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Time-Optimal Path Parameterization

for Redundantly-Actuated Robots

(Numerical Integration Approach)

Quang-Cuong Pham and Olivier Stasse

Abstract—Time-Optimal Path Parameterization (TOPP) under ac-

tuation bounds plays a fundamental role in many robotic theories

and applications. This algorithm was first developed and perfected for
classical serial robotic manipulators whose actuation is non-redundant.

Yet, redundantly-actuated systems, such as parallel manipulators or

humanoid robots in multi-contact tasks, are increasingly common in
all fields of robotics. Here we extend the classical algorithm of TOPP

(a.k.a. numerical integration approach) to the case of redundantly-
actuated systems. As illustration, we present an application to multi-

contact trajectory planning for a humanoid robot.

I. INTRODUCTION

Given a robot and a smooth path in its configuration space, the

problem of finding the Time-Optimal Parameterization of that Path

(TOPP) under the robot actuation constraints (e.g. bounds on the

joint torques) plays a fundamental role in many robotics theories and

applications. For serial, normally-actuated manipulators (i.e. every

joint is actuated), an efficient algorithm to solve this problem was first

proposed in the 1980’s [1], [2] and has been continuously perfected

since then, see [3] for a historical review.

TOPP for different degrees of robot actuation

Normally-actuated systems constitute however only a subclass of

existing robot systems : under- and redundantly-actuated systems

are increasingly common in all fields of robotics. Cases of under-

actuation arise when some of the degrees of freedom of the robot are

not actuated : consider for instance a serial manipulator in which some

of the joints are not actuated, or a flying robot whose non-actuated

degrees of freedom correspond to the position and orientation of the

base-link. In such cases, the difficulty for TOPP consists in that a

given path in the robot configuration space may not be trackable at

all, let alone time-parameterized. This case was essentially solved

in [4], [5], where the authors give a characterization of the paths that

can be time-parameterized. For a given time-parameterizable path,

TOPP is no different from the normal actuation case.

Redundantly-actuated (or over-actuated) systems have more actu-

ated joints than degrees of freedom. Actuation redundancy can be by

design, such as in parallel (or closed-chain) manipulators, or can arise

spontaneously when an otherwise non-redundantly-actuated robot

interacts with the environment (consider e.g. a humanoid robot having

two flat feet on the ground, or when it manipulates an object with

both hands). In the former case, actuation redundancy is a means to

eliminate singularities, to provide more homogeneous output forces,

or to minimize the internal loading of the actuators [6]. As far as

TOPP is concerned, actuation redundancy implies that any path in

the robot configuration space can be time-parameterized (subject to

actuation bounds), but contrary to the normal- and under-actuation

cases, a given time-parameterization of the path may correspond

to infinitely many possible torque profiles [7], [8], [6], [9]. One

possible way to deal with that redundancy is to fix a predefined load

distribution [7]. However, it is clear that such a solution is suboptimal

and would give rise to slower trajectories than what can be obtained

using the full actuation available to the system. Our purpose here is

to extend TOPP so that it can optimally handle actuation redundancy.

Quang-Cuong Pham is with School of Mechanical and Aerospace Engi-
neering, NTU, Singapore. Olivier Stasse is with LAAS-CNRS, France.

Main approaches to TOPP

There are two main approaches to TOPP : numerical integration

and convex optimization. Numerical integration is based on the Pon-

tryagin Maximum Principle : the optimal velocity profile in the s− ṡ
plane [s(t) denotes the position on the path at a given time instant t]
is known to be “bang-bang” and can thus be found by integrating

successively the maximum and minimum accelerations s̈, see [3]

and also Section II-A for details. Convex optimization discretizes

the s-axis into N segments and subsequently converts the original

problem into a convex optimization problem in O(N) variables and

O(N) equality and inequality constraints [10]. This approach has the

advantage of being versatile (it can for instance trade off time duration

with other objectives such as energy or torque rate) and can rely on

existing efficient convex optimization packages. However, the sheer

size of the convex optimization problem makes this approach slower

than its numerical integration counterpart, which exploits the bang-

bang structure of the TOPP problem in order to compute directly

the optimal accelerations without any search process. Experimental

comparisons in the case of non-redundantly-actuated robots supported

this analysis [3].

