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ä (ABSTRACT) _
\ The time optimal slewing problem for flexible spacecraft is considered. We

study single·axis rotational maneuvers for a simple flexible system, consisting of

a rigid hub with an elastic appendage. The equations of motions are derived by

l—lamilton’s Principle, and a discrete nonlinear model is obtained by the assumed
1

modes method. The problem is first solved in a discrete linearized space by pa-

rameter optimization. Optimality is veriiied by Pontryagin’s Maximum Principle.

The linear solutions are then used to obtain time optimal solutions for the non- ,

linear problem by a multiple-shooting algorithm. Although this approach is ap-

plicable to arbitrary boundary conditions, this work is eonfined, almost

exe-lusively, to rest-to-rest maneuvers. These maneuvers are shown to possess

some interesting symxnetric and asymptotic properties. The problem is further
J

analyzed in infinite dimensional space, and the convergenee of the finite-
A

dimensional approximations is studied. Finally, a soft version of the time optimal

slewing problem is considered, where the control is bounded on.ly by a penalty

term in the cost functional. A perturbation technique is applied to further sim-
J

plify this problem. t
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1. Introduction

In recent years there has been considerable interest in control for flexible struc-

tures. It is becoming increasingly important to take into consideration the

flexiblity of structures in the design process of control systems for modern aero-

space vehicles. Consequently, requirements for active· vibration suppresion is

becoming part of attitude·control-system speciücations for modern aircraft and

spacecraft. Single-axis slcw maneuvers of simple flexible spacecraft, consisting

of a rigid hub and flexible appendages, have been investigated extensively by

Turner et al. [l-4] and by Breakwell [5]. The approach was based on the Linear

Quadratic Regulator (LQR) theory, where the cost was a combination of control

effort and system energy. Under this formulation closed-loop control is possible,

and the feedback gains can be obtained in closed form (for the linearized system).

Lisowski and Hale [6] extended these results by freeing structural parameters in

the optimization process, so that both structural parameters and active control

torques can be determined in order to minimize a specitic cost functional. Exper-
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imental results for LQR design have been reportcd by Juang, Horta, and

Robertshaw [7]. The measurernents were compared with analytical predictions,

and sufficient agreement has been obtained. Skaar et al. [8] studied a satellite

reorientation problem using thrusters rather than internal momentum transfer

devices. The control is on-off in open loop. The cost was the post·maneuver

elastic energy, and optimal switching points were obtained to minimize it.

A problem of current interest is to include the transition time in the cost in order

t to accomplish fast slew maneuvers. Vander Velde and He [9] investigated a
i
problem of this kind where the cost is a combination of fuel and time. The sol-

ution again is open-loop on-off control of the spacecraft thrusters. Thompson et _

al. [10] considered near time-optimal controls by minimizing a sum of the time

and a certain measure of residual energy. The solution is open loop and is con- '

tinuous with respect to time. Meirovitch et al. [11,12] explored the idea of con-
‘

trolling the rigid body by time optimal controls, while considering the elastic

mode control as a modified LQR problem. In this formulation, the rigid·body

time optimal solution is a forcing (disturbance) term in the elastic equations.
I

Closed—loop solutions are sought in order to supprcss the induced vibrations.

The purpose of this work is to study the pure time-optimal slewing problem

where the cost is the transition time only. This problem is currently being inves-

tigated and first results have been rcported [13-16]. The major differences be-

tween these works are. in the computational methods. These being a direct

two-point-boundary-value-problem approach in [13], a gradient method in [14],

a homotopy method in [15] and a combination of a parameter optimization tech-

1. Introduction 2



nique and a Multiple Shooting Algorithm (MSA) in [16] (which contains prelim-

inary results from this work). There is, however, a qualitative agreement in the

solutions of the time optimal control problem. It seems natural to ask why such 4

a variety of methods have been applied to solve almost the same time optimal

control problem.

The minimum·time control problem has a long history, from the Bernoulli

brothers in the seventeenth century to our very days. (See Appendix for a short

history of the problem.) The theoretical knowledge about the linear time-optimal

control problem_„in=finite dimensional space is complete. The single-axis slewing
i

problem for a flexible spacecraft is, however, a problem in inßnite dimensional .

space and it contains some nozzlinear terms. It is also computationally nontrivial

in linear discrete space due to the complex eigenvalues of the flexible structure.

The various methods differ in the way they handle these difticulties.

There are, accordingly, three main objectives to this work. First to construct a

simple algorithm to solve the iinite-dimensional linear problem. It is, however,

desirable to make it more easily generalized than those employed in [13-15]. The

second objective is to extend the results to include the system nonlinearities. This

has been ignored in [13] and [15] and has been considered in [14] by a very com-

plicated numerical scheme. The third objective is to study the problem in inlinite

dimensional Hilbert space which has not been done elswhere for this system. The

following chapters are organized accordingly. Chapter 2 contains a derivation by

Hamilton’s principle and the assumed-modes methods of the different models

that are used in rest of the work. In chapter 3 the linear time-optimal slewing y

1. Introduction g 3



problem is explored. A novel parameter optimization technique is presented

along with numerous computational results, primarily for rest-to-rest maneuvers,

that have been obtained by this approach. This is continued in chapter 4 where

certain approximations are suggested as a result of some interesting asymptotic

properties of the solutions. The effects of nonlinearity, along with other exten-

sions, are studied in chapter 5. This chapter presents numerical solutions ob-

tained by a two-point boundary-value problem solver which employs a

multiple·shooting algorithm and uses the linear solutions as initial guesses. Inter-

esting symmetry properties are shown to be possessed by both the linear and the

nonlinear problems (for res_t·to-rest maneuvers). Chapter 6 presents an analysis

of the problem in infinite dimensional space and revisits the results of Chapter

3. It contains three parts. The first part is a state-space formulation of the sys-

tem in Hilbert space, the second, a discussion of controllability, and the third, a

study of the time-optimal control problem and of the convergence properties of

the discrete solutions. Chapter 7 is somewhat out·of·line with respect to the

previous chapters. The problem of soft-constrained time-optimal control is

studied where the cost is a combination of control effort and transition time. A

singular-perturbation technique is introduced to reduce the computational effort.

In chapter 8 conclusions are drawn from this work, and from the previously·
i

mentioned parallel works which have been studying the time-optimal slewing _

problem. We also offer some recommendations for further study. The appendix

covers bricfly the history of the time-optimal control theory, and is concentrated

mainly on the development of ideas and concepts rather than specific applica-

1. Introduction 4



tions. It emphasizes aspects which are of importance to this work but it is not
I

restricted to them.

l.Introduction5



2. Equations of Motion

The mathematical model for the structure shown in Figure I is developed in this
E

chapter.

A single axis rotation is considered for a system consisting of a rigid hub with

an elastic appendage attached to it. The appendage is modeled as an Euler- 2

Bernoulli cantileverecl beam. The system is controlled by a single actuator which

exerts an external torque on the rigid hub.
E

I—lamilton’s Principle is applied to derive the equations of motion. The

assumed-modes method is applied to obtain a linite dimensional system of ordi-
E

nary differential equations. The linite dimensional model will be used later for

all of the numerical computations. For the linearized system the form of partial

differential equations shall be retained for an analysis of the problem in infinite

dimensional space.

2. Equations of Motion 6



2.1 Hamilton’s Principle
1

The kinetic energy of the system is (Fig. 1)

— J- .;T.:. l- . 2T- 2 fr rdm+ 2
[hoc , (2.1)

where Ih is the hub moment-of-inertia, oc(t) is the angular displacement of the hub,

m is the mass distribution of the beam, I is the beam length, r(x,t) is the radius

vector xi + w(x,t)], where w(x,t) is the elastic deflection of the beam. ·

Therefore, the inertial velocity is given by

1* = (- aw)? + (ex + 111);. (2.2)

Substituting (2.2) into (2.1) we obtain .

1
T = (dc2(x2 + W2) + wz + 2ocwx)mdx + é 1,,63. (2.3)

1
The potential energy is _

1 1
V = EI(w")2dx + F(x)(ds — dx), (2.4)

0 0 i

2. Equations of Motion 7



where EI is the beam rigidity and
()’

denotes derivative with respect to x, F(x)

denotes the axial force, which arises form centrifugal effects, ds is an increment

of length along the displaced axis and dx is its projcction. (See [17, p. 235] for a

similar derivation.)

