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Practical Time-Optimal Trajectory Planning for

Robots: a Convex Optimization Approach
Diederik Verscheure∗, Bram Demeulenaere†, Jan Swevers‡, Joris De Schutter§, and Moritz Diehl¶

Abstract—This paper focuses on time-optimal path-constrained
trajectory planning, a subproblem in time-optimal motion plan-
ning of robot systems. Through a nonlinear change of variables,
the time-optimal trajectory planning is transformed here into
a convex optimal control problem with a single state. Various
convexity-preserving extensions are introduced, resulting in a
versatile approach for optimal trajectory planning. A direct tran-
scription method is presented that reduces finding the globally
optimal trajectory to solving a second-order cone program using
robust numerical algorithms that are freely available. Validation
against known examples and application to a more complex
example illustrate the versatility and practicality of the new
method.

Index Terms—time-optimal trajectory planning, time-optimal
control, convex optimal control, path tracking, trajectory plan-
ning, convex optimization, second-order cone program, direct
transcription.

I. INTRODUCTION

T IME-OPTIMAL motion planning is of significant impor-

tance for maximizing the productivity of robot systems.

Solving the motion planning problem in its entirety, how-

ever, is in general a highly complex and difficult task [1]–

[6]. Therefore, instead of solving the entire motion planning

problem directly in the system’s state space, which is called

the direct approach [5], the decoupled approach [1], [5], [7]–

[9] is often preferred for its lower computational requirements.

The decoupled approach solves the motion planning problem

in two stages. In the first path planning stage, a high-level

planner determines a geometric path thereby accounting for

task specifications, obstacle avoidance and other high-level

– usually geometric – aspects [1], [8], [9], but ignoring

lower-level – often dynamic – aspects such as the dynamics

of the robotic manipulator. In the subsequent path tracking

or trajectory planning stage, a time-optimal trajectory along

the geometric path is determined, whereby the manipulator
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dynamics and actuator constraints are taken into account [7],

[10]–[23].

The trajectory planning stage constitutes the focus of this

paper. Time optimality along a predefined path implies real-

izing as high as possible a velocity along this path, without

violating actuator constraints. To this end, the optimal trajec-

tory should exploit the actuators’ maximum acceleration and

deceleration ability [10], [13], such that for every point along

the path, at least one actuator saturates [15].

Methods for time-optimal robot trajectory planning subject

to actuator constraints have been proposed in [7], [10]–

[24]. While these optimal control methods can roughly be

divided into three categories, most exploit that motion along

a predefined path can be described by a single path coor-

dinate s and its time derivative ṡ [7], [10], [13]. Hence,

the multi-dimensional state space of a robotic manipulator

can be reduced to a two-dimensional state space. The (s, ṡ)
curve, sometimes referred to as the switching curve [10], [14],

unambiguously determines the solution of the time-optimal

trajectory planning problem.

The first category of methods are indirect methods, which

have have been proposed in [7], [10], [13] and subsequently

refined in [14], [16], [19], [21], [22]. For the sake of brevity,

only [14] is discussed here, which reports to be at least an

order of magnitude faster than [7], [10], [13]. This method

conducts one-dimensional numerical searches over s to ex-

haustively determine all characteristic switching points, that is,

points where changes between the active actuator constraints

can occur. Based on these points, the switching curve, and

hence the solution to the overall planning problem, is found

numerically through a procedure that is based on forward and

backward integrations.

The second category consists of dynamic programming

methods [11], [13], [24], while the third category consists of

direct transcription methods [18], [23]. In contrast with most of

the indirect methods, except [19] which considers time-energy

optimality, the methods in the second and third category

are able to take into account more general constraints and

objective functions, such that time-optimality can be traded-off

against other criteria such as energy, leading to less aggressive

use of the actuators.

In this paper, the basic time-optimal trajectory planning

problem, discussed in Sec. II, is transformed into a con-

vex optimal control problem with a single state through a

nonlinear change of variables introduced in Sec. III. Vari-

ous convexity-preserving extensions, resulting in a versatile

approach for optimal trajectory planning that goes beyond

mere time-optimality, are presented in Sec. IV. Section V

shows that direct transcription [6], [25]–[27] by simultaneous



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, JANUARY 2008 2

discretization of the states and the controls, results in a

reliable and very efficient method to numerically solve the

optimal control problem based on second-order cone pro-

gramming. Section VI subsequently validates this numerical

method against the examples introduced in [13]. Section VII

illustrates the practicality and versatility of the generalized

problem formulation through a more advanced example of a

six-DOF KUKA 361 industrial robot carrying out a writing

task. Section VIII contrasts the proposed solution method with

the existing indirect methods [7], [10], [13], [14], [16], [19],

[21], [22], dynamic programming methods [11], [13], [24] and

direct transcription methods [18], [23] and identifies aspects

of future work.