Recently, the convex optimization approach has been extended

to the case of humanoid robots in multi-contact tasks [11], which

is a particular case of actuation redundancy [9]. The key of this

extension lies in an ingenious polytope projection technique [12],

which converts actuation constraints into “polygon” constraints in

the s̈− ṡ2 plane.

Our contribution in the present paper is twofold. First, we show

how the numerical integration approach can also handle “polygon”

constraints, and implement the algorithm to do so as a new module

in the TOPP library (https://github.com/quangounet/TOPP). This al-

gorithm, combined with the polytope projection technique [12], [11],

enables the numerical integration approach to address the case of

redundant actuation, which in turn yields a significant improvement in

computation time as compared to the convex optimization approach.

Second, we show that the torque constraints for closed-chain manip-

ulators can be reduced to the polygon form, which enables a unified,

efficient, treatment of this class of robots together with humanoid

robots in multi-contact tasks.

The remainder of this paper is organized as follows. In Section II,

we show how to address “polygon” constraints within the numerical

integration approach to TOPP and discuss how to reduce the actuation

constraints of some general redundantly-actuated systems into these

“polygon” constraints. In Section III, we present an application in a

multi-contact task where a humanoid robot steps down a 30 cm-high

podium. We show in particular that our approach enables a significant

speed-up in computation time as compared to the convex optimization

approach. Finally, Section IV briefly discusses the obtained results

and future research directions.

II. TIME-OPTIMAL PATH PARAMETERIZATION

CONSIDERING REDUNDANT ACTUATION

A. Background I : TOPP for non-redundantly-actuated systems

For completeness, we briefly recall below the classical TOPP

algorithm for non-redundantly-actuated systems [1], [2]. For details,

the reader is referred to [3].

Consider an n-dof serial manipulator with dynamics

M(q)q̈+ q̇
⊤
C(q)q̇+ g(q) = τ , (1)

where q is the n×1 vector of joint values, M the n×n manipulator

inertia matrix, C the n× n× n Coriolis tensor, g the n× 1 vector

of gravity forces and τ the n× 1 vector of actuator torques.

https://github.com/quangounet/TOPP


Assume that the manipulator is subject to lower and upper bounds

on the joint torques, that is, for every joint i and time instant t,

τmin
i ≤ τi(t) ≤ τmax

i . (2)

Consider now a path P – represented as the underlying path of

a trajectory q(s)s∈[0,send] – in the configuration space. Assume that

q(s)s∈[0,send] is C1- and piecewise C2-continuous. We are interested

in time-parameterizations of P – or time-reparameterizations of

q(s)s∈[0,send] – which are increasing scalar functions s : [0, T ′] →
[0, send].

To check whether a reparameterized trajectory satisfies the actua-

tion bounds, one may differentiate q(s(t)) with respect to t

q̇ = qsṡ, q̈ = qss̈+ qssṡ
2, (3)

where dots denote differentiations with respect to the time parameter

t and qs = dq
ds

and qss = d2
q

ds2
. Substituting (3) into (1) and (2) and

rearranging the terms then lead to

s̈a(s) + ṡ2b(s) + c(s) ≤ 0, (4)

where a, b and c are vectors of dimension 2n.

Each row i of (4) is of the form

ai(s)s̈+ bi(s)ṡ
2 + ci(s) ≤ 0. (5)

Next,

• if ai(s) > 0, then one has s̈ ≤ −ci(s)−bi(s)ṡ
2

ai(s)
. Define the

acceleration upper bound βi
def
= −ci(s)−bi(s)ṡ

2

ai(s)
;

• if ai(s) < 0, then one has s̈ ≥ −ci(s)−bi(s)ṡ
2

ai(s)
. Define the

acceleration lower bound αi
def
= −ci(s)−bi(s)ṡ

2

ai(s)
.