Calculating F(x)

I -2 mdcz 2 2F(x) = '( mon (dl = -5- (I — x ). (2.5)
I

We assume that the shortening of the projection (ds- dx) in (2.4) can be ap-.

proximated by

1 ,2
ds-dx~·-i-—w dx, (2.6)

hence
(

1 I 2
Imaz iz

2 2
8

V=-E-I EI(w") dx + —-1—(l - x
)w’

dx. (2.7)
U 0

The virtual work done by the control torque u is

Ö W = uöoz.
U

(2.8)

The equations of motion can now be obtained from Hami1ton’s Principle

2. Equations of Motion 8



.

f(öT-— öV+ öW)dr = 0. (2.9)
0

2.2 Diseretization by the Assumed Modes Method

Assume [17]

w(x-¢) = Zm(1)‘1’;(x)- . (2-10)

where {*1*,} is a complete set of admissible functions (i.e. functions whichsatisfyuw,the

geometric boundary conditions but not necessarily the natural boundary .

conditions). °

The kinetic and potential energies are

T.-: 0zQTr) + %163, (2.11.1) c

V=é-—„T1<«, +-ä-azrfaq. (2.11.2)

Where rg is a k·dimensional column vector with entries r),, and where
(

1
[M,J] = 1-m*1*,*1*Jdx, (2.12.1)

0

2. Equations of Motion 9
9 0



I
[IQ,] = I EI‘P,"‘I',"dx,

(2.12.2) 1
0

[RU] = mL-Eil ‘I',"I’,’dx, (2.12.3)
(

0

I
[Q,] = 'Lmx‘I’,dx, (2.*12.4) _

I 2I = I), + mx dx. (2.12.5)
0

Let L be The Lagrangian L=T-V. Lagrange’s equations of motion are

d ÖL ÖL __
dt 66 06

’“’ (M3)

d ÖL ÖL _
dt äh ÖH — O. (2.14-)

Henee

Iä —- R)r7ä = u (2.15)

Qä + Ms; L [63(M L R) L K3), L 0. (2.16)

Negleeting the higher order terms, a linear model can be obtained

2. Equations of Motion 10



Iä +
Qrij = u, (2.17)

Qä+Mü+Kn=O. (2.18)

lt is suggested in [1] to retain, for nonlinear modelling of the system, the 012 term

and to neglect the rest of the nonlinear terms. Notice that by so doing only small

deflections of the beam are considered, with possibly high angular rigid body

rates. In this case equations (2.16) and (2.17) will be the governing equations.

We shall first deal with the linear model. Let

~ 0 0K - [O K], 1 (2.19.1)

„ r
M=

I Q . (2.19.2)
. Q M _

We solve the eigenvalue problem

wßlüvj = KV) j = 0,1,2,...K. (2.20)

Let E be the modal matrix (the column j of which is the j-th eigenvector 1g), Q2

be a diagonal matrix with entries 60} (the eigcnvalues) and G be the transpose of

the first row of E with entries g.

Let C be definedbyEC

= (2.21)

2. Equations of Motion ll



then, from (2.17) and (2.18), the linear equations of motion become

Z + §22§ = Gu. (2.22)

In order to obtain a nonlinear model we define [1]

_ 7* O OD - E [O R _ M]E. (2.23)

thus, from (2.16) and (2.17), the nonlinear equations of motion become

Z + oz; = Gu — (GTÖZDC. (2.24)

2.3 Controllabilty of the Discrete System }

A necessary and sufficient condition for controllabilty of the system (2.22) is that 4

the eigenvalues are distinct and that every entry of the control-influence vector

G is nonzero [18].

Consider the eigcnvalue problem of the beam

°6°3}M1} = [Ci} j = 1,2,...k (2.25)

where the matrices K and M are given by (2.12.1) and (2.12.2). By the Inclusion

Principle [17, p.292] thceigenvalues of this problem satisfy

wj_, S 6} S 6)} j = 1,2,...k. (2.26)

2. Equations of Motion 12



Notice that wo is zero (the rigid body mode). Assume now that these incqualities

are satisfied in the strong sense. We will show that this assumption entails
(

controllabilty. First, with strong inequalities in (2.26), it is clear that the
_

eigenvalues wg, co], ...w,i are distinct. For the second requirement, notice that if

an entry gj is zero, then the associated eigenvector ig has a zero in the first entry. ·

Denote this vector by .
(

O
1; = (2.27)

1

Clearly 1] is an eigenvector of (2.25) with eigenvalue E} = co} contradictory to our

assumption. Therefore the system iscontrollable.2.4

NumericalResultsValues

for the system parameters have been selected to be apipropriate for an

aluminium beam that is 30 ft long and has a rcctangular cross-section with height

1 ft and thickness .25 in. These are representative values for a solar pancl [19].

The system parameters are:

Hub moment of inertia = 981 [slug —ft2]

Beam rigidity (El) = 3.49 >< 10* [lbf—fz2]

Beam length (1) =· 30 [R]

Beam mass distribution (m) = 0.109 [slug/R].
i

Following [1] the set of admissible functions is chosen tobe2.

Equations of Motion 13



‘I’j(x) = (1;-Y+* ;= 1,2,... .

It is important to note that, with this choice, the mass matrix is an i1l·conditioned

Hilbert matrix and therefore numerical problems might show up if roundoff er-

rors are not kept sufficiently small. The resulting natural frequencies are given

in Table 1 for a varied number of assumed modes. The first two nonzero fre-

quencies are also presented in Fig. 2.

It is of interest to compare these results with the associated values of the unro-

tating cantilevered beam. Fig. 3 presents the behavior of the first two nonzero

frequencies as the ratio between the total moment of inertia (I) and the beam .

moment of inertia (IB = I - 1,,) is increased. Fivemodes have been used to ap-
‘

proximate the deflections. The fixed cantilcvered beam is the limit case when the
5

U
hub moment of inertia approaches infinity. The first two analytical values for the

cantilevered case are w, == 2.211..., co, = 13.854..., and the natural frequencies are

converging to these values from above.

2.5 Goveming Equations For the Distributed Linear Model

Neglecting high order terms in the energy equations (2.3) and (2.4), the energies

become

2. equations of mioiaan I4



1
T (2.28)

0

_ 1 I ,,2V — — EIW dx. (2.29)
2 0

Applying I—Iami1ton’s Principlc (cquation (2.9)), the governing cquations can be

obtained

m(W + xä) + (E[w")" = 0, (2.30)

[ .

Iä + Wmxdx = u, ( (2.31)

along with the boundary conditions

w(O,1) = w’(0, 1) = w"(I, t) = w"'(I, t) = 0. (2.32)

Substituting W from (2.30) into (2.31) and intcgrating by parts, an alternative ·

form for (2.31) is obtained

[hä —- E[w"(O, 1) = u. (2.33) h

2. Equations of Motion 15



Table 1: Natural Frequencies

[J-1
SEC

Dimension ”
of

Approximation mo ml mz m3 ma

6 0 3.089 22.135

-

- 6
4

_

3.081 14.147. 74.380 -
6 0 3.080 14.102 39.864 66.20

2. Equations of Motion [6



3. Time Optimal Control for a Linear Discrete pa y

Model

In this chapter the time-optimal slewing problem is considered for a spatially

discretized linear system. Nonlinear effects, the effect of structural damping and

nonideal actuators are not considered in this chapter, but will be examined in

subsequent chapters. The problem is investigated in modal space in which a re-

duced model is used for the control design.

The time-optimal problem for finite dimensional linear systems has been thor- .

oughly investigated in the past forty years, and the theory today is quite com-
U

plete. For the system under consideration the optimal control is bang-bang, and

our main objective is to understand the switching structure.

A technique is developed to obtain the switching structure by parameter opti-

. mization and to verify the optimality of this solution by the Maximum Principle 3

[20] without having to solve the two-point boundary-value problem. Although

the technique is applicable to arbitrary boundary conditions, the discussion is
C
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conüned, almost exclusively, to rest-to-rest maneuvers which are of practical im-

portance. For the numerical examples given below, iive assumed-modes are used

to discretize the sysetm.

3.1 Problem Formulation

Consider the linear equations of motion (2.22)

(3.1)

Define

- __ Tx - [xl, x2, ...x„] (3.2)

where

x2i__l = Ci , xzl = Ci , 1,2... �

A, linear state space model is obtained

§(t) = A3c'(t) + bu(t) (3.3)

where

3. Time Optimal Control for a Linear Discrcte Model 18



0 1 (
0 0

0 l

A = —<¤i 0 , (3.4)
(
0 l

L L

-6olE 0

b=[0 gll0 gl . . .0 gk]T. (3.5)

Note that k is the number of flexible modes and n =2k+2 is the dimension of the

system. ·

The time-optimal problem is to find a measurable function u which drives

inminimumtime the state 55 from a given value .

= XD

to a target set

l
A

subject to

Iu(z)l sum ; Ogrsrf

where u„, is the maximum admissible torque. l

3. Time Optimal Control for a Linear Discretc l\lodcI
l
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3.2 Method of Solution

The system (3.3) is linear, marginally stable, and controllable. In the terminology

. of LaSalle [20] the system is also normal as a result from the one·dimensionality
A

of the control space (see appendix). Existence and uniqueness of the optimal

solution are guaranteed, and the Maximum Principle is a sufticient as well as

necessary condition for it. Singular subarcs can also be ruled out by normality

[20].

Let ü be the optimal control. The Maximum Principle asserts the existence of a

nontrivial solution l(t) for the adjoint ecluation

Ä(t) = — AT).(t) . (3.6)

A
Where ).(g) is orthogonal to Q, and , _ ’

= — u„,sgrz(Ä.T(t)b).
Y S

(3.7)Thus,

the optimal control is bang-bang and govcrned by a switchingfunctionNb.

The number of switching points is, however, unknown and, unlike the case

when A has real distinct eigenvalues, we do not have, in general, an upper limit

for it. At each switching point the switching function mustvanish.We

consider now the important case of rest·to·rest maneuvers, to a target point

xf (typically the origin). The solution to the problem can be obtained by param-

eter optimization. We formulate the following problem. ·

3. Time Optimal Control for a Linear Discrctc Model

I
20



Let {tl , tz , ....tm , 9} i.e. m switching points and the final time, be free parame-

ters.