II. ORIGINAL PROBLEM FORMULATION

The equations of motion of an n-DOF robotic manipulator

with joint angles q ∈ Rn, can be written as a function of the

applied joint torques τ ∈ Rn as [28]

τ = M(q)q̈ + C(q, q̇)q̇ + Fs(q)sgn(q̇) + G(q), (1)

where M(q) ∈ Rn×n is a positive definite mass matrix

and C(q, q̇) ∈ Rn×n is a matrix accounting for Coriolis

and centrifugal effects, which is linear in the joint velocities,

Fs(q) ∈ Rn×n is a matrix of Coulomb friction torques, which

can be joint angle dependent, while G(q) ∈ Rn denotes the

vector accounting for gravity and other joint angle dependent

torques. In this paper, similarly as in [13], viscous friction is

not considered.

Consider a path q(s), given in joint space coordinates1, as

a function of a scalar path coordinate s. The path coordinate

determines the spatial geometry of the path, whereas the

trajectory’s time dependency follows from the relation s(t)
between the path coordinate s and time t. Without loss of

generality, it is assumed that the trajectory starts at t = 0, ends

at t = T and that s(0) = 0 ≤ s(t) ≤ 1 = s(T ). In addition,

since this paper considers time-optimal trajectory planning or

related problems, it is assumed that ṡ(t) ≥ 0 everywhere and

ṡ(t) > 0 almost everywhere for t ∈ [0, T ].
For notational convenience, the time dependency of the path

coordinate s and its derivatives is omitted wherever possible.

For the given path, the joint velocities and accelerations can

be rewritten using the chain rule as

q̇(s) = q′(s)ṡ, (2)

q̈(s) = q′(s)s̈ + q′′(s)ṡ2, (3)

where ṡ = ds
dt , s̈ = d2s

dt2 , q′(s) = ∂q(s)
∂s and q′′(s) = ∂2

q(s)
∂s2 .

Substituting q̇(s) and q̈(s) based on (2)-(3) results in the

following expression for the equations of motion [10]

τ (s) = m(s)s̈ + c(s)ṡ2 + g(s), (4)

where

m(s) = M(q(s))q′(s), (5)

c(s) = M(q(s))q′′(s) + C(q(s),q′(s))q′(s), (6)

g(s) = Fs(q(s))sgn(q′(s)) + G(q(s)), (7)

1For a path given in operational space coordinates, inverse kinematics
techniques can be used to obtain the corresponding path in joint space
coordinates [14], [28].

and where sgn(q̇(s)) is replaced by sgn(q′(s)) using equation

(2) and the assumption that ṡ > 0 almost everywhere.

Similarly as in [7], [10], [13], the time-optimal trajectory

planning problem for the robotic manipulator subject to lower

and upper bounds on the torques, can be expressed as

min
T,s(·),τ (·)

T, (8)

subject to τ (t) = m(s(t))s̈(t)

+ c(s(t))ṡ(t)2 + g(s(t)), (9)

s(0) = 0, (10)

s(T ) = 1, (11)

ṡ(0) = ṡ0, (12)

ṡ(T ) = ṡT , (13)

ṡ(t) ≥ 0, (14)

τ (s(t)) ≤ τ (t) ≤ τ (s(t)), (15)

for t ∈ [0, T ],

where the torque lower bounds τ and upper bounds τ may

depend on s. In most cases, ṡ0 and ṡT can be taken equal to

0.

III. REFORMULATION AS A CONVEX OPTIMAL CONTROL

PROBLEM

From equations (8)-(15), it is not obvious to decide whether

any local solution to the problem is also globally time-optimal.

In [19], the time-energy optimal control problem, which fea-

tures (8)-(15) as a special case, is reformulated as an optimal

control problem with linear system dynamics, differential

state (s, ṡ)T and control input s̈, subject to nonlinear state

dependent control constraints. Subsequently, the Hamiltonian

is shown to be convex with respect to the control input, which

allows to conclude that any local optimum of the problem is

also globally optimal. This paper provides, thanks to the use

of a nonlinear change of variables, an appreciably different

reformulation with a number of attractive properties.

First, by changing the integration variable from t to s, the

objective function (8) is rewritten as

T =

∫ T

0

1dt =

∫ s(T )

s(0)

1

ṡ
ds =

∫ 1

0

1

ṡ
ds. (16)

Second,

a(s) = s̈, (17)

b(s) = ṡ2 (18)

are introduced as optimization variables and supplemented

with an additional constraint

b′(s) = 2a(s), (19)

which follows from the observation that

ḃ(s) = b′(s)ṡ, (20)

as well as

ḃ(s) =
d(ṡ2)

dt
= 2s̈ṡ = 2a(s)ṡ. (21)
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While the nonlinear transformation (17)-(18) is already recog-

nized in [13], where it is used for quadrature purposes and for a

geometric characterization of the admissable area of motion,

this paper instead uses the transformed variables directly as

the optimization variables, such that problem (8)-(15) can be

reformulated as a convex problem

min
a(·),b(·),τ (·)

∫ 1

0

1
√

b(s)
ds, (22)

subject to τ (s) = m(s)a(s) + c(s)b(s) + g(s), (23)

b(0) = ṡ2
0, (24)

b(1) = ṡ2
T , (25)

b′(s) = 2a(s), (26)

b(s) ≥ 0, (27)

τ (s) ≤ τ (s) ≤ τ (s), (28)

for s ∈ [0, 1].