One can then define for each (s, ṡ)

α(s, ṡ)
def
= max

i
αi(s, ṡ), β(s, ṡ)

def
= min

i
βi(s, ṡ). (6)

From the above transformations, one can conclude that

q(s(t))t∈[0,T ′] satisfies the constraints (4) 1 if and only if

∀t ∈ [0, T ′] α(s(t), ṡ(t)) ≤ s̈(t) ≤ β(s(t), ṡ(t)). (7)

Next, observe that if α(s, ṡ) > β(s, ṡ) then, from (7), there is no

possible value for s̈. Thus, to be valid, every velocity profile must

stay below the Maximum Velocity Curve (MVC) defined by

MVC(s)
def
=

{
min{ṡ ≥ 0 : α(s, ṡ) = β(s, ṡ)} if α(s, 0) ≤ β(s, 0),

0 if α(s, 0) > β(s, 0).
(8)

It was shown (see e.g. [13]) that the time-minimal velocity profile

is obtained by a bang-bang-type control, i.e., whereby the optimal

profile follows alternatively the β and α fields while always staying

below the MVC. More precisely, the algorithm to find the time-

optimal parameterization of P starting and ending with the desired

linear velocities vbeg and vend is (see Fig. 1 for illustration) :

1. In the s − ṡ plane, start from (s = 0, ṡ = vbeg/‖qs(0)‖) and

integrate forward following β until hitting either

(i) the MVC, in this case go to step 2;

(ii) the horizontal line ṡ = 0, in this case the path is not dynamically

traversable;

(iii) the vertical line s = send, in this case go to step 3.

2. Search forward along the MVC for the next candidate α → β
switch point (cf. [3]). From such a switch point:

(a) integrate backward following α, until intersecting a forward β-

profile (from step 1 or recursively from the current step 2). The

intersection point constitutes a β → α switch point;

1Joint velocity constraints can also be taken into account, see [3].

Fig. 1. Numerical integration approach to TOPP. The optimal velocity profile
(blue) is obtained by integrating alternatively the maximum and minimum
acceleration fields.

(b) integrate forward following β. Then continue as in step 1.

The resulting forward profile will be the concatenation of the inter-

sected forward β-profile, the backward α-profile obtained in (a), and

the forward β-profile obtained in (b).

3. Start from (s = send, ṡ = vend/‖qs(send)‖) and integrate

backward following α, until intersecting a forward profile obtained

in steps 1 or 2. The intersection point constitutes a β → α switch

point. The final profile will be the concatenation of the intersected

forward profile and the backward α-profile just computed.

B. Background II : polytope projection technique

For clarity, consider, in this section, a fixed position s0 on the

path. Inequalities (4) can be seen as constraining the vector s̈a(s0)+
ṡ2b(s0) + c(s0) to stay in the negative orthant of R2n. As we shall

see in Section II-D, actuation bounds in redundantly-actuated systems

imply the following more general condition

s̈a(s0) + ṡ2b(s0) + c(s0) ∈ C , (9)

where C is a (possibly unbounded) convex polytope of R2n.

The polytope projection technique [12], [11] enables one to com-

pute, given the vectors a(s0), b(s0), c(s0) and the set of linear

constraints defining the convex polytope C , the convex polygon P

in the s̈− ṡ2 plane such that

(s̈, ṡ2) ∈ P if and only if s̈a(s0) + ṡ2b(s0) + c(s0) ∈ C .

For completeness, we briefly recall below the polytope projection

algorithm [12], [11]. Let first

C
′ def
= {(u, v,y) : v ≥ 0; ua(s0) + vb(s0) + c(s0) = y; y ∈ C }.

Since the constraints defining C
′ are linear, C

′ is a convex polytope.

Next, given a vector d in the plane, one can find the extreme point

of P (or “extremize”) in the direction of d by solving the following

Linear Program (LP)

max
(u,v)

d
⊤(u, v) such that (u, v,y) ∈ C

′. (10)

The projection algorithms starts by finding extreme points

of P in three directions of the plane, for instance (1, 0),
(cos(2π/3), sin(2π/3)), (cos(4π/3), sin(4π/3)). This gives an ini-

tial polygon – which is actually a triangle. The algorithm then

iteratively attempts to expand this polygon by “extremizing” in the

outward normal direction of unexpanded edges, see Fig. 2A. The

algorithm stops when all edges have been expanded (in this case, the



final polygon is P), or when one has reached the maximum number

of iterations (in this case, the final polygon is a subset of P).