Minimize the cost

J: tf

Vsubjectto

771

u„,hi(9) + 2um2( — 1)ihi(9-— 9) = xß — xoi. i = 1,2...rz (3.9)

f=1

where h,(t) are simple unit-step response functions. By the superposition princi-

plc, we consider the bang-bang control function as a linear combination of m +1

step functions. The first step starts at t=0, with amplitudc um, and the rest take

place at the switching points, with altcrnating signs, and with amplitudc 2u„, . 1

For the rigid body mode

h1(z) = 0.5(g„)z2 (3.10)

and

/120) = (g¤)¢- (3-11)

For the elastic modes
i

h2...i(¢) = w?2(g.)(1 — ¤¤S wir) (3-12)

3. Time Optimal Control for a Linear Discrete Model 21



and

_] ,
U U ”

h2[(t) =

wiNoticethat both the constraints and the cost are analytically differentiable with

respect to each parameter. This fact is very important in parameter optimization,

since gradient methods work with sensitivity derivatives of the cost and the con- T

straints, and these Uderivatives are evaluated, in general, at each iteration step.

Since the number of switchings is not known, and for any given number of pa-

rameters an optimal set may exist, we need to verify that the solution obtained

via parameter optimization is, indeed, the optimal solution. Recall that the opti-

mal control problem is guaranteed to have a unique solution.

The adjoint vector „l(t) is by the Maximum Principle _

— AT1
l(t) = e l(0) . n _ (3.14) A, . 2

Hence the switching function is
U

T .

bT).(t) = bTe°A 'l(0) . (3.15)

For each switching point t,, i = 1,2,...m we obtain

T —- Arx- ‘
b e 'Ä(0) = O . (3.16)

Construct the m >< rz matrix P _

3. Time Optimal Control for a Linear Discrete Model 22 °



bre- ATI,

P:
bT“?A I2 e (3.17)

{

bTe;AT""

to obtain
T

P„l(O) = O . (3.18)

We make the following observations:

1. l(0) is in the null space of P.

2. The nullity of P satisiies : dim ( null P ) = n · rank P.

3. By- the Maximum Principle there exists a nontrivial solution to the _

T homogenous adjoint equations. Therefore, if the solution obtaincd by parameter

optimization is the optimal solution, then null P is not empty.

4. lf the nullity is greater than 1, we may be able to use the transversality con-

dition for further reducing this subspace by intersecting the two subspaces.

5. Knowing l(0) the Maximum Principle can be veriiied by directly evaluating
T

„l(z).

6. We can use l(O) of the linear problem as a starting point (along with the

switehing points) for the two·point boundary-value problem associated with the

nonlinear model. _
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3.3 Computational Results

We consider rest-to-rest maneuvers where the system is to be driven to 55(Q) = 0

from

:?(0) = [ ·—x°, 0,0,0....]T . (3.19)

The time-optimal solution for the rigid body problem is very well known [20].

The solution for x° = 30 and u„, = 221.4 lb-ft is shown in Fig. 4 where the elapsed

time is normalized by Q. (To find the actual slew angle in radians one has to
”

multipy x° by go which, for our example, is 0.0226 sIug·Vt‘*. Thus, this example

corresponds to 0.678 rad or 38.8 deg.)

There is a single switching at the midpoint, and the terminal time is

Q = 2, /-§§§ = 4.90scc. (3.20)
C

Fig. 5 presents, in normalized time, a solution for the problem (for x° and um as

above), where the first elastie mode (w, = 3.08 sec·‘ and g, = 0.0219sIug‘[ft·’) is

taken into account. Solutions for the parameter optimization problem have been

obtained by an optimization program which employs an iterative procedure based

on a variable-metric gradient-projection algorithm [21]. It turns out that there

are three switching points: the original one at the midpoint, and two others sym-

metricaily located before and after the middle point. The terminal time is 5.00 sec.

The switching function, obtained by the null space technique, is also presented

to verify the optimality of the solution. lt is noted that for some initial estimates
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of the time parameters the optimization procedure found other solutions with

three switching points that failed to satisfy the Maximum Principle.

Fig. 6 and Fig. 7 present the results in a more familiar phase space. The trajec-

tories are parabolas in (x,, xz) plane, and ellipscs in (x3, x.,) plane.

As we vary the slew angle, the switching at the midpoint (in normalized time)

remains fixed, but the other two move as shown in Fig. 8. Fig. 9 shows

theslewingtime versus the slew angle for the problem. Notice that at certain points

the solution coincides with the rigid body solution. From Fig. 8 we conclude that

at these points there is, indeed, only one switching point (i.e. the rigid body sol-

ution). To explain this phenomenon one may evaluate the response of the one- r

mode elastic equation to the rigid body optimal control function to obtain ~ t

_2 � ,.,
·· (3-2*)

_] 2 (Uff
l

x4(zf) = - 2(glu„,)w s1n(-ä—)s1n (T). (3.22)

Henee, in agreement with the numcrical results, for countablly many points

which satisfy

= pn p = 0,1,2,... (3.23)

the elastic boundary conditions are satisfied by the rigid-body optimal control so

that the solution contains only one switching point. The matrix P is therefore

[lx4] with nullity 3. This is an example for a nonunique ,l(z) which determines a
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unique optimal control. As pointed out by [22], uniqueness of the control and its
J
being determined uniquely by the necessary condition have nothing to do with the

uniqueness of the direction ,1 (p. 64). For most cases, however, three switehing
O

points are required. From the numerical results, we conelude that for rest-to·rest

maneuvers, with one elastic mode, the matrix P is a [3x4] matrix with one-

dimensional null space (almost always). The initial adjoint vector is therefore
i

uniquely determined by the switehing structure.

In order to demonstrate a different situation we consider a minimum time

spin-up maneuver. The problem is to drive the system from the origin to
i

x(y) = [6, Q, 0,0] , (3.24)

where Q is given, 6 is free, and the cost to be minimized is again, the terminal

time. Notice that the target set (9 is now the entire x, axis, rather than a single

point. The method of parameter optimization however is still applicable. The
6

solution for the rigid body equivalent problem is, of course, a constantmaximumcontrol

torque. The solution for the elastic case (one flexible mode) is shown in,

’”Fig.10. There are two switehing points, and the symmetry is preserved. P

however, is a [2x4] matrix of rank 2 (and hcnce nullity 2). Based on the

transversality conditions, Mg) should be orthogonal to G), hence ).,(t) (which is

constant by the adjoint equations) is zero. This defines three-dimensional sub-

space, the intersection of which with null(P) yiclds the dcsired „1(0), and the

Maximum Principle can be verifled. The switehing function is also presented in

Fig. 10.
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We shall return now to rest·to—rest maneuvers to include the first two elastic

modes in our control design. Fig. ll presents the solution for our test case

x° = 30 ( wz = l4.l sec·‘ and gz = -0.005lsIug·Vt·2). The total time is only 0.004

sec more than the one elastic mode case. The number of switching points is five,

the symmetry is preserved, and the switching points seem to be small perturba-
F

tions of the one flexible mode case where the two new switching points take place

near the midpoint. Loosely speaking, in some integral sense, we may argue that

the process is converging. We shall come back to the convergence problem later

in chapter 6. An interesting question is whether the number of switching points

for rest·to—rest maneuvers with two flexible modes is always five or less (and

therefore is consistent with the real eigenvalue cases [20]). To answer this question

a different slewing angle is considered. Fig. 12 presents the optimal five switching

points for x° = 10 , the terminal time is very close to the one flexible mode sol-
l

ution but the Maximum Principle is not satisfiedl Further investigation reveals

a different solution made of seven switching points - Fig. 13 - which satisfies the

Maximum Principle, and yields a slightly better transition time. lt is noted that

the optimal solution is still a perturbation to the one flexible mode with two more

pulses created by the new switching points.

The residual energy (the energy stored in the uncontrolled modes) for the test

case of Fig. 4, 5, 8 was calculated using the five assumed modes. The energy is

5.08 Ibf—ft for the rigid body solution, 0.07 Ibf—ft for the one flexible mode,

and 0.009 lbf—ft for the two flexible modes. Thercfore, for this case, the error

obtained by controlling only the fundamental frequency is relativly very small.
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Two more cases have been studied in which we consider the beam rigidity El to

be 10% and 2% of its nominal value. Table 2 and Table 3 summarize the results
for the cost (the terminal time) and the residual energy, respectively. It turns out

that the first flexible mode is still dominant in determining the terminal time.

However, the residual energy may not be negligble under one·flexible-mode con-

trol. Consequently, for certain applications, more controlled modes may be re-quired. ‘ ·
The symmetry of the switching-point structure has been preserved in all cases.

We shall postpone the discussion of this interesting property to chapter 5 where

the damped and the nonlinear cases will be studied. In the meanwhile, we shall

present some interesting asymptotie properties of the solutions.
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Table 2: Terminal Time[sec]

EI (nom) 0.1 EI 0.02 EI

rigid body control 4.90
1-mode control 10.14 e
2—mode control 6.71 10.41
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Table 3: Residual Energy
[lb-ft]

EI 0. 1 EI 0.02 EI

rigid body control 293.5 136.2
1-mode control 0.07 0.243 4.047 W

2—mode control 0.009 0.032 i
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4. Asymptotic Behavior and Approximations

In this chapter we continue to investigate the time·optimal problem for the finite

dimensional model with the assumptions of the previous chapter. Based on the

previously given results, it is first assumed that the system response can be ade-

quately approximated by its rigid body mode and fundamental frequency mode.