Problem (22)-(28) is convex since all constraints (23)-(28) are

linear, while the objective function (22) is convex.

Problem (22)-(28) can be regarded as an optimal control

problem in differential algebraic form (DAE), with pseudo-

time s, control input a(s), differential state b(s), algebraic

states τ (s), linear system dynamics (26) and subject to linear

state dependent constraints (23), (27)-(28), as well as initial

and terminal constraints (24) and (25) respectively.

In contrast with the reformulation in [19], the reformulated

problem (22)-(28) has only one differential state, while the

algebraic states can easily be eliminated using equation (23).

Moreover, time does not appear explicitly in the formulation

anymore. However, the true merit of the reformulation (22)-

(28), is that, unlike the reformulation in [19], first, it is clear

without proof that problem (22)-(28) is convex, and second, it

becomes very easy to devise additional objective functions and

inequality constraints that can be incorporated, such that the

resulting optimal control problem is still convex, as illustrated

in Secs. IV-A and IV-B. In addition, due to the particular

structure of the reformulated problem, it is shown in Sec. V

how a numerical solution can be obtained very efficiently and

reliably using a direct transcription method [6], [25]–[27].

IV. GENERALIZED CONVEX OPTIMAL CONTROL PROBLEM

In Secs. IV-A and IV-B, a number of practical objective

functions and constraints are given, which can be incorporated

to yield a more general, yet still convex optimal control

problem as summarized in Sec. IV-C.

A. Objective functions

In addition to time, other objectives can also be incorporated

to design a desirable relation between the path coordinate s
and time t, such that time-optimality is traded-off against other

criteria.

1) Thermal energy: The integral of the square of the torque

of joint i is
∫ T

0

τi(s)
2dt =

∫ 1

0

τi(s)
2

ṡ
ds =

∫ 1

0

τi(s)
2

√

b(s)
ds. (29)

This objective function is related to the thermal energy gen-

erated by actuator i. It can easily be shown [29] that x2/
√

y
is a convex function of (x, y), for y ≥ 0.

2) Integral of the absolute value of the rate of change of

the torque: The integral of the absolute value of the rate of

change of the torque of joint i is

∫ T

0

|τ̇i(s)| dt =

∫ 1

0

|τ ′

i(s)ṡ|
ṡ

ds =

∫ 1

0

|τ ′

i(s)| ds, (30)

since ṡ ≥ 0 for t ∈ [0, T ]. This objective function is convex,

since |x| is a convex function of x. While this objective

function has no straightforward physical interpretation, incor-

porating this term reduces the number and magnitude of torque

changes, which can be particularly useful for some cases as

explained in Sec. VI.

B. Inequality constraints

In addition to torque constraints, other constraints may also

be useful.

1) Velocity constraints: It is possible to incorporate velocity

limits, which may be inspired by task specifications, by

imposing symmetric lower bounds −q̇i(s) and upper bounds

q̇i(s) on the velocity of joint i as follows

− q̇i(s) ≤ q̇i(s) ≤ q̇i(s),

⇔ (q̇i(s))
2 = (q′i(s)ṡ)

2 = (q′i(s))
2b(s) ≤

(

q̇i(s)
)2

, (31)

or by imposing symmetric lower bounds and upper bounds

on the translational components (vx, vy, vz) or the rotational

components (ωx, ωy, ωz) of the operational space velocity. For

example

− vx(s) ≤ vx(s) ≤ vx(s),

⇔ (vx(s))2 ≤ (vx(s))
2
. (32)

The operational space velocity components are related to the

joint velocities by the robot Jacobian [28] J(q) = (Jij(q)) as

follows

(vx, vy, vz, ωx, ωy, ωz)
T = J(q)q̇. (33)

Hence, equation (32) can be rewritten as

(vx(s))2 =

(

n
∑

i=1

J1i(q(s))q̇i(s)

)2

=

(

n
∑

i=1

J1i(q(s))q′i(s)ṡ

)2

=

(

n
∑

i=1

J1i(q(s))q′i(s)

)2

b(s) ≤ (vx(s))
2
. (34)

