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Abstract. The compressible Navier–Stokes equation is considered on
the two dimensional whole space when the external force is periodic in the time
variable. The existence of a time periodic solution is proved for sufficiently

small time periodic external force with antisymmetry condition. The proof is
based on using the time-T -map associated with the linearized problem around
the motionless state with constant density. In some weighted L∞ and Sobolev
spaces the spectral properties of the time-T -map are investigated by a potential

theoretic method and an energy method. The existence of a stationary solution
to the stationary problem is also shown for sufficiently small time-independent
external force with antisymmetry condition on R2.

1. Introduction.

We consider time periodic problem of the following compressible Navier–Stokes equa-

tion for barotropic flow in R2:{
∂tρ+ div (ρv) = 0,

ρ(∂tv + (v · ∇)v)− µ∆v − (µ+ µ′)∇div v +∇p(ρ) = ρg.
(1.1)

Here ρ = ρ(x, t) and v = (v1(x, t), v2(x, t)) denote the unknown density and the unknown

velocity field, respectively, at time t ≥ 0 and position x ∈ R2; p = p(ρ) is the pressure

that is assumed to be a smooth function of ρ satisfying

p′(ρ∗) > 0,

for a given positive constant ρ∗; µ and µ′ are the viscosity coefficients that are assumed

to be constants satisfying

µ > 0, µ+ µ′ ≥ 0;

and g = g(x, t) is a given external force periodic in t. We assume that g = g(x, t) satisfies

the condition

g(x, t+ T ) = g(x, t) (x ∈ R2, t ∈ R), (1.2)
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for some constant T > 0. We also suppose that g has the form g = ∇⊥G :=

((∂/∂x2)G,−(∂/∂x1)G), where G(x, t) is a scalar function satisfying the following an-

tisymmetry condition for x ∈ R2;
G(−x1, x2, t) = −G(x1, x2, t),

G(x1,−x2, t) = −G(x1, x2, t),

G(x2, x1, t) = −G(x1, x2, t).

(1.3)

The antisymmetry condition (1.3) was used in the stationary problem for imcompressible

Navier–Stokes equation on R2 ([12]).

In this paper time periodic problem and stationary problem are considered for the

compressible Navier–Stokes equation (1.1) on R2. Concerning the time periodic problem

for (1.1) on the whole space, Ma, Ukai, and Yang [11] showed the existence and stability

of a time periodic solution on Rn with the space dimension n ≥ 5. In [11] it was shown

that if g ∈ C0(R;HN−1 ∩ L1) with g(x, t+ T ) = g(x, t) and g is sufficiently small, then

there exists a time periodic solution (ρper, vper) around (ρ∗, 0), where N ∈ Z satisfying

N ≥ n+ 2. It was also shown that for sufficiently small perturbations the time periodic

solution is stable and it holds that

∥(ρ(t), v(t))− (ρper(t), vper(t))∥HN−1

≤ C(1 + t)−n/4∥(ρ0, v0)− (ρper(t0), vper(t0))∥HN−1∩L1 ,

where t0 is a certain initial time and (ρ, v)|t=t0 = (ρ0, v0). Here the symbol Hk stands

for the L2-Sobolev space on Rn of order k.

In [4] the time periodic problem on Rn was investigated for n ≥ 3. It was proved

that if g satisfies the following condition for the space variable;

g(−x, t) = −g(x, t) (x ∈ Rn, t ∈ R), (1.4)

and g is sufficiently small in some weighted L2-Sobolev space, then there exists a time

periodic solution (ρper, vper) for (1.1) around (ρ∗, 0) and uper(t) = (ρper(t)− ρ∗, vper(t))

satisfies

sup
t∈[0,T ]

(∥uper(t)∥L2 + ∥x∇uper(t)∥L2)

≤ C{∥(1 + |x|)g∥C([0,T ];L1∩L2) + ∥(1 + |x|)g∥L2(0,T ;Hs−1)},

where s is an integer satisfying s ≥ [n/2] + 1. Moreover, (ρper, vper) is asymptotically

stable and it holds that

∥(ρ(t), v(t))− (ρper(t), vper(t))∥L2 = O(t−n/4) as t → ∞ (1.5)

for sufficiently small initial perturbations. In [10], the existence and stability of time

periodic solution were proved for n ≥ 3, without assuming the condition (1.4); it was

shown that if g is small enough in some weighted L∞ and L2 Sobolev spaces then there

exists a time periodic solution (ρper, vper) around (ρ∗, 0); and the time periodic solution is
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stable under sufficiently small initial perturbation and the perturbation (ρ−ρper, v−vper)

satisfies

∥(ρ(t)− ρper(t), v(t)− vper(t))∥L∞ → 0 (t → ∞).

Concerning the stationary problem of (1.1), Shibata and Tanaka [8] showed the existence

and stability of a stationary solution on R3. They showed that if g = g(x) is small enough

in some weighted L∞ and L2 Sobolev spaces then there exists a stationary solution

(ρ∗, v∗) around the motionless state (ρ∗, 0). Moreover, it was shown that for sufficiently

small initial perturbations the stationary solution is stable and the perturbation (ρ −
ρ∗, v − v∗) satisfies

∥(ρ(t)− ρ∗, v(t)− v∗)∥L∞ → 0 (t → ∞). (1.6)

In [9], the convergence rate for (1.6) was studied and it was shown if the initial pertur-

bation (ρ(0) − ρ∗, v(0) − v∗) satisfies the estimate ∥(ρ(0) − ρ∗, v(0) − v∗)∥H3 ≪ 1 and

(ρ(0)− ρ∗, v(0)− v∗) ∈ L6/5 then

∥(ρ(t)− ρ∗(t), v(t)− v∗(t))∥L∞ ≤ Ct−(1−δ)/2 (t → ∞),

where δ is any small positive number.

To our knowledge there seems no existence result on time periodic (and stationary)

problem for (1.1) on R2.

In this paper we consider the existence of a time periodic solution for (1.1) on R2

under (1.3). It will be proved that if g = ∇⊥G satisfies (1.2), (1.3) and the estimate

∥(1 + |x|)g∥C([0,T ];L1) + ∥(1 + |x|3)g∥C([0,T ];L∞)

+∥(1 + |x|2)G∥C([0,T ];L∞) + ∥(1 + |x|2)G∥L2(0,T ;Hs) ≪ 1

for an integer s ≥ 3, then there exists a time periodic solution uper = (ρper − ρ∗, vper) ∈
C(R;L∞) for (1.1), with ∇uper ∈ C(R;Hs−1) having time period T and uper satisfies

the estimate

sup
t∈[0,T ]

{ 1∑
j=0

∥(1 + |x|1+j)∂j
x(ρper − ρ∗)(t)∥L∞ +

1∑
j=0

∥(1 + |x|1+j)∂j
xvper(t)∥L∞

}
≤ C{∥(1 + |x|)g∥C([0,T ];L1) + ∥(1 + |x|3)g∥C([0,T ];L∞)

+ ∥(1 + |x|2)G∥C([0,T ];L∞) + ∥(1 + |x|2)G∥L2(0,T ;Hs)}.

Furthermore, we obtain the existence of a stationary solution for the stationary problem

of (1.1). It will be proved that if g = ∇⊥G is time-independent and satisfies (1.3) and

the estimate

∥(1 + |x|)g∥L1 + ∥(1 + |x|3)g∥L∞

+∥(1 + |x|2)G∥L∞ + ∥(1 + |x|2)G∥Hs ≪ 1



11-7524: 2017.12.26

246 K. Tsuda

for an integer s ≥ 3, then there exists a stationary solution u∗ = (ρ∗− ρ∗, v
∗) ∈ L∞ with

∇u∗ ∈ Hs−1 for the stationary problem for (1.1), and u∗ satisfies the estimate

1∑
j=0

∥(1 + |x|1+j)∂j
x(ρ

∗ − ρ∗)∥L∞ +
1∑

j=0

∥(1 + |x|1+j)∂j
xv

∗∥L∞

≤ C{∥(1 + |x|)g∥L1 + ∥(1 + |x|3)g∥L∞ + ∥(1 + |x|2)G∥L∞ + ∥(1 + |x|2)G∥Hs}.