A parametric study is carried Out where the stiffness, represented by the funda-

mental frequency, is taken to be a parameter. The asymptotie behavior of the

system with respect to this parameter is studied. The effect of the second mode
B

is then considered, by fixing the fundamental frequency while varying the

second-elastic·mode frequency. Based on this study, an approximation scheme is
I I

suggested for small slew angles by which the optimal control is given in closed-

form expressions.
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4.1 Asymptotic Behavior

Consider rest·to-rest minimum·time slewing maneuvers with one elastic mode.

The objective is to investigate the behavior of the solution as the flexiblity of the

system is changed by varying co. The basic structure of the solution, i.e. switching

at {q/2 —- A , Q/2 , t//2 + A} , is not affected by cu. The value of A however, varies

with co as shown in Fig. 14 (normalized to tf), for three different slew angles.

There are two asymptotes. For high w , A approaches zero, i.e. the rigid body

solution, while for low w , Ä E A/1} approaches (1/„/F2?). To understand this be-·

havior consider a zeroth order approximation for the elastic equation. As w —> O

the step response of the elastic deflcction /13(r)—>(g,u,„)r2/2 , and the terminal

value is by superposition

X30,) -—» tg.-«„.><¤/4 — 23%} - (4-1) 4

Since the system is driven to the origin it is clear that Ä —+ (1/Jg).

The rigid body response is for any co

X10;) = —2<° + (z:¤¤,„)(l /4 — ZÄZN} (4-2)

Therefore, g-> eo as co —>0. (Recall that when oa = O, the system is not con-

trollable.)

The behavior of the terminal time with co is shown in Fig. 15 on a logarithmic

scale. Again, there are two asymptotes. For high oa the terminal time is the rigid

body problem optimal time gr, while for low w the asymptotic line is

4. Asymptotic Behavior and Approximations 32



wg = corzstarzt. (4.3)

To explain this behavior we make a Taylor expansion for the elastic step re-

sponse function

2 2 4 4_ _ cu ·r oa 1: 2cos wr - 1 ——2 + --24 + .... (4.4)

Taking the iirst three items in the expansion we obtain

-2 22 mz-"
w (2i¤„.)(1 — ¢r>S wr) ~ (2i¤„,)( -2 — -2;-) - (4-5)

Under this approximation the terminal elastic deflection for cu —» 0 is by super-

position r

2 4 '
2 O4 5*x3(tf) _)

xohcnce

60:2 (4.7)f (güum)

which is in agreement with the numerical results. The break point of the two

asymptotes is by a simple calculation -

,/96
(Db =
T
.4.
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Note that (from equation (3.20)) tß depends on system paramters go , u„, and on

the initial value x° . An interesting fact that comes up from the optimization re-

sults, and could not be predicted by the asymptotic analysis alone, is that the
4

asymptotes provide a very good estimate for g over the entire domain of w.

We study now the effect of the second mode on this value by tixing the funda-

mental frequency to its nominal value (3.08 sec·‘) while varying the second non-

zero natural frequency. Table 4 presents the resulting costs for x° = 10, where

gi = 3.00 is the slewing time when only one flexible mode is considered and gz is
W

the minimum time when two flexible modes are considered. lt turns out the for

· > 2 the effect of the second mode on the slewing time is less then 0.5%.
A

We note that the switchingistructure is also affected by this ratio. For small

values of -90;-%- we have obtained five switching points, while for high values the

number of switches is seven, as in Fig. l3. .

4.2 Small Slew Angle Approximation

2 As already indicated, the number of controlled modes is ultimately determined __

by the particular application. The asymptotic analysis of the previoussectionprovides

a very simple approximation to the optimal control for small slew angles,
‘

when the one·flexible-mode control is suflicient. Notice that the approximated

step response (4.5) is valid when the argument wr is small. This may be the case

if either w is small or 1 is small. Hence, in a given structure, this approximation
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is valid for small slew angles where w is fixed but the transition time is small.

We pursue this idea in this section.

The first step is to find out whether or not a given slew angle is considered small.

A criterion for that might be

01 < wb (4.9)

where wb is the break point (a function of the slew angle). If this is the case we

can approximate the slewing time by _
i

..J. 384x .L (4.lÜ)

4 An approximation for the switching points is given by

1A=(-ä-———-527-)?. (4.11)
zgüumtf

Thus, we have obtained an approximation for the optimal control.

For example, let xo = 1. (For our system w = 3.08 sec·‘, goum = 5.0 sec**. )

Therefore

zh = 2 X pg
)°·’
=0.894wb

=—(T§§-= 10.9 sec .

Since the criterion (4.9) is satisfied we may approximate
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wg = = 8.76 sec.

Thus tf= 1.69 sec , and

”
- /L -._.;.i =A- 8 2><5.0><1.684

O'3'

The switching points are, therefore,

{0.337, 0.844 1.350}.

The optimization code yields g„= 1.613 sec and the switchings

{0.331, 0.805 1.279}.

Simulation results for the approximate and the optimal controls are presented in

Fig. 16 and Fig. 17 respcctivcly. Notice that the rcsidual enegry of ·the approxi-

mation is not zero. Depending on the mission requirement this resulting values

may or may not be admissible.
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‘ Table 4: Terminal Time for Two Flexible Modes

‘°2
1.036 1.294 4.741 6.672

ldvl

cfz i

..„.. 1.1600 1.072 1.0053 1.0009 1.0000
8;
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5. Some Extensions

In previous chapters we have considered a simplitied model for the rotating flex-

ible structure. We have neglected both, structural damping and inherent nonlin-

earities associated with the slewing maneuvcrs. The problem has been further

simplified by assuming ideal time response (zero lag) for the actuator. This as-

sumptions enabled a simple parameter optimization schcme to be applied, the

solutions obtained by which have been shown to possess interesting symmetric

and asymptotic properties.

In this chapter we aim to extend these results by considering the prcviously

neglected effects of structural damping and nonlinear ’centrifugal’ stiffness. The

problem of realistic actuator with iinite (nonzero) time lag is also studied where

the time lag is taken as a parameter.

These extensions require two·point boundary-value problem solver for the nu-

merical computations since an application of the simple parameter optimization,

although feasible, is signiticantly complicated by the new formulation.
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5.1 Damping

For simplicity, we introduce constant damping coefficients fi , j = l,2,...k in the

modal space. The state space formulation of section 3.l is still valid where the

matrix A is changedto0

l
0 0

E

0 l _
—w2 — 2C wA = 1 _ _* 1 . (5.1)

0 1
—w§ ·-5„w„The

time-optimal control problem can still be solved by the parameter optimiza-

tion schcme (section 3.2) with appropriate step response functions. Another .

possible approach is to solve directly the two-point boundary-value problem with

initial iteration data taken from the simpler, undamped solutions. We shall pur-

sue this latter approach here, since it also applies to the nonlinear problem and

to the nonideal actuatorcase.In

order to transform the problem to fixed boundaries, as required by the nu-

merical schcme, we intoduce a new independant variable _ A T A

(5.2)
‘

f

The terminal time satisfies

5. Some Extensions 39



dtf 0 5 5gg- · ( · )

Equation (3.3) is transformed to E

Ü .— — .

dr - (Ax -1- bu) tf _ (5.4)

and equation (3.6) to p i

dx _ _ T ‘ 1
der - A Ag. t (5.5)

The boundary conditions are now given at r = 0 and at ·c = l

.Noticethat (5.3)-(5.5) is a (2n+1) dimensional set of nonlinear differential

equations (n being the dimension of A) resulting from the free terminal time of

the originally linear problem.

Solutions for the problem have been obtained using BOUNDSOL, a computer

code which employs a multiple shooting algorithm to solve two-point boundary-

value problems [23]. Fig. 18 presents the optimal solution for the test-case

(x° = 30) with one flexible mode and where é, = 0.01. The number of switching

points has not been changed by the damping effect, but the symmetry has been

broken. The intcrmediate switching point is not at the midpoint, and the other

two are not equally distant from it. The change in the transition time with re- ·

spcct to the undamped case is negligible.
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5.2 Nonlinear Effects

As already indicated in chapter 2 we shall retain for the analysis the nonlinearity (

term associated with the ’centrifugal’ stiffness, neglecting the rest of the nonlinear

term. The terms considered become significant in fast slewing maneuvers which

are of interest in this work. The equations of motion are therefore (2.21)

Z + :22; = GU —- (c;'é)21>;. (5.6)

Let _

1 O 0 O 0 0 . .
T1: 001000.. (5.7)

0 O O 0 l 0 . .

0 1 O O 0 0 . .
” (

T2: 000100.. (5_8)
0 0 0 0 0 1 . .

where both matrices are (%>< rz). Using our former definition for 5?, equation

(3.2), we obtain

C = TIE, (5.9)

i: T22; i (5.10)

The state space representation is therefore
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5?(r) = A5?(t) + bu(z) — T§(G TT2>?(z))2Tl5c'(t) Ej(5?(t).u(t)) (5.11)

where A and b are given in equations (3.4) and (3.5). To solvc the time-optimal

problem (for rest·to-rest maneuvers) we define the Hamiltonian

H(5i, u, A) = 1 + }.Tf(:?, u). (5.12)

By the Maximum Principle [20]

u(t) == — u,„sgrz().T(t)b), (5.13)

- öH(>?(¢)„ ut:). Mo)
Ä·(t = —·———···+··—···——· i= 1,2....rl, (5.14)1 ) Öxzit) E

and

H(x(tf),u(y), l(tf)) = 0. · (5.15) . (

Thus, the solution is either bang-bang or singular. lt is noted that existcnce of a

solution is guaranteed by the convexity of the hodegraph [20], but uniqueness and .

nonsingularity can not be guaranteed due to the nonlinearity of the system.