Note that the bounds defined by equations (31) and (34) can

easily be rewritten in the following form

b(s) ≤ b(s), (35)

and that hence, they can be interpreted directly as upper

bounds on b(s). Therefore, it is also sufficient to consider only

the most restrictive upper bound for each s ∈ [0, 1].
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2) Acceleration constraints: It is also possible to incor-

porate lower bounds q̈
i
(s) and upper bounds q̈i(s) on the

acceleration of joint i as follows

q̈
i
(s) ≤ q̈i(s) ≤ q̈i(s),

⇔ q̈
i
(s) ≤ q′i(s)s̈ + q′′i (s)ṡ2 ≤ q̈i(s),

⇔ q̈
i
(s) ≤ q′i(s)a(s) + q′′i (s)b(s) ≤ q̈i(s). (36)

Similar as for velocity constraints, acceleration constraints

can also be applied to the components of the operational

space acceleration. It can be shown that both joint space and

operational space acceleration constraints can be rewritten in

the following form

f(s) ≤ f(s)a(s) + h(s)b(s) ≤ f(s). (37)

3) Rate of torque change constraints: It can be shown that

constraints on the rate of change of the torque τ̇i(s), which

are also useful to impose, are not convex and are therefore

less attractive from an optimization point of view.

C. Generalized problem formulation

Combining the objective functions (8), (29) and (30) in an

affine way2 and incorporating the constraints (9), (31), (32)

yields the following generalized optimal control problem

min
a(·),b(·),τ (·)

∫ 1

0

[

1
√

b(s)
+

γ1
√

b(s)

(

n
∑

i=1

τi(s)
2

τ2
i

)

+γ2

(

n
∑

i=1

|τ ′

i(s)|
|τ i|

)]

ds, (38)

subject to τ (s) = m(s)a(s) + c(s)b(s) + g(s), (39)

b(0) = ṡ2
0, (40)

b(1) = ṡ2
T , (41)

b′(s) = 2a(s), (42)

b(s) ≥ 0, (43)

b(s) ≤ b(s), (44)

f(s) ≤ f(s)a(s) + h(s)b(s) ≤ f(s), (45)

τ (s) ≤ τ (s) ≤ τ (s), (46)

for s ∈ [0, 1],

where τ i for i = 1 . . . n are suitably chosen values, for

example τ i = maxs∈[0,1] τ i(s). This generalized optimal

control problem is convex, due to the convexity of the objective

function and the inequality constraints, and the linearity of the

system dynamics and the equality constraints.

V. NUMERICAL SOLUTION

There are three ways to solve the generalized optimal

control problem (38)-(46), namely dynamic programming as

adopted in [11], [13], [24], indirect methods [19], or direct

2Strictly speaking, the integral of the square of the torque for each actuator
should be weighted with a factor which is proportional to the product of the
motor resistance, the square of the motor gearing constant and the inverse of
the square of the motor constant, as in [11]. Since these quantities are not
always readily available, this paper adopts 1

τ
2
i

instead.

transcription as adopted in [18], [23] or direct single or

multiple shooting [30]. In this section, a direct transcription

method is proposed in Sec. V-A, which leads to a second-order

cone program (SOCP) formulation in Sec. V-B.

A. Direct transcription

The direct transcription method consists of reformulating

the optimal control problem (38)-(46) as a large sparse op-

timization problem. To this end, first, the path coordinate s
is discretized on [0, 1], which leads to K + 1 grid points

s0 = 0 ≤ sk ≤ 1 = sK , for k = 0 . . .K. Second, the

functions b(s), a(s) and τi(s) are modeled, by introducing

a finite number of variables bk, ak, τk
i , which represent

evaluations of these respective functions on the grid points

or in between. The choice of the number of variables and the

choice of the points at which they are evaluated characterize

different direct transcription methods.

  ... s s
K

s
K−1

s
K−2

s
5

s
4

s
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2

s
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K

b
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b
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b
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b
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b
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b
2

b
1

b
0

b(s)

Fig. 1. b(s) is piecewise linear for s ∈ [0, 1].
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a
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a
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a
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1a
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Fig. 2. a(s) is piecewise constant for s ∈ [0, 1].

  ... s s
K

s
K−1

s
K−2
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5
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4

s
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s
2

s
1

s
0

τ
K−1

i

τ
K−2

i

τ
4

i

τ
3

i
τ

2

i

τ
1

i

τ
0

i

τi(s)

Fig. 3. τi(s) is piecewise nonlinear for s ∈ [0, 1].

This paper proposes just one possibility. Since the velocity

of a robotic manipulator cannot change discontinuously, it is

assumed that b(s) which is related to the velocity, is at least

piecewise linear (Fig. 1). Based on this assumption and from

equation (26), it follows that a(s) must at least be piecewise

constant (Fig. 2) and from equation (23), it follows that τi(s)
is then in general piecewise nonlinear (Fig. 3). From these

observations, it is natural to assign bk on the grid points sk.

