search tree constructed for a

problem with three robots.

The classical motion planning problem can be solved by

any existing geometric motion planning algorithms [12].

Here we use a rapidly-exploring random tree (RRT) plan-

ner [5]. Briefly, RRT iteratively grows a tree rooted at the

start configuration qstart := (0, 0, . . . , 0). At each planning

iteration, a random configuration qrand is sampled within the

free space C \O . Next, one determines amongst the existing

tree vertices, the vertex qnear that is the nearest neighbor

to qrand, according to some distance function dist. Finally,

one tries extending the tree from qnear towards qrand, creating

thereby a new tree vertex qnew. The algorithm terminates

when either the time limit is reached or the goal configuration

qgoal := (sgoal
1

, sgoal
2

, . . . , sgoal
n) can be connected to the tree.

For more details and variations, the reader is referred to [5].

Collision Checking: When extending the tree from qnear to-

wards qrand, one needs to check if the segment (qnear, qrand)
1

is collision-free. For this, one checks whether all discretized

configurations q along the segment are collision-free.

Consider a configuration q = (s1, s2, . . . , sn). To check

whether q is collision-free, one puts all the robots to

the physical positions defined by the respective si, i ∈
{1, 2, . . . , n}. Then one checks for all pairs (i, j) whether the

robots i and j are in mutual collision, according to Eq. (1).

Note that the obstacle set is thus not necessarily explicitly

constructed in the coordination diagram.

B. Motion Planning without Backward Movements

Consider a straight path from q = (s1, s2, . . . , sn) to

q
′ = (s′

1
, s′

2
, . . . , s′n) in C . The “no-backward-movement”

constraint is equivalent to the monotonicity of the path.

Therefore, the path satisfies the “no-backward-movement”

constraint if and only if q � q
′, where � is a component-

wise inequality between two vectors.

To enforce this constraint in RRT, one should attempt

extension from qnear to qrand only when qnear � qrand. A

simple way to implement this filter is to modify the distance

function (used in the nearest neighbor search) as

dist(q → q
′) =

{

‖q − q
′‖ if q � q

′

+∞ otherwise
(2)

such that any q � qrand will never be selected as the nearest

neighbor of qrand.

IV. DEPARTURE AND CONFLICT MANAGEMENT

A. Departure Management

We say that a robot departs from the CD when it reaches

its goal position. This terminology is in line with the aircraft

taxiing context, where aircraft indeed depart (take off) when

they reach their goal positions (the runway) or wheel-locked

in the gate where it would not block the way of other aircraft.

Once a robot has departed, it “disappears” and is no longer

taken into account in collision checks, thereby simplifying

the motion planning problem.

In the CD C , departure of a robot corresponds to

the search tree reaching a configuration q on an n − 1-

dimensional face of C . When this happens, we continue

the planning on the respective face of C . This can be

seen as initiating a new search tree, in n − 1-dimensional

space, rooted at the intersection point of the previous tree

and the face. When another robot reaches its goal position,

we continue the same process, i.e. planning in the n − 2-

dimensional space and so on.

Virtual Box: If one samples new configurations within the

CD C , one can never reach the faces of C since the faces

have measure zero relative to C . Therefore, we propose to

sample new configurations within a larger n-orthotope C :=
1In case dist(qnear, qrand) > ε, where ε is the maximum extension

distance, one considers instead the segment (qnear, qclose), where qclose is
the configuration on the segment (qnear, qrand) at distance ε from qnear.

4329

(a) (b)

Fig. 3: Departure management. (a) At iteration k, a newly sampled config-
uration qrand falls outside C . The interpolated path is thresholed at qcropped,
which lies on a face of C (shaded in orange). (b) From iteration k+1 on,
the algorithm continues planning on the face until the search tree reaches
qgoal.

[0, s1]× . . .× [0, sn], where si ≥ sgoal
i , i ∈ {1, 2, . . . , n}. We

call C the virtual box.

When a sampled configuration qrand is in C \ C , we

first find qnear as the tree vertex that is closest to qrand as

previously. Next, when extending the tree from qnear towards

qrand, we stop at qcropped, defined as the intersection of the

segment (qnear, qrand)
2 with the boundary of C , see Fig. 3.

The size of the virtual box, i.e. the values si, also affect

the performance of the planner. The greater the values si,
the more the tree is attracted towards the faces of C and

the relative value si/s
goal
i determine the attractiveness of the

face i. These attractiveness ratio can also be seen as priority

given to robots as the greater ratio, the more likely the robot

will reach its goal first.

In our implementation, we chose s1 = s2 = . . . = sn =
γmaxi(s

goal
i), where γ ≥ 1 is a design parameter. Choosing

an n-orthotope with equal side lengths (i.e. a cuboid) as the

virtual box favors the robots with shorter path lengths since

the attractiveness ratio increases with shorter path lengths.

Thus, the algorithm will tend to make those robots reach their

goals first and “clear up the floor” more quickly, simplifying

thereby the motion planning. Regarding the value γ, we

found through extensive simulations that γ = 1.2 yields the

best result.

B. Conflict Management

An elementary conflict happens when two robots, travers-

ing their own assigned paths, have potential to collide with

each other. This, in turn, happens when their paths intersect,

either at a point or a long a segment. There are three types

of elementary conflicts:

Junction (J): two robot paths cross each other at a point;

Shared (S): two robot paths share a path segment where

both robots travel in the same direction; and

Deadlock (D): two robot paths share a path segment

where the two robots travel in opposite directions.

The scenarios of elementary conflicts are depicted in Fig. 4.

A sampling-based planner, equipped with a collision

checker3, is able to explore the configuration space without

2Note that for simplicity of the discussion, here we ignore the maximum
extension distance ε. This maximum extension distance must also be taken
into account in the actual implementation.

3A collision checker is a function that takes a configuration as its input
and return a Boolean value indicating if the input configuration is in
collision.

(a) (b) (c)

Fig. 4: Three types of elementary conflicts: (a) Junction (type-J); (b) Shared
(type-S); (c) Deadlock (type-D).

(a) (b)

Fig. 5: Deadlock obstacle OD . (a) The black diagonal line represents
configurations where actual collisions occur. The red region is a trapped
region where there exists no collision-free and monotonically increasing
path that connects a configuration inside to the goal. (b) The waiting areas
W1, W2, and W3. When the search tree is extended from a configuration
inside a waiting area, one robot should be made temporarily inactive (i.e.
waiting) until the other robot has exited the deadlock path segment.

the need to explicitly computing the obstacle set, which is

computationally expensive. However, we found out that:

� The presence of narrow passages—regions in C with

relatively small volumes that when removed, increase the

number of connected component in C —greatly affects the

performance of the planner. While it is possible to use some

heuristics to alleviate the problems arisen from narrow pas-

sages (see, e.g. [13]), they often require some assumptions

on the obstacle set O . Therefore, it is better to have at

least partial knowledge of O in order to devise policies to

overcome narrow passages.

� The obstacles in C that are induced by elementary con-

flicts can be closely described by simple geometric shapes

and do not require extensive computational resource to

compute and store them.

Therefore, our approach is to compute the obstacle sets

induced by conflicts and to devise policies to overcome those

obstacles.