Fig. 19 presents the solution for the test·case maneuver (obtained by

BOUNDSOL) where one·f'lexible mode has been taken into account. Similarly

to the linear case the solution is nonsingular, the number of switching points is

three and their symmctry is prescrved. The solution is, in fact, a very small per-

turbation of the linear case. The problem was solved with two elastic modes and n
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similar results have been obtained. In order to further investigate the nonlinear
’

effects we increase the maximum admissible torque by the factor 10P,where)p

=0,1,...6. The angular velocities, and hence the nonlinear effects, should in-
S

crease accordingly. Numerical results for the one-flexible-mode case indicate that
‘

the switching·point structure is preserved.

The distance between switching points Ä is shown in Fig. 20 for both linear and
S

ß

nonlinear solutions. As expected, the linear solutions approach the small-

transition-time asymptotes (w is fixed). The nonlinear solution has a smaller

asymptotic value. The transition time is presented in Fig. 21 on a logarithmic

scale. The asymptotic straight line of the linear solution has a slope of -0.25 as

predicted by (4.7). The solutions for the stiffer nonlinear system have, as ex-

pected, a smaller transition time. Fig. 22-23 present typical trajectories for the

linear and nonlinear systems respectively. For this example p =3. Notice that the

displacements for the nonlinear system are significantly smaller. By the nonlinear

term, the switching-function curve (6) has been distorted from being a simple

linear + sin, but it is still nonsingular and it has the same number of

symmetrically-located switching points. g

5.3 Symmetrie Properties of Rest-to·Rest Maneuvers

We have found numerically that for the undamped system, linear or nonlinear,

the solutions for rest-to·rest maneuvers possess the symmetry
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u(t) = — u(Q—t), (5.16)

and that this property is not preserved if the system is damped. To prove this.

fact analytically we make two basic observations.

1. Rest-to-rest maneuvers have the property that if u(t), t6[O, Q] is the .

minimum-time control which slews the system by 0 then ·u(t), t6[0, Q] is the

minimum-time control which slews it by - 0. This may be called spatial sym-

metry, and it holds for both the linear and the nonlinear model, with or without

damping.

2. The equations of motion for a conservative system are invariant with respect

to time direction . This may be called temporal symmetry and it holds for the

undamped system only. (linearity has nothing to do with this property.)

In particular, equation (5.6) is invariant under a change of the independent

variable from t into ?= Q- t. However, an introduction of a damping term ITC,

where IT is any constant matrix, breaks this temporal symmetry. In solving the

time-optimal slewing, for a conservative system, one may use the temporal sym-

metry to reformulate the problem with the new independent variable F. The

symmetric property (5.16) is now obtained from the spatial symmetry, since the

same differcntial equations hold for moving forward or backward in time, but the

rotational maneuver is reversed.

We note that this result is valid for other cost functionals as well. This is con-

ürmed by the results presented by [3-5] for LQR problems. A proof for the

time-optimal control problem of the linear system is also provided by [15]. The
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proof is by construction and it lacks the explanatory power of our approach.

Moreover, it cannot be generalized to a nonlinear model or to other costs.

5.4 Nonideal Actuator

Consider the linear undamped system of equations (3.3). We assume first order

actuator’s dynamics

- 1u(t) = T ( —u(t) + uc(t)) (5.17).

where uc is the commanded torque and 1 is defined to be the actuator’s time

constant. We augment the state equations with the actuator equation to obtain .

dJ/?(t) A ,„ A
i

—-E- = Ax(t) + buc(t), (5.18)

where

J? = (5.19)

A :.i. 0 .
A = T , J (5.20)

b A

and
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A ~
b = T (5.2]) V .

The time-optimal control problem is to find uc which drives

A -_ O

l

Xo — xo

to 3 I31'gCI set (Ö lll minimum IllT1C, SL1bjCCI to

Iuc(t)I S um. (5.22)

The system is normal [20] and the unique solution is bang-bang determined by

A dt
— — A x.(t), _ (5.23)

V

Al ^T^ ^uc(t) = -— umsgn(b Ä(t)) = — u,„sgn}.](t), (5.24)

and 2(tf) is orthogonal to G). For rest·to-rest maneuvers with a freeterminaltorque

this last condition yiclds :l,(tf) = 0.
I

Fig. 24-25 present trajectories for the test-case maneuver with 1 = 0.5 sec and

1 = 0.1 sec , respectively. Notice that the number of switching points is still three,

and that they are shifted backward in time (with respect to the ideal actuator

case). The terminal time is increased by approximately 1 seconds. Solving the

problem for other values of 1 we obtain switching points as shown in Fig. 26. The

transition time is shown in Fig. 27 and the residual energy in Fig. 28. Based on
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this results one may design the system, trading off residual energy with transition

time, similarly to the technique suggested by [10].
li?
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6. Problem Analysis in Infinite DimensionalSpaceln

previous chapters a spatially discrete model has been used to model the flexible

structure of interest. In this chapter the time-optimal control slewing problem

isanalyzedin infinite dimensional space. We set up abstract evolution cquations

in a Hilbert space with an energy-like norm, and we demonstrate the well-

posedness of the model. lt is shown that, under this formulation, the system is

approximately controllable. The system, however, is not exactly controllableinthe

proposed Hilbert space. The time·optimal control problem is analyzed next, {

and a discussion about convergence properties of the approximatcd solutions is e 4given. ‘ I
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6.1 ModelFormulationThe

linearized governing cquations are (section 2.5)

m(ti>(x,t) + xä(t)) + (EIw"(x,t))" = O, P (6.1)

I,,ä(t) — Elw"(0,t) = u(t), (6.2)

with the boundary conditions
i

w(O,t) = w'(0, t) = w"(I, t) = w"'(I, r) = O. (6.3)

Recall that El is the beam rigidity, m is the mass distribution, I is the length of

the beam, I,, is the hub moment of inertia, u(t) is the angular orientation of the

hub, w(x,t) is the transverse deflection of the beam, and u(t) is the applied control

torque.
()’

is a derivative with respect to x, and (P) with respect to t. We follow

[24] in the state·spacepresentation.Let

6¤(r)
,z(r) = w"(x,t) (6.4)

vi¤(x,t) + xdc(t)

in the state space Z = R >< L2 x L2. Then, formally at least, the system (6.1)-(6.3)

can be written as
{

2(z) = Az(r) + bu(r). (6.5)
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The operator A is

0 Ä 60 0Ih

EI 2 (

where 60 denotes evaluation at x =0, and D denotes differeniation with respect to

x. The domain of the operator A is given by

D(A) = {(21,22, 22)2R >< H2 >< H2 l 22(0 = 0, 2’2(!) = 0, 22(G) = 0, 2’2(0) = 21}

(6.7)

where H2 is the appropriate Sobolev space [25]. 0

We define an inner product on Z to be

1 1
< Z,y > = Ihzlyl0

0

so that the square of the induced norm is twicc the energy of the system.

The operator b is bounded 2

1;* ' ,
b = 0 . (6.9)

0
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We shall prove that A generates a Co contraction semigroup. It can be shown

that A is closed and that its domain is dense in Z. We shall ealculate
A*,i

the

adjoint oparator. By definition, if O = < Ay, ii? > — < y, W > for everyy6D(A),_then

{Ö = A*‘(i»I>'). __

Thus,

1 1
O yznwsdx

0 0

~
( „ ’

„..— Ihylwl — EI]. yzwzdx —
mj}

y3w3dx. (6.10)
0 0

lntegrating by parts, we obtain by the fundamental lemma of the Calculus of

Variation~

El — „ ~ — „ ~ El —
w3=7yTW2 ¤w2=—W3 »W1

= W’;(0) I @(0 =
W’z(0 = @(0) = 0- (6-I I)

Thereforc, A is skew-adoint (A" = — A). By Phil1ips’ theorcm [26, p l88]iwe

.concludethat A generates a norm·preserving group.

To include oc in our state vector, we consider the space W= R >< Z , and aug— .

menting the z vector by cz
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Z = ,
�·(z) am (6 12)ZU)

we obtain the state equation
A I

, A A .

ä'(t) = AZ(1) + bu(t). (6.13)

Where .
1

^ 0 €1
A = ; = I O O 6.14[0 A] er 1 1 ( 1

with the domain .

D(Ä) = R >< D(A). (6.15)

Here is given by

^ 0b - [A]. (6.16)

We define the inner product

1 1
1 (

< 2,5)- > = Eli} ‘l' [hä-ziz 'I" 'l"0 0

Ä is composed of an infinitesimal generator of a CO semigroup
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O A
’l° °]

plus a bounded operator

[O 91]
O 0 °

Therefore, by standard theorems [27, p. 76], it generates a Co semigroup S on W

(no longer norm·preserving).

6.2 Exact and Approximate Controllability

A system is said to be exactly controllable if it can be driven in a finite time from

any given point to every point in the state space. Since the operator b is compact,

and the state space is intinite·dimcnsional, it can bc concluded that the system is

not exactly controllable in Z (or W) [26, p.233].

lf the set of all reachable points is dcnse in the state space, then the system is

approximatcly controllable. We shall show that the system (6.5) is approximatcly

controllable.