In other words,

b(s) = bk +

(

bk+1 − bk

sk+1 − sk

)

(s − sk), (47)

for s ∈ [sk, sk+1] and hence, b(sk) = bk. ak and τk
i are

evaluated in the middle between the grid points sk, namely
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on sk+1/2 = (sk + sk+1)/2 (Figs. 2 and 3). After introducing

the variables ak = a(sk+1/2) and τ
k = τ (sk+1/2), for k =

0 . . .K−1 and given the fact that b(s) is piecewise linear, the

first two terms of the integral (38) can be approximated as
∫ 1

0

[

1
√

b(s)
+

γ1
√

b(s)

(

n
∑

i=1

τi(s)
2

τ2
i

)]

ds

=

K−1
∑

k=0

∫ sk+1

sk

[

1
√

b(s)
+

γ1
√

b(s)

(

n
∑

i=1

τi(s)
2

τ2
i

)]

ds

≈
K−1
∑

k=0

[

1 + γ1

(

n
∑

i=1

(τk
i )2

τ2
i

)]

∫ sk+1

sk

1
√

b(s)
ds. (48)

To handle integrable singularities, that is, where b(s) = 0,

1/
√

b(s) is treated separately. Using equation (47) to calculate

the integral in equation (48) analytically, the right-hand side

of equation (48) can be rewritten as

K−1
∑

k=0

[

1 + γ1

(

n
∑

i=1

(τk
i )2

τ2
i

)]

2∆sk

√
bk+1 +

√
bk

, (49)

where ∆sk = sk+1 − sk. The third term of the integral (38)

can be approximated for each i as

∫ 1

0

γ2
|τ ′

i(s)|
|τ i|

ds ≈ γ2

K−1
∑

k=1

∣

∣∆τk
i

∣

∣

|τ i|
, (50)

where ∆τk
i = τk

i −τk−1
i for k = 1 . . .K−1. After introducing

the shorthand notation bk+1/2 = (bk + bk+1)/2, the problem

(38)-(46) can be rewritten in discretized form as a large scale

optimization problem

min
ak,bk,τk

K−1
∑

k=0

2∆sk(1 + γ1

∑n
i=1(τ

k
i )2/τ2

i )√
bk+1 +

√
bk

,

+ γ2

K−1
∑

k=1

(

n
∑

i=1

∣

∣∆τk
i

∣

∣ / |τ i|), (51)

subject to τ
k = m(sk+1/2)ak

+ c(sk+1/2)bk+1/2 + g(sk+1/2), (52)

b0 = ṡ2
0, (53)

bK = ṡ2
T , (54)

(bk+1 − bk) = 2ak∆sk, (55)

bk ≥ 0 and bK ≥ 0, (56)

bk ≤ b(sk) and bK ≤ b(sK), (57)

f(sk+1/2) ≤ f(sk+1/2)ak + h(sk+1/2)bk+1/2,
(58)

f(sk+1/2)ak + h(sk+1/2)bk+1/2 ≤ f(sk+1/2),
(59)

τ (sk+1/2) ≤ τ
k ≤ τ (sk+1/2), (60)

for k = 0 . . .K − 1.

Due to the convexity of problem (51)-(60), any local optimum

is also globally optimal. Hence, the problem may be solved

using any general purpose nonlinear solver. However, by

rewriting problem (51)-(60) as a second-order cone program

(SOCP), it can be solved even more efficiently, using a

dedicated solver for these types of problems.

B. Second-order cone program formulation

An SOCP has the following standard form [29]

min
x

fT x, (61)

subject to Fx = g, (62)

‖Mjx + nj‖2 ≤ pT
j x + qj , (63)

for j = 1 . . .m.

Reformulating problem (51)-(60) in this form requires a

number of steps. First, (51)-(60) can be reformulated as

an equivalent problem with a linear objective function, by

introducing variables dk for k = 0 . . .K − 1 and ek ∈ Rn for

k = 1 . . .K − 1, such that equation (51) can be rewritten as

K−1
∑

k=0

2∆skdk + γ2

K−1
∑

k=1

1T ek, (64)

where 1 ∈ Rn is a vector with all elements equal to 1.

It is then necessary to augment problem (51)-(60) with the

inequality constraints

(1 + γ1

∑n
i=1(τ

k
i )2/τ2

i )√
bk+1 +

√
bk

≤ dk, for k = 0 . . .K − 1, (65)

and

−ek ≤





∆τk
1 / |τ1|
. . .