1) Representing Conflicts in C : For simplicity of discus-

sion, we suppose that the collision radius r is very small. In

practice, the radius r can be taken into account by padding

the obstacle set by the value r.

Consider when there are two robots, r1 and r2, in the

scene. The paths of the two robots are parameterized by

parameters s1 ∈ [0, sgoal
1

] and s2 ∈ [0, sgoal
2

], respectively.

Junction: The paths intersect at (s1, s2) = (sJ
1
, sJ

2
). The

obstacle set OJ is described as OJ = {(sJ
1
, sJ

2
)}.

Shared: Suppose the robot r1 is in the shared segment when

s1 ∈ IS
1

:= [sS,start
1

, sS,end
1

] and the robot r2 is in the shared

segment when s2 ∈ IS
2

:= [sS,start
2

, sS,end
2

]. The obstacle set

is described as OS = {(s1, s2) | s1 ∈ IS
1
, s2 ∈ IS

2
, s1 =

s2 + (sS,start
1

− sS,start
2

)}4, which is a straight line connecting

4Note that since all the paths are parameterized by their own path lengths,

the intervals I1 and I2 have the same length. This implies s
S,start
1

− s
S,start
1

and s
S,end
1

− s
S,end
1

, and so on.

4330

(a) (b) (c)

Fig. 6: Complex deadlocks. (a) The situation consists of three robots.
(b) There are three elementary deadlock obstacles in C , depicted as
gray rectangular prisms (not to scale). (c) The three elementary deadlock
obstacles induce a complex deadlock shown in red.

the points (sS,start
1

, sS,start
2

) and (sS,end
1

, sS,end
2

) in C .

Deadlock: Suppose the robot r1 is in the shared segment

when s1 ∈ ID
1

:= [sD,start
1

, sD,end
1

] and the robot r2 is in

the shared segment when s2 ∈ ID
2

:= [sD,start
2

, sD,end
2

]. The

obstacle set is described as OD′

= {(s1, s2) | s1 ∈ ID
1
, s2 ∈

ID
2
, s1 + s2 = (sD,start

1
+ sD,start

2
)}, which is a straight line

connecting (sS,start
1

, sS,end
2

) and (sS,end
1

, sS,start
2

) in C .

Note, however, that the deadlock obstacle OD′

also creates

a virtual obstacle or a trapped region (the red region in

Fig. 5). For any configuration (s1, s2), although they are

collision-free, there exists no monotonically increasing path

that connects (s1, s2) to (sgoal
1

, sgoal
2

). Therefore, the search

tree should not extend itself to any configuration inside any

trapped region. Also, the area above OD′

(the blue region in

Fig. 5) is not reachable due to the “no-backward-movement”

constraint. Therefore, we propose to describe a deadlock

obstacle as OD = ID
1

× ID
2

, which is the Cartesian product

of the two intervals.

When there are n robots in the scene, the obstacles are

simply protrusions of the previously discussed obstacle sets

into the new dimensions. For example, from the scenario

in Fig. 2(a), the deadlock obstacle is a rectangular prism

ID
1

× ID
2

× [0, sgoal
3

].
2) Resolving Conflicts: Here we only discuss a policy

to overcome deadlock obstacles since they have the most

volume compared to obstacles of other types hence highest

potential to create narrow passages.

Since one robot can be inside a deadlock path segment

at a time, when one robot, say r1, has already entered the

deadlock, the other, say r2, needs to wait until r1 robot has

come out. Also, r2 should be waiting only when it is near the

entrance of the deadlock segment. Geometrically, this policy

leads us to define waiting areas W1, W2, and W3 in C , as

depicted in Fig. 5(b). When the search tree is extended from

a configuration inside a waiting area, one robot should be

made temporarily inactive to prevent future collision. If the

tree is extended from qnear ∈ W1, the robot r1 should be

made waiting, i.e. the tree extension will go vertically. In

case of W2, the robot r2 should be waiting, while in case of

W3, the user has freedom to choose the waiting robot. Note

that the dimension of the waiting area can be adjusted to suit

different applications.

3) Complex Deadlocks: Apart from elementary deadlock

obstacles, as discussed previously, there exists complex dead-

locks, i.e. ones that involve more than two robots. Note that

this complex deadlock is not equivalent to multiple elemen-

tary deadlocks since it is not a subset of any combination of

(a) (b) (c)

Fig. 7: Complex deadlock computation. (a) There are two elementary
obstacles OD

1
and OD

1
, which are connected at their corners. These

elementary obstacles induce a complex deadlock OD

3
, shaded in red. To

compute OD

3
, we compute shadows of OD

1
(see (b)) and shadows of OD

1

(see (c)). Then the complex deadlock is the non-empty intersection between
shadows of different directions. In this case, OD

3
= S1 ∩ S4.

elementary obstacles.

To see this, consider a situation depicted in Fig. 6(a) in

which there are three robots. There is a deadlock between

every possible pair of robots. Each of the conflicts induces

a deadlock obstacle in C that is a 3-orthotope. However, in

this case, the arrangement of the three 3-orthotopes is such

that it induces a new trapped region not inside any existing

elementary deadlock obstacles (red region in Fig. 6(c)). We

call this trapped region a complex deadlock as it is induced

by multiple elementary obstacles. To prevent the search tree

from being stuck in a complex deadlock, we present an

algorithm to compute a complex deadlock obstacle induced

by a cluster of elementary deadlock obstacles.

Consider an exemplary 2D coordination diagram with two

deadlock obstacles, OD
1

and OD
2

, connected at their corners,

as depicted in Fig. 7(a). In this case, there exists a complex

deadlock OD
3

, shaded in red. To compute OD
3

, we need to

compute shadows produced by each elementary obstacle.

Then a complex deadlock will be an intersection of shadows.

More precisely, suppose there is a light source placed at +∞
of s1-axis of C . Then OD

1
will produce a shadow S1 and

OD
2

will produce a shadow S3 (see Fig. 7). Configurations in

these shadows can be seen as being blocked in s1-direction.

Suppose there is another light source placed at +∞ of

s2-axis then we compute shadows S2 and S4. Similarly,

configurations in S2 or S4 can be seen as being blocked

in s2-direction. Finally, the complex deadlock is obtained as

an intersection of shadows from different direction. This is

because a deadlock is, by definition, a region that is blocked

in every direction. In this example, OD
3

= S1 ∩ S4.

Note that the proposed procedure of computing complex

deadlocks can be easily generalized to handle complex dead-

locks or any dimension. For example, consider an obstacle

described by a Cartesian product [s′
1
, s′′

1
] × [s′

2
, s′′

2
] × . . . ×

[s′k.s
′′

k]. The shadow of this obstacle in s1-direction is simply

described as [0, s′
1
]× [s′

2
, s′′

2
]× . . .× [s′k.s

′′

k].

V. SIMULATIONS

A. Planning Pipeline

We propose the following pipeline to address multi-robot

path planning problems:

Step 1 Plan robot paths in the physical map independently

using, e.g. a graph search algorithm;

Step 2 Find a collision-free path in the coordination dia-

gram using the set of algorithms developed previ-

ously;

4331

Step 3 Post-process the path.