In [11], the author then converts the obtained polygon back into

M half-plane inequalities similar to (5) and feed these inequalities

into a large convex optimization problem over the entire path.

C. TOPP-Polygon : numerical integration approach to redundantly-

actuated systems

The fact that torque constraints – even in the non-redundant case

– define a polygon in the s̈− ṡ2 plane has been remarked as early as

in [14], [13]. However, in the non-redundant case, it is more efficient

to deal directly with the analytic expressions (6) and (8) rather than

to construct an explicit polygon and use this polygon in subsequent

computations.

By contrast, as shown in Section II-B, one is given the polygon in

the redundant case. One possible approach might consist in converting

the polygon into M half-plane inequalities similar to (5) and then

try to apply the development of Section II-A. However, besides the

computational cost required by the conversion, doing so would result

in an O(M2) algorithm [to compute in particular the MVC by (8)],

while proceeding directly with the polygon representation yields a

simpler and faster O(M) algorithm, as shown below.

To follow the numerical integration approach, one needs to com-

pute the acceleration bounds α and β as well as the MVC. For a given

ṡ0, one can compute α(s0, ṡ0) and β(s0, ṡ0) by simply finding the

intersection of the horizontal line ṡ2 = ṡ20 with the edges of the

polygon, see Fig. 2B. This can be done in time O(M) where M
is the number of edges of the polygon. To compute MVC(s0), it

suffices to determine the highest vertex of the polygon, which can

also be done in time O(M).

A B

Fig. 2. A : Expanding an edge. At a given step of the algorithm, one chooses
an edge that has not yet been expanded (red segment). One then computes the
outward normal direction d to this edge and solves the LP defined in (10).
The solution of this LP gives a new vertex (magenta disk), and one can finally
replace the old edge (red segment) by two new edges (green segments). B :
The constraint polygon at a given s0 in the s̈− ṡ2 plane.

The numerical integration approach requires furthermore deter-

mining the switch points on the MVC (cf. [3]). Determining the

“discontinuous” and “tangent” switch points can be done as in [3]

by stepping along the MVC. Regarding the “singular” switch points,

it is not possible here to consider “zero-inertia” points [14], [13],

[3] – which are the points where ai = 0 in (5) – since the

ai are not defined 2. Thus, one has to step along the MVC and

determine numerically the points where the MVC is continuous but

not differentiable. Finally, to compute the optimal accelerations at the

2Even if one converts the polygon into half-plane inequalities, there would
be, in general, no way to index these inequalities so that the ai, bi and ci
are continuous, since polygons computed at different points s0 on the path
may have different numbers of edges. Yet, the continuity of ai is necessary
to determine “zero-inertia” points, and the differentiability of ai, bi and ci
are required to compute the optimal acceleration near a dynamic singularity,
see [3].

singular points, one cannot use the analytical value suggested in [3],

also because the ai, bi and ci are not defined. Instead, we suggest

here to search numerically for an approximate optimal acceleration

as follows :

• Discretize the space of possible accelerations (−∞,+∞) into

a large number of values (100 in our implementation);

• For each discretized acceleration value β0, integrate forward a

small number of steps using β0, evaluate the acceleration β1

at the end of the integration, and record the absolute difference

|β0 − β1|;
• Choose the acceleration value β0 that minimizes the absolute

difference |β0 − β1|.

Doing so ensures that the obtained profile is reasonably smooth

around the singular switch point (see Fig. 3B).

We implemented the methods described above as a new TOPP-

Polygon module in the TOPP library, see https://github.com/

quangounet/TOPP.