A sufücient condition for approximate controllability is given in [26, p.235].

Suppose that for some T > 0

b°‘eAx'z=O for O$t$ T (6.18)
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implies z=O, then the system is approximately controllable.

For the system (6.5)

eAX'
= EA', (6.19.1)

bx = [1, 0, 0]. (6.19.2)

Substituting (6.19) into (6.18), we obtain . ‘

[1,0,0]
e”A'z

= c§z( -t) = 0 0 S t S T. (6.20)

which implies

ä(—t)=0 0StS T. (6.21)

The homogeneous solution to equation (6.2)satistiesw"(0,

—-t) = 0 0 S t S T. (6.22)

Hence, the homogeneous solution to equations (6.1)-(6.3) is

w(x, -—t) = 0 0 S t S T. (6.23)

Thus, z in (6.18) is necessarly the zero vector and the system is controllable.

We have not obtained a similar proof for the system (6.13) in the space W.

However, iinite-dimensional approximations indicate that controllabilty is pre- »

served for the extended system (see section 2.3).
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6.3 Time Optimal Control
l

Consider now the time·optimal slewing maneuver to a given point in W. We as-

sume the existence of a control function that accomplishes this task in a

finitetime.The existence of time-optimal control (and an optimal time T) is then] ' 4

guaranteed [26].
C

We can apply now the bang-bang principle [see Appendix] ( I; is constant and

bounded) to claim that for every 6>0 there exists a bang·bang control (the

number of switchings is tinite) that drives the system in the time T to an 6 - -

neighborhood of the target.

We want now to further characterize the optimal control, thus we are looking for

_ a certain form of· the Maximum Principle. Since I; is compact, the attainable set . -

is compact and, therefore (being also closed), it cannot contain an interior point 1

(since a compact set in a Hilbert space of intinite dimension can not have an in-
(

tcrior point [26]). ln this case a boundary point is not necessarly a support point 1

and, therefore, the Maximum Principle is not directly applicable [26]. lt is, how-

ever, possible to apply the Maximum Principle (as in fact we have done in previ· -

ous chapters) to ünite dimensional subspaces of W, to obtain an approximated

sequence of (bang-bang) controls. Notice that by assuming the expansion (2.10)

11
w(x-i) = 2m(¢)‘l’1(x)„(6-24)1:1
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we are considering a projection to subspace W,, of W spanned by n =2k+2 basis

vectors [19]

1 0 O 0
0 1 0 0; ; ; 6.250 0 X1/,..(x) 0 ( )
0 X

0wherei=1,2,...k.The

state space equations in this subspacc are

2..10 = Ä„‘é„(0 + $„~10 . (6-26)

where 2,, = P,,2 (the projection of z to W,, ), Ä, is an operator in W,, which gener·
[

ates a semigroup S„, and b\,, is a bounded operator from R to W,,. The machinery

of the assumed·mode method has been used in chapter 2 to construct represent·

ations in R" for Ä,, and b\,,.

We assume that for every 26 W. 0

S,,(z)P,,2 -» $(:).2,(6.27.1)‘

and that X

A A _
b,, —» b. (6.27.2) y

Consider rest-to·rest slewing maneuvers. Let 17,, be the time-optimalcontrolwhich

drives P,,z„ to the origin of W„ in an optimal time T,,. Assume .
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T,, —> T. (6.28)

To justify this assumption we note that by increasing the order of the approxi-

mation we increase the number of the controlled modes, and we also increase the

flexibility of the structure. Thus, from previous work, we anticipate a monotone

increase of 7],, and therefore a convergence from below to T.

1],, is a bang-bang control governed by a switching function 6,, [26]

^x x

A

6,,(t) = b,, S,, (T,, —t),1,,, (6.29)

where ,1,, 6 W,, , IA,,I = 1. For our system we can rewrite the last equation

6,,(t) = < 6,,, S:(T,, —t)}t,, > = < S,,(T,, — t)6\,,, ,1,, > . (6.30)

A subscquence of 1,, converges wcakly to ,1,, (because I,1,,I = l), renumbering it

we obtain

,1,, —> 2,, weakßz. (6.31)

Since

S,,(T,, — t)6,, —> 5'(T — t); strongßr, (6.32)

we concludc that

6,,(t) -> < S(T— Ol], ,1,, >. (6.33)
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Thus, unless flo = 0, the solutions converge to a bang·bang optimal control in

L2(0,T). Notice that the case A0 = 0 cannot be cxcluded a priori in our formu-

lation. It is noted that recently Fattorini [see Appendix] discussed the convergence
9

problem in a more general setting for the time-optimal control problem.
f

Fig. 29-30 present the switching functions for the two cases studied in chapter

3, for one, two and three controlled modes (k=0, k=l and k=2).· The controls

seem to converge in l„(0,T) by the fact that new switching points are either per-

turbations of the old ones, or else they apear in couples, creating narrow pulses r

with a negligible effect on the integral from to T. · -
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7. Time Optimal Control with Penalty on the

Control Effort

In this chapter we consider a different approach for fast maneuvers of flexible

spacecraft. As opposed to the pure minimum-time problem, the cost here is a
I

weighted combination of the terminal time and a measure of the control effort

(soft-constrained time optimization). The problem is solved for the discrete sys-

tem by solving the associated two-point boundary-value problem. The increasing

value of the natural freqencies in modal space is a key point in the development

of a singular-perturbation technique which decomposcs the modal space into re-

duccd and residual subspaees. The basic approach is to tix the terminal time by y . p

the reduced model and to provide a correction to the redueed model control by

the solution of a residual problem..7.
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7.1 Problem Formulation

We consider the linear state space model (3.3) (omitting the bar from x)

x(t) = Ax(t) + bu(t) (7.1)

where

0 1
0

0 0 l
0
l-602- 2§ 60A:2

"*CUk °_°2§kU.)k

2 b=[0 gll 0 gl . .
I.
.0 gk]T. (7.3) 7

The optimal control problem is to find a mcasurable function u which drives the

state x from a given value x(0) to a target point x(tf) while minimizing 7

J 1 V 2 _
= tf+ -5 pu(t) dr , p > 0 , (7.4)

0

i.e. a weighted combination of the terminal time and a measure of the control ef-

fort.

7. Time Optimal Control with Pcnalty on the Control Effort 60



7.2 Optimality Conditions [

The system is linear, stable, and controllable and the cost is strictly convex. Ex-

istence and uniqueness of the optimal solution are, therefore, guaranteed, and the

Maximum Principle is a sufücient as well as necessary condition for it [20].

Let E be the optimal control, we deiine the Hamiltonian

H(x, Ä., u) = l + -ä- puz + Ä.T(Ax + b u) . (7.5)

We obtain by the Maximum Principle

Ä.(t) = — A T).(t) , (7.6)

¤7(¢) = — b”‘(ZT(¢l bl,
n
(7-7)

and -

H(x(t), l(t), E(t)) = 0. . (7.8)

The optimal control can be constructed by solving a two—point boundary·value

problem. Normalizing the system by the unknown terminal time, wc obtain (the

independent variable is the normalized time 1 = t/tf)

dz]-
-:1;- =

0 , (7.9)
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dx _
dr - (Ax -1- bu) tf _ (7.10)

dl _ _ T
df -

A Ä. tf , (7.11)

and the boundary conditions are given at 1 = 0 and at 1 = 1 .

7.3 Computational Results

The two-point boundary-value-problem was solved by a Multiple-Shooting Al-

gorithm (MSA) [23]. The system was discretized by the first three assumcd

modes of (2.10) and the damping ratio for all modes was 0.02. The rest-to-rest

slewing problem was investigated, where the system is to be driven from

61 = [-16,0,....0].T,

to the origin, while minimizing the cost .1 with p = 10*‘ (chosen to produce rea-

sonable controls and costs).

Three cases were considered. A rigid body problem where only the zeroth natural

frequency is taken into account (case a), a rigid body plus the fundamental fre-

quency problem (case b), and a system with two elastic modes (case c). The time

histories of the optimal solutions are presented in Figures 31-33, where the ter-

minal time is 2.0 , 2.46 and 2.45 seconds respectively. As might be expected the
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terminal time converges as we increase the dimension of the truncated model. In

fact, we could fix the value of the terminal time as obtained by case b, and then

solve case e as a fixed duration problem, minimizing the control effort, to obtain

a good approximation for the higher dimensional case (Fig. 34). _

For the linearized system, the problem, after fixing the time, islinear and thus

easy to solve. For the nonlinear model or for problems where a higher dimen·
C

sional model is necessary in order to obtain the convergence in the terminal time,

it is tempting to try to construct approximate solutions by a perturbation from

the reduced order, already obtained solution, and by so doing, to reduce the ·

computational effort. This reduction provides, therefore, the motivation for a
”

.

singular perturbation approach. '

”7.4
Solutions by a Singular Perturbation Technique e

We partition the state equations

xl, A0 O xo bo
A

. = + . 7.12[el lv b. “
‘ )

The optimal control problem is to drive the system from 1

x0
x =

’lolto
the origin in a given time tf, while minimizing -
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— l V 2J(u) = -—— u(t) dt . (7.13)
2 0

The adjoint set of equations is

2 AT 0 7
.° =-— ° T ° , (7.14),1, 0 A, Ä.

and, by the Maximum Principle

E:-—b„.=.„-6„t,E§„+ü, . .