In the post-processing step, one can first use shortcutting

algorithms [14], [15] to smoothen the path in the CD. Then

one can time-parameterize the physical paths, i.e. impose ve-

locity and acceleration constraints, by using algorithms such

as Time-Optimal Path Parameterization (TOPP) [16] 5. If the

commands are to be transmitted by Air Traffic Controllers,

one can also impose the switch times (the time duration

between two acceleration switches) to be always larger than

some predefined minimum value [15].

B. Simulation Results

Here we compare performance of four variants of the

RRT planner [5] in coordination scenarios on the CDG

airport (see Fig. 1) involving 2 to 25 aircraft. A video

of a coordination solution of a problem with 25 aircraft

can be found at https://youtu.be/hfJeUKpeeD0. All the

simulations were run on a 2.2GHz laptop running Ubuntu.

RRT Variants: The four planners are as follows:

1) Vanilla RRT: This planner is without handling of de-

parture events (virtual box) and conflict management. After

each successful extension of the search tree, the planner will

attempt to connect the newly added tree vertex to the goal

configuration via a straight path with a probability pbias.

2) RRT-DM: This is an RRT planner with only the Departure

Management feature, i.e. the virtual box heuristic.

3) RRT-CM: This is an RRT planner with only the Conflict

Management feature. Since the virtual box heuristic is not

used, there is also a connection attempt after each successful

tree extension as in the vanilla RRT.

4) RRT-DCM: This is an RRT planner with both the depar-

ture management and conflict management features.

In the simulations, all variants used the same maximum

extension distance (ε). The probability pbias (for Vanilla RRT

and RRT-CM) was set to 0.2.

Problem Settings: Let 2 ≤ n ≤ 25 be the number of robots

in the scene. For each n, we first randomly sampled n pairs

of start and goal positions. Then for each planner, we ran

simulations 50 times on each of the 24 sampled problem

instances. In each run, the time limit was set to 60 s.

Results are reported in Fig. 8. While RRT-DCM found

a solution in every run, the success rates of the other three

planners decrease rapidly with n. At large n’s, those planners

only occasionally get lucky enough to find solutions. From

this sufficiently clear trend, we did not run simulations for

Vanilla RRT, RRT-DM, and RRT-CM for n > 15.

Interestingly, RRT-DM performed better than Vanilla RRT

and RRT-CM. This is because in a multi-robot path coor-

dination scenario, allowing robots to reach their goals at

different times greatly increases the solution space, hence

the high success rate. However, since a new search tree is

initiated when a robot reaches its goal, the lack of conflict

management feature can result in the new tree being trapped

completely in a deadlock. Similarly, although the conflict

management feature is useful, not explicitly allowing robots

5Note that the time-parameterizability also depends on the geometry of
the path in the CD (the readers are referred to [16] for more details).

to reach their goals at different times is still too restrictive

that although the search tree did not get trapped, the planner

required too much time to find a solution.

One can see that while the presented two features—

departure handling and conflict management—are not much

beneficial being used separately, they are complementary.

Therefore, integrating both of them into a planner signif-

icantly improved the performance as illustrated in simula-

tions.

Note also that although previous works such as [17]

presented simulations with 240 aircraft, the number of air-

craft was cumulative across an interval of three hours. All

snapshots presented in [17] showed less than 20 aircraft in

the airport. By contrast, the simulations presented here were

such that all aircraft were presented in the scene.

VI. DISCUSSION AND CONCLUSION

A. Discussion

Arrival Management: This feature cannot be directly

integrated into the presented approach since the planning

in the coordination diagram does not include timing. The

planned path only encodes information of relative positions

of robots/aircraft. It is thus not possible to include new

aircraft into the planner while in the middle of the planning

process. However, the simulation results presented previously

suggest that it can be possible to use the approach “plan-

execute-replan”. That is, it is feasible to assume that a

coordinated path is planned and the execution starts before

a new aircraft arrives. Thus, when a new aircraft arrives,

one can replan the coordinated path by using the current

configuration as the root of the new search tree.

Complex Deadlocks: The existence of complex deadlocks

has been already been discussed in the literature (see,

e.g. [1]). Similar ideas were also explored in literature

on concurrency control of databases [18], [19]. However,

previous works only discussed these deadlocks in 2D cases.

Furthermore, a complex deadlock was also thought to be the

SW-hull [20] of other existing obstacles [1]. Upon further

investigation, we found out that the complex deadlocks are

equivalent to SW-hulls only in two-dimensional cases. To our

knowledge, this paper is the first to develop an algorithm to

explicitly address high-dimensional complex deadlocks.

The presented approach, however, comes with high combi-

natorial complexity. To compute a complex deadlock induced

by a cluster of m elementary deadlocks, we compute exactly

two shadows produced by each obstacle. In the worst case,

we need to examine all possible cases 2m of shadow inter-

section (since in each case, we can select one out of two

shadows). Therefore, the worst case complexity is O(2m).
It is possible to reduce the computation time by using, for

example, a graph search algorithm that takes into account

path overlapping, hence reducing m. However, to derive a

more efficient complex deadlock detection algorithm, we

need to gain more understanding of how complex deadlocks

are formed, their mathematical properties, etc.

Completeness: The RRT planner itself is probabilistically

complete [5], meaning that if there exists a solution, it will

4332

Number of robots

S
u

cc
es

s
ra

te Vanilla RRT

RRT-DM

RRT-CM

RRT-DCM

(a)

Number of robots

R
u

n
n

in
g

ti
m

e

Vanilla RRT

RRT-DM

RRT-CM

RRT-DCM

(b)

Number of robots

N
u

m
b

er
o

f
co

n
f

ic
ts

Junction

Shared

Deadlock

Complex

(c)

Fig. 8: Experimental results. (a) The success rates of all planners as a function of the number of involving aircraft. (b) The average running time over 50
runs of all planners as a function of the number of aircraft. The vertical bars indicate the respective standard deviation. In case a planner failed in all 50
runs, the running time of that problem instance is shown as the time limit, 60 s. (c) The number of conflicts of each type in the sampled problem instances
used in the simulations.

be found with probability one as the number of iterations in-

creases. However, the planner presented in this paper may not

be probabilistically complete. One factor is that the current

mechanism of departure management reduces the dimension

of the coordination diagram immediately after a robot has

reached its goal6. This mechanism implicitly assumes that

the configuration qcropped is part of some solutions, which

we currently have no guarantee. Further study should also

focus on this completeness issue.

Optimality: Although optimal sampling-based planners

such as [21] can be used instead of RRT, further analysis

is needed in order to verify whether the optimality of such

planners is retained under the presence of the no-backward-

movement constraint, which limits the connectivity between

a tree vertex and its neighbors.

B. Conclusion

In this paper, we have developed a set of algorithms to deal

with departure events and conflicts (mainly caused by the

“no-backward-movement” constraint) in the classical multi-

robot path coordination problem. The virtual box heuristic,

when integrated into a planner, allows robots to reach their

goals at different times while the conflict management fea-

ture helps prevent the search tree from being trapped in a

deadlock situation. Integrating the presented two features

in a multi-robot coordination planner greatly improves the

performance, as illustrated in simulations. Future research

directions include, but not limited to, 1) further understand-

ing of deadlock formation and how to reduce complexity

of complex deadlock computation; and 2) analyzing the

completeness property of the planner.