∆τk
n/ |τn|



 ≤ ek, for k = 1 . . .K − 1. (66)

Second, to obtain an SOCP, constraints (65) can be replaced

by two equivalent constraints by introducing variables ck for

k = 0 . . .K as

(1 + γ1

∑n
i=1(τ

k
i )2/τ2

i )

ck+1 + ck
≤ dk, for k = 0 . . .K − 1, (67)

ck ≤
√

bk, for k = 0 . . .K. (68)

Inequalities (67) and (68) can now be rewritten as two second-

order cone constraints of the general form (63) as

(1 + γ1

∑n
i=1(τ

k
i )2/τ2

i )

ck+1 + ck
≤ dk, (69)

⇔

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2
2
√

γ1τ
k
1 /τ1

. . .
2
√

γ1τ
k
n/τn

ck+1 + ck − dk

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤ ck+1 + ck + dk, (70)

for k = 0 . . .K − 1, (71)

and

ck ≤
√

bk ⇔
∥

∥

∥

∥

2ck

bk − 1

∥

∥

∥

∥

2

≤ bk + 1, (72)

for k = 0 . . .K. (73)
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Summarizing, an SOCP is obtained in standard form

min
ak,bk,τk,ck,dk,ek

K−1
∑

k=0

2∆skdk + γ2

K−1
∑

k=1

1T ek, (74)

subject to τ
k = m(sk+1/2)ak

+ c(sk+1/2)bk+1/2 + g(sk+1/2),
(75)

b0 = ṡ2
0, (76)

bK = ṡ2
T , (77)

(bk+1 − bk) = 2ak∆sk, (78)

τ (sk+1/2) ≤ τ
k ≤ τ (sk+1/2), (79)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2
2
√

γ1τ
k
1 /τ1

. . .
2
√

γ1τ
k
n/τn

ck+1 + ck − dk

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤ ck+1 + ck + dk,

(80)

f(sk+1/2) ≤ f(sk+1/2)ak + h(sk+1/2)bk+1/2,
(81)

f(sk+1/2)ak + h(sk+1/2)bk+1/2 ≤ f(sk+1/2),
(82)

for k = 0 . . .K − 1 and
∥

∥

∥

∥

2ck

bk − 1

∥

∥

∥

∥

2

≤ bk + 1, (83)

bk ≥ 0, (84)

bk ≤ b(sk), (85)

for k = 0 . . .K and

− ek ≤





∆τk
1 / |τ1|
. . .

∆τk
n/ |τn|



 ≤ ek (86)

for k = 1 . . .K − 1.

where ak, τ
k, dk are defined for k = 0 . . .K − 1, bk, ck

for k = 0 . . .K, and ek for k = 1 . . .K − 1. While the

reformulation as an SOCP is not straightforward and requires

the introduction of the auxiliary variables ck, dk and ek, it

allows to use mature solvers [31] based on interior point

methods [32], [33], that exploit the specific SOCP structure

very efficiently. These dedicated methods have a much better

worst-case complexity than methods for more general types of

convex programs, such as semidefinite programs [34].

The formulation (74)-(86) can be implemented directly and

very easily using the free high-level optimization modeling

tool YALMIP [35], which also allows to test various solvers.

Once a solution is obtained for the variables bk, the relation

s(t) between the path coordinate and time can be constructed

from the inverse relation t(s), which is calculated as

t(s) =

∫ s

0

1
√

b(u)
du. (87)

VI. NUMERICAL BENCHMARK

To illustrate the validity of the method discussed in Sec. V,

it is applied to a double parabola and a circular path for a

three-DOF elbow manipulator as in [13]. Using YALMIP as a

modeling tool [35] and the free optimization software SeDuMi

[31] which uses a primal-dual interior point method [32], the

method presented in Sec. V is used to determine the time-

optimal solutions for the parabolic and circular paths, with

K = 299.
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Fig. 4. The joint torques τ as a function of the path coordinate s for the
parabolic path for γ1 = 0 and γ2 = 0.

The resulting torques τ as a function of the path coordinate

s are shown in Fig. 4 for the parabola path and for γ1 =
γ2 = 0. These torques are equal to those produced in [13]

apart from numerical jitter around s = 0.22 and s = 0.78.

This jitter is caused by singularities which are specific to the

combination of manipulator and path [16]. In a singular point,

one of the elements of the vector m(s) defined by equation

(5) is equal to zero [16], and the solution to the time-optimal

trajectory is not uniquely defined [14]. A very effective way

to remove this jitter, which hardly affects the overall solution,

is to add a small amount of regularization to penalize torque

jumps, or in other words, choose γ2 > 0. The resulting torques

τ as a function of the path coordinate s for the parabola path

with regularization (γ2 = 10−6) are shown in Fig. 5. Similar

results are obtained for the circular path.

The regularization illustrates very well the flexibility of the

generalized problem formulation and the proposed solution

method. Unwanted behavior is easily eliminated using an ap-

propriate choice for the objective function. The effectiveness of

this approach was also validated for the example presented in

[16], which focusses in detail on the problem of singular points

and singular arcs. Furthermore, the efficiency of the proposed

solution method is evident from the solver times reported

by YALMIP, namely 0.98 s for the parabola path without

regularization, 1.29 s for the parabola path with regularization

and 1.24 s for the circular path with regularization on an Intel

Pentium 4 CPU running at 3.60 GHz. If τ
k are eliminated

as optimization variables, the solver times decrease to 0.74 s,
0.93 s and 0.89 s respectively [36].