The existence of a time periodic solution is shown by using time-T -map concerned

with the linearized problem around the constant state. We use a coupled system of

equations for a low frequency part and high frequency part of solution as in [4]. Con-

cerning the low frequency part, we apply the potential theoretic method similar to that

in the study of the stationary problem [8] which controls spatial decay properties for a

solution. The same method was used to study the time periodic problem in [10] for the

space dimension n ≥ 3. The main difference between the analysis in this paper and that

in [10] is stated as follows. We denote by A1 the linearized operator around (ρ∗, 0) on

the low frequency part. Then we estimate (I − S1(T ))
−1 in some weighted L∞ space,

where S1 denotes the semigroup generated by A1. In contrast to [10], since we consider

the problem on R2, the integral kernel (I − S1(T ))
−1 behaves like O(log |x|) as x → ∞,

which is the same as the fundamental solution of the Laplace equation. More precisely,

it follows from the spectral resolution that

F(I − S1(T ))
−1 ∼ − 1

T


ν + ν̃

γ2
− i⊤ξ

γ|ξ|2

− iξ

γ|ξ|2
1

ν|ξ|2

(
I2 −

ξ⊤ξ

|ξ|2

)
 as ξ → 0, (1.7)

where the superscript ⊤· denotes the transposition, I2 denotes the 2× 2 identity matrix

and F denotes the Fourier transform. Then the order log |x| appears from the Stokes

inverse in the right hand side of (1.7). This prevents us from controlling spatial decay

properties for the convection term and the external force. To overcome this difficulty,

since the slowly decaying order appears from the Stokes inverse, we introduce the anti-

symmetry condition which was used in the stationary problem for incompressible flow on

R2 ([12]). Moreover, we use the following two key observations to estimate the convection

term v · ∇v.

The one is concerned with the formulation for the low frequency part. Due to the

slow decay of v at spatial infinity, for the low frequency part we formulate the equation

not only using the conservation form with the momentum as in [10] but also rewriting

the convection term into a sum of the incompressible flow part and the potential flow

part. More precisely, we rewrite the convection term as

∂x2

(
v1v2

(v2)
2 − (v1)

2

)
+ ∂x1

(
0

v2v1

)
+∇(v1)

2. (1.8)

This enables us to use of the antisymmetry condition effectively for the low frequency

part. (Cf., Remark 4.7 bellow.) Note that in [12], since the incompressible flow was



11-7524: 2017.12.26

Time periodic problem for the compressible Navier–Stokes equation 247

considered, the vorticity formlation was used effectively to estimate the convection term

under the antisymmetry condition (1.3). On the other hand, since we consider the

compressible flow, we use a coupled system of the conservation form of the momentum

and the velocity formulation with (1.8) instead of the vorticity formulation.

Another key observation is concerned with the potential theoretic method on R2. By

making use of the antisymmetry condition (1.3), an estimate for convolution is established

in a weighted L∞ space on R2. (See Lemma 4.11 bellow.) Using this estimate, we obtain

the estimate for a convolution with the convection term in the weighted L∞ space.

As for the high frequency part, we use the velocity formulation to avoid some deriv-

ative loss by using the energy method as in [4], [10].

The existence of the stationary solution is proved similarly. Since the fundamental

solution for the linearized stationary problem for the low frequency part is the same as

the leading part of (I − S1(T ))
−1, one can prove the existence of the stationary solution

by similar estimates to those used in the proof of the existence of a time periodic solution.

This paper is organized as follows. In section 2, notations and auxiliary lemmas are

introduced, which are used in this paper. In section 3, main results of this paper are

stated. In section 4, we reformulate the problem. A coupled system with the conserva-

tion of momentum for the low frequency part and the equation of motion for the high

frequency part is introduced; and we will then rewrite by a system of integral equations in

terms of the time-T -map. We also establish some estimates for a convolution which will

appear in the low frequency part. In section 5, we derive estimates for a solution related

to the time-T -map for the low frequency part. In section 6, some spectral properties of

the time-T -map are stated for the high frequency part. In section 7, nonlinear terms are

estimated and we then prove the existence of a time periodic solution by the iteration

argument.

2. Preliminaries.

In this section we introduce notations which will be used throughout this paper. Fur-

thermore, we introduce some lemmas which will be useful in the proof of the main results.

We denote the norm on X by ∥ · ∥X for a given Banach space X.

Let 1 ≦ p ≦ ∞. Lp stands for the usual Lp space on R2. We denote the inner

product of L2 by (·, ·). Let k be a nonnegative integer. Hk denotes the usual L2-Sobolev

space of order k. (As usual, we define that H0 := L2.)

For simplicity, Lp stands for the set of all vector fields w = ⊤(w1, w2) on R2 with

wj ∈ Lp (j = 1, 2) and we denote by ∥ · ∥Lp the norm ∥ · ∥(Lp)2 if no confusion will occur.

Similarly, we denote by a function space X the set of all vector fields w = ⊤(w1, w2) on

R2 with wj ∈ X (j = 1, 2); and we denote the norm ∥ · ∥X2 on it by ∥ · ∥X if no confusion

will occur.

We take u = ⊤(ϕ,w) with ϕ ∈ Hk and w = ⊤(w1, w2) ∈ Hm. Then the norm of u

on Hk ×Hm is denoted by ∥u∥Hk×Hm , that is, we define

∥u∥Hk×Hm :=
(
∥ϕ∥2Hk + ∥w∥2Hm

)1/2
.
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Whenm = k, we simply denoteHk×(Hk)2 byHk. We also denote the norm ∥u∥Hk×(Hk)2

by ∥u∥Hk , i.e., we define that

Hk := Hk × (Hk)2, ∥u∥Hk := ∥u∥Hk×(Hk)2 (u = ⊤(ϕ,w)).

Similarly, for u = ⊤(ϕ,w) ∈ X × Y with w = ⊤(w1, w2) , the norm ∥u∥X×Y stands for

∥u∥X×Y :=
(
∥ϕ∥2X + ∥w∥2Y

)1/2
(u = ⊤(ϕ,w)).

If Y = X2, the symbol X stands for X × X2 for simplicity, and we define its norm

∥u∥X×X2 by ∥u∥X ;

X := X ×X2, ∥u∥X := ∥u∥X×X2 (u = ⊤(ϕ,w)).

A function space with spatial weight is defined as follows. For a nonnegative integer

ℓ and 1 ≤ p ≤ ∞, the symbol Lp
ℓ denotes the weighted Lp space which is defined by

Lp
ℓ := {u ∈ Lp; ∥u∥Lp

ℓ
:= ∥(1 + |x|)ℓu∥Lp < ∞}.

The notations f̂ and F [f ] denote the Fourier transform of f :

f̂(ξ) = F [f ](ξ) :=

∫
R2

f(x)e−ix·ξdx (ξ ∈ R2).

In addition, we denote the inverse Fourier transform of f by F−1[f ]:

F−1[f ](x) := (2π)−2

∫
R2

f(ξ)eiξ·xdξ (x ∈ R2).

Let k be a nonnegative integer and let r1 and r∞ be positive constants satisfying

r1 < r∞. The symbolHk
(∞) stands for the set of all u ∈ Hk satisfying supp û ⊂ {|ξ| ≥ r1},

and the symbol L2
(1) stands for the set of all u ∈ L2 satisfying supp û ⊂ {|ξ| ≤ r∞}. It

follows from Lemma 4.3 (ii) bellow that Hk ∩L2
(1) = L2

(1) for any nonnegative integer k.

Let k and ℓ be nonnegative integers. The weighted L2-Sobolev space Hk
ℓ is defined

by

Hk
ℓ := {u ∈ Hk; ∥u∥Hk

ℓ
< +∞},

where

∥u∥Hk
ℓ
:=

 ℓ∑
j=0

|u|2Hk
j

1/2

,

|u|Hk
ℓ
:=

∑
|α|≤k

∥ |x|ℓ∂α
x u ∥2L2

1/2

.

Moreover, Hk
(∞),ℓ denotes the weighted L2-Sobolev space for the high frequency part
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defined by

Hk
(∞),ℓ := {u ∈ Hk

(∞); ∥u∥Hk
ℓ
< +∞}.

Let ℓ be a nonnegative integer. The symbol L2
(1),ℓ stands for the weighted L2 space

for the low frequency part defined by

L2
(1),ℓ := {f ∈ L2

ℓ ; f ∈ L2
(1)}.

For −∞ ≤ a < b ≤ ∞, the symbol Ck([a, b];X) denotes the set of all Ck functions

on [a, b] with values in X. Similarly, Lp(a, b;X) and Hk(a, b;X) denote the Lp-Bochner

space on (a, b) and the L2-Bochner–Sobolev space of order k respectively.

The time periodic problem is considered in function spaces with the following anti-

symmetry. Γj (j = 1, 2, 3) are defined by

(Γ1u)(x) :=
⊤(ϕ(−x1, x2),−w1(−x1, x2), w2(−x1, x2)),

(Γ2u)(x) :=
⊤(ϕ(x1,−x2), w1(x1,−x2),−w2(x1,−x2)),

(Γ3u)(x1, x2) :=
⊤(ϕ(x2, x1), w2(x2, x1), w1(x2, x1))

for u(x) = ⊤(ϕ(x), w1(x), w2(x)), x ∈ R2. For a function space X on R2, the space Xsym

denotes the set of all u = ⊤(ϕ,w1, w2) ∈ X satisfying Γju = u (j = 1, 2, 3).

Let X be a function space on R2. X3 denotes the set of all f ∈ X satisfying

f(−x1, x2) = f(x1, x2), f(x1,−x2) = f(x1, x2),

f(x2, x1) = f(x1, x2).

X# denotes the set of all f = ⊤(f1, f2) ∈ X satisfying
f1(−x1, x2) = −f1(x1, x2), f1(x1,−x2) = f1(x1, x2),

f2(−x1, x2) = f2(x1, x2), f2(x1,−x2) = −f2(x1, x2),

f1(x2, x1) = f2(x1, x2), f2(x2, x1) = f1(x1, x2).

Note that if f in X has the form f = ∇⊥F = ⊤((∂/∂x2)F,−(∂/∂x1)F ), where F satisfies

the condition

F (−x1, x2) = −F (x1, x2), F (x1,−x2) = −F (x1, x2),

F (x2, x1) = −F (x1, x2)

for R2, then f ∈ X#.

The space X (1) is defined by

X (1) := {ϕ ∈ L∞
1 ∩ L2; supp ϕ̂ ⊂ {|ξ| ≤ r∞}, ∥ϕ∥X (1)

< +∞},

where the norm is defined by
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∥ϕ∥X (1)

:= ∥ϕ∥X (1),L∞
+ ∥ϕ∥X (1),L2

,

∥ϕ∥X (1),L∞
:=

1∑
k=0

∥∇kϕ∥L∞
k+1

,

∥ϕ∥X (1),L2
:=

1∑
k=0

∥∇kϕ∥L2
k
.

On the other hand, Y (1) is defined by

Y (1) := {w ∈ L∞
1 ,∇w ∈ H1; supp ŵ ⊂ {|ξ| ≤ r∞}, ∥w∥Y (1)

< +∞},

where

∥w∥Y (1)

:= ∥w∥X (1),L∞
+ ∥w∥Y (1),L2

,

∥w∥Y (1),L2
:=

2∑
j=1

∥(1 + |x|)j−1∇jw∥L2 .

We define a weighted space for the low frequency part Z (1)(a, b) by

Z (1)(a, b) := C1([a, b];X (1))×
[
C([a, b];Y (1)) ∩H1(a, b;Y (1))

]
.

Let s be a nonnegative integer satisfying s ≥ 3. We denote by the space Z k
(∞),1(a, b)

(k = s− 1, s) the weighted space for the high frequency part defined by

Z k
(∞),1(a, b) :=

[
C([a, b];Hk

(∞),2) ∩ C1([a, b];L2
2)
]

×
[
L2(a, b;Hk+1

(∞),2) ∩ C([a, b];Hk
(∞),2) ∩H1(a, b;Hk−1

(∞),2)
]
.

Let s be a nonnegative integer satisfying s ≥ 3 and let k = s − 1, s. We define a

space Xk(a, b) by

Xk(a, b) :=
{
{u(1), u(∞)};u(1) ∈ Z (1)(a, b), u(∞) ∈ Z k

(∞),2(a, b),

∂tϕ(∞) ∈ C([a, b];L2
1), u(j) =

⊤(ϕ(j), w(j)) (j = 1,∞)
}
,

and we define the norm by

∥{u(1), u(∞)}∥Xk(a,b) :=∥u(1)∥Z (1)(a,b)
+ ∥u(∞)∥Z k

(∞),2(a,b)

+ ∥∂tϕ(∞)∥C([a,b];L2
1)
+ ∥∂tu(1)∥C([a,b];L2) + ∥∂t∇u(1)∥C([a,b];L2

1)
.

Let s be a nonnegative integer satisfying s ≥ 3 and let k = s − 1, s. We define a

space Y k by

Y k :=
{
{u(1), u(∞)};u(1) ∈ X (1) ×Y (1), u(∞) ∈ Hk

(∞),2 ×Hk+1
(∞),2,

u(j) =
⊤(ϕ(j), w(j)) (j = 1,∞)

}
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and we define the norm by

∥{u(1), u(∞)}∥Y k :=∥u(1)∥X (1)×Y (1)

+ ∥u(∞)∥Hk
(∞),2

×Hk+1
(∞),2

.

Function spaces of time periodic functions with period T are introduced as follows.

Cper(R;X) stands for the set of all time periodic continuous functions with values in X

and period T whose norm is defined by ∥ · ∥C([0,T ];X); Similarly, L2
per(R;X) denotes the

set of all time periodic locally square integrable functions with values in X and period

T whose the norm is defined by ∥ · ∥L2(0,T ;X). Similarly, H1
per(R;X) and Xk

per(R), and
so on, are defined.

For operators L1 and L2, we denote by [L1, L2] the commutator of L1 and L2, i.e.,

[L1, L2]f := L1(L2f)− L2(L1f).

We next state some lemmas which will be used in the proof of the main results.

The following lemma is the well-known Sobolev type inequality.

Lemma 2.1. Let s be an integer satisfying s ≥ 2. Then there holds the inequality

∥f∥L∞ ≤ C∥∇f∥Hs−1 ,

for f ∈ Hs.

The following Hardy’s inequality is known for a function satisfying the oddness

conditions in (1.3) on R2.

Lemma 2.2. Let u ∈ H1 and we assume that u satisfies

u(−x1, x2) = −u(x1, x2) or u(x1,−x2) = −u(x1, x2) (2.1)

for x = ⊤(x1, x2). Then there holds the inequality∥∥∥ u

|x|

∥∥∥
L2

≤ C∥∇u∥L2 .

See, e.g., [1] for the proof of Lemma 2.2.

We state the following inequalities which are concerned with composite functions.

Lemma 2.3. Let s be an integer satisfying s ≥ 2. Let sj and µ(j) (j = 1, · · · , ℓ)
be nonnegative integers and multiindices satisfying 0 ≤ |µ(j)| ≤ sj ≤ s + |µ(j)|, µ =

µ(1) + · · ·+ µℓ, s = s1 + · · ·+ sℓ ≥ (ℓ− 1)s+ |µ|, respectively. Then there holds

∥ ∂
µ(1)
x f1 · · · ∂µℓ

x fℓ ∥L2≤ C
∏

1≤j≤ℓ

∥ fj ∥Hsj (fj ∈ Hsj ).

See, e.g., [3] for the proof of Lemma 2.3.
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Lemma 2.4. Let s be an integer satisfying s ≥ 2. Suppose that F is a smooth

function on I, where I is a compact interval of R. Then for a multi-index α with 1 ≤
|α| ≤ s, there hold the estimates

∥[∂α
x , F (f1)]f2∥L2 ≤ C∥F∥C|α|(I)

{
1 + ∥∇f1∥|α|−1

s−1

}
∥∇f1∥Hs−1∥f2∥H|α| ,

for f1 ∈ Hs with f1(x) ∈ I for all x ∈ R2 and f2 ∈ H |α|; and

∥[∂α
x , F (f1)]f2∥L2 ≤ C∥F∥C|α|(I)

{
1 + ∥∇f1∥|α|−1

s−1

}
∥∇f1∥Hs∥f2∥H|α|−1 ,

for f1 ∈ Hs+1 with f1(x) ∈ I for all x ∈ R2 and f2 ∈ H |α|−1.

See, e.g., [2] for the proof of Lemma 2.4.

3. Main results.

In this section, we state our main result on the existence of a time periodic solution

for (1.1). We also state our result on the existence of a stationary solution of (1.1)

when g is independent of t. To state our results, the following operators are introduced,

which decompose a function into its low and high frequency parts respectively. We define

operators P1 and P∞ on L2 by

Pjf := F−1(χ̂jF [f ]) (f ∈ L2, j = 1,∞),

where

χ̂j(ξ) ∈ C∞(R2) (j = 1,∞), 0 ≤ χ̂j ≤ 1 (j = 1,∞),

χ̂1(ξ) :=

{
1 (|ξ| ≤ r1),

0 (|ξ| ≥ r∞),

χ̂∞(ξ) := 1− χ̂1(ξ),

0 < r1 < r∞.

r1 and r∞ are positive constants satisfying 0 < r1 < r∞ < 2γ/(ν + ν̃) in such a way that

the estimate (5.6) in Lemma 5.3 below holds for |ξ| ≤ r∞.

Substituting ϕ = (ρ− ρ∗)/ρ∗ and w = v/γ with γ :=
√
p′(ρ∗) into (1.1), time

periodic problem (1.1) is formulated as

∂tu+Au = −B[u]u+G(u, g), (3.1)

where

A :=

(
0 γdiv

γ∇−ν∆− ν̃∇div

)
, ν :=

µ

ρ∗
, ν̃ :=

µ+ µ′

ρ∗
, (3.2)

B[ũ]u := γ

(
w̃ · ∇ϕ

0

)
for u = ⊤(ϕ,w), ũ = ⊤(ϕ̃, w̃), (3.3)
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and

G(u, g) :=

(
F 0(u)

F̃ (u, g)

)
, (3.4)

F 0(u) := −γϕdivw, (3.5)

F̃ (u, g) := −γ(1 + ϕ)(w · ∇w)− ϕ∂tw −∇(p̃(ϕ)ϕ2) +
1 + ϕ

γ
g, (3.6)

p̃(ϕ) :=
ρ∗
γ

∫ 1

0

(1− θ)p′′(ρ∗(1 + θϕ))dθ.

We now state our result on the existence of a time periodic solution.

Theorem 3.1. Let s be an integer satisfying s ≥ 3. Let g = ∇⊥G, where G is a

scaler function. