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Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France 

Abstract. It is shown that every system of time-ordered products for a local 

field theory determines a related system of Schwinger functions possessing an 
extended form of Osterwalder-Schrader positivity and that the converse is true 

provided certain growth conditions are satisfied. This is applied to the q~34 

theory and it is shown that the time-ordered functions and S-matrix elements 
admit the standard perturbation series as asymptotic expansions. 

I. Introduction 

The present paper is a sequel to [EEF], in which some of the existing models of 

field theories in 2 space-time dimensions were considered. In order to study the 

dependence of the S-matrix on the coupling constant, time-ordered functions were 

constructed in a natural way, by taking essential advantage of the local in- 
tegrability of the Schwinger functions. (This very property served to define the 

Schwinger functions as distributions defined everywhere, including coinciding 
points.) In other models, more singular Schwinger functions occur, and the 
method of [EEF] cannot be applied. In this paper, a general discussion of the 

connection between Schwinger functions and time-ordered products is given and 
applied to the q~ theory. We show that any Wightman theory equipped with time- 

ordered products possesses Schwinger functions (considered as distributions over 
the whole Euclidean world, including coinciding points) which exhibit "extended 

Osterwalder-Schrader positivity'. Conversely, given a set of Schwinger functions 

possessing this extended positivity together with growth properties similar to 
those of [OS2], it is possible to supplement the constructions of lOS 1, OS2, G 1] 
with a construction of time-ordered products, in a canonical manner. Finally we 
consider the model q~ and, starting from results accumulated in the literature 
[G2, GJ, Fe, FO, MS 1, MS2, B, FR, C-I, we extend to this model the analysis of 
[EEF], showing in particular that the time-ordered functions and the S-matrix 
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elements are <g~ in the coupling constant near 0 and that their Taylor series at 0 
are given by standard perturbation theory. 

In the remainder of this introduction we shall state the "axioms" which 
respectively characterize time-ordered products and Schwinger functions and the 
theorems relating these two notions. Sections II and III give the proofs of these 

theorems and in Section IV we discuss the application to ~034. 

I.I. Axioms for Time-Ordered Products 

(These "axioms" simply restate the standard postulates but, for reasons of 

convenience we take the anti-time-ordered products as the basic objects.) Here, IW 

denotes the v-dimensional Minkowski space. 

T1) Hilbert Space. ~ is a Hilbert space in which a continuous unitary repre- 
sentation a°--,U(a°,O) of the time translation group IR operates. There is a 
normalized vector ~2 (vacuum) such that U(a °, 0)f2=f2 for all a°~lK 

T2) Spectrum. U(a °, 0) = exp ia°P °, p0 = H > 0. 

T3) (Anti)-7~me Ordered Products. There is a dense subspace D O of ~ containing 
f2 and invariant under U(a °, 0). For every n > 0  and every f~SP((IW) ") a linear 

operator T(f) is defined on D O and ~I'(f)DoCD o. [We also write 

5Y(f) = ~ 5F(x 1 ..... x.) f ( x  1 ... . .  x.)d~xl.. ,d~x..] 

Furthermore, for every feSP(IW"~), 

S  (Xl, . . . .  

f (x l ,  ..., x,~)dxl...dx,,v/ (1) 

is defined for each ~peDo, belongs to Do, and depends continuously o n f  in the 
topology of 5 ~. It is assumed that D o is the subspace generated by the vectors of 

the form (1) with tp=~.  

T4) Symmetry. For each n > 1, T(xl, ..., x,) is symmetric, i.e. for each permutation n 

of (1 .....  n), 

. . . . .  

[This will allow us to denote T(X) the distribution T(xj~,...,xj,.) where 

X = {j~, ...,L}. We denote T(0)= i.] 

T5) (Anti-)Causal Factorization. Let X = {1,..., n}, X = P ~ Q ,  Pc~Q =0. Then (on 
Do) the two distributions T(X) and T(P)T(Q) coincide in the open set of tW" given 

by 

{(xa,..., x.)lVje P, Vke Q, x, ° < x°}.  (2) 

[We define T(X) (the "time-ordered operators") through the polynomial 

expression 

T(X)= Z ( -  1) Ixl+vZ* T(I1). ' .T(I,), (3) 
1 =<p__< [Xl {xj} 
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where ~ *  runs over the set {Ia, ...,Ip4=O, l a u . . . u I p = X ,  I f~Ik=O for j=~k}, and 

T(0) = 1.] 

T6) Hermitieity. On Do, T(X)*= 7"(X). 

T7) 77me Translation Covariance. For every feS:(lRW), every a°elR, every ~P~Do, 

U(a °, 0) T(f)  U(a ° , 0)-1 = T(fa)~ where fa(xi, . . . ,  xn) = f ( x  i - a,..., xn - a), a = (a °, 0). 

Remark. Most of the ensueing construction is independent of the underlying 
Hilbert space structure and could be done for any system of distributions having 

only the linear properties of (f2, T(X1)...7"(X,)(2 ). 

In relativistically invariant theories additional conditions are imposed: 

T8) U extends to a continuous unitary representation of the Poincar6 group, 
leaving the vacuum invariant, mapping D o into itself and T7) is extended in the 

usual way. 

1.2. Axioms for Schwinger Functions 

A system of Schwinger functions is defined to be a sequence {S,},~ of tempered 

distributions such that: 

S1) Soe¢:. For n > l ,  S, eS:'(IW"). Here IR TM is regarded as (g~)", g~ being the v- 

dimensional Euclidean space in which a special orthogonal basis (eo, e 1 .....  e~,_ 1) 
has been chosen. A point y in E ~ will be specified by its coordinates in this basis 
(yO, yl . . . .  ,y , - l ) ,  usually denoted (y0,y). The scalar product is given by 
v--1 

/y,~ = yoy,o +yy,. 

j=0 

$2) S, is symmetric, i.e. for every permutation n of {1 ....  , n} and every feS:(N*"), 

S , ( f ) = S , ( f j ,  

where J~(Yi, ..., Y,) =f(Y~l, ..., Y~,). 

$3) S, is invariant under Euclidean time-translations, i.e. for all a = ( a  °, 0), and for 

all f~  5r(IW"), one has 

s , ( f )=  s,(L) . 

With the functional notation this reads 

S,(y 1 .. . . .  y , )=S, (a+yl ,  . . . ,a+y,) ,  (a = (a°,0)). 

$4) Extended Osterwalder-Schrader Positivity. Let { f,}n= t,2 ..... N be any finite 
sequence of functions such that 

a) f 0 e C ;  for n >  1, fneS:(IW" ). 
b) For each n > 1, the support of f ,  is contained in 

{(yl,.. . ,y,)ly °-->0, v j =  1 .....  n}. 
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Then 

E ~L,(( , o v , ~ . . . ,  . . . ,  _ y . . . . . .  ( _ y,O, Y0)  f.((yO, Yl), (yO, y,,)) 
O<m,n<=N 

, , ,  ~ ,  ~ d ~ , , _ d y l . . . d  ymd Yl . . .  Y,S,,+,(Ya,-'-,Ym, Yl ... .  ,k~,) >0" 

In other words if for any 0~SP(IW ") we denote 

(~99)(Yl,..., Y,) = 9 ( ( -  yO, y,),..., ( _ y0, Ya)), (4) 

the above condition reads 

Z S,, +.((6)fro ) ® L )  > O. (5) 
n)m 

Remark. The only difference between these hypotheses and the O.S. axioms is that 

O.S. positivity is replaced by extended O.S. positivity. As a consequence many 

steps in the construction of Section IIL1 are repetitions of those appearing in 

lOS 1, OS2, G 1]. They are included for the sake of logical continuity. For related, 

partly overlapping assumptions and developments see also [H, F, DF, GJ2, Y]. In 

particular Condition $4) appears in [H, DF, Y]. 

$5) Full Euclidean Invariance. 

The following property will play a crucial role in the reconstruction of time 

ordered products. 

$6) Growth Condition. There are constants K, L, s such that for all n and all 

f ~  5~(IW), j = 1 . . . .  , n, 

Is.(L®...®L)I < K"n!L f i  IfL. 
j = l  

[ l'ls denotes the Schwartz norm 

tf[~ = sup [xaO=f(x)t.] 
x,o =<l~l,I/~l =<s J 

1.3. Resu l t s  

Two systems respectively satisfying the "T" and "S" axioms are naturally related if 

they satisfy the following condition: 

R) If fsSe(]W"), f ~ ( x l , . . . , x , ) = f O ,  x ° , x l , . . . , 2 x ° , x , )  for real 2>0,  and if the 

mapA-*fi, can be extended to a continuous map of the angle {2e~,121>0, 

Re2>0,  Im2 >0} into 5e(lW"), analytic in the interior of this angle, then 

S i"f~(xl," ", x , ) S , ( x l , "  ", x,)d~x~ '' "d~x, 

= S f ( x  t , . . . ,  x,) (£2, T(x 1,..., x,)f2) d~x 1...d~x, - (6) 

Remark. The conventions of this paper differ from those of [EEF] in that 

S ( x , .  x,) o .. _xO, x,). 
. . ,  : S E E F ( - -  X 1, X 1 , . ,  

We are now in a position to state 
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Theorem 1. Given a system of (anti-)time ordered products satisfying T1)-TT) one 

can construct a unique system of Schwinger Junctions satisfying S1)-$4) such that R) 

holds. 

Conversely, one has 

Theorem 2. Given a system of Schwinger Junctions satisfying S1)-$4) and the growth 

condition $6) one can construct a unique system of  (anti-)time ordered products 

satisfying T1)-T7) such that R) holds. 

Corollary 3. The inclusion of T8) in the assumptions of  Theorem 1 implies that $5) 

holds in its conclusion, and conversely for Theorem 2. 

Comment. Our assumptions are formulated for the case of one neutral scalar field 

A(x) = T(x)= T(x), but it is straightforward to extend all our considerations to the 
case of any number of fields with arbitrary charge, spin, and statistics. [In fact, in 

the application to q~34 we shall need the fields cp, ~02, cp 3, cp 4 as basic objects.] The 

symmetry conditions T4) and $2) can be recovered by considering all fields to be 

the components of a single object. 
In Section IV we show that the Schwinger functions of the ~04 theory satisfy the 

conditions $1)-$6). 

II. Proof of Theorem 1 

II.1. Euclidean Time-Ordered Operators 

We assume that a system satisfying T1)-T7) is given. It will be useful to construct, 

as intermediate objects, operator valued distributions (9(xl, ...,x~) which can 
formally be thought of as T(ix °, x 1 . . . .  , ix°,x~). Let D1 be the intersection of the 
domains of the closures of all finite products T(f~)... T(fN), (initially defined on Do), 

where fj~(IR~PJ). The operators (9 shall satisfy: 

(90 If ~6D1, and if f ~ ( I R  v"+~) has its support in 

{(x~ . . . . .  x,, v)elg v°+ 110 _<x ° < v,j; 1,... ,  n} (7) 

then 

(9(xl,..., x,) e- v u v f ( x ,  . .., x,, v)dxl. . .dx,dv 

is well defined, belongs to D 1 and depends continuously on f 

(92) For any f ~ ( I R  *") and w = u + i w ¢  with v>0,  such that 

supp. f c  {(xl, ..., x~)elR"lVj, 0 <x  ° <v},  

and for every vsD1,  (9(f)eiW"v is defined, belongs to D l, depends continuously on 

f and holomorphically on w. 

(93) Symmetry. (9(xl, ..., x , )=(9(x~,  ..., x~,) for every permutation re. 

[We again introduce the notation (9(X) as for the T,, and we define (9(0)= 1]. 