VII. NUMERICAL EXAMPLE: WRITING TASK

To illustrate the versatility and practicality of the method

discussed in Sec. V, it is applied to a more complex example

involving a six-DOF manipulator. Sec. VII-A discusses the

manipulator and the path, while the results are presented in

Sec. VII-B.
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Fig. 5. The joint torques τ as a function of the path coordinate s for the
parabolic path for γ1 = 0 and γ2 = 10−6.

A. Introduction

In the context of programming by human demonstration

[37], it may be desirable for a manipulator to track a human-

generated path, but not necessary or even undesirable to

enforce the path-time relation established during the demon-

stration. In fact, time-optimal trajectory planning may speed

up these types of tasks considerably.

q1

q2

q3

X

Y

Z

Fig. 6. A six-DOF KUKA 361 industrial manipulator performing a writing
task.

Considered here is a six-DOF KUKA 361 industrial ma-

nipulator carrying out a complex writing task (Fig. 6). The

objective is to write a text on a plane parallel to the XY-plane

(Fig. 6), while keeping the end-effector oriented in the negative

Z-direction at a height of z = 1.2 m. The end-effector path

parallel to the XY-plane is shown separately in Fig. 7, where

the value of the path coordinate s ∈ [0, 1] along the path is

shown in steps of 0.05. This type of path features long smooth

segments as well as sharp edges at the transitions between

different character segments. Therefore, a lot of switching is

expected to realize the time-optimal trajectory, such that the

grid on which the problem is solved needs to be sufficiently

fine.
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Fig. 7. The path in the plane parallel to the XY-plane.
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Fig. 8. The joint torques τ as a function of the path coordinate s for the
first three axes for the path shown in Fig. 7 and for γ1 = 0 and γ2 = 0.

B. Results

The method presented in Sec. V results in a minimal

trajectory duration of 11.3 s (K = 1999). The corresponding

torques τ for the first3 three axes are shown as a function

of the path coordinate s in Fig. 8 (s = 0.55 . . . 0.8). Figure 8

indicates that a lot of switching is necessary and that the torque

for axis two, which is heavily loaded by gravity, is saturated

for a considerable part along the path and therefore is the main

limitation on the acceleration and deceleration ability of the

manipulator.

Figure 9 shows the joint velocities for the first three axes for

s = 0.55 . . . 0.8. Although interpretation is in general difficult,

it can be intuitively understood that a low velocity is required

for the sharp edge of the letter “c” at s ≈ 0.57, while the

subsequent long smooth arc can be executed at a much higher

velocity. Despite the relative non-smoothness of the path, sharp

segments of the path pose no problem to the solution method.

By solving the problem for K = 999, 1999 and 2999, it

is verified that the obtained solution is, aside from sampling

effects, grid-independent.

When solving the problem on an Intel Pentium 4 CPU

running at 3.60 GHz and with τ
k eliminated as optimization

3The torques for the last three axes are omitted, because the first three axes
are more heavily loaded.
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Fig. 9. The joint velocities q̇ as a function of the path coordinate s for the
first three axes for the path shown in Fig. 7 and for γ1 = 0 and γ2 = 0.

variables, YALMIP reports a solver time of 2.87 s. To allow

the reader to perform own optimization studies or to allow a

fair comparison with other algorithms, a downloadable Matlab

implementation has been made available [36], as well as a

software-rendered video showing the manipulator carrying out

the trajectory.

C. Time-optimality versus energy-optimality

The very limited solver times allow to calculate the solution

of (74)-(86) for a large number of different weighting factors

γ1 and γ2, in order to investigate their effect on the time-

optimality of the solution. Here, time-optimality and energy-

optimality are traded-off by varying γ1. One important mo-

tivation for having a nonzero γ1 > 0 is to limit the rate of

change of the torques [23], such that the actuators can better

handle the torque demand. Other approaches to limit the rate

of change of the torques consist of directly imposing upper and

lower bounds on this rate of change [17], [23], or choosing a

parameterization for the pseudo-acceleration s̈ that is at least

piecewise continuous [23]. Another important motivation for

choosing γ1 > 0, on the other hand, is to limit the thermal

energy dissipated by the actuators, so as to prevent actuator

overheating if the task is carried out repeatedly [38].

Figure 10 shows the relation between the

trajectory duration T and the thermal actuator energy
∑n

i=1

∫ T

0
(τi(t)

2/τ2
i )dt if γ1 is varied between 0 and 100.6,

while keeping γ2 = 0. Both objectives are normalized

through division by their values for γ1 = 0. The resulting

trade-off curve reveals that a 10% increase in trajectory

duration, results in a spectacular 50% reduction of the

thermal energy dissipated by the actuators, while a further

increase in trajectory duration to 20% results in only 65%
reduction of the thermal energy. These results, as well as

the steep trade-off close to γ1 = 0, numerically quantify the

engineering intuition that true time-optimality comes at a

significant energy cost.