As a sanity check, we compared TOPP-Polygon with the original

algorithm in [3], on a model of a serial, normally-actuated 7-dof

manipulator (since the original TOPP cannot handle redundantly-

actuated systems). Fig. 3 shows that the two versions produced nearly

identical results. The profile computed by TOPP-Polygon was slightly

less smooth near the dynamic singularity (around s = 0.6) and

more false-positive singularities were detected (green dots). However,

TOPP-Polygon was 50% faster in terms of computation time. This

shows in particular that it would be suboptimal to convert the polygon

constraints back into half-plane inequalities and apply the original

TOPP on these inequalities.

A detailed comparison of TOPP-Polygon with the convex opti-

mization approach, in a redundant actuation setting, is reported in

Section III.
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Fig. 3. Comparison of the original TOPP (Left) and TOPP-Polygon (Right)
on a model of a serial 7-dof manipulator. The two methods produced nearly
identical results (MVC in magenta and velocity profiles in black), but TOPP-
Polygon was 50% faster. Note that the singular switch point (green disk near
s = 0.6 could be appropriately addressed using the method described in the
main text.

D. Reductions of some redundantly-actuated systems to TOPP-

Polygon form

We now discuss how to reduce some general classes of

redundantly-actuated robots to the form of equation (9).

1) Closed-chain manipulators: Consider a closed-chain (or par-

allel) manipulator as in Fig. 4. Let q denote the joint values of

the whole chain and qA the joint values of the nA actuated joints.

Assume that the torques of the actuated joints are subject to lower

and upper bounds, that is, for all i ∈ [1, nA],

τmin
Ai ≤ τAi ≤ τmax

Ai . (11)

Following [8], let qO denote the joint values of the tree structure

obtained by cutting the chain at some specific joints. Consider

a motion (q, q̇, q̈) of the chain. Assume that the tree structure

https://github.com/quangounet/TOPP
https://github.com/quangounet/TOPP


Fig. 4. Left : A closed chain manipulator. If all joints are actuated, then qA =
(q1, q2, q3, q4, q5, q6). Right : Tree structure obtained by cutting the chain at
joint 4. Here the joints of the tree structures are qO = (q1, q2, q3, q5, q6).

makes the same motion as the closed chain. One can calculate the

joint torques τO of the tree structure by usual inverse dynamics

algorithms [15]

τO = M(qO)q̈O + q̇
⊤

OC(qO)q̇O + g(qO), (12)

where (qO, q̇O, q̈O) are simply extracted from (q, q̇, q̈).

Next, it was shown that the torques of the actuated joints τA satisfy

S
⊤
τA = W

⊤
τO, (13)

where S and W are sensitivity matrices of appropriate dimensions

computed from the kinematics of the chain and the choice of the

actuated joints, see [8] for details on the computations of these

matrices.

As in Section II-A, introducing the path parameter s, differentiating

(12) with respect to t, and rearranging the terms lead to

τO = s̈a(s) + ṡ2b(s) + c(s), (14)

where a, b, c are vectors of appropriate dimensions. Letting a∗ def
=

W⊤a, b∗ def
= W⊤b, c∗

def
= W⊤c and left-multiplying equation

(14) by W⊤ yield

s̈a∗(s) + ṡ2b∗(s) + c
∗(s) = W

⊤
τO = S

⊤
τA. (15)

If there is no actuation redundancy, then S⊤ is invertible, and one

can compute τA by

τA = S
−⊤

(
s̈a∗(s) + ṡ2b∗(s) + c

∗(s)
)
.

Thus, the torque bounds on the actuated joints can be rewritten as :

for all i ∈ [1, nA],

τmin
Ai ≤ s̈a◦

i (s) + ṡ2b◦i (s) + c◦i (s) ≤ τmax
Ai ,

where a◦
i (s), b◦i (s), c◦i (s) are the i-th component of the vectors

S−⊤a∗(s), S−⊤b∗(s), S−⊤c∗(s). Thus, in this case, one has

reverted to the classical form of (4).

In case of actuation redundancy, S⊤ is non-square, hence non-

invertible. Remark that the torque bounds of (11) can be alternatively

written as τA ∈ C , where C = [τmin
A1 , τmax

A1 ]× · · · × [τmin
AnA

, τmax
AnA

].
Let next C

∗ = S⊤
C . Since S⊤ is linear and C is a parallelotope,

C
∗ is clearly a convex polytope. We have thus shown that the motion

(q, q̇, q̈) satisfies the torque constraints if and only if

s̈a∗(s) + ṡ2b∗(s) + c
∗(s) ∈ C

∗,

which has the form of (9) in Section II-C.

After obtaining the optimal parameterization s(t)t∈[0,T ′] from

TOPP, one can compute at each s, the generalized torques

τG
def
= s̈a∗(s) + ṡ2b∗(s) + c

∗(s).

To obtain the torques at each actuated joint, one may solve for

instance the quadratic program

min
τA∈C

‖τA‖
2

such that S
⊤
τA = τG.

In the above optimization, other objectives rather than the instan-

taneous square torque are possible. For instance, one may seek

to exploit redundancy to minimize torque changes between two

consecutive time steps. In any case, the key point here is that such

optimizations are guaranteed to find at least one solution since we

have taken care to ensure that τG ∈ S⊤
C .

2) Humanoid robots in multi-contact tasks: Consider the equation

of motion of a humanoid robot with n joints

M(q)q̈+ q̇
⊤
C(q)q̇+ g(q) = τ +

K∑

k=1

J
⊤

k fk, (16)

where q is a vector of dimension (n + 6) representing the joint

angles and the 6 degrees of freedom of the free-flying base-link, τ

is the vector of torques – whose 6 coordinates corresponding to the

free-flying base-link are set to 0, K is the number of contact points,

Jk and fk are the contact Jacobian and the contact force at contact

point k.

For the robot to respect the torque constraints and be dynamically

balanced, one must ensure that, for all i ∈ [1, n]

τmin
i ≤ τi ≤ τmax

i ,

and for all k ∈ [1,K],
fk ∈ Fk,

where Fk is the friction pyramid at the contact point. For compu-

tational efficiency, we consider friction pyramids instead of friction

cones.

As previously, introducing the path parameter s, differentiating (16)

with respect to t, and rearranging the terms lead to

s̈a(s) + ṡ2b(s) + c(s) = τ +
K∑

k=1

J
⊤

k fk, (17)

where a, b, c are vectors of appropriate dimensions.

Note that, if the robot is free-flying or has one non-flat contact with

the environment, then the system is under-actuated. If it has exactly

one flat contact with the environment, then the system is normally-

actuated and (17) can be inverted and put back into the classical

form of (4). If the robot has more than one flat contact with the

environment – e.g. when both feet lie flat on the ground or one foot

lies flat on the ground and one hand lies flat on a table top, see Fig. 5

– then the system is redundantly-actuated [9]. In this case, denoting

by C the convex polytope [11]

[τmin
1 , τmax

1 ]× · · · × [τmin
n , τmax

n ]
︸ ︷︷ ︸

n actuated coordinates

×{0} × · · · × {0}
︸ ︷︷ ︸

6 unactuated coordinates

+

K∑

k=1

J
⊤

k Fk,

enables one to transform equation (17) into the form of (9).

After obtaining the optimal parameterization s(t)t∈[0,T ′] from

TOPP, one may recover the actuated torques and contact forces by

solving a quadratic program as in Section II-D1. It is also possible

to perform more sophisticated optimizations as in [9]; the key point

here is that the existence of at least one solution is guaranteed by the

TOPP procedure.

III. EXPERIMENTAL RESULTS

We now present an example of optimal time parameterization for

a 30-dof humanoid robot (HRP2-14, Kawada Industries) in a multi-

contact task consisting in stepping down a 30 cm-high podium 3, see

Fig. 5. During the whole task, the left foot of the robot should lie flat

3A minor part of this example application – including, in particular, neither
the physical simulation nor the actual robot experiment nor the detailed
explanation of the algorithm – was briefly mentioned in [3].



on the podium, while its right hand should lie flat on the handrail. As

discussed in Section II-D2, this double flat contact creates a situation

of actuation redundancy.

We first generated the initial configuration and the final configu-

ration (first and last snapshots in the third row of Fig. 5). The flat

contact constraints for the left foot and the right hand were enforced

by inverse kinematics. We then generated, using a simple algorithm

presented in the Appendix, a smooth trajectory connecting the two

configurations while keeping fixed the positions of the left foot and

the right hand.

Next, based on the developments of Section II, we computed

the time-optimal reparameterization of that trajectory respecting (i)

joint velocity bounds, (ii) joint torque bounds, (iii) friction pyramid

constraints for the contact forces at the left foot and right hand. For

safety, we constrained the normal components of the contact forces

to be ≥ 1N instead of > 0.

The optimal time-parameterization of the trajectory had duration

0.65 s, see Fig. 5. We now discuss the time taken by our implementa-

tion to compute that optimal parameterization. To calculate the MVC

and to perform the numerical integration, we considered the grid size

N = 100. The average number of edges per constraint polygon was

11.8. The time-parameterization step (excluding dynamics computa-

tions and polytope projection) took 0.005 s on our computer (Intel

Core i5 3.2 GHz, 3.8 GB memory, GNU/Linux). On a comparable

computer installation, also using C++, and for a humanoid multi-

contact problem where N = 100 and the average number of edges per

constraint polygon was 9.1, the convex optimization approach took

2.46 s (also excluding dynamics computation and polytope projection,

cf. page 1247 in [11]), which is about 500 times slower than our

implementation.

This significant improvement in computation time may come

from two main factors. First, the numerical integration approach is

inherently more efficient than the convex optimization approach since

it exploits the “bang-bang” structure of the time optimization prob-

lem [3]. Indeed, at each point (s, ṡ) of the phase plane, the optimal

acceleration can be analytically computed [by equation (6)], instead

of being iteratively searched as part of a large optimization problem.

Second, addressing directly the polygon form of the constraints as we

did in Section II-C enables a further computational improvement with

respect to handling half-plane inequalities as in the original TOPP

algorithm.

To validate the results of our algorithm, we executed the reparam-

eterized trajectory in OpenHRP, a highly realistic physical simulation

environment. Snapshots of the movement (third row of Fig. 5) show

that the robot maintained flat contacts at the left foot and the right

hand throughout the whole movement.

The contact forces under the left foot and the right hand are also

shown in Fig. 5. One can observe that the contact forces under

the left foot saturated the positivity constraint between s = 0 and

s = 0.05. Thus, the theory predicts that a higher execution speed

will violate this constraint. That was indeed what we observed : when

scaling up the velocity profile given by our algorithm by respectively

1.2 times and 2 times, we observed in the OpenHRP simulation

that the left foot lifted up from the podium near the beginning of

the trajectory, slightly at 1.2× and significantly at 2× (second row

of Fig. 5, see also the video at http://youtu.be/4DVE1cUCh4M).

Note that the motion is quasi-statically executable : scaling down

the velocity profile by arbitrary coefficients will not violate the

constraints. Planning motions that are dynamically executable but

not quasi-statically executable using TOPP was suggested in [19].

Extending this approach to humanoid robots in multi-contact based

on the results of the present paper is the topic of ongoing research.

Finally, we executed the optimally-reparameterized trajectory on

the actual robot. For safety reasons, we restricted the execution speed

to 90% of the maximum speed calculated by our algorithm. The

actual robot movement indeed respected the constraints (i), (ii) and

(iii) mentioned earlier, see fourth row of Fig. 5 and also the video 4.
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Fig. 5. Time-optimal path parameterization for a humanoid robot stepping
down a 30 cm-high podium. Top row, Left : Maximum Velocity Curves
in magenta (plain line : MVC caused by the torque bounds and friction
constraints; dashed line : MVC caused by the velocity bounds) and optimal
velocity profile (black) calculated by our algorithm. Circles on the MVC
indicate possible switch points (red : tangent switch point, green : singular
switch points). Right : Normal components of the contact forces under the
left foot (red) and the right hand (green) as calculated by our algorithm. The
four points where the contact forces were computed were the front-left corner
(plain lines), front-right corner (dashed lines), back-left corner (dotted lines)
and back-right corner (dashed-dotted lines). Second row : Maximum elevation
of the left foot near the beginning of the trajectory at different execution speeds
(simulation in OpenHRP). Note that, at 120% of the maximum speed, the foot
slightly lifted up from the podium, and at 200% of the maximum speed, the
foot largely lifted up from the podium. Third row : Snapshots of the motion
executed in OpenHRP at 100% of maximum speed. Fourth row : Snapshots
of the motion executed on the actual robot at 90% of maximum speed.

IV. CONCLUSION

We have presented an extension of the classical Time-Optimal

Path Parameterization algorithm to the practically-important class of

redundantly-actuated robots, which comprises in particular closed-

chain (or parallel) manipulators and humanoid robots in multi-

contact tasks. We implemented this extension within the framework

4In the video, the right foot of the robot makes a rather strong contact
with the ground at the end of the movement. This was caused by the intrinsic
flexibility of the robot, which makes movements at very high speed difficult
to control, and has nothing to do with the contact conditions – on the left
foot and the right hand – that are considered in the present work.

http://youtu.be/4DVE1cUCh4M


of the TOPP library and tested it in a multi-contact task where

a 30-dof humanoid robot steps down from a 30 cm-high podium.

We showed that our implementation enabled a significant speed-

up in computation time as compared to existing implementations.

This improvement is particularly crucial for the global trajectory

optimization problem (i.e. where the path is not fixed), which requires

calling the TOPP routine thousands of times [16].

Time optimality implies that, at any time instant, at least one of

the constraints is saturated. Thus, in presence of uncertainties in

the models of the robot or of the environment, it is advisable to

consider constraints that are tighter than in reality : for example, we

constrained the normal components of the contact forces to be ≥ 1N

instead of > 0 (cf. Section III).

We are currently investigating how to leverage the performance

gain to plan through contact changes [17], [18]. In particular, in-

tegrating the results obtained here with the technique of Admissible

Velocity Propagation [19] may enable one to efficiently plan truly dy-

namic multi-contact motions for humanoid robots. Another research

direction consists in studying how higher-order terms (such as jerk)

can be taken into account [20], in order to gain control authority on

the flexibility of the robots.

Acknowledgments

This paper has benefited from discussions with S. Caron, N.

Mansard and L. Righetti. The authors would like to thank M. Naveau

for help with the humanoid experiment. The first author is grateful

to J.-P. Laumond for his kind invitation to visit LAAS-CNRS in the

summer of 2014, which made the present work possible.

APPENDIX

A. Interpolating smooth trajectories respecting closed-chain con-

straints

Consider a link L contained in a closed chain and a partition of

the joints angles q of the chain into qX and qY . The linear and

angular velocities of link L is given by JX q̇X where JX is the

Jacobian of the position and orientation of link L with respect to

qX . Similarly, these velocities are also given by JY q̇Y . Thus the

closed chain constraint is given by JX q̇X = JY q̇Y .

Assume that link L and the partition were chosen such that JX

is square and invertible. For instance, for the closed chain of Fig. 4,

this can be achieved by choosing L to be the link comprised between

q3 and q4, qX = (q1, q2, q3), qY = (q4, q5, q6). In this case,

qX is called the dependent, and qY the independent, joint angles.

Next, a given small displacement δqY of the independent angles can

be “compensated” by a displacement δqX of the dependent angles

computed by

δqX = (J−1
X JY )δqY . (18)

Based on the above development, we propose the following scheme

to interpolate smoothly between two configurations q0 and q1 of the

closed chain :

• interpolate smoothly and freely the independent angles between

q0
Y and q1

Y (using e.g. third-degree polynomials);

• compute qX by integrating δqX given by equation (18).

This scheme yields a valid interpolation if (see page 105 of [7])

• q0
X and q1

X are one the same branch of the inverse kinematics;

• during the integration process, JX never traverses a singularity.

Note that, if the independent trajectory qY is Ck-continuous, then

the compensating trajectory qX is also Ck-continuous, and bounds

on the derivatives of qX may be obtained from equation (18). This

contrasts with the interpolation method of [11], which cannot offer

such guarantees.
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