100 J.-P. Eckmann and H. Epstein 

(94) 7~me Translation. For 0_-<x °__<v, (1 <=j<=n) and t>0 ,  and all ~peD1, 

e - ' n  (9(x l, . .., x , ) e - V n ~  = (9( x'1 . . . .  , x',)e-(V+ ')n*p 

with x} ° = x ° + t, x) = x~, 1 < j  < n, with obvious notations. 

x ~ v n  . 0 0 (95) Factorization.  In the open set {(Yl, . . . ,YW ~ lyj < Y ,  for every j =  1, ...,p and 

every k = p +  1 . . . . .  n}, 

e (y l , . . . ,  y,) = e ( y , , . . . ,  yp) (9(yp + 1,.. . ,  y,) 

as distributions, on D r 

(96) Let X 1 .. . .  ,X r be any partition of {1 . . . .  ,N} and let Z1 , . . . ,Z  t be any partition 

of {N + 1 .. . . .  N + p}. Then, for every f e  5P(IR v(u + P)) having support in 

{(xl, ..., xN, zN + 1 . . . .  , zu + p)lj e X  t, k e X  s, t < s ~ 0  < x ° <= x ° <= b } , 

the vector 

cI) = S elWon (9(X1). . .e i . . . .  H (9(Xr)e(iw'-b)lt 71"( a1).  . . ~"( at)~"2 

f ( x l ,  ..., xN, zN+ 1 , ' " ,  ZN+p) dVxl "''d~zu+p 

is well-defined, is in D1, depends holomorphically on Wo,..., w r for Im w j>0 ,  and 

for every fi there is a constant Ce such that (for Im wj > 0), 

IlDe~[I <C~(1 +lwl)LlflL+l¢l 

where L depends only on N + p ,  and where Jw I =~]wj[. 

The operators (9 are naturally related to the operators T by the following 

condition : 

R') Let geSP(lW "+~) have support in (7) and denote, for 2>0 ,  g ~ ( x l , . . . , x , , v  ) 

= g(2X10, X 1 . . . . .  2X O, x,, 2v). Assume that the map 2--+g~ extends to a continuous map 

of 

{Am ~;1121 >0, Re2 > 0, Im2 >0} (8) 

into 5~(IW "+ 1), holomorphic in the interior of (8). Then for all ~peD1, 

(9(x 1,..., x , ) e -  ~ ,pgi (x  1,.. . ,  x,,  v) i" + 1 d~x 1... dVx, dv 

= S 5 r % ,  ..., x , )e  *pg(xl, . . . ,  x, ,  v )d~xl . . .d  x ,  dv .  (9) 

Remark.  The r.h.s, of (9) makes sense. 

P r o o f  With our choice of D1, it is clear that e~WH~ exists for every ~peD 1 and every 

w = u + i w ~ 2  with v > 0  and is in D r It is cg~o in w and holomorphic when v>0.  

Moreover there exists, for each N an L and a C such that for any partition 

X1,. . . ,Xr of {1, ..., N}, and any f~,SP(IRvU), 

][~ f ( x  I , . .  ., xN)eiw°n~F(Sl)eiwlH.. .eiW-~ ~n-T(Xr)f2 

dXl...dxNII <= c(1 + Iwl)qflL 
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with wj  = uj + iv j, vj > 0, (0_<~ </). This clearly implies 

IID~ ~ f ( x ~  . . . . .  xN) e ~woH rF(X~). . .e  i . . . .  nrF(X~)f2dx~. . .dxN] ] 

<=Clflt(1-q-lw[)L[f[L+lfll. q.e.d. (10) 

The construction of (9(X) is obtained by an induction on p/[. Note that C(X)  has 
been defined for X = 0 as (9(0) = 1. We assume that (9(X) has been defined for all X 

with IXI < n - 1 ,  with all the properties (.01)-(96), R') and we construct (9(X) for 

X={1  .. . .  ,n}. More precisely, let Z = { n + l , . . . , n + p }  and z = ( z , + l , . . . , z , + p ) ,  

Z = Z 1 w... uZ~, (with Z j n Z  k 4 = 0 for j 4= k). We shall define, for all f e  ~(1R TM + 1 + ~p), 

with support 

suppfC {(Xl, ..., x , ,  v, z), 0 <-_ x ° <= v, j e X }  

the vector 

(tl) 

(9(X) e -  vH rF(Z 1)"" 7"(Zr)t? f ( x l  . . . .  , x , ,  v, z) 

dVx l ' "dVx , ,dvd~z ,+ l""dVz ,+p"  (12) 

(We shall concentrate on the case n > 1, the case n = 1 being a simpler version, left 

to the reader. We also assume Z 4= 0; the case Z = 0 is a trivial variant.) 

There is in fact no freedom left in defining (9: for a radially analytic test- 

function g, (9(g) is determined by R'); for a test function vanishing at coinciding 

points, it is determined by the factorization property (95) and by already 

constructed operators. We shall see that any test function can be written as a sum 

of functions of the two preceding types. 
We first indicate how to decompose an arbitrary function. For this we use two 

auxiliary functions which we now define. Denote y = n-  l(x 0 + . . .  + xO), o ~j = x~ - y, 

l < j < n ,  (so that ~ ~j=0) and let ~=(~1 . . . .  ,¢,-1). 
jeX 

T h e  Jhnc t ion  c~ L. L is a positive integer and, for all teN, 

C~L(t) = O(t)tae(i - l~ t_  L2 [ e_ipt( 1 _ i -  ip) - L -  l dp .  (13) 
27~ ~ 

More generally, for every complex 2 with 121 >0  and 0 <arg  2__< ~, 

L! 
o~ L(t) = O(t);~.LtLe (i- 1);.t _ .( e- ip,(1 -- i - -  i;~.- l p ) -  L -  1)o- ldp  ' 

' 2zr 

and, in particular 

~ L(t) = O(t)iLtL e -  (i + l)t _ L !  [ e -  ipt(1 -- i - -  p) - L - 1 ( _ idp).  

(14) 

(15) 

Note that 

2 ( 1 _ i + 2 - 1  ~1L+I ff[] °:Z,L(t)=Ll(~(t)" (16) 
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The Function w:w(~, y) is a real function over IR" such that 
1) w is homogeneous and of degree 0, i.e. for all Q > 0, w(0~, 0y)= w(~, y). 
2) w is cgo~ in IR"\{0}. 

3) The support of w is contained in the cone 

{(~,y)[O<y;O<y+n4j forall j = l  .. . . .  n}, 

(we recall that 4 , = - 4 1 -  . . . -~ , -1 ) .  Expressed in the variables x°=y+~j, this 
reads 

( o n - l &  k ] 
~o, ...,~o)ivj,~ j - - 7 -  L ~o_-_o~. 

k=l .9 

n 2 - ( n -  1)  2 n - 1  o< y<2y.  
o > - ~ -  y hence x i = n Note that this implies x~ = - = 

4) 0_<w<l.  

5) O~w(O, y) = 0 for all ]fl[ > 1 and all y 4:0 : w(0, y) = 1 for all y > 0. 

It is easy to construct such functions: take w(4, 1) to be any cgo~ function of 

4 = (41 ... . .  4,- 1) such that 0 ~ w(4, 1)< 1, w(0, 1)= 1, D~w(O, 1)= 0 for all JflJ > t, and 

suppw(~ , l )C{~:0<n4j+ l  foratl j= l , . . . , n - l ,O<__l -n41- . . . -n~ ,_ l } .  

Note that 0 is an interior point of this set. Then define 

w(4,y)=w(~/y, 1) for y>0 ,  and w(4,y)=0 for y_-_0. 

The Decomposition of f Fix L (to be determined later). Consider any 

f e  5P(IW" + 1 + ~p) with support in {(xl, ..-, x,, v, z)[0 < x ° < v, VjeX}. 
Define cp by 

q~(4, x , y , v , z )=- (L! ) -a (1 - i - i~yy  - 2,~vv) ~ . c~ ~r+ 1 (1 _ , _ i ~ v  ) .  0 ~L+I 

f((41 + Y, xl), ...,(4,+y,x,),v,z), (17) 

where 4, Y have been defined previously. 

By Equation (16) it follows that f can be written as 

f (x  a ..... x,,v,z)= S dadbq~({,x,a,b,z) 

~i ,L (Y  - -  a)o~i,L(V - -  2 y -  b + 2a). (18) 

q~ is in 5f(lW ("+v)+ 1) as a function of all its arguments, and has support in 

{(4,x,a,b,z)l~j+a>=O,(l ~j<n),O<=a<_b}. 

Furthermore, 

t~PlR =< Const I f  JR + 2 L + 2' 

(the constant depending only on R and L). 

We decompose f into two parts, f=fo +fl  by defining 

f ,  (x, v, z) = ~ dadbai, L(Y - a)~i. L( v -- 2y -- b + 2a) 

[ M + I  y~ ] 

Z ~D~o(O,x,a,b,z)[ w(4,y-a).  (19) 
}~[=o t-,- 3 

M > 0  will be chosen later. 



Time-Ordered Products and Schwinger Functions 103 

Definition of  O(fo). Denote again y = n - l ( x ° +  +x°,), o ... ~j~-xj--y,  (1 < j < n ) ,  
4=(~1,---, 4,-1)" Let g be the subspace of Y(]W "+I+~'p) consisting of functions 
having their support in the set (11), and let go C g be the set of functions in g which 
vanish in a neighborhood of 

{(xl,  .. . ,  x , ,  v, z)l 4 = 0}.  

Lemma 4. A function g e 8  o can be written as 9= ~ 9a,B, A t J B = X ,  Ac~B=O, 
A,B 

A, B •0, with supp gA, B C {(Xl, ..., X,, V, z)tX ° <X °, Vj~A, ksB}.  

The proof is deferred to the end of the subsection. 

We now define for geeg o 

S (9(X)e- o~ ~(z , ) . . .  ~(zr)ag(x, ~, z)dx dv dz 

= ~ ~ (9(A)(9(B)e-~H ~F(Z 1)... ~F(Z~)fjgA, B(x, v, z)dxdvdz. (20) 
A,B 

This definition is forced by the requirement (95) (Factorization). The r.h.s, of this 

equation is well defined according to the induction hypothesis and is bounded in 

norm by Const [gA,8[R (the constant and R depend only on n +p). It is easy to see 
by standard methods, (see e.g. [EG 1,2]), that there is a K > 0  such that (for all 

g~d~o) the expression (20) is bounded in norm by Const. Ig[K. 
The function f l  defined by (19) is not cgoo but it belongs to the completion of 

5~(IW,+ 1 + ~p) in the norm I IM, and 

[filM =< Const. [Cpl2M + 1 =< Const. [f[2M+2L+ 3, 

provided we have chosen L >=M + 1. Its support is contained in 

{(xt, ,X,,V,z,+l, ,Zn+ )[YjeX, O<x°<v}  

Hence f0 has the same properties and, furthermore, vanishes together with its 

derivatives of order < M + 1 when 4 = 0. As a consequence if we replace f by fo in 
(12), the corresponding vector is well defined by our previous discussion, (formula 

(20) with 9=fo)  and bounded in norm by Const.[folM<COnst. lflzM+ZL+3, 
provided we choose M > K .  

Definition of  (9(f O. The function f l  can be re-written as 

f l(x,  v, z) = ~ dadb~Po(~ , y -  a, v -  b, x, a, b, z), 

where ~0 o = ~0o, 1, 

[M+I 2lfl[ 4fi ] 

~, L(2V-- 22y). 