ACKNOWLEDGMENT

We thank our colleagues from ENAC, Railane Benhacene

and Mathieu Cousy, for directing us towards the aircraft

taxiing problem as well as for providing the data for Charles

de Gaulle airport.

REFERENCES

[1] P. A. O’Donnell and T. Lozano-Pérez, “Deadlock-free and collision-
free coordination of two robot manipulators,” in Robotics and Au-

tomation, 1989. Proceedings., 1989 IEEE International Conference

on, 1989, pp. 484–489.

6One trivial way to overcome this issue, which comes with the cost of
higher computational complexity, is to retain the whole planning tree even
when some robots have already reached their goals. This allows the planner
to still consider different orders of robots reaching their goals.

[2] P. Švestka and M. H. Overmars, “Coordinated path planning for
multiple robots,” Robotics and Autonomous Systems, vol. 23, no. 3,
pp. 125–152, April 1998.

[3] T. Siméon, S. Leroy, and J.-P. Laumond, “Path coordination for
multiple mobile robots: a resolution-complete algorithm,” IEEE Trans-

actions on Robotics and Automation, vol. 18, no. 1, pp. 42–49, 2002.
[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[5] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[6] H. Ma, J. Li, T. S. Kumar, and S. Koenig, “Lifelong multi-agent path
finding for online pickup and delivery tasks,” in International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS),2017,
2017, pp. 837–845.

[7] Á. G. Marı́n, “Airport management: Taxi planning,” in Annals of

Operations Research, vol. 143, no. 1, 2006, pp. 191–202.
[8] ——, “Airport taxi planning: Lagrangian decomposition,” Journal of

Advanced Transportation, vol. 47, no. 4, pp. 461–474, 2013.
[9] M. J. S. J. W. Smeltink, “An optimisation model for airport taxi

scheduling,” 2004.
[10] J. Peng and S. Akella, “Coordinating multiple robots with kinody-

namic constraints along specified paths,” The International Journal of

Robotics Research, vol. 24, no. 4, pp. 295–310, 2005.
[11] K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in

an exponential haystack: Discrete RRT for exploration of implicit
roadmaps in multi-robot motion planning,” in Springer Tracts in

Advanced Robotics, vol. 107, 2015, pp. 591–607.
[12] S. M. LaValle, Planning algorithms. Cambridge University Press,

2006.
[13] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. H. Reif, “Narrow pas-

sage sampling for probabilistic roadmap planning,” IEEE Transactions

on Robotics, vol. 21, no. 6, pp. 1105–1115, 2005.
[14] R. Geraerts and M. H. Overmars, “Creating high-quality paths for

motion planning,” The International Journal of Robotics Research,
vol. 26, no. 8, pp. 845–863, 2007.

[15] P. Lertkultanon and Q.-C. Pham, “Time-optimal parabolic interpolation
with velocity, acceleration, and minimum-switch-time constraints,”
Advanced Robotics, vol. 30, no. 17–18, pp. 1095–1110, 2016.

[16] Q.-C. Pham, “A general, fast, and robust implementation of the
time-optimal path parameterization algorithm,” IEEE Transactions on

Robotics, vol. 30, pp. 1533–1540, 2014.
[17] G. L. Clare and A. G. Richards, “Optimization of taxiway routing and

runway scheduling,” IEEE Transactions on Intelligent Transportation

Systems, vol. 12, no. 4, pp. 1000–1013, 2011.
[18] M. Yannakakis, C. H. Papadimitriou, and H. T. Kung, “Locking

policies: Safety and freedom from deadlock,” in Foundations of

Computer Science, 1979., 20th Annual Symposium on, 1979, pp. 286–
297.

[19] W. Lipski and C. H. Papadimitriou, “A fast algorithm for testing for
safety and detecting deadlocks in locked transaction systems,” Journal

of Algorithms, vol. 2, no. 3, pp. 211–226, 1981.
[20] F. P. Preparata and M. Shamos, Computational Geometry. Springer-

Verlag New York, 1985.
[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

4333

Bibliography

[1] António Pedro Aguiar and João P Hespanha. Trajectory-tracking and path-

following of underactuated autonomous vehicles with parametric modeling un-

certainty. IEEE Transactions on Automatic Control, 52(8):1362–1379, 2007.

[2] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob

McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell,

Alex Ray, et al. Learning dexterous in-hand manipulation. arXiv preprint

arXiv:1808.00177, 2018.

[3] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete

Applied Mathematics, 1996. ISSN 0166218X. doi: 10.1016/0166-218X(95)

00026-N.

[4] Reinhold Behringer, Sundar Sundareswaran, Brian Gregory, Richard Elsley,

Bob Addison, Wayne Guthmiller, Robert Daily, and David Bevly. The DARPA

grand challenge-development of an autonomous vehicle. In IEEE Symposium

on Intelligent Vehicles, pages 14–17, 2004.

[5] Richard Bellman. Dynamic programming. Courier Corporation, 2013.

[6] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimiza-

tion: analysis, algorithms, and engineering applications. SIAM, 2001.

[7] Aharon Ben-Tal and Arkadi Nemirovski. On polyhedral approximations of the

second-order cone. Mathematics of Operations Research, 26(2):193–205, 2001.

[8] Dimitri P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[9] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena

Scientific Belmont, MA, 2007.

[10] Dimitri P. Bertsekas and I.B. Rhodes. On the minimax reachability of target

sets and target tubes. Automatica, 7(2):233–247, mar 1971. ISSN 00051098.

doi: 10.1016/0005-1098(71)90066-5. URL http://linkinghub.

elsevier.com/retrieve/pii/0005109871900665.

155

http://linkinghub.elsevier.com/retrieve/pii/0005109871900665
http://linkinghub.elsevier.com/retrieve/pii/0005109871900665

Bibliography

[11] John T. Betts. Survey of Numerical Methods for Trajectory Optimization. Jour-

nal of Guidance, Control, and Dynamics, 21(2):193–207, 1998. ISSN 0731-

5090. doi: 10.2514/2.4231. URL http://arc.aiaa.org/doi/abs/

10.2514/2.4231.

[12] Akilan Bharathi and Jingyan Dong. A Smooth Trajectory Generation Algo-

rithm for Addressing Higher-Order Dynamic Constraints in Nanopositioning

Systems. Procedia Manufacturing, 1:216–225, 2015.

[13] Corrado Guarino Lo Bianco. Minimum-jerk velocity planning for mobile robot

applications. IEEE Transactions on Robotics, 29(5):1317–1326, 2013.

[14] Corrado Guarino Lo Bianco and Oscar Gerelli. Online trajectory scaling for

manipulators subject to high-order kinematic and dynamic constraints. IEEE

Transactions on Robotics, 27(6):1144–1152, 2011. ISSN 15523098. doi: 10.

1109/TRO.2011.2162268.

[15] Corrado Guarino Lo Bianco and Fabio Ghilardelli. Real-time planner in the

operational space for the automatic handling of kinematic constraints. IEEE

Transactions on Automation Science and Engineering, 11(3):730–739, 2014.

ISSN 15455955. doi: 10.1109/TASE.2014.2310813.

[16] James E. Bobrow, Steven Dubowsky, and J. S. Gibson. Time-optimal control of

robotic manipulators along specified paths. The international journal of robotics

research, 4(3):3–17, 1985.

[17] James E. Bobrow, J. Michael McCarthy, and V. K. Chu. Minimum-time tra-

jectories for two robots holding the same workpiece. In Decision and Control,

1990., Proceedings of the 29th IEEE Conference on, pages 3102–3107. IEEE,

1990.

[18] Martin Böck and Andreas Kugi. Real-time nonlinear model predictive path-

following control of a laboratory tower crane. IEEE Transactions on Control

Systems Technology, 22(4):1461–1473, 2014.

[19] Tom Bonkenburg. Robotics in logistics. Technical report, DHL Customer

Solutions & Innovation, 2016. URL http://www.dhl.com/content/

dam/downloads/g0/about_us/logistics_insights/dhl_

trendreport_robotics.pdf.

[20] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, New York, NY, USA, 2004. ISBN 0521833787.

156

http://arc.aiaa.org/doi/abs/10.2514/2.4231
http://arc.aiaa.org/doi/abs/10.2514/2.4231
http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/dhl_trendreport_robotics.pdf
http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/dhl_trendreport_robotics.pdf
http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/dhl_trendreport_robotics.pdf

Bibliography

[21] Tye Michael Brady and Ethan Zane Evans. Autonomous ground vehicles based

at delivery locations, Jan 2018. US Patent App. 15/218,943.

[22] Timothy Bretl and Sanjay Lall. Testing static equilibrium for legged robots.

IEEE Transactions on Robotics, 24(4):794–807, 2008.

[23] Stéphane Caron and Quang-Cuong Pham. When to make a step? Tackling the

timing problem in multi-contact locomotion by TOPP-MPC. arXiv preprint

arXiv:1609.04600, 2016.

[24] Stéphane Caron, Quang-Cuong Pham, and Yoshihiko Nakamura. Leveraging

cone double description for multi-contact stability of humanoids with applica-

tions to statics and dynamics. Robotics: Science and System, 2015.

[25] Stéphane Caron, Quang-Cuong Pham, and Yoshihiko Nakamura. Stability of

surface contacts for humanoid robots: Closed-form formulae of the contact

wrench cone for rectangular support areas. In 2015 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 5107–5112. IEEE, 2015.

[26] Stéphane Caron, Quang-Cuong Pham, and Yoshihiko Nakamura. Zmp support

areas for multicontact mobility under frictional constraints. IEEE Transactions

on Robotics, 33(1):67–80, 2017.

[27] Andrea Cherubini, Robin Passama, André Crosnier, Antoine Lasnier, and

Philippe Fraisse. Collaborative manufacturing with physical human–robot in-

teraction. Robotics and Computer-Integrated Manufacturing, 40:1–13, 2016.

[28] Daniela Constantinescu and Elizabeth A. Croft. Smooth and time-optimal tra-

jectory planning for industrial manipulators along specified paths. Journal of

robotic systems, 17(5):233–249, 2000.

[29] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, Mas-

sachusetts London, Mcgraw-hill Book Company, and Boston Burr Ridge. Intro-

duction to Algorithms, Second Edition, volume 7. The MIT Press, 2001. ISBN

0262032937.

[30] Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert

Causo, Kris Hauser, Kei Okada, Alberto Rodriguez, Joseph M. Romano, and

Peter R. Wurman. Analysis and Observations from the First Amazon Pick-

ing Challenge. IEEE Transactions on Automation Science and Engineering,

2016. ISSN 1545-5955. doi: 10.1109/TASE.2016.2600527. URL http:

//arxiv.org/abs/1601.05484.

157

http://arxiv.org/abs/1601.05484
http://arxiv.org/abs/1601.05484

Bibliography

[31] Gábor Csorvási, Ákos Nagy, and István Vajk. Near Time-Optimal Path

Tracking Method for Waiter Motion Problem. IFAC-PapersOnLine, 50

(1):4929–4934, jul 2017. ISSN 24058963. doi: 10.1016/j.ifacol.

2017.08.749. URL https://www.sciencedirect.com/science/

article/pii/S2405896317311965.

[32] Ola Dahl. Path-constrained robot control with limited torques-experimental

evaluation. IEEE transactions on robotics and automation, 10(5):658–669,

1994.

[33] Ola Dahl and Lars Nielsen. Torque-limited path following by online trajectory

time scaling. Robotics and Automation, IEEE Transactions on, 6(5):554–561,

1990.

[34] Frederik Debrouwere, Wannes Van Loock, Goele Pipeleers, Quoc Tran Dinh,

Moritz Diehl, Joris De Schutter, and Jan Swevers. Time-optimal path follow-

ing for robots with convex-concave constraints using sequential convex pro-

gramming. IEEE Transactions on Robotics, 29(6):1485–1495, 2013. ISSN

15523098. doi: 10.1109/TRO.2013.2277565.

[35] Rosen Diankov and James Kuffner. OpenRAVE : A Planning Archi-

tecture for Autonomous Robotics. Robotics, pages –34, 2008. URL

http://www.ri.cmu.edu/pub_files/pub4/diankov_rosen_

2008_2/diankov_rosen_2008_2.pdf.

[36] Khae Duc Do, Zhong-Ping Jiang, and J. Pan. Robust adaptive path following of

underactuated ships. Automatica, 40(6):929–944, 2004.

[37] Alexander Domahidi, Eric Chu, and Stephen Boyd. ECOS: An SOCP solver for

embedded systems. In European Control Conference (ECC), pages 3071–3076,

2013.

[38] Jingyan Dong, Placid Ferreira, and James A. Stori. Feed-rate optimization with

jerk constraints for generating minimum-time trajectories. International Jour-

nal of Machine Tools and Manufacture, 47(12):1941–1955, 2007.

[39] Pedro Encarnaçao and António Pascoal. Combined trajectory tracking and path

following: an application to the coordinated control of autonomous marine

craft. In Decision and Control, 2001. Proceedings of the 40th IEEE Confer-

ence on, volume 1, pages 964–969. IEEE, 2001.

158

https://www.sciencedirect.com/science/article/pii/S2405896317311965
https://www.sciencedirect.com/science/article/pii/S2405896317311965
http://www.ri.cmu.edu/pub_files/pub4/diankov_rosen_2008_2/diankov_rosen_2008_2.pdf
http://www.ri.cmu.edu/pub_files/pub4/diankov_rosen_2008_2/diankov_rosen_2008_2.pdf

Bibliography

[40] Timm Faulwasser and Rolf Findeisen. Nonlinear model predictive control for

constrained output path following. IEEE Transactions on Automatic Control,

61(4):1026–1039, 2016.

[41] Timm Faulwasser, Tobias Weber, Pablo Zometa, and Rolf Findeisen. Imple-

mentation of nonlinear model predictive path-following control for an industrial

robot. IEEE Transactions on Control Systems Technology, 25(4):1505–1511,

2017.

[42] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock,

and Moritz Diehl. qpOASES: a parametric active-set algorithm for quadratic

programming. Mathematical Programming Computation, 6(4):327–363, dec

2014. ISSN 1867-2949. doi: 10.1007/s12532-014-0071-1. URL http://

link.springer.com/10.1007/s12532-014-0071-1.

[43] Francisco Geu Flores and Andrés Kecskeméthy. Time-optimal path planning

for the general waiter motion problem. In Vijay Kumar, James Schmiedeler,

S V Sreenivasan, and Hai-Jun Su, editors, Mechanisms and Machine Sci-

ence, volume 14, pages 189–203. Springer International Publishing, Heidel-

berg, 2013. ISBN 978-3-319-00397-9. doi: 10.1007/978-3-319-00398-6 14.

URL https://doi.org/10.1007/978-3-319-00398-6_14.

[44] Komei Fukuda and Alain Prodon. Double description method revisited. In

Combinatorics and computer science, pages 91–111. Springer, 1996.

[45] Christopher G. Atkeson, Benzun Pious Wisely Babu, Nandan Banerjee, Dmitry

Berenson, Christoper P. Bove, Xiongyi Cui, Mathew Dedonato, Ruixiang Du,

Siyuan Feng, Perry Franklin, M Gennert, Joshua P. Graff, Peng He, Aaron

Jaeger, Joohyung Kim, Kevin Knoedler, Lening Li, Chenggang Liu, Xian-

chao Long, and X Xinjilefu. What Happened at the DARPA Robotics Chal-

lenge Finals, pages 667–684. Springer, 2018. ISBN 978-3-319-74665-4. doi:

10.1007/978-3-319-74666-1 17.

[46] Alessandro Gasparetto and V. Zanotto. A new method for smooth trajectory

planning of robot manipulators. Mechanism and machine theory, 42(4):455–

471, 2007.

[47] Alessandro Gasparetto and V. Zanotto. A technique for time-jerk optimal plan-

ning of robot trajectories. Robotics and Computer-Integrated Manufacturing,

24(3):415–426, 2008.

159

http://link.springer.com/10.1007/s12532-014-0071-1
http://link.springer.com/10.1007/s12532-014-0071-1
https://doi.org/10.1007/978-3-319-00398-6_14

Bibliography

[48] Reinhard Geissbauer, Evelyn Lubben, Stefan Schrauf, and Steve Pillsbury. Dig-

ital champions & how industry leaders build integrated operations ecosystems

to deliver end-to-end customer solutions. Technical report, PwC, 2018.

[49] Mitsuo Gen and Runwei Cheng. Genetic algorithms and engineering optimiza-

tion, volume 7. John Wiley & Sons, 2000.

[50] Oscar Gerelli and Corrado Guarino Lo Bianco. Real-time Path Tracking Control

of Robotic Manipulators with Bounded Torques and Torque-derivatives. IEEE-

RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2008, 2008.

[51] Oscar Gerelli and Corrado Guarino Lo Bianco. Nonlinear variable structure

filter for the online trajectory scaling. IEEE Transactions on Industrial Elec-

tronics, 56(10):3921–3930, 2009. ISSN 02780046. doi: 10.1109/TIE.2009.

2018431.

[52] Oscar Gerelli and Corrado Guarino Lo Bianco. A discrete-time filter for the

on-line generation of trajectories with bounded velocity, acceleration, and jerk.

Proceedings - IEEE International Conference on Robotics and Automation,

pages 3989–3994, 2010. ISSN 10504729. doi: 10.1109/ROBOT.2010.5509712.

[53] Kris Hauser. Fast Interpolation and Time-Optimization on Implicit Contact Sub-

manifolds. In Robotics: Science and Systems. Citeseer, 2013.

[54] Kris Hauser. Fast interpolation and time-optimization with contact. The In-

ternational Journal of Robotics Research, 33(9):1231–1250, aug 2014. ISSN

0278-3649. doi: 10.1177/0278364914527855. URL http://journals.

sagepub.com/doi/10.1177/0278364914527855.

[55] Kris Hauser. Fast dynamic optimization of robot paths under actuator limits

and frictional contact. In 2014 IEEE International Conference on Robotics and

Automation (ICRA), pages 2990–2996. IEEE, 2014.

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[57] Kazuo Hirai, Masato Hirose, Yuji Haikawa, and Toru Takenaka. The devel-

opment of Honda humanoid robot. In Robotics and Automation, 1998. Pro-

ceedings. 1998 IEEE International Conference on, volume 2, pages 1321–1326.

IEEE, 1998.

160

http://journals.sagepub.com/doi/10.1177/0278364914527855
http://journals.sagepub.com/doi/10.1177/0278364914527855

Bibliography

[58] Arjang Hourtash. The Kinematic Hessian and Higher Derivatives. 2005 Inter-

national Symposium on Computational Intelligence in Robotics and Automa-

tion, 2005. doi: 10.1109/CIRA.2005.1554272.

[59] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bel-

licoso, Vassilios Tsounis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser,

Michael Bloesch, et al. Anymal-a highly mobile and dynamic quadrupedal

robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 38–44. IEEE, 2016.

[60] International Federation of Robotics. World Robotics 2018 Indus-

trial Robots. Technical report, International Federation of Robotics,

2018. URL https://ifr.org/downloads/press2018/

Executive{_}Summary{_}WR{_}2018{_}Industrial{_}Robots.

pdf.

[61] Kamal Kant and Steven W Zucker. Toward efficient trajectory planning: The

path-velocity decomposition. The international journal of robotics research, 5

(3):72–89, 1986.

[62] Dominik Kaserer, Hubert Gattringer, and Andreas Müller. Nearly Optimal Path

Following With Jerk and Torque Rate Limits Using Dynamic Programming.

IEEE Transactions on Robotics, 2018.

[63] Eric Colin Kerrigan. Robust constraint satisfaction: Invariant sets and predic-

tive control. PhD thesis, University of Cambridge, 2001.

[64] Jon Kieffer, Aidan J. Cahill, and Matthew R. James. Robust and accurate time-

optimal path-tracking control for robot manipulators. IEEE Transactions on

Robotics and Automation, 13(6):880–890, 1997. ISSN 1042296X. doi: 10.

1109/70.650167.

[65] James Kuffner and Steven M. LaValle. RRT-connect: An efficient approach

to single-query path planning. In Robotics and Automation, 2000. Proceedings.

ICRA’00. IEEE International Conference on, volume 2, pages 995–1001. IEEE,

2000.

[66] Tobias Kunz and Mike Stilman. Time-optimal trajectory generation for path fol-

lowing with bounded acceleration and velocity. Robotics: Science and Systems

VIII, 2012.

161

https://ifr.org/downloads/press2018/Executive{_}Summary{_}WR{_}2018{_}Industrial{_}Robots.pdf
https://ifr.org/downloads/press2018/Executive{_}Summary{_}WR{_}2018{_}Industrial{_}Robots.pdf
https://ifr.org/downloads/press2018/Executive{_}Summary{_}WR{_}2018{_}Industrial{_}Robots.pdf

Bibliography

[67] Kostas J Kyriakopoulos and George N Saridis. Minimum jerk path generation.

In Robotics and Automation, 1988. Proceedings., 1988 IEEE International Con-

ference on, pages 364–369. IEEE, 1988.

[68] P. M. Larochelle, J. Michael McCarthy, and James E. Bobrow. Determining

maximum payloads for cooperating robots under time-optimal control. Robotics

and computer-integrated manufacturing, 10(6):437–443, 1993.

[69] Steven M. LaValle. Randomized Kinodynamic Planning. The Interna-

tional Journal of Robotics Research, 20(5):378–400, 2001. doi: 10.1177/

02783640122067453. URL http://ijr.sagepub.com/content/20/

5/378.

[70] Puttichai Lertkultanon and Quang-Cuong Pham. Dynamic non-prehensile ob-

ject transportation. In 2014 13th International Conference on Control Automa-

tion Robotics and Vision, ICARCV 2014, pages 1392–1397. IEEE, 2014. ISBN

9781479951994. doi: 10.1109/ICARCV.2014.7064519.

[71] Sergey Levine and Pieter Abbeel. Learning Neural Network Policies with

Guided Policy Search under Unknown Dynamics. In Advances in Neural In-

formation Processing Systems, pages 1–3, 2014. ISBN 9781479969227. doi:

10.1109/ICRA.2015.7138994.

[72] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-End

Training of Deep Visuomotor Policies. Journal of Machine Learning Research,

17(39):1–40, 2016. ISSN 15337928. doi: 10.1007/s13398-014-0173-7.2.

[73] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning

Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-

Scale Data Collection. arXiv preprint arXiv:1603.02199, 2016. ISSN 0278-

3649. doi: 10.1177/0278364917710318. URL http://arxiv.org/abs/

1603.02199.

[74] Daniel Liberzon. Calculus of Variations and Optimal Control Theory: A Con-

cise Introduction. Princeton University Press, 2011. ISBN 9788578110796.

doi: 10.1017/CBO9781107415324.004.

[75] Thomas Lipp and Stephen Boyd. Minimum-time speed optimisation over a

fixed path. International Journal of Control, 87(6):1297–1311, 2014.

[76] Liang Liu, Chaoying Chen, Xinhua Zhao, and Yangmin Li. Smooth trajec-

tory planning for a parallel manipulator with joint friction and jerk constraints.

162

http://ijr.sagepub.com/content/20/5/378
http://ijr.sagepub.com/content/20/5/378
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1603.02199

Bibliography

International Journal of Control, Automation and Systems, 14(4):1022–1036,

2016.

[77] T. Lozano-Pérez. Robot programming. Proceedings of the IEEE, 71(7):821–

841, 1983.

[78] Jingru Luo and Kris Hauser. Robust trajectory optimization under frictional

contact with iterative learning. Autonomous Robots, 41(6):1447–1461, 2017.

ISSN 15737527. doi: 10.1007/s10514-017-9629-x.

[79] Kevin M. Lynch and Frank C. Park. Modern Robotics: Planning, and Control.

Cambridge University Press, 2017. ISBN 9781107156302.

[80] Ian R. Manchester and Jean-Jacques E. Slotine. Control contraction metrics:

Convex and intrinsic criteria for nonlinear feedback design. IEEE Transactions

on Automatic Control, 2017.

[81] Humberto Martı́nez-Barberá and David Herrero-Pérez. Autonomous naviga-

tion of an automated guided vehicle in industrial environments. Robotics and

Computer-Integrated Manufacturing, 26(4):296–311, 2010.

[82] Jan Mattmüller and Damian Gisler. Calculating a near time-optimal jerk-

constrained trajectory along a specified smooth path. The International Journal

of Advanced Manufacturing Technology, 45(9-10):1007–1016, 2009.

[83] Iñaki Maurtua, Aitor Ibarguren, Johan Kildal, Loreto Susperregi, and Basilio

Sierra. Human–robot collaboration in industrial applications: Safety, inter-

action and trust. International Journal of Advanced Robotic Systems, 14(4):

1729881417716010, 2017.

[84] J. Michael McCarthy and James E. Bobrow. The number of saturated actua-

tors and constraint forces during time-optimal movement of a general robotic

system. IEEE Transactions on Robotics and Automation, 8(3):407–409, 1992.

[85] Douglas Morrison, Adam W Tow, M McTaggart, R Smith, N Kelly-Boxall,

S Wade-McCue, J Erskine, R Grinover, A Gurman, and T Hunn. Cartman: The

low-cost cartesian manipulator that won the amazon robotics challenge. arXiv

preprint arXiv:1709.06283, 2017.

[86] Marco Muenchhof and Tarunraj Singh. Jerk limited time optimal control of

flexible structures. Transactions-American Society of Mechanical Engineers

Journal of Dynamic Systems Measurement and Control, 125(1):139–142, 2003.

163

Bibliography

[87] Michael P Murphy, Aaron Saunders, Cassie Moreira, Alfred A Rizzi, and

Marc H Raibert. The littledog robot. The International Journal of Robotics

Research, 30(2):145–149, 2011.

[88] Ákos Nagy and István Vajk. LP-based velocity profile generation for robotic

manipulators. International Journal of Control, 91(3):582–592, 2018.

[89] Yoshihiko Nakamura and Hideo Hanafusa. Inverse Kinematic Solutions With

Singularity Robustness for Robot Manipulator Control. Journal of Dynamic

Systems, Measurement, and Control, 108(3):163, 1986. ISSN 00220434. doi:

10.1115/1.3143764.

[90] Christopher Nielsen, Cameron Fulford, and Manfredi Maggiore. Path following

using transverse feedback linearization: Application to a maglev positioning

system. Automatica, 46(3):585–590, 2010.

[91] Matthias Oberherber, Hubert Gattringer, and Andreas Müller. Successive dy-

namic programming and subsequent spline optimization for smooth time opti-

mal robot path tracking. Mechanical Sciences, 6(2):245–254, 2015.

[92] Katsuhiko Ogata and Yanjuan Yang. Modern control engineering, volume 4.

Prentice hall India, 2002.

[93] J-S Pang and J Trinkle. Stability characterizations of rigid body contact prob-

lems with coulomb friction. ZAMM-Journal of Applied Mathematics and Me-

chanics/Zeitschrift für Angewandte Mathematik und Mechanik, 80(10):643–

663, 2000.

[94] Friedrich Pfeiffer and Rainer Johanni. A concept for manipulator trajectory

planning. Robotics and Automation, IEEE Journal of, 3(2):115–123, 1987.

[95] Hung Pham and Quang-Cuong Pham. On the Structure of the Time-Optimal

Path Parameterization Problem with Third-Order Constraints. In Allison M.

Okamura, editor, 2017 IEEE International Conference on Robotics and Au-

tomation (ICRA), Singapore, 2017. IEEE. ISBN 9781509046324. URL http:

//arxiv.org/abs/1609.05307.

[96] Hung Pham and Quang-Cuong Pham. A New Approach to Time-Optimal

Path Parameterization Based on Reachability Analysis. IEEE Transactions on

Robotics, jul 2018. ISSN 15523098. doi: 10.1109/TRO.2018.2819195. URL

https://arxiv.org/abs/1707.07239.

164

http://arxiv.org/abs/1609.05307
http://arxiv.org/abs/1609.05307
https://arxiv.org/abs/1707.07239

Bibliography

[97] Hung Pham and Quang-Cuong Pham. Time-Optimal Path Tracking via Reach-

ability Analysis. In 2018 IEEE International Conference on Robotics and Au-

tomation, 2018. ISBN 9781538630808. URL http://arxiv.org/abs/

1709.05101.

[98] Hung Pham and Quang-Cuong Pham. Critically fast pick-and-place with suc-

tion cups. Accepted at 2019 IEEE International Conference on Robotics and

Automation (ICRA), 2019.

[99] Quang-Cuong Pham. A General, Fast, and Robust Implementation of the Time-

Optimal Path Parameterization Algorithm. IEEE Transactions on Robotics, 30

(6):1533–1540, dec 2014. ISSN 1552-3098. doi: 10.1109/TRO.2014.2351113.

URL http://ieeexplore.ieee.org/document/6895310/.

[100] Quang-Cuong Pham and Olivier Stasse. Time-Optimal Path Parameter-

ization for Redundantly Actuated Robots: A Numerical Integration Ap-

proach. IEEE/ASME Transactions on Mechatronics, 20(6):3257–3263, dec

2015. ISSN 1083-4435. doi: 10.1109/TMECH.2015.2409479. URL http:

//ieeexplore.ieee.org/document/7083769/.

[101] Quang-Cuong Pham, Stéphane Caron, Puttichai Lertkultanon, and Yoshihiko

Nakamura. Admissible velocity propagation: Beyond quasi-static path planning

for high-dimensional robots. The International Journal of Robotics Research,

page 0278364916675419, 2016.

[102] Aurelio Piazzi and Antonio Visioli. Global minimum-jerk trajectory planning

of robot manipulators. IEEE transactions on industrial electronics, 47(1):140–

149, 2000.

[103] Ionela Prodan, Sorin Olaru, Fernando ACC Fontes, Cristina Stoica, and Silviu-

Iulian Niculescu. A predictive control-based algorithm for path following of

autonomous aerial vehicles. In Control Applications (CCA), 2013 IEEE Inter-

national Conference on, pages 1042–1047. IEEE, 2013.

[104] Sasa V. Rakovic, Eric Colin Kerrigan, David Q. Mayne, and John Lygeros.

Reachability analysis of discrete-time systems with disturbances. IEEE Trans-

actions on Automatic Control, 51(4):546–561, 2006.

[105] Benjamin Recht. A tour of reinforcement learning: The view from continuous

control. Annual Review of Control, Robotics, and Autonomous Systems, 2018.

[106] Walter Rudin. Principles of mathematical analysis, volume 3. McGraw-Hill

New York, 1964.

165

http://arxiv.org/abs/1709.05101
http://arxiv.org/abs/1709.05101
http://ieeexplore.ieee.org/document/6895310/
http://ieeexplore.ieee.org/document/7083769/
http://ieeexplore.ieee.org/document/7083769/

Bibliography

[107] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, and

Pieter Abbeel. Finding locally optimal, collision-free trajectories with sequen-

tial convex optimization. Robotics: Science and Systems (RSS), 2013.

[108] Raimund Seidel. Small-dimensional linear programming and convex hulls made

easy. Discrete & Computational Geometry, 6(3):423–434, 1991.

[109] Zvi Shiller. Time-energy optimal control of articulated systems with geometric

path constraints. Journal of dynamic systems, measurement, and control, 118

(1):139–143, 1996.

[110] Zvi Shiller and Steven Dubowsky. On computing the global time-optimal mo-

tions of robotic manipulators in the presence of obstacles. IEEE Transactions

on Robotics and Automation, 7(6):785–797, 1991.

[111] Zvi Shiller and Y-R Gwo. Dynamic motion planning of autonomous vehicles.

IEEE Transactions on Robotics and Automation, 7(2):241–249, 1991.

[112] Zvi Shiller and Hsueh-Hen Lu. Computation of path constrained time optimal

motions with dynamic singularities. Journal of dynamic systems, measurement,

and control, 114(1):34–40, 1992.

[113] Kang Shin and Neil Davis McKay. Minimum-time control of robotic manipu-

lators with geometric path constraints. Automatic Control, IEEE Transactions

on, 30(6):531–541, 1985.

[114] Kang Shin and Neil Davis McKay. A dynamic programming approach to trajec-

tory planning of robotic manipulators. IEEE Transactions on Automatic Con-

trol, 31(6):491–500, 1986.

[115] Kang Shin and Neil Davis McKay. Selection of near-minimum time geometric

paths for robotic manipulators. IEEE Transactions on Automatic Control, 31

(6):501–511, 1986.

[116] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer,

2016.

[117] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556, 2015.

[118] Arun Kumar Singh and K Madhava Krishna. A class of non-linear time scaling

functions for smooth time optimal control along specified paths. In Intelligent

Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages

5809–5816. IEEE, 2015.

166

Bibliography

[119] Jean-Jacques E. Slotine and Hyun S. Yang. Improving the efficiency of time-

optimal path-following algorithms. Robotics and Automation, IEEE Transac-

tions on, 5(1):118–124, 1989.

[120] Mark W. Spong and Mathukumalli Vidyasagar. Robot dynamics and control,

2008.

[121] Robert F Stengel. Optimal control and estimation. Courier Corporation, 2012.

[122] Josef Stoer and Roland Bulirsch. Introduction to numerical analysis, volume 12.

Springer Science & Business Media, 2013.

[123] R S Sutton and A G Barto. Reinforcement learning: an introduction., 1998.

ISSN 1045-9227.

[124] Mikko Tarkiainen and Zvi Shiller. Time optimal motions of manipulators with

actuator dynamics. In Robotics and Automation, 1993. Proceedings., 1993

IEEE International Conference on, pages 725–730. IEEE, 1993.

[125] D. Verscheure, B. Demeulenaere, Jan Swevers, Joris De Schutter, and Moritz

Diehl. Practical time-optimal trajectory planning for robots: a convex opti-

mization approach. IEEE Transactions on Automatic Control, 2008.

[126] Iris FA Vis. Survey of research in the design and control of automated guided

vehicle systems. European Journal of Operational Research, 170(3):677–709,

2006.

[127] Oskar Von Stryk and Roland Bulirsch. Direct and indirect methods for trajectory

optimization. Annals of operations research, 37(1):357–373, 1992.

[128] Miomir Vukobratović and Branislav Borovac. Zero-Moment Point — Thirty

Five Years of Its Life. International Journal of Humanoid Robotics, 01(01):

157–173, 2004. ISSN 0219-8436. doi: 10.1142/S0219843604000083.

[129] Nick Wingfield. As Amazon Pushes Forward With Robots, Workers Find

New Roles, 2017. URL https://www.nytimes.com/2017/09/10/

technology/amazon-robots-workers.html.

[130] Qiang Zhang, Shu-Rong Li, and Xiao-Shan Gao. Practical smooth minimum

time trajectory planning for path following robotic manipulators. In American

Control Conference (ACC), 2013, pages 2778–2783. IEEE, 2013.

[131] Leon Zlajpah. On time optimal path control of manipulators with bounded joint

velocities and torques. In Robotics and Automation, 1996. Proceedings., 1996

IEEE International Conference on, volume 2, pages 1572–1577. IEEE, 1996.

167

https://www.nytimes.com/2017/09/10/technology/amazon-robots-workers.html
https://www.nytimes.com/2017/09/10/technology/amazon-robots-workers.html

Bibliography

[132] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klin-

gensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa.

CHOMP: Covariant Hamiltonian optimization for motion planning. The Inter-

national Journal of Robotics Research, 32(9-10):1164–1193, 2013.

168