(7.15)Basedon the increasing value of the natural frequencies we make the following T

assumptions:

1. Ix„(z;ä',)| < < lx„(t; E10)! ,(7.16)2.

6«,(z; .7,,) ~ — Af1b,E„(z).(7.17)Where

x(t;u) is the response at time t due to the control u (with zero initial con-

dition). The idea behind the first assumption is that the equations of the lower

natural frequencies behave like low-pass filters to the high frequency content of
T

the control function. The second assumption assumes a zero time lag in the re-

sponse of the high frequency equations to the slowly varying part of the control.

These two assumptions form the basis for the singular perturbation algorithm. ··
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A reduced system is formed by neglecting the high frequency content of the

control (in accordance with the first assumption). We obtain the reduced state

equations
W

1%,, = Aoxo + b„u,, , (7.18)

and the boundary conditions

x(0) = x° ; x(r,») = 0 . (7.19)

Mi_nimizing .7(u„,) we obtain the reduce order optimal control Ü, . The residual

state equations are

ak, = A,.x, + b,u, . (7.20)

However, the target point is now (in aceordance with the second assumption)

x,(tf) = Af1b,Ü,,(tf) . (7.21)

(For the initial condition, we may or may not assume that the steady-state re-

sponse has been obtaincd. lt turns out that it has a negligible effect on the

optimal—control time history for this problem.)

Let Ü, be the optimal solution minimizing 7(u,) . The optimal solution of the ori-

ginal problem is thus approximated by thecomposite7.
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We may use the problem of the previous section as a numerical example. Fig.

35 compares the exact solution of case e with a composite solution obtained from

case b and a residual correetion. The approximate control for this example is in

excellent agreement with the exact optimal solution.

As indicated earlier, the computationally more important cases are problems _

with nonlinear models or problems where the reduced model is necessarly of high

dimension (e.g. closely spaced natural frequeneies). The system under investi-

gation belongs to the former class of problems. Fig. 36 and Fig. 37 present time

histories for a linear and nonlinear models ofthe system respectivly. Two flexible

modes were taken into account. The final time is fixed and is equal to 1 second.

Notice that the linear is more flexible than the nonlinear case.

Fig. 38 compares the exact nonlinear solution with an approximate solution ob-

tained by singular perturbation. The reduced model is, again, the one flexible

mode case and the residual model is the equation of the second elastic mode. The

approximate results are in good agreement with the results for the unreduced

model of two flexible natural frequencies.
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8. Conclusions and Recommendations

8.1 Summary and Conclusions
8

p.

In the course of this work, the problem of singlc·axis time-optimal slewing for a

flexible structure has been studied using several mathematical models with dif-

ferent dcgrees of complexity. The first model was a truncated lincarized model.

The problem has been transformed to a constrained parameter optimization
4

problem, and a verification method has been developed to remove the inherent ·

uncertainty of the parameter optimization. This approach can be applied to other

problems where the solution is known to bc bang·bang and it is not restricted to

our specific application. e

With the motivation to synthesize a control law for onboard computers, certain

approximations have been suggested based on asymptotic properties of the sol-

utions. In these approximations the control strategy is given in a very-simple «

closed form.
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Based on the linear model, the nonlinear problem has been solved by a Multiple

Shooting Algorithm. Some interesting symmetrie properties of the switching

structure are shown to be common to both models. The MSA has been further

used to remove two other idealizations, the assumption of no·damping and the

assumption of ideal actuators. By removing the latter assumption, a family of Y

solutions has been eonstrueted to demonstrate the effect of the aetuators’s time
A

*

lag on the time-optimal solutions.

The problem has been studied in Hilbert space with energy-like norm. After

showing well-posedness the controllabilty issue has been addressed. lt has been
(

shown that the system is approximately but not exactly controllable in the pro- 6

posed space. Approximate solutions for the minimum-time problem are shown to

converge through the convergence of the switching function. J

The last problem addressed in this work, is a minimization of time and control; i

effort (soft-constrained time·optimal control problem). Being simpler than the

hard-constrained problem, a singular-perturbation technique can be applied to it,
( 4

to reduce the computational effort. This idea can be applied to a broader class .

of problems.

We note that the hard-constrained and the soft-constrained problems are not .

entirely independent. The optimal control of the latter, equation (7.7), has the

same form as the switching function of the former, hence a certain correlation

exists between the two. For example, the number of switches in theone-flexiblemode

case is the same as the number of zero crossing of the soft-constrained
(

~

problem control function (Fig. 32). For small transition times (Fig. 36) these b
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zero·crossing points approach the asymptotic value of the time·optimal switches.

Indeed, the solutions of the soft-constrained problem as p -+0 approach the

time-optimal solutions as um -+ oo.

8.2 Comparison with Some Other Works

We have already indicated that the time-optimal slewing problem has been

studied by others in the past two years. Since only preliminary results have been

reported, any comparison will be necessarily partia}. We shall discuss briefly the

works of Rajan [13], of Baker and Polak [I4], and of Singh, läabamba and

McC}amrock [15].

In [13] the problem is studied in a linearized truncated space. The target set,

however, is an 6 ball in this space rather than a single point. This relaxes the
8

problem to some cxtent and affccts the solutions. The computationa} approach

is to directly solve the two-point boundary-value problem, which, in spite of the

analytica} integerability of subarcs, is still a computationa} burden. To the extent

that the set-target solutions can be indicative to point-target solutions, a com-

parison of the results is sufliciently good. In particular, the observation made

about the perturbation-like character of the switches is in agreement with our

analytica} and numerica} results.
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The approach in [14] is to consider the problem with the nonlinear term in infi-

nite dimensional form, relaxing the target to be an 6 ball around the target point.

The algorithm is conceptually a gradient method, and it requires discretization in

space (FEM) and in time. The computational effort is signifieant. The compu-

tational results are in qualitative agreement with ours. The switching structure

obtained is consistent with the one·flexible mode case of our formulation.

The approach in [15] is more similar to ours. The problem is considered in a

truncated linearized modal space, and the target is a point. The discussion is re-

stricted to rest-to-rest maneuvers. ln stead of the parameter optimization tech-

nique described above, the problem in [15] is transformed into solving a set of

. nonlinear equations by homotopy methods. The algorithm actually uses the

symmetric properties of the switches and a proof is provided to establish this fact.

As already indicated, theproof in [15] is restricted to the linear time-optimal .

control problem. ln general, there is an agreement between the results of [15] and

the results obtained in chapter 3 of this work (see also [16]). The two approaches

seem to be, more or less, equivalent in the computational effort. Our approach is,

however, less specific and can be applied to other maneuvers and to other prob-

lems with or without structural elements. The nonlinear system and the real-

aetuator case are not considered in [15].

1
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8.3 Reeommendations

It is important to emphasize that open-loop control, based on just a few modes,

is probably inadequate for systems with many, closely·spaced, natural frequen· B

cies, especially if the knowledge of the system is not complete. This, unfortu-

nately, is often the case for large flexible structure. For these systems, closed·loop
A

control, based on actual measurements, is necessary. A practical approach in

space missions (for time·optimal maneuvers) might be a combination of our

open-loop approach with the closed-loop approach of [11,12]. Thus, it is sug-
A(

gested to control, in an open-loop fashion, the first few elastic modes, and in a

closed loop, perhaps by a different control device, the higher modes. ·The forcing

term, taken by [11,12] in the elastic equations, is now less destructive,‘and the

control effort will be diminished accordingly. We believe that even controlling the ,

fundamental mode (perhaps via asymptotic properties) might be beneficial. This,
A

p

however, is left for further study to determine.
‘

Another idea for further study is to include structural parameters in the time-

optimization process. Thus, we can imagine designing a system, withcertainfunctional

and structural constraints, to meet the target of minimum time. The

parameter optimization technique of chapter 3 is completely adequate for this _

process and some interesting results are expected. ·

Beyond the scope of the particular problem of time·optimal slewing we believe

that the ideas of chapter 3 (parameter optimization technique with optimality
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verfication) and chapter 8 (singular perturbation based on natural frequencies)

can be applicable to other applications in future research. o
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Appendix : A Brief History of the Minimum-Time

Problem

Introduction

The history of time-optimal problems is also, to some extent, the history of opti-

mal control theory since this class of problems marked the way to most important

developments in this field. Hermes and LaSalle [22] indicated that there is no

other problem, in control theory, about which our knowledge is as complete as in

case of the finite-dimensional time-optimal control problem. Most of this know-

ledge was developed during the years 1949-1960, in two important centers, the

RAND corporation in the US and the Academy of Sciences of the USSR. An

important contribution, namely the bang-bang principle, is also credited to

LaSalle himself. The time-optimal control problem in inünite-dimensional space
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has been investigated ever since 1960 and this process has not been completed

yet.

We shall try to sketch here the history of the problem, examining the main ideas

and concepts rather than going into mathematical details. Therefore, we shall

confine the discussion to contributions of a more general and basic nature rather

than to specific problems and applications of time-optimal controls.

The Calculus of Variations Approach

The first minimum-time problem, known as the brachistochrone problem, was

proposed and discussed by the Bernoulli brothers in the seventeenthcentury. A

bead deeends by gravity along a frictionless wire, and the problem is to find the l

shape of the wire for a minimum time of dccent. Problems in Calculus of Vari-

ations of a similar kind have been continuously considered ever since, and nu-

merous ideas and techniques have been developed to deal with them.

During the Second World War a German aircraft designer A. Lippisch [28]

applied the methods of the Calculus of Variations to control problems of atmo-

spherie flight. Unfortunately, he did not get the right formulation of Euler-

Lagrange equations for his problem. ln 1949, M. Hestenes at the RAND

corporation considered a minimum-time problem in connection with aircraft

climb performance [29]. He applied the methods of the Calculus of Variations,

considering it as the problem of Bolza by means of a device used by Valentine.
[

He was among the first to formulate the Maximum Principle as a translation of
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the Weierstrass condition. Unfortunatly, the original work [29] was never pub-

lished and these results were not available for a considerable time. Berkovitz [30] ,

presented l—lestenes’ work and indicated that it is more general than the Maxi-

mum Principle, since the case of state-dependent control bounds is also included,

where the Maximum Principle considers only controls that lie in a fixed closed set.

Phase Plane Approachs

A
The first work to consider the time·optimal control problem, outside the frame-

work of the calculus of Variation, was Bushaw's Ph.D. dissertation in 1952, under

the guidance of Professor S. Lcfschetz, at Princeton University [31,32].

1-le considered the following nonlinear oscillator y
1

X + g(X. X) = d>(X. X). (1) X

where ¢>(x,y) assumes only the values -1 and 1. We are to find 42 that drives in

minimum time the state (x, x) from (xo,y„) to the origin. This formulation was

motivated by the intuition that using the maximum available power yields the

best results for the minimum-time problem.
‘

The approach was to study possible trajectories in phase plane. lt was shown
W

that only ’canonical paths’ are candidates for optimal trajectories. A ’canonica1

path' does not contain a switch from -1 to 1 in the upper half plane (at > 0) or a

switch from +1 to -1 in the lower half plane (x < 0). Solutions were obtained for

the linear case, i.e. where g is a linear function, with complex eigenvalues.
A
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As indicated by LaSalle [22], this approach could not be generalized to problems

with more degrees of freedom. One idea however, in this work has been general-
[

ized. Bushaw asserted that: If A is the solution of (I) starting at point p, and

p' is any point on A , then the solution curve starting at p' is that part of A which

follows p'. A direct generalization to this is the principle of optimality.

In the same year, LaSalle [33] showed that for equation (1), given g, if thereisa

unique ’bang-bang' system which is the best of all ’bang-bang' systems, then it

is the best of all possible systems operated from the same power source . Thus, it

is the optimal solution for every gb that satisfies Id>(x,y)I S l. This seems to be A

the first time that the terminology ’bang-bang' was applied to time-optimalproblems. '
At the same period of time, a similar phase plane approach was applied to _

time-optimal problems in the Soviet Union by Fel’dbaum [34]. In particular, °

solutions were obtained for the double integrator system ,

.56 = u (2) ·

iu(t)i S M,

and the problem of driving the system from point to point in minimum time.
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The Maximum Principle
3

A general approach for the time-optimal problem was developed by Bellman,

Glicksberg and Gross [35] in 1954 at RAND Corporation. They considered the

linear differential equation: y

x(z) = Ax(z) +j(r), (3)

where A is a (nxn) constant matrix with stable eigenvalues, and f is a n dimen-

sional vector of measurable functions j} and Ij§(t)I 5 1.

It was shown that there exist f that drives the system to the origin in minimum

A time, and that for this f I j§(t)I ==l . In addition to that, for real distinct

eigenvalues, the number of switchings was shown to be no more than (n-1).

The approach applied to obtain these results is even more important than the A

results. They investigated the properties of what is called today the set of

attainability, and showed that it is convex, that it is closed and that it varies

continuously with time. It then follows that there exits a unit vector (normal to

a supporting hyperplane) that satisfies a certain inequality which later has been

named the maximum principle.

The n-dimensionality of the control space in Bellman’s work is, of course, a

veryseriousrestriction, and as it has been shown later an unnecessary one.
1

The Maximum Principle itself has been developed at the same time in the

Mathematics Institute of the Academy of Sciences of the USSR by a group of

scientists under the leadership of Aeademician L.S. Pontryagin. The original
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proof for the Maximum Principle was based on the properties of the cone of

attainability [36] obtained by variations of the control function. Application of

the maximum principle to the linear time·optimal control problem yields a I

switching structure similar to [35].

Gamkrelidze [37] and Krasovskii [38] also considered the more general linear

system

1t(t)= Ax(r) + Bu(z), (4)

where A is as above, B is a (nxm) matrix and the region for the controller u is a

polyhedron in R"‘. It was shown that if a certain condition called ’the general

position condition' is satisiied then there exists a unique solution to the time-

optimal control problem. This condition has been renamed by LaSalle who called

it 'the normality condition'.

In spite of the similarity in the approach and the results between the RAND

group and Pontryagin’s group, they seem to be independent developments [39],
I

like some other great achievements in the history ofscience.The

Bang-Bang Principle

In the late
50’s

LaSalle developed his 'bang·bang’ principle for linear systems

[40]. He showed that for the system (4) any point that can be reached in a given

time by an admissible control, can also be reached, at the same time, by a bang-

bang control, i.e. where u(t) is, almost always, on a vertex of the given _
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polyhedron. Applying to the time-optimal control problem, this means that if

there is an optimal control then there exist also a ’bang-bang' optimal control.

Therefore, if the optimal control is unique, e.g. if the system is normal (in the

sense of the normality condition), then the unique solution is bang—bang.

LaSalle considered also a wider class of systems of the form (4) namely ’proper .

systems’, that turned out to be completely controllable systems. He showed that

for these systems optimal controls are, almost always, on the boundary of the

polyhedron. Every normal system is proper, but a system can be proper without

being normal. If, however, the system is proper and; the control is a scalar, then

the system is also normal.

Based on the observation made about the adjoint vector as a unit normal to the

attainable set, a geometrie interpetation for the maximum principle was offered
N

by LaSalle. The optimal control selccts the direction which maximizes its compo-
i i

nent in the direction of the outward normal to the attainable set. Strict convexity ..

of the attainable set means a unique optimal solution, but does not meana B N

unique adjoint vector because of possible eorners in the boundary.

In 1969, Hermes and LaSalle summarized the knowledge about the time-optimal

problem for systems of ordinary differential equation in their monograph Func·
U

tional Analysis and Time optimal Control [22]. A complete discussion is given _

for existence and uniqueness of solutions for linear systems as well as a brief

dis-cussionof the nonlinear time-optimal control problem.
N
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Infinite Dimensional Space

L. V. Egorov [4l] was among the first to generalize the Maximum Principle to a

certain class of equations in Banach space. He was followed by H. O. Fattorini

[42] who considered a general problem in Hilbert space which is a natural exten-

sion of Bcllman’s problem [35] to infinite-dimensional space. Let

6)wherex(t) and f(t)”are in Hilbert space H, Ij(t)I
Is
l, and A is an iniinitesimal

generator of a strongly continuous semigroup. It was shown, by the weakly

compactness property, that if there is a control that drives z, to 2,, then there is
S

also a time-optimal control that does it. Moreover, this control is unique and it

cannot contain sub-arcs with Ij(t)I < l.
’ [ [

A. Friedman [43] extended these results to Banach‘Spacc, and obtained further j
[

results concerning the uniquencss problem in Hilbert space. He showed that if

A in (5) is a generator of a strongly continuous group S, and if there is a

time-optimalcontrol where T is the minimum time, then there is p¢ O in the state

—spacesuch that the time—optimal control satisfies
[

„ S°°(T- t)p r
A ¤(O =——7———. (6)!$ (T- Op!

where S*‘ is the adjoint of S. The optimal control is therefore bang·bang justlikethe

tinite·dimensional case. lf A is only assumed to generate a strongly contin-
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uous semigroup, then the attainable set may not have an interior point, and we

can only asserts the existence of a weakly convergent sequence of bang-bang

controls. This result had been previously proved by Balakrishnan [44] for the

more general case (a natural extension to [37])

1&(t) = Ax(t) + Bu(t), (7)

where u and x are not in the same Hilbert space and where B is a bounded linear

operator, and Iu(t)I s 1. In particular, he proved that if the semigroup is com-

pact, or if B is a compact operator, then there is no interior point to the attainable

sst and the optimal control is a weak limit of a bang-bang sequence.

Fattorini [45] also generalized the bang-bang prineiple to inünite dimenional

space and asserted that a response to (7) can always be approximated by a

bang-bang control. -

G. Knowles [46] continued in the 70’s to investigate the conditions for the sol-

ution to be bang-bang, a situation which he called
’normal’

as a naturalextensionof

LaSalle’s originaltcrminology.Since

most infinite-dimensional systems do not possess exact (point to point)

controllability, but only approximate controllability (a dcnse set is always attain-

able), Knowles [47] and Ahmed [48] discussed a time-optimal problem with a

target set B(z,,6)= {zzlz-·z,l $6}, rather then exact hitting. Existcnce and

uniquness of the solution were discussed along the same lines of the previous

formulations.
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A problem of recent interest is the convcrgence of approximated (typically,

linite-dimensional) time·optimal solutions to the optimal soltuion of the original

system. Carja [-49] and Fattorini [50,51] discussed the properties of suboptimal

controls of this kind and gave sufficient conditions for convergence.
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