This function is radially analytic (with respect to the variables 4, Y, v) and has 
support in (11). Hence the requirements (94) and R') force the definition: 

(9(X)e-"~T(Zl)...  T(Zr)~2q~o(4, y -  a, v -  b, x, a, b, z)dxdvdz 

= ~ e-  °~ ~ ( x ) e  ~ -~ + °~'~ 7r(z~)... ~ ( z ~ ) o  

mpo, _ ~(~, y, v, x, a, b, z) i -"-  ld4dydvdxdz. (21) 
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The r.h.s, of (21) is a well-defined vector: considered as a test function in the 

variables ~ ,y , v , x , z ,  depending on the parameters a and b, (0o_ ~ belongs to the 

completion of 5 ~ in the norm IIM, (with the condition L ~ M + I ) ,  and is an 

admissible test-function if M is sufficiently large. Moreover, 

sup (1 + a + b) R kOo(..., a, b)] M =< Const. ]q~12M+ 1 +R 
a,b 

_-< Const. ]f]2M + R + 2L + 3" (22) 

Thus we can integrate (21) over a and b and define 

f (9(X)e-~HT(Z1) . . .  ~f(Zr)fafl(x, v, z ) d x d v d z  

= .[ e -  ~H ~(X)e(i~ - b + ~)u T ( Z I ) . . .  T(Zr)f2 (23) 

mpo, _ ~(~, y, v, x,  a, b, z ) i - " -  l d ~ d y d v d x d z d a d b .  

This completes the definition of the vector (12), which is bounded in norm by 

Const. [fl4u + a. 

Verification o f  the Properties (91)-(96). The vector constructed above is independent 

of L > M + 1 because it is easy to check (by using the induction hypothesis) that i f f  

happens to be radially analytic in the variables 4, Y and v, then so are fo and f l  and 

the above definition yields exactly 

5F(X)eiVU~(Z1). . .~(Zr) f2f((_ixO,  Xl) , .  • o . . ,(-zx,,  x,), - i v ,  z) 

( _  i),+ 1 d , x l . . . dVx ,  dvdz,+ 1" "dz,+ v" 

(We omit the details of this verification. An analogous verification is sketched in 

Section III.) Thus (91) and R') are satisfied. 

Having defined vectors of the type (12), we now wish to define 

(9(X)e-~U 7"(Z O.. . 5F(Z y 2 g ( X l ,  . .., x, ,  z,+ ~, ..., Zn+ p)dVXl ...dvzn+ , ,  

where v > 0 and g eSP(IR ~("+p)) has its support in 

{(x 1, . . . , x , , z )  : g j e X ,  O <=x° <=v} . 

This can be rewritten, formally, as 

[. (9(X)e li~- ,m 7"(Z z ), .. 5F(Z~)~2g(x 1, ..., x,,  z ,  + 1, .. ., z,, + p) 

/ 8 t  Q+I 
(Q !)- 1 [1 - i + %(t )  d t d x d z  

= ( o ( X ) e  - z', + , )  

(Q!)-I  t - - i +  gt] ~Q(t)dtdxdz  

where ' -  o z k - (z k - t, zk), (n + 1 _< k_< n + p). By integrating by parts over t this becomes 

(9(X)e(-°+ fc(z  . . z , ) a  

K o g ( x  1 . . . . .  x, ,  z,+ 1 , ' " ,  z ,+p)c~o(t)dtdxdz,  
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where 

K o g ( x  1 . . . . .  x . ,  z .+ 1 . . . . .  Z.+p) 

Ote+l  z' z' "' =(Q!)-I 1 - i -771  0(x,. . . ,x. ,  .+1,..., ,+p~.~=o. 

By analytic continuation in t, this becomes 

f (9(X)e-  (~ + t)n 5F(Z 1 ). . .  5F(Zr)DKog(x ' z ) %  e (t)idt d x  dz ,  

and, for Q sufficiently large, this has been defined previously. 
The same formulae evidently lead to a consistent definition of 

~I'( Y1). . . ~F( Y~)ei~ (9(X) - ~ 7,( Z O. . . T( Zr)f2 

h({y}r~ . . . .  y~, x ,  v, z ) d x d x d v d z  . 

This shows that all such vectors do belong to D r 
This proves (92). The properties (93), (94), (95), (96) follow from the construction, 

from the corresponding properties for the T,, and by analytic continuation. We 

omit the details of the verification, which are entirely straightforward. 

P r o o f  o f  L e m m a  4. We consider, in the space of the variables ~, the "sphere" E 
consisting of all ~ verifying 

Z ( ~ -  ¢0 ~ = 1 
l<=j<k<=n 

(Note t at Z e) 
l<=j<k<=n l<j<_n 

For any ~eE, there is at least one pair of distinct j and k, such that ~ j -  ~k 
>--(½n(n-- 1))-1/2 > 21/2n- 1. Thus if c~ = min {~i: 1 =<j_< n} and fl = max {~j: 1 N j  <= n}, 

we have 

2 U Z n -  a < f i  < a  <= t .  

The real numbers {j, 1 < j  < n, subdivide the interval [e,/~] into at most n -  1 open 

intervals. At least one of these subintervals say (7, a) has a length 

6 - y ~ (n - 1)- 121/Zn - 1 > 2 , / 2n -  2. 

Let 

A = { j : l < = j < n , { i < 7 } ,  B = { k : l < - k < n , { k > 6 } .  

Then { belongs to the open set of the sphere defined by 

f2a. B = {~ :g je  A,  V k e  B, {k- -  ~1 > 21/2n- 2} 

itself contained in 

~'~' 
A,B = {~ : g j e A ,  V k e B ,  ~k-- {a> n-2} 

Let {ZA, B}A,~B=X be a family of g® functions on E with 
Ac~B=~ 
A, B4:~ 

supp. zA,BC A,B and ~ ZA,B=I. 
A,B 
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Example : denote FA, B(~) = 1~ O(~k -- ~j -- n - 2) exp -- (~k -- ~j-- n-  2)- 1 and ZA. B(~) 
jeA 
keB 

Fc D(~) - 1. is defined since, (2c D, Fc D(~) =FAB(~)[Z, ] T h i s  well on 
• [ C , D  " " 

> exp( -  n4(21/2 - 1)- i).] 

Then, for general ~.4:0, denote ~pa,.(~)=ZA,. ~ nj=~x~] . If gego,  

g =  ~ gA,B with ga,B=lPA,B(~)g~gO . This completes the proof. 
A,B 

II.2. The Construction of Schwinger Functions 

The previous construction has led, in particular, to a definition of (~2, ¢(X)(2) as a 

continuous linear functional over the subspace of 5P(IR w) consisting of functions 

with support in {(x 1 .. . .  , xn)[x ° >=0,j = 1 . . . .  , n}. However this functional is invariant 

under the translations of the form (xD. . . ,  x , ) -~(x  1 + a, . . . ,  x ,  + a) where a ° >0, a 

=0, and can be uniquely extended to a continuous linear functional over the 

whole of Y(Nv"), by using the translation invariance and a partition of the unit. 

The tempered distribution S, so defined (also denoted S if n is unambiguous) is 

symmetric, invariant under time translations, and coincides with ((2, (9(X), ~) when 

integrated with test-functions with support in {(xl,...,xn)~lR""[Vj, x ° _>_0}. Thus it 

satisfies the properties $1), $2), $3) and R). 

In order to study further properties of S, we use some well-known re- 

gularization procedures. 

The preceding construction of the distributions (~2, (9(XO...(9(X~)f2) does not 

really depend on the Hilbert space structure but only on the linear properties of 
the distributions (~2, T(XA)... rF(X~)(2). Thus it can be straight-forwardly adapted to 

the case of a "linear system of n-point functions" i.e. a set of tempered distributions 

((7"(X1)...T(X~))) over IW" (here X 1 u . . . w X ~ = X = { 1 , . . . , n } ,  X j U ~ k = O  if  j + k ,  

t <-s-< n), having all the linear properties of the ((2, T(X1)... 7"(X~)Q). (These "linear 

systems" are discussed in lEGS]). Among the "axioms" which are imposed on 

such a linear system is the spectrum condition: let 

(( rF(X1)" " ~F(Xr) ))~(P A, " ", P.)CS (16~j.~ P j ) 

[Here _ 0 o pjxj  -- pj Xj - -  pjxj.] 

Denote, for every proper subset YofX, py = ~ Pk. Let 11 = X  1 . . . .  , I s = 
keY 

Then the support of the distribution (24) is contained in 

Pl . . . .  ,P,) p j=O,  and, for every s= l , . . . , r - l , p~seP+(M1~ . 
j= 

(24) 

U Xj.  
16j~s  
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Here ~+(M) denotes {pelWlp°>O,p.p>M2}. (See Remark 1 at the end of this 
section.) For every proper subset J of X, Mj is a fixed real number >0, called the 
threshold in the channel J ;Ms=Mx\  J. If ((T(X0... 7"(X,)))=(O, ~I'(XO...T(Xr)~2), 
the thresholds are, in general, 0 because of the vacuum contribution. If 
((T(X1)...T(X~))) is taken to be (O, ~F(XO...T(Xr)~2) r, and if the theory has a 
unique vacuum and a mass gap, then for all J, Mj > #, where # is a fixed minimum 
mass > 0. 

Given a linear system of n-point functions, it is possible to define, by suitable 
linear combinations, the corresponding "generalized retarded functions" ((Rs~)). 
Their Fourier transforms ((Rso)), defined by 

(( Rs~))~(pl, ..., p,)6(~ pj) = (2n)-" ~e~P~ (( R~)) (x 1 ..... x,)dx TM 

are the boundary values from certain tubes of a single function H holomorphic in a 

.., C T M  = 0/. The certain domain in the "complex momentum space", t(k,,, k,)~ ~ kj 
k d ) 

domain of analyticity of H contains the following set: 

{ (kp...,k,)eil;~"l~kj=O; for all j, Imkj=0;  and, 
J 

vJ cx, + }. 

Thus, if the thresholds are all strictly positive, the domain of holomorphy of H 
contains the set/~, of all "Euclidean momenta", 

..,k C TM /~,={(/q,. ,)e ]Zk j=0  and for allj, Imkj=0,  Rek°=0}. 
J 

In this case, (all Ms>#>0) ,  the distributions ((T(X~)...T(X,))) can be 
unambiguously recovered from the function H by a well-defined linear procedure. 
This allows the following regularization method. 

Let 
n 

where R > 0  is an integer and L > m a x  Mj. This function has all the linear 
J 

properties of an n-point momentum-space analytic function and the above 
mentioned linear procedure, applied to H reg, yields a new linear system of n-point 
functions, denoted ((T(X0... 7(Xr))) reg. They verify 

For sufficiently large R, all ((T...))r°g become continuous and even finitely 
differentiable, polynomially bounded functions. Furthermore if w(zl,..., z,) de- 
notes the value at (zl,..., z,)sC"" of the analytic Wightman function which has as 
its boundary values the various 

= } ) . . .  
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reg denotes the corresponding regularized objects, it is easy to see that and if w reg, w~ 

w reg is continuous and has finitely many continuous derivatives at the boundaries 

of the permuted forward tubes. In particular w r~g defines a piecewise continuous 

function on the Euclidean world. Applying the characteristic property (R), it is 

then clear that 

sr~g(ya, ..,y,)=wr~g((iyO, yl) ' "0 . . . .  , (ty,, y,)), (26) 

and that 

S(y~,..., y,) = f i  ( -  Ayj + L2)Rsr~g(y 1 ..... y,). (27) 
j = l  

The last equation holds in the sense of tempered distributions, and, of course S and 

S ~eg are given by (((9(X))) and (((9(X))) ~eg, respectively. It is well-known [Sy], (and 

re-proved in [EGS] and [EEF]), that 

(2S) 

in-16(j:~ qj) dql...dqn 

so that, applying (27), we obtain 

i 0 i 0 S(Yl .... , Y , ) = ~ e x p ( - i ~ i q y j ) H ( ( -  qt,qa) ..... ( -  q,,q,,)) 

i"-l~(j=~lqj)dql...dq,,, (29) 

(only valid for strictly positive thresholds). Here q.yj=qOyO _qjyj. 
0 ~ tO Now assume that 0 < x ° t  < ... <x=,,  and 0 < x ~  < ... <x~s, where r+s=n  and 

rc and a are respectively permutations of (1 .. . . .  r) and (1 . . . . .  s). Then 

reg /0 i tO rO 0 
w l  ((~x~s,x~s)...,(~xo, x~l), o x~l), (~x~l, . . . ,  (,~x~, x~,)), 

initially defined for 2 > 0, # > 0, can be continued as an analytic function of 2 and p 

in {211214: 0, 0 < arg 2 <~} x {#tin 4: O, 0 < - arg p <~}, continuous on the boundary 

of this domain, (with values in the piecewise continuous functions over IW"). For 

2 = i,/z = - i  this continuation yields 

~0 , ] ,0 , 0 
s r e g ( ( -  Xcs, X . . . . . . .  , ( - -  Xol,  X~I), (X~l, X~I) . . . .  , (X O. X~r)). 