Fig. 10 illustrates very well the use and the versatility of

the generalized optimal control formulation (38)-(46) and the

usefulness of an efficient numerical algorithm to investigate

the effect of trading off time-optimality against other criteria.
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Fig. 10. The normalized trajectory duration versus the normalized integral
of the squares of the torques.

VIII. DISCUSSION

The convex reformulation and accompanying SOCP-based

solution method presented in Secs. III and V, are very appeal-

ing from both a theoretical and a numerical point of view: the

global optimum of time-energy optimal planning is guaranteed

to be found within a few CPU seconds of computation time.

None of the methods which consider more than just time-

optimality [11], [13], [18], [23], [24], except [19], can provide

a theoretical guarantee of finding the global optimum. The the-

oretical merit of our formulation with respect to [19]. however,

is that first, the proof of global optimality is extremely simple

as it follows directly from the convexity of the optimal control

problem. Secondly, the formulation allows to easily devise

convexity-preserving extensions, as illustrated in Sec. IV-A

and IV-B.

With respect to numerical efficiency, it is difficult to com-

pare our method to the other methods [7], [10], [11], [13],

[14], [16], [18], [19], [21]–[24]: unfortunately, to the best

of the authors’ knowledge, no detailed solution times and

actual implementations are publicly available for most of the

methods, some of which were published nearly two decades

ago. Hence, it is not possible to assess whether these methods

also result in the same global optimum for the complex

example of Sec. VII, nor whether they give rise to shorter

computational times. Even if these methods were faster, the

authors would perceive this as only a minor shortcoming of the

present method, since the computational times reported here

are sufficiently short to be practical in academic and industrial

practice. In order to make future numerical benchmarking

possible and to allow use by practitioners, the authors have

provided a freely downloadable Matlab implementation under

the GNU public license [36].

Two other key aspects of the presented method are the ease

of implementation and flexibility. With regard to flexibility,

the indirect methods [7], [10], [13], [14], [16], [21], [22],

except [19] which considers time-energy optimality, can only

take into account time-optimality and torque constraints and

therefore do not feature the same flexibility as any of the

dynamic programming [11], [13], [24] and direct transcription

methods [18], [19], [23]. The latter two categories of methods

do not restrict the choice of constraints nor objective function,

except that the objective is generally assumed to be an affine
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combination of trajectory duration with other criteria. The

price to be paid is that the global optimum is not guaranteed

to be found. Our method is more restricted in that sense, since

only a limited, yet, in our opinion, sufficiently rich set of

objective functions and constraints can be handled. In fact,

this limited set constitutes the very essence of the efficiency

of the presented solution method, and, rather than perceiving

it as restrictive, it can also be seen as a theoretical foundation

to evaluate the tractability of more general formulations.

With regard to ease of implementation, it is clear from the

discussion in Sec. I that the indirect methods [7], [10], [13],

[14], [16], [19], [21], [22] are procedural in nature and require

implementation of a number of substeps, all of which require

the choice of a method, tolerances and stopping criteria. The

dynamic programming approaches [11], [13], [24] are also

procedural in nature although their implementation involves

less numerical choices since they are decision-based rather

than gradient-based. However, because of their sequential na-

ture and large amount of variables, an efficient implementation

requires careful thought. Direct transcription methods [18],

[23] are more straightforward to implement because they are

based on solving nonlinear programs for which, theoretically,

any nonlinear solver can be used. Numerical efficiency, how-

ever, requires an in-depth numerical analysis of the problem

structure. Conversely, the method in Sec. V requires only the

choice of a transcription scheme, and the main difficulty lies

in enforcing the SOCP structure in the resulting program. The

actual implementation is, however, very easy. Moreover, SOCP

solvers such as SeDuMi [31], are freely available.

A first part of future work will focus on improving the ex-

perimental applicability of the time-optimal trajectory method

and consists of mitigating three key issues. First, the limited

bandwidth of any physical actuator implies that infinitely fast

torque jumps cannot be realized and therefore, it will be

investigated how constraints on the rate of changes on the

torques can be efficiently taken into account in the presented

method. Second, the torques calculated by the time-optimal

trajectory planning algorithm are purely feedforward and need

to be implemented in conjunction with a feedback controller.

To prevent the feedback controller from becoming unstable,

it is necessary to impose bounds on the actuator torques

which are lower than the actually allowable actuator torques.

This consideration is especially important in the presence of

significant modeling errors. Third, it will be investigated how

viscous and other joint velocity dependent friction phenomena

can be accommodated for in the presented method. Finally,

the practical applicability of the presented method will be

demonstrated experimentally. A second part of future work

will focus on the application of the presented method to path-

constrained trajectory planning problems which consider, in

addition to time-optimality, minimization of reaction forces at

the robot base.
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[35] J. Löfberg, YALMIP, Yet another LMI parser. Sweden: University of
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