Let f~5~(IW ~) and gsS~(IR vs) have their supports in {(x 1 .. . . .  x,)lVj, x°>0}  

and {(x 1 . . . .  ,x~)lVj, x°>0} ,  respectively. Defining, for 2>0 ,  fx(x a .... ,x~) 
=f((2x °, Xl) . . . .  , (2x°,x,)), and similarly gx, we suppose that 2~fx,  2~g~ can be 

extended to holomorphic maps of {2 s ~\{0} ] 0 < arg 2 < ~}, continuous on {2~ C\  

{0} J0 < arg2 < ~}, into 5a(IR ~) and 5e(IW'~), respectively. Then 

reg tO X ~ tO ~ 0 0 ~ w ( (~x  . . . . .  ), . . . , ( ~ x o l , x , ~ O , ( , ~ x ~ ,  x,~O, . . . , ( ; ~ x ~ , x ~ ) )  

o ,x ,o  ~,o " 0" ,o , o , 0 ( x % _ x O 0 . . . 0 ( x o _ x o ( , _ O  (30) 
~. a s - -  ( r ( s - 1 ) ) " "  I, X a 2 - - X a l )  

9~(x'~ . . . .  , x;)  L ( x ~ ,  . . ., x~),V l~ ~ dx'~ . . . dx ;  dx l . .  . dx ,  
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defines a holomorphic function over {2~C\{0}[0<arg2<-~}x{#e~\{0}J0 

< -  arg# <~}, (with continuity at the boundaries except 2 =0  or #=0).  But, for 

2 > 0 and # > 0, this integral is independent of 2 and #. Hence it remains constant 

for complex 2 and # and, by continuity, we get, for 2 = ~ = i, 

I reg tO t [ - -  X '0 X t "I 0 S ((--X~s,X~s),...,, ~1, al', (X~I ,XJ ,  0 .... (x~, x~j) 

( ,o ,0 ~ {t( ,0 x , O ~ l q ( x O  0 0 X 0 
~X, ,s  - -  X , , ( s _  l V  . . . .  ,X~,2  - -  ~ 1 ,  ~ ,  ,~2 - -  X,~ 1 ) . . .  O(x ,~r  - -  , , (~_  1)) 

f~(x~ ... . .  XJg~(X;, ..., X;) i'-~d~x;...d~x;cl~x,.. . d %  

= . f  ~°~  ' ' . . . ,  x=~) 0 ( x 2  - x ;~ ,  , ) . . .  0 ( x ;  ° )  W 1 ~,Xas~...~ Xrzl~ Xz~I~ 

0 ~ 0 X 0 x r, rxO X 0 ~ - t , 
t xrc2 - -  rc i ) " "  Ut "xr - -  n t r -  1)) f ( x l , . . . ,  x~)g(x 1,"-,  x~) d x i . . . d x ' ~ .  

Using the symmetry of S ~g, and summing on both sides over a and re, we obtain 

f sr°~((-- X; °' x;), ..., ( -  ,o , ~ , , X 1 , X l h  X l , . . . ,  X , . ) ~ ] i ( X l , . . . ,  Xs)  

f / ( x  1 . . . .  , X r ) d X l . . .  d x '  s 

= j ( ( T ( x 1  ' , - r e g -  , , ' . . . , x~ )T (x i , . . . , x¢ ) ) )  9 (x l , . . . , x s ) f (x l , . . . , x , . )  

dxl...dx'~. (31) 

By using (27) and (25) we obtain the 

Lemma 5. 

5 S ( (  _ x st0, ~=s,',Yt] ..  ., ( _ x t ? ,  x l ) ,  X l  , ,  . . . . .  . ,Xr) l~i (Xt l ,  , X;)  f i ( x  1 ' . . . , x r ) d X l . . . d x ;  

r t - -  . .  ~ I . t . .  
= ((T(Xl , . . . ,  xs) T(x 1, ., xr))) O(x 1, .., xs ) f ( x l ,  ., xr)dxl...dx'~ (32) 

Proof. We have already shown that this formula holds for all linear systems with 

strictly positive thresholds. We extend it to all linear systems of n-point functions. 

Note that both sides of Equation (32) have a well defined meaning even in the case 

of zero thresholds, since the construction of S as a tempered distribution remains 

valid. Starting from a linear system of n-point functions with possibly zero 

thresholds, we approximate it by a new system, with strictly positive thresholds, by 
the following method. For every zE(17 with (z . z )¢A 2 +IR +, we define 

F(z ; A) = exp(iA- 1 [(z. z) - A 2 ]  1/2 + 1). (33) 

Here A is strictly positive; the function [ ~ ( [ - A 2 )  i/2 is defined in C\(A 2 +JR +) by 
the condition Ira(I-A2)1/2> 0. We also denote 

F+-(x" A ) =  lira F(x-T iy ; A),  
y~V + 
y ~ 0  

FC(x; A) = O(x °) F + (x ; A) + O( - x °) f - (x ; A),  

f a c ( x  ; A )  = O( - x ° ) F  + ( x ;  A )  + O ( x  O) F ' ( x  ; A). 
(34) 

Note that IF(z ; A)f ~ e for all z such that (z- z )¢A  2 + IR + and F(z ; A) has continuous 

boundary values at the boundaries of this domain. For any pair (j, k) with j < k,j 
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and ke {1 . . . .  , n}, we can define a linear system of n-point functions, as explained in 
[EGS, § 6.3], by 

<< T(X J... 7"(Xr)>>' =F+(x~-xk)<<~Y(X1)... T(Xr)>> 

if j~Xa, keXb, a<b, 

= F -  ( x j - x k )  ( (  T ( X 1 ) .  . . T ( X  r) ) )  

if jsXa, keXb, b<a, 

= F"C(xj- xk)<<ZF(X1)...rY(Xr)>> 

ifj and k belong to the same X~. 

The reasons for which this is possible and leads to a linear system are given in 
[-EGS, § 6]. By repeating this procedure, we obtain a new linear system of n-point 
functions given by 

In particular 

w"~W{zA , 1, "-, z , j - i ~  ~ - kj<k / V exp(iA - 1 [(zj -- Zk) 2 - A 2] 1/2 _}_ 1)) w(z 1 ..... z,) . (36) 

This decreases exponentially at infinity in any direction strictly contained in a 

permuted tube. In fact the Fourier transform 

/?±(p; A) = S eip':F±(x;A) d~x 

has its support in V±(A- i), and hence the thresholds of the new system are all 
above A-  1 

When A tends to 0% ((T(X1)...- .~w T(Xr))) A tends, in the sense of tempered 
distributions, to ((T(X1)...T(X,))) and, (since the construction of the (@0(X1)...)) 

depends continuously on the ((7"(X1)... ~Xr)))), S"f*~S in the sense of tempered 

distributions. This limiting process yields (32) in the general case. Moreover since 
29 h 1 " . . . .  w • , . , ~  • , ~ ( ) o dsforS A a n d H  A ,andsmceS A SmSPasA oo, the Fourler transform 

ofS~ ~w also tends (in the sense ofS ~') to that of S. On the other hand H~l*W(k) tends to 

H(k) uniformly in every compact of the tubes associated with the (( Rs~ )) ; the union of 
these tubes always contains 

{k=(k 1 .... ,k,,) ~ kj=O; Yj, k° =iq°,kj=qj, 
j = l  

qO and elj real, and for every proper subset J of {1, ..., n}, 

At all such q, the Fourier transform of S thus coincides with H ( -  iq °, q)5(~ qj). 

Remarks. 1. In discussing "linear systems of n-point functions" we have used 

notations adapted to the relativistic case. However the regularization procedures 

described above also hold in the non relativistic case and, in particular, Equation 

(32) remains valid. 
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2. As noted before, in a field theory with unique vacuum and a mass gap, the 

time ordered functions have zero thresholds but the truncated time ordered 

functions have strictly positive thresholds. In this case, Equation (29) is satisfied 
not by S but its truncated version, S r. 

We return to the study of a field theory equipped with (anti-) time ordered 
products in a Hilbert space ~(f, i.e. we assume all the hypotheses T 1)-T7). Then the 

distributions S verify the positivity condition $4). 

P r o o f  In the I.h.s. of Equation (5), we first replace each f ,  by a corresponding g,,i, 
given by 

g,, a(Yl , . . . ,  Y,) = S o(a; - i 2# -  I) f,((#yOa, y l ) , . . . ,  (#yO, y,)). 
0 

Q(a; ~) is defined in the Appendix. Here 121 > 0, 0__< arg)~ < ~. According to (32), the left- 

hand side of (5) is then equal to 

f ~ n , l ( X l ,  . .  *, Xn ) ~ ( X l , . "  ", x . ) f2dx t . . . dxn  2 

and is positive. If we let a tend to + oo, g.,i tends to f .  in 5g(IW") and the inequality 

(5) is obtained in the limit a-~oo (see Appendix). 

III. Proof of Theorem 2 

In this section, we start from a set of "Schwinger functions" satisfying S 1),..., $4) 

and construct first the operators (9(y 1 ..... y,). Then the growth condition $6) is 
used to define the distribution (~2,6)(Xa)eiWlu...eiW~-lH(9(Xr)~2) from which the 

anti-time-ordered distributions can be obtained by a purely linear operation 

(although the vector formalism will be used for notational simplicity). 

III. 1. Construction of the Operators ¢(Y) 

Let {S.} be a sequence of tempered distributions satisfying $1) to $4). Let ~ denote 

the vector space of finite sequences {f.} (with arbitrary length) with f.6~(lW"), 

equipped with the naturaI (direct topological sum) topology. ~÷  will denote the 

subspace of 9 ~ consisting of the finite sequences {fn} such that, for each n > 1 

supp.f,c{(Yl, .,y,) y°>0 ,  o . .  • . . . , y , _ > _ 0 } .  

For each real t, we denote L t the operator defined on 9° by 

L o t o ( J ) , ( Y l , . . . ,  Y,,) =f,,,((Yl - , Yl), ..., 0,', - t, yn)). 

When t is >0, L t maps O°+ into itself, and t -~Lt,  (t ~0) is a continuous semi-group 

of continuous operators on 5e+. 

If f =  {f~} is an element of Se we denote S( f )=  ~ S,(f,). If 9 is also an element 
n=0  

of O °, we denote 

Og = {Og,} ,  (Og,) (Yl ,  y,,) = g,,(( o yO,_ ,, • .., -Y , ,Y , ) , . . . , ( -  1 YU~. 
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We also write 

(g®f).(Yl,'",Y.) = ~. gp(Yl,"',Yv)fq(Yp+ ~,'",Yp+~), 
p+q=n 

and note the following algebraic rules: 

L~(g®f)=Lsg®L j for all s~IR, f and g in 9 °, 

L s O f = O L s f  for all s~lR, f in .9 °. 

The map from 5,°+ x 9°+ into 112 defined by 

(g,f)-,,S(Og®f) 

is continuous, sesquilinear, and by $4), positive in the sense that 

S(Of®f)>O for all f~go÷. 

Let ~A/" be the subspace of all f~go+ such that for all g~go+, 

s(of®g) = 0 .  

Because of the Schwarz inequality 

[S(Of ®g)j z < S(Of Qf) S(OgQg), 

so that 

X = {fe 9O+ :S(Of®f)=0).  

For all ss lK f and g in 9O we have 

S( Og® L J )  = S(L_ s( Og® Lsf)) = S(L_ s Og® f) = S( O L fl ®f) .  (37) 

Hence for s > 0, L,~A/" C JV. 

The space 9O+/._/~ is a separated pre-Hilbert space and can be completed into a 

Hilbert space fir. We denote T the canonical map of ;9°+ into ~ ,  and, in 

particular, T({fo = 1,..., f~ = 0  . . . .  }) =f2. By definition T(go+) is dense in ~ and for 

f, g i n  9O+: 

(T(g), T(f)) = S(OgQf). 

The map T is continuous from 9O+ to 2/f. Since LtJVC~/" for any t_>0, we can 

define, for each t=>0, an operator Pt on T(5~+) with the properties 

P,T(g)=T(Ltg ) for all g~go+, 

P,+~=PtP~ for all s>=O,t>=O, 

(T(g),PtT(f))=(PtT(g), T(f)) (all t>_O,f and g in oct+), 

IlP, T(f)]l <=(l +t)B(f)C(f) (all t>O, f e ~ + ) .  

Moreover t-+P~T(f) is a continuous map of [0, oo) into 9 f  for every fixed fego+. 

Following Osterwalder and Schrader we conclude that, for all t=>O and all 

fego+, 

( T(f), P, T(f)) <__ ]l T(f) ll ( T(f), P z, T(f) ) ~ 

<. . .  < ]] T(f) n 1 + ~- +... + 2 - ~(T(f), P2~+ ,, T(f))2-~ ~, 
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and, passing to the limit: 

(T(N), PiT(f)) < II T(f)  lI 2. 

It follows that Pt can be extended by continuity to all of 5/g and defines a 

continuous contraction semi-group. In particular 

p t = e - t H  

where H is a positive self adjoint operator whose domain contains T(go+). (In fact 

T(9O+) contains all vectors of the form 

e-roT(g) = T(Ltg), t >0.  

These are a dense set of analytic vectors for H, and thus a core for H.) In particular 

Pf2 = f2, HE2 = 0 .  

If ¢1 and ¢2 are vectors in ~ ,  we can define 

(¢ t ,  ei(U + iv) H ¢ 2) 

provided v > 0; this is a holomorphic function of u+ iv for v >0, continuous for 

v = 0 ;  if ¢2 (or ¢1) is in T(go+) this function is even C ~° in the closed upper half 

plane. We also note that for t>=O, e -m  is invertible, its inverse e 'H having as its 
domain precisely e-~H,~, ~. 

Let g E 9O. The projected support of g, denoted Proj. supp. 9 is the closed subset 

of Ill defined as the closure of 

{t ~ IR : 3m > 0, 3(yl, ... , y,,)~ supp. gin, 31 ~ j  =< m with yO = t} 

For any teN, the condition gELt9O + is equivalent to 

t ____infProj. supp. g 

and the condition O g e L t g o  + is equivalent to 

sup Proj. supp. g __< t. 

Let f, g, and h belong to 9°+, with 

0 < supp. Proj. supp. g = T< oo. 

For any s > T, 

S( Oh®g® L s f  ) = S(L_s( Oh ®g® L J ) )  

= S(L_ sOh®L_ sg®f) = S(OL~h®L-sg®J) 

= S(O(OL_ sg ®Lsh) ®f )  = S(O(LsOg ® Lsh)®f). 

This shows that, for fixed g and s, the map from 9°+ to 9O+ 

f ~ 9 ® L s f  

maps W into itself. We therefore define an operator T(go+)~T(go+) by: 

¢9 ~(g) ~ (f) -- 't'(a ® L J )  . (38) 
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Note that the right hand side is a continuous function of (s, g, f )  ; it is even ~o~ in s 
for s > T. Furthermore the adjoint of this operator also maps ~gQg°÷) into itself. It is 

given, on tP(6e.~ ), by 

(fi s(g)* ~P(h)= ~(Ls O g ®  L~h ) = 6)s(L~Og ) ff-'(h) . 

Clearly, for t ~ O, 

(fis(g)e-tn=(9~+t(g) on ~'(~q~+). 

It is possible to write (gs(g)=(f(g)e - ~ ,  where (fi(g) is defined on e-~U~P(~+). 

Indeed e -~H kg(~+)= ~(L/P+).  

Any U e L s ~  + can be written uniquely as Lsv , yES#+ and ueY.~:~t ' (u)=O~Vg,  

(~g(g), e - ~  7J(v))= 0 ~  7J(v)=0. Thus u e Y<:~w Y and we can define 

(9(g) ~P(u) = (9,~,(g) ~P(v) = 7J(g®u). (39) 

We shall verify that these operators satisfy the properties (91)-(96), with D 1 

replaced by a new domain D 2 to be defined later. 
It will be convenient to use the notation 

S (9(Yl," ", Y,) f (Yl  . . . . .  y , )dyl . . ,  dy, 

for (9(g) when g =  {0, . . . , f0 ,  ...}, and similarly 

@ ~(Y l . . . .  , y,) = (9(y l, . . ., y,)e-~n 

The construction of these operators does not depend on the symmetry property 

$2). If $2) holds, for every permutation ir of (1,..., n), 

O(yl,..., y,) = ~0(y~ .. . .  , y~,), (this is (93)). 

This will allow us to use the abbreviated notation (9(I' 3 as before. 

It is also clearly possible to define, 

G s( iVo, ..., ivy_ 1) = ~ e-  "°UO( YOe-~m(9( g2).. .e-'"- m (9( Y~)f2 
(4O) 

f (Y l  . . . .  ,YN)dYt '''dyN" 

Here Vo,...,v~_l, are all >0 ;  Yl={1,. . . ,nl},  Y2={n l+l , . . . , n2} , . . . ,Y~  

={n~_ I + 1 . . . .  ,n~=N},  are disjoint non empty subsets of {1, ...,N} with union 

{1 .. . . .  N}. fsS~(lR TM) has its support in 

{(Yl, ~N. 0 o • .-,YN) elR .YjNYk if J~Yt and k s Y ,  with t < u } .  (41) 

The precise definition of (40) is ~(g) where g; = @pNgN and 

0 1) 0 
gN(Yl,..., YN) =f((Yl - 0,Yl) . . . .  ' (Y"~ - %'Y"~)' (42) 

( y o  . . . ,  - . . . -  
+l -Vo-Vl ,y , ,+ l ) ,  ( y ° - v  o v~_ 1,yN)) 

It will prove convenient to use an adaptation of the method of [OS2] for 

regularizing the behavior of S,(x ~,..., x,) at large distances, based on the following 

remark. 

If {S'} and {S~} are two systems of distributions satisfying S1), $3), $4), and if it 
is possible to define the pointwise product S~'(xl , . . . ,x ,)= S',(x I .... ,x,)S','(xl,...,x,), 
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(e.g. as a limit ofS', .(S~*Q) as Q~fi), then {S"'} also satisfies S1), S3), $4), Indeed, for 
every finite sequence {f,} such that f ,  66e(lR TM) and supp. f ,  C {(x t .... , x,)10 _-< x °, 1 __<j 
__<n}, 

2 S 2 + m ( O f m @ f n )  = 2 ~ ([(-9'(x1, " ' ,  X m ) @ ( 9 " ( X l  . . . .  ' X m ) ] ~ 2 ' @ ~ " '  
n, m rrt, tl 

[U(Yl . . . .  , Y n) @ (9" ( Y l , "" ", Y n) ] (2' @ a " )  fm (  X l , " " ", Xm) f n(Y l , " " ", Y n) 

dxl.. .dxm dyl . . .dy, .  

An example {E,} of a sequence of distributions satisfying $1), $3), and almost 

$4) is given by 

~ _ _ ~ N ( X j . , . . . , X N ) = ' I J N ( X O I - - X O ) ,  N >  2, 

where, for every real t, 

FN(t ) = ~ e-PHh(p)U a(p)dp, 

and where h and a are real functions, a>O, so chosen that the above integral is 

absolutely convergent and continuous in t on [0, oe). 
Indeed one finds, for all finite sequences {f,} as above, with fo = O, 

Zm+,(Ofm®f~)= ~ ~ dpa(P)Cm(p)cn(p) = ~ dpa(p) ~n cn(p) 2, 
m , n  m ,  II 

where 

c,(p) = ~ e- vX°"h(p)" f~(xl, ..., x,) dx l . . .dx , .  

More specifically, we choose a(p)= e -p, h(p)= pR, R >=0, so that 

FN(t) = (RN)!(ltl + 1) -RN-* • 

With this choice, we denote ~/go, T;(f) ,  Co(xl, ..., x , ) -  (90(x°, ..., x°), H o the objects 
obtained from {S,} by the preceding construction. 

We return to the original sequence {S,} satisfying S1),...,$4) and the 

growth condition $6). For every N > I  and f~6P(IW"j), n j>l ,  Proj.supp.fj  
<Proj.  supp.f/+l,  (]=1, . . . , r -  1), and (U1, ...,/Ar_ 1)6 [0 , Of)) r - l ,  we denote: 

SN(fl . . . . .  f~ ; ivy,..,, iv,_~) = SN(f, ® L~ f2 ®"" ® L~, +... + .... ~ L) 

and 

S:v(fl . . . .  ,f , .;ivl,.. . ,  iv,_ 1)= ~ SN(X,, " ", xu)FN(Yl --Y~) 
(43) 

(fl ®L~, f2®. . .®L~,  +...+ . . . .  f~) (x~, ..., xN) dx~...dxN, 

- x ° x ° < j  < r wherey j=n j  x( ~+. . .+ , j_~+l+ . . .+  ~+...+~;), 1=  = . 

If, in particular O<Proj . supp. f  1 < T 1, the expression (43) is equal to 

(7J'(LT, O f  1 ), e-  ~'~r'(9'(L_ rJ2)--,  e-  *'"- 1H' ~ J t ( L  __ T 1 L ) )  , 

with H ' = H ® I  + l®Ho,  and 

and similarly, for T'(f). 
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We shall restrict our attention to the case when all nj are bounded by a fixed 

integer Q. In that case it follows from the growth condition $6) and from a 
repeated use of the theorem in [OS2, appendix], that there exist constants C, K, S, 
independent of N, such that, for all N > 1, r > 1, (N <_ Qr), f l, "',f~, (with supports as 
above), 

,K (1 f l®f~ tSN(f . . . . , f . ;0 , . . . , 0 ) I<CN(N.)  ( I-I Ifjlst + l y l - y r t )  NR+' s 
\ l < j < r  / 

Since the t.h.s, is invariant under simultaneous translations of all arguments, we 
can evaluate it by first performing a time translation such that 

Proj. supp.J~ _<0_<Proj. supp.fr In that situation, the r.h.s, can be rewritten as 

CN(NI) K sup [1-I  lx~D~'fj(x)l] x~'x~'D' 'D'r ( f~®f~) (x )1  
~j~<S [l<j<r (1-l-y r - y l )  NR+ " 

. IBjI-<S 
tej resti:feted) 

Since [D ~1D p~ (1 + y, - Yl) - NR - 1[ N (NR + 2S) 2s (1 + y~ - Yt)-NR - 1 and since 

Qyl < x ° < Q y r ,  i.e. IxYl<Q(l+yr-yl), 

if we choose R = S, there are new constants independent of N, such that 

ISN(fl, ...,f,.;0, . . . ,O)I<C'N(N!)K'FI sup N~DPfj(x)t. 
j = l  x 

a < S  
<=s 

Since these new norms are invariant under time translations, this inequality 

remains valid when the f j  are (time-) translated back to their original position, and, 
for all vj>=O, (1 <j<=r-  1), 

[SN(fl, ". ,f~;vl,  ...,v~-l)[ <=C'N(N!)r" f i  ~fj{s, 
j = l  

]f~s = sup [x~DPfj(x)[. 
x 

a__<S 
=<s 

This bound and the positivity which {SN} inherits from {SN} allow us to follow the 

method of [G1, OS2] and to obtain an analytic function 

(wl, ..., wr_ 1)~SN(fl . . . .  ,f~ ; vq . . . .  , % -  1) 

continuing SN(fl, . . . ,£  ; iv1 . . . .  , ivy_ 1) in the topological product of r -  1 upper half 
planes. 

To do this in a systematic way we consider a sequence f l  . . . .  ,f~ such that 
0 =< Tj_ 1 _<_Proj. supp.j)_< Tj. Then 

( T'(g), e-~°u' (9'(J~ ) e - ~ '  (9'(f ~). . .e-  ~- ~ '  T'(£_ 1)) 

= ((9'(Lrj Ofj)e - oJ ~n'... e-"H'(9'(LT3 O f  1)e- (~o + Tj)H' Tt(g), (44) 

e-  ~H" (9'(L_ T j~+ 1)'" .e-~'-,H" T'(L_ TjL)). 
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The r.h.s, continues to make sense if e-vjH' is replaced by e iwj~s' with Im wj > 0. 

Thus the 1.h.s. is analytically continuable in each vj while the others are kept fixed 
so that as a function of ivo, . . . ,  iv r_ 1, it has an analytic continuation in 

C~ 1) = {(Wo,-.., % -  1)[ IArg - iws[ < O j, F, 0 s <= ~} . 

Moreover the methods of [G1, OS2] show that in a smaller domain D~ 1) it is 

bounded by Const. llT'(g)H and thus it defines a vector valued holomorphic 
function on D~ 1) denoted 

"~ - -  e iwoH" (0'( f ~ ,~iw~- 1H' (p,( f "~ 
G f ~ ® . . . ® f r ( W o  . . . .  , W r - 1 ] - -  - - t a l l  . . . . .  t 2 r - l l  

The formula (44) can be analytically continued to: 

( T'(g), e'WO H' (9,(L )." .e 'w.- , , '  T,(L)) 

= (O'(LTj Of j)e- 'vJ -,H, e,(Lms e f j _ , ) . . ,  e -ira,H" (y(LT~ Of, )e -( ,~o + r.s)s-s' T'(g), 

e iwjH' Cg'(L_ Tj fa + 1 )"" eiw'-, H" T ' (L_ Tsf,)) 

(Here T'(g) is also supposed to be of the form (Y(go)e-slH'. . .e -~pH' T'(gv) ). Hence 

one can iterate the procedure and eventually obtain the analyticity of the vector G' 

in the topological product of r upper half planes. To obtain bounds on its norm in 

this domain, it is necessary to apply the Schwarz inequality at each iteration. This 

involves, as in lOS 2] a doubling of the number of variables and also a doubling of 

the number o f f f s  which also have to be time-translated. However, since the norms 

~fj~s occurring in the initial bounds are invariant under these time-translations, 
the result is the same as in [-OS2] : 

The vector G'i~o...®s,(Wo, . . . ,w~_ 1) is analytic in the product of upper half- 
planes and is bounded there by 

I Ia~,®. . .®f . (Wo . . . .  ,w,_a)ll<e} / f j ts( l+lwi)  K~< v [  K~< , 
j = l  

r--1 
where Iwl = ~ iwjl and v j = I m w j .  Using again [OS2, Appendix] this implies for 

j = o  

every f with support in (41) 

(l~r--1 ) 
I lG} (wo,  ,)II <B'~'lf ls'(N)(1 + I,,'I) '`~' t?:~ , / ' ~ "  . 

Going back to the original functions (cf. (40)), we get: 

There are constants K N and B N such that, for all (Wo, ..., w,_ ~) with wj = u s + ivj, 

v j>O 

II G/wo, ..., w._,)ll < ",,,ISI,,,< (o ~up_ ~ v$ ~-) (, + Iwl/''< , 

However i f f  is sufficiently regular, differentiation in w0, ..., % can be transferred to 

f so that 

liD; Gj.(,~o,--., ~ , -0 I I  < AX, ISIK, + iol (sup ,~/ ' - )  (1 + t~1/'~'~ , 
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and, reintegrating K N + 1 times we find new constants such that 

j[ D ;  Gf (w  0 ..... Wr- 1)11 <2 ANIf[ 2K~v + IN + i (1 q- Iwl) K" . 

(In particular i f f e  5 a, G is cd~° in Wo,...  , w~_o ~ in the topological product of r closed 

upper half planes). The vector Gf(w o . . . .  , w~_ 1) will also be denoted 

~ ei~°H(9(Y1)eiW~n.-.ei . . . .  n(9(Y~) 0 flY1 . . . . .  Y~)dYi...dY~'~. 

This notation is justified since it is easy to show that this vector is in the domain of 

the closure of (9(g) (provided g ® f  is sufficiently smooth and has the correct 

support), and that we have ((9(g) being identified with its closure, as we shall always 

do in the sequel), 

e'~'H (9(g){~ e~won (9( r O . . . e ' ~  - ~H (9( y~)f2 f (y ~, .. ., yn )dy  l .. .dYN} 

= f e*~H (9(¢1, " ' ,  ~R) ei~°u (9( I11)"" eiW"-' (9( Y,)O 

gR(~i, " ' ,  ~R) f(Y~, " ", Ys)d~i  '" "d~R dyi '"  .dyn.  

Also in the domain of the closure of (9(9) are the vectors obtained from the 

preceding by integrating over the wj along paths with suitable test-functions etc. 

The intersection of the domains of the closures of all finite products 

(9(fl)eiW'n.. .e i'~- 'u(9(fr) is denoted D 2. It is straightforward to verify that the system 

of operators (9 thus constructed satisfies the requirements (91)-(96) with the 

domain D 2. 

IlL 2. Inductive Construction of T(X) 

Starting from the operators (9(X) obtained in III.1, the construction of the T(X) 

will be carried out by induction on [X[. In fact, the requirements of causal 

factorization T5), translational invariance T7) and the relation R') will leave no 

freedom in this construction. The procedure very closely parallels that of ILl. 

The induction hypothesis postulates that the operators T(X), for [XI < n - 1 ,  

have already been constructed so as to satisfy the above requirements, and that 

any finite product of such operators can be applied to vectors of the domain D 2, 

which it maps into itself. (The domain D 2 has been defined at the end of III.1). 

Let X = {1 . . . . .  n} and Z = Z1U...~J Zr = {n + 1 . . . .  ,n + p}. Denote x = (x 1 . . . .  , x,), 

z=(z ,+ 1 . . . .  ,zn+p). For  any f~5~(IR v("+p)+ i) with support in 

{(x ,v ,z ) l for  every  j e Z , , k ~ Z b ,  w i th  a < b ,  o o zj < z k }, (45) 

for every (w o . . . .  , wr- i)s IU with Im wj > 0 for all j, we propose to define the vector : 

~ f ( x l ,  ..., x , ,  v, z ,  + i, " ", z ,  + v) 7~(X) ei(w° + ~)H (9(Zi) (46) 

i w l H  e iw  - lI-I Z e ... ~ (9( ~ )Odx i . . . dx ,  d v d z , + l . . . d z , + p .  

We concentrate on the case n>  1, Z # 0 .  The other cases are straightforward 

simplifications. Let ~ denote the subspace of 5a(lW (" + ") + l) consisting of functions 

having their support in (45). Denote, as in II.1, 

y = n - l ( x ° + . . . + x ° ) ,  ~j=xj°  _ y ,  (1 <j__<n), ~=(~1 ... . .  ~,-1) 
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and define o~ o as the space of functions J ~  vanishing in a neighborhood of 

{ ( x l  . . . . .  x,,v,z):~=O}. 

Any function f e  Y can be written in the form : 

f (xl ,  . . . ,x,,v,z)= ~ dadbq,({,x,a,b,z) % ( y - a ) % ( v - 2 y - b +  2a). (47) 

Here, % is the function defined by (13) and, as previously, we find q) is given by 

0 a \r+ 0 \/.+l 
q' (~ ,x ,y ,v , z )=(L ' ) -2(1- i+~y+2~v ) l ( 1 - i +  ~v ) 

(48) 
f(({1 +Y, xl), -" ", ({,, + y, x,), v,z). 

The constant L will be chosen later. 

Just as in II.1, we decompose f into f = f o  + fx ,  with 

L (x, v, z) = ~ dadbotr(y- a)%(v- 2 y -  b + 2a) 

.[~,S_TD~p(O,x,a,b,z)]w({,y_a), (49) 

tltq=o • 

where w is the auxiliary function used in II.1. and M > 0  will be chosen later. 
Again, 

IfllM = < C°nst" Ifl2M+2Z+3, (L>=M+ 1). 

fo has the same property and vanishes together with its derivatives of order 

~ M +  1 when ( = 0 .  Hence it is in the closure of ~o in the norm I IM. 
For any g in ~o the vector (46) with f replaced by g is well defined by virtue of 

the induction hypothesis and the requirement of causal factorization. The proof is 

identical to the corresponding one in H. 1. The resulting vector is bounded in norm 

by: 

Const, lg}K(1 + Iwl) K, Iwl = ~ Iwjl. 
J 

As a consequence, if we choose M ~ K, the vector obtained by rep lac ingfbyfo  in 

(46) is well-defined and bounded in norm by Const. [fI2M+2r+3(1 + [W[) M. On the 
other hand, if we denote 

q~o,x(~,Y,V,x,a,b,z)= -~. t,~q~tu, x,a,b,z) 
J LI~I = o • 

• w(~, y)o:4, L(Y) 0:4, L( v -- 2y), 

translational invariance requires, for sufficiently large M and L 

T(X)ei(w° +v)H (9(Z l )eiVqH. . .ei'*, .- ~H O(Z~)O 

,:po,~(~,y-a,v-b,x,a,b,z) dxdvdz 

= S eiaH T'(X)ei(w° +v+b-~m (9(Z O e~w~H.. .ei'~- ~H C(z~) 0 

n~o, 2(3, Y, v, x, a, b, z) dvd~dydxdz. (50) 
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The radial analyticity of qoo, ~ and the condition R') require that (50) should be 

equal to : 

e iatl (9(X) e - .~x ei(Wo + b - a)It ( 9 (Z  1 ) " "  ei . . . . .  H (fl(Zr) Q (51) 

ni,+ 1 ~oo,i( ~, y, v, x, a, b, z) dvd~ d y d x d z .  

This is a well defined vector, depending continuously on a and b, and bounded in 
norm by 

Const. (1 + lal + lbl)- 3 tfl 3M + ZL + 6(1 -'}-IwI)M 

We can integrate over a and b and define: 

T(X)  ei(~° + ~),, (9(Z,)e  iw d~ . (9(Zr)(2 f ,  (x, v, z) dx  dv dz 

= ~ da db e i"~t (9(X)e (-  ~ + i,.o + ib - i .m (9(Z a ) ei'~'~''' (9(Zr)f2 (52) 

n~°o, i(~, Y, v, x, a, b, z)i "+ 1 d ~ d y d v d x d z  

The definition of (46) is now the sum of (52) and of the known result forfo ; L 

must be > M + I ,  and the resulting vector is bounded in norm by 

Const. IfJ3M+ 2L+ 6( 1 + ]W]) M" 

It is now easy to check that, i f f  happens to be radially analytic in the variables 

o v and has support in {x, v, z :V j zX ,  0 < x ° <= v}, this definition is such that X O, . . . ,  X n , 

R') is satisfied. We only give a brief sketch of this verification. 

Suppose that J ' s Y  is of the form (47) and 

f~.(x, v, z) ; f ( ( 2 x  °, xl) , o ..., (2x,, x,), 2v, z), (2 > 0) 

can be analytically continued in 2 in the angle 0 < arg2 < ~, with continuity at the 

boundary. Then the same is true (by virtue of (48)) of 

(p~(~, x, y, v, z) = ~o(2~, x, 2y, 2v, z), 

(which also has support in {(x 1 . . . .  , x . , v , z ) [ V j ~ X , O < x ° < v } ) ,  and of 

f~,x(x, v, z) = 22 ~ da db ex,L(Y - a)c~,L(v - 2y - b + 2a) 

(;@~ P w • i M e i ' o - ~ . D ~ ( p ( O , x ,  2a, 2b, z)] ( ~ , y - a ) .  

As a consequence the 1.h.s. of (52) should be equal to 

(9(X)e~i'~°-~)x~ (9(Z O.. .(9(Zr)O f l,i(x, v, z)i  "+ l d x d v d z  

= - ~ da db e '~  (9(X) d i~'° - ~' - t, + ,,)H ( 9 ( Z  ~ ) . . .  ( 9 ( Z , . )  £2 

FM + 1 ti/:~# ] 

LIN=O P. J 

Noting that D~q~(O,x,2a,2b, z) can be analytically continued in 2 (and has 

support in { b - a  >0}), we can rotate the contours in a and b and obtain exactly 

(52). As to the part of (45) corresponding to fo, it satisfies the contour-rotation 
condition R') by virtue of the induction hypothesis. 
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Having defined expressions of the form (45), we can now suppress the 
integration over v by the same method as in II.1 i.e. by essentially using 

~p = ~ eo(v)ei~H(Q l)- 1(1 -- i-- iIt) a+ l~pdv 

and 

This allows us to use the definition 

T(X) e i'~°n (9(Z1)ei'~"~...ei~'- 'u (9(Z,)(2 

g(xl, ..., x., z.+ 1, "", z.+ p)dxl . . .dx ,  dz.+ l""dz.+v 

= ~ T(X)ei(W°+v)n(9(ZOei'~'w...ei~" - ~xx(9(Z~)f2 

Keg(x,  z)7o(v)dvdxl . . .dx.dz.+ 1...dz.+p. (53) 

Kofl(x ,z)=(Q l)- ' ( 1 -  i + i ~ ) e+  l O(x,z,),,:o , 

where 

straightforward verifications. 

0 _  0_ t ,  ( j = n + l  ... .  ,n+p).  We again omit z t is given by: zt,j=zj, z t , j - z  j 

111.3. Poinear~ Covariance 

Up to this point, only the invariance under time-translations of the S, has been 
used. If the S, are invariant under space and time translations, it is clear that the 

generalized (anti-)time ordered functions have the same property. 

Let rh °u, m °u, Pu, (# = 1,..., v - 1), be the differential operators defined on .9° by 

D<. 
\ "i2~¢ 7 -- j ~X.]  fn(x l  . . . . .  Xn), 

j = l  j !  

(m°"f).(xl ..... x . )=  ~ {x ~' ~ o ~ 
t . . . . .  

Xn) , 

(p~,f) ,(xl , . . . ,x ,)  = ~ Of a-@x1 ..... x.). 

Note that Oxs~ - ~x~" These operators satisfy 

m°"Ltf  = Ltm°"f + t p ,L t f .  

Assuming the {S,} to be invariant under the full Euclidean group implies 

S(rh°uf)=O for all # = 1  ....  , v - 1  and all f .  

Let X =  {1 ..... n} and feAP(IW ") with support in {(xl, . . . ,x,)i  x° >=0 for all j}. 

Suppose that f is radially analytic in the angle {2 I0 < arg2 < ~}. Then 

([2, T(m°"f) f2) = i n S,((m°"f)i) 
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and, since (m°Uf) i=  -irh°Uf~, this vanishes. By the density of radially analytic 
functions and translational invariance of (~, T(X)f2) it follows that, for all 

f ~  5P(IRV'), 

(g2, T(m°"f)f2) = 0. 

Suppose now that f = f l ®Lye f2 ®...  ® Lvl +... + . . . .  f~ and that all fj  have compact 
support. Then, for sufficiently large positive v~ ..... v,_ 1, 

0=((2, T(m°'f)(2)= ~ (f2, T(fl)=F(Lv,f2)...T(m°"L~+...+v~ ~f)... 
j = i  

... T(Lvl +...+~,_~ L ) ~ )  

j = l  

+ v k T(p, f ) ]  e~Jn. • • T(f~) f2). 

By analytic continuation this remains true for all real v I ..... v~_ 1 so that 

I ' - - 1  

Z (f2, T(fl)--. T(m°Uf) ... T(L) f2) = 0 
j = l  

for all fa,. . . ,  f~ with compact support. This proves the Lorentz invariance of all 
((2, T(X1)... T(X~) f2). This in turn implies, as it is well known, the relativistic form of 
the causal factorization property. 

IV. Application to the q~4 Quantum Field Theory 

The purpose of this section is to show that perturbation theory holds for the 

weakly coupled ~p4 quantum field theory in 3 space-time dimensions. This 
statement will be substantiated below, but we first want to give a short account of 

existing work. The ~xistence of the ~p~ interaction as a quantum field theory 
satisfying all the Wightman axioms was proved in [FO, MS 1, MS2],  based on the 
earlier work in [G2, GJ, Fe]. We shall assume that the reader is more or less 

acquainted with the definitions and results of [FO] on which our analysis below 
will be based. The papers [FO, MS 1] contain proofs of the differentiability of the 

Schwinger functions in the bare parameters, i.e. in the coupling constant and the 
bare mass. In [MS2] it was even shown that the Schwinger functions are Borel 

summable in the coupling constant so that the theory is uniquely determined by 

perturbation theory. 
Two interesting further developments in a direction similar to our aims are 

described in [FR]  and [C]. In [FR],  the question of field equations is addressed 

and it is shown that generalized Schwinger functions for the g0 and @ fields can be 

defined in non-coinciding points as tempered distributions. Similarly, in order to 
prove the non-triviality of the S-matrix for the g0~ theory at small coupling, it was 
shown in [C] that truncated generalized Schwinger functions for the (0, (02 and 93 

fields exist as tempered distributions, coinciding points included. 
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Since some confusion might arise about the definition of generalized Schwinger 

functions, we repeat here the canonical definition known from perturbation theory 

for the case of the (p4 theory. 

We consider the cutoff Euclidean interaction 

4 

Z d3x: (54) 
j = l  

where q~ is some free Euclidean field with bare mass m 0 and cutoff K. The 

renormalization procedure tells us how to associate to the "Euclidean 

Lagrangian" (54) a renormalized one, called ~ .  It is well-known that in the case of 

the superrenormalizable theories 5¢~ can be found in the form of a polynomial in 

the 2~ with coefficients which tend to infinity as the cutoff ~ is removed. The 

natural definition of the truncated generalized Schwinger functions of the fields 

~o~k(x) (k = 1 ... . .  n, v k = 1, 2, 3, 4) is not the truncation of 

}> lim lim t~ - 6 _ _ _ ~  e_Z. ~ ( e _ ~ ) o  1 (55) 

where < >o is the free Euclidean expectation with bare mass m o. We shall rather 

adopt the following definition. 
Let fj, keSP(lR3), j=1 , . . . , 4 ,  k=l,...,n, let gjeSZ(lR3), j = l  . . . .  ,4. Then the 

generalized truncated Schwinger functions sT ....... (X 1 .. . . .  X,) are defined as distri- 

butions by the formula 

v k =  1 , . . . , 4  k = l  
k=  l , . . . , n  

= lim lira 2 f i  ~ (56) 
gj(X)--->l ~ o ~  v k = l  . . . . .  4 k = l  (~#v~c,k 

j =  1 , . . . , 4  k =  1 , . . . , n  

log (e--~f~('q'f"~'U))O]~,k,k=O , 
= J. , . . . ,n 

where 5f,,(g,f 2, #) is the renormalized Euclidean Lagrangian associated to 

~ dax:q~J :(x)[)~jgj(x)+ ~ lij, kf~,k(X)-]. (57) 
j = l  k = l  

We shall describe below why the existence of the objects described in (55) is an easy 
variant of results contained in the earlier work on q~4 

The Equations (55) and (55) define distributions which are equal on non- 

coinciding points, but only (56) defines a natural extension to coinciding argu- 

ments in the sense of local field theory. When (55) happens to define a locally 

integrable function (as is the case for the go I and go 2 field in the q)34 theory, or for all 

Wick powers in the P(~o)z theories) then the natural extension to coinciding 

arguments of (55) (as an integrable function) agrees with (56) everywhere. This 

observation (which follows from the very construction of the models) was basic to 

the papers [EEF, OSe, O]. 
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The main point of the preceding discussion is to emphasize that the definition 
(56) is suitable from an axiomatic point of view. In particular, it is for the 

untruncated generalized Schwinger Junctions S . . . .  . . . ,  obtained from the S Tvl,..vn in 
the standard way, that we shall prove the extended O.S. positivity, and the 

distributional bounds. 

Theorem 6. The generalized Schwinger functions are, as distributions, infinitely 

differentiable with respect to "].1 ... . .  24 and too>0 in a region of the form 

0 _-< 24m o 1 < e, lRjlm~ '2- 3 < e24m ° 1, j = 1, 2, 3, for some e > O. The derivatives are 

(finite) sums of truncated generalized Schwinger functions, integrated over some of 

their arguments. 

For an illustration of this last statement, see [EEF, Lemma 6a, 6b]. 

Theorem 7. The jamity of generalized Schwinger functions satisfies the conditions 

S1)-$6). 

The proofs of these two theorems will be sketched below. Given the very 

detailed accounts of [FO, MS 1, 2] we refrain from repeating the whole con- 

struction of the ~o~ theory for just proving one additional estimate, which seems to 

us implicitly contained in the aforementioned papers. 

The conclusions of Theorems 6 and 7, combined with the results of the 

preceding sections imply the existence of time-ordered products for the fields 

q~; v = l  . . . .  ,4. 

Theorem 8. The generalized analytic momentum space functions 

Hvl ..... (k;mo,2:,...,24) of the q~ theory are cg~ functions in mo,21,...,24 in the 

region described in Theorem 6 and analytic in k in the n point axiomatic domain with 

single particle poles at k 2 = m2(mo, 21,..., 24) and thresholds above 2m 2 -0(~). 

Proof By the analysis of the preceding sections and by Theorem 2, Equation (29) 

of S,~ ..... . The H ....... is for imaginary time components of k the Fourier transform r 

proof of differentiability follows then in the same way as for Theorem 7 of [EEF]. 

The existence of an isolated one particle singularity has been shown for the (p34 

theory by Burnap [B]. 

(Note: in perturbation theory, the renormalization is often performed so that 

the physical mass coincides with the parameter m, given in advance, which occurs 

in the free propagators. In constructive theory the bare mass m o is given; 

renormalization is performed by introducing only those counterterms necessary to 

compensate the divergences of the primitively divergent graphs : since these are in 

finite number for superrenormalizable theories £,o is then a polynomial in the 2j. 

This determines the physical mass m, as a function of m 0 and the 2;). We can now 

repeat almost verbatim the analysis done in [EEF], and we restate three relevant 

results. 

Theorem 9. (=Theorem 8 in [EEF]). There is an e l , 0 < e l < e  and for each 

a>OaCg ~ function 2=(21 ..... 2+)-+too(a,2 ) on O<2,,a -1 <~Sl, ])~jlaJ/2-3"<el,~4 a-l, 
j = 1, 2, 3 such that one has in the above region 

m(mo(a, 2), 2)= a. 
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(Note that in 3 dimensions, the mass satisfies due to scaling m(mo,21 .. . . .  24) 
= m0 U(~, l m l / 2  -- 3, . . . ,  ~4m40/2 - 3).) 

Theorem 10. (=Theorem 10 in [EEF]). 

(i) For (p4 theories with physical mass m > 0 and bare coupling constants 2j satisfyin9 

IR/nile 31 --< el 24m - 1, j = 1, 2, 3, 0 N 24m- 1 < e 1 the function 

G(k 1 ..... k,;m,2)= (k~-m 2) H1..A(kl . . . .  ,k,;mo(m,2),21,...,24) 
t j  = 1 

is cg~ in the 2~ and holomorphic in kl, ..., k n (with ~ k j = 0 )  in the axiomatic domain, 

with thresholds above 2m-0(e 1) and no single particle poles (at k ) =m2). 

(ii) The Taylor expansion of G(k ;m, 2) in 2~ at )~j =0 , j  = 1,..., 4,for k taken in the 

axiomatic domain (as described above), is given by standard renormalized per- 

turbation theory. 

Theorem 11. (=  Theorem 12 in [EEF]). At non-overlapping points of the real mass- 

shell the S-matrix elements of a ~o 4 theory with fixed physical mass m > 0  and 3 
coupling constants as in Theorem 10 are cg~ in 2~, j =  1,... ,4 in that region as 

tempered distributions in the momenta. Their Taylor expansion at 2j = O,j = 1,..., 4 is 

given by standard renormalized perturbation theory. 

In particular, we recover the non-triviality of the S-matrix for 24 > 0 sufficiently 

small, 21 = 2  2 = 2  3 = 0 ,  [ C ] .  

Proof of Theorem 6. This theorem is in a sense already contained in the proofs of 

the existence and differentiability in 2 of the ordinary Schwinger functions. We 

therefore only show how these proofs have to be read in order to arrive at the 

statement of Theorem 6. We shall adopt the terminology and notations of [FO], 

but [MS 1, MS2] could serve just as well, and we assume the reader is familiar 

with [FO]. 

To explain our point, we first refer to § 2.1 of [FO], (graph norms). A graph is a 

Wick monomial G of degree Ei(G ) with a kernel K(G)(Zl, .. ., zEi~)), where we 

consider all "legs" as "initial legs". For all a > 2 e > 0 ,  a norm IIGIIo,= is defined 

([FO, Eq. (2.6)]). The importance of these norms stems from the fact that all 

bounds and convergence statements are made with respect to them for suitable 6 

and cc As an example, in Theorem 4.6 of [FO] we have the bound 

tZ(A)- t (G51,,~, xAg I< I-I (n(A) !) II G It ~, ~,, (58) 
A 

where n(A) is the number of arguments of K(G) localized in the unit cube A (the 

support of K(G) is assumed here to be a product of such unit cubes), and Z(A) is 

the "partition function". In the case at hand, the space cutoff is not the function 9, 

but the family of functions, cf. Equation (57), 
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and it is clear from the definition of the norms [] ][a,~ that in our case we will have a 
bound on the 1.h.s. of (58) of the form 

where ][GI[ °~,~ is bounded by the norm NG[[~,~ for a 0 whose Fourier transform is 

bounded by [k[ -1 at infinity (cf. [Fe, page 97]), and [[s is a fixed Schwartz norm. 

The differentiability follows now as in Corollary 4.6b of [FO]. A more detailed 

outline of the proof is given in [MS2, page 270], where it is sketched how the 
derivatives combine to sums of graphs whose l[ Gllo°v norms are finite. For the case 

of the ~p3 derivatives this is done in great detail in [FR, pages 215-217], where it is 

shown how the crucial perturbation formula [FO, Eqs. (2.37)-(2.39), (3.2), (3.3)] is 

used in this procedure. The next important point of the proof is to realize that the 

[[ [[o norms of the graphs produced through this procedure are bounded, for 

sTvl...v, by f i  ]f~j,j[s n! K' for some universal constant K' and Schwartz norm [is- 
j=l 

This is due to the superrenormalizability of the theory, and proved through the 

mechanism of "estimating big graphs as products of small graphs" which was 

discovered by Glimm [G2]. 

We therefore get a bound 

IS S.,~ ..... (x 1 ..... x,) f l(xl)...f,(x,,)daxl ...d3x,,[ 

< Jn'Kj~=l l(Llfs[)(L + ~=a [f~[s) M} (59) 

for a universal Schwartz norm [[~ and universal constants J, K, L, M, provided the 

coupling constants are in a region of the form described in the statement of 

Theorem 6 (this is used to bound the exponential of - 5 ~ ) .  

Similarly, we get for the derivatives the equality 

l~i/o \"J { ~ j )  J'SvTi ..... (X1, ...,Xn)fl(x1)...fn(xn)d3Xl...d3xn 
j= l  

=S S~ ...... ~Z~J' ""4emm4 (x' .... , x,,, Yl,..., Yy,,.s)fl(xl) .. .f,,(x,,)d3x, .. .d3yz,,j (60) 
nl n 4 

and the bound 

J (#7+ j= l  '~ /~lj)! K (j=l~l (LiDis))(L-t- i=1 '~ 'fiis) j=l . 

Since a distribution is a linear functional, we find, writing f~ = (f/(Ifjl=))lfjls, 
A 

X n )  f l ( x 1 ) .  . . f n ( x n ) d 3 x  l . . . d 3  x n 

( ) <J n+ ~ n~ !S':L"(L-t-n) ~=1 
j=l j=l 

(61) 
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The Equations (60), (61) are more than enough to prove Theorem 6, in fact, we 
have already proven the growth condition of Theorem 7. 

Proof of Theorem 7. All axioms are obviously satisfied for the generalized 
(extended) Schwinger functions defined by (56), as in [FO, MS 1] except for the 
growth condition which we just proved and the extended O.S. positivity which we 
prove now. 

Time-ordered products can be defined for a cutoff theory, since for ~c < oe (as in 

[Fe]), and a cutoff of the form 9i(x °, x) = )~t- r, rl(x°) "h~(x), we have a Hamiltonian 
theory in which sharp time fields are defined. Hence we have extended O.S. 
positivity in this case by Theorem 1. This carries over to the limits, of which we 
have already shown existence. The proof of Theorem 7 is complete. 

Appendix 

Radially Analytic Functions 

Let f belong to 5:(IRN). For all real 2 > 0, f~(x)=f(x) defines another element of 
5:(IR N) and the map 

(f,,~)--,L 

from 5:(IR N) x (0, oo) to 5P(IR N) is continuous and cg~ in 2. We shall say that f is 

radially analytic and continuous in the angle {2e II; :[21 > 0, 01 < arg2 __< 02} (when 
01 __<0__<02) if there exists a continuous m a p ( f 2 ) ~ f z  from 5e(IR N) x (this angle) 
into 5~(IRN), holomorphic in 2 in the interior of the angle, such that, for 2 real >0, 

fx(x) =f(2x). 
It is easy to construct examples of radially analytic functions. Denote, for 

instance, for any real a > 0, 

o(a,2)=c(a)exp(--aOo-1/2+21/2)), c(a)-i = ~ d@exp(-a().-1/2+)Y2)) 
0 

where 2~21/2 is the holomorphic function over ~\IR_ equal to 1211/2 for 2>0 .  

Note that the restriction of this function to any closed half plane of the form 

{2:Ree-~°2>0},  - ~ < 0 < ~  is <g~ and vanishes at 0 with all its derivatives. 
Let F be a continuous function on (0, o0) with 

IF(2)I < A(21/2 -I- J~- 1/2)L L > 0 .  

Then (with new integration variables 2 = e 2~, y = chq~) 

d@ F(2)exp-a(21/2 + 2-1/2)= 2 ~ e- 2ach~° F(e2~)dq) , 
0 --ct)  

2 ~ e-2"ch~°F(e2~)dcp = 2 ~ e-2"yF((y + (y2_ 1)l/2)2)dy(yZ 1)-1/2 
0 i 
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and the last expression shows that, since IF(2)[<A(2y) L, the integrals converge 
absolutely. In particular 

oo 

c(a)-i = 4  ~( e-2~Y(y 2-1)-a /2dy 
1 

> 4 ~  ~ dy 
e - y  

2a Y 

>a-le-2a(l_e-2a). 

Thus, if a > l ,  c(a) -1 =>(2a)-le -2~, i.e. c(a)<2ae 2~. 
On the other hand, if ~Oo >0, 

oo 

c(a) ~ F(eZ~°)e-2"~h~°d(o 
q~o 

oo 

< 2ae2"A ~ (2chq~)%- 2achedo 
¢ o  

( (°4 + L@ < 2 r + l a A o d o e x p - a p 2 - a  
~Po \ 

oo / (o4 
<2L+ 'aAe-"~4 L d~expt--a-i~ + L @ . 

If a > 1 this is less than 

2L+ lAae-"~°a ~ d(oexp(-a~2 + Lal/4 @ 

= 2 L + 1A a 3/%- ,eg (12) 1/4 ~ exp - (0 ~ - (12) 1/4LO) dO. 

From this it follows that 

ou(a, 2)F(2) d2 

tends to zero as a ~  co. On the other hand ~ Q(a, 2) = 1. Since F is continuous, 
0 

for every t />0 we can find a > 0  so large that 

t~o 

! (F(2)-F(1))~(a,)jd@ <~t. 

1 
Hence ~Q(a,Z) is, when a--*oo, an approximation of 5(2-1). 

Suppose that ~oeSP(IRN). Then 

f (x )=  ~ ~(a,2) cp(2-1x) 
0 
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defines a new  f u n c t i o n  also b e l o n g i n g  to 5:(IRN). In  fact 

xPD~'f(x)= ~o P(a' 2)--2--21 l d 2  t~ -1~1(2- lx)aD~cp(2-ix) ' 

so t ha t  we can  a p p l y  the  p reced ing  ex t ima te  wi th  L = I 3 1 +  lel a n d  o b t a i n  a n  

i n e q u a l i t y  of  the type  

sup IxaD~/(x)l ~ C(c<,/3, a) sup Ix~D%o(x)l. 
X X 

Furthermore, as a-~ o%ftends to qo in the strong topology of 5:, and uniformly 
if (p varies in a bounded set of 5°(IRN). For 2>0,  denoting f~(x)=f(2x), we have 

go  

f~(x) = I o(a, 2#) d# (p(#- ix). (A 1) 
o # 

The right hand side of this equation has an analytic continuation in 5~ in the open 
set II;\IR-, and the map (2, q3)-~f~o is a continuous map of (ll2\IR-)x 5QIR N) into 
09~(IRN), holomorphic in 2. Thus f i s  radially continuous and analytic in the angle 

{2:[2[>0,01 <arg2<02}  whenever - ) z<01  <02<~z. 
This shows that radially analytic functions are dense in 5:(IRN). Note that if ~0 

has its support in a closed set F C IR ~ then for all 2 E C\IR-, fx as defined by (A 1) has 
its support in the closed cone generated by F. 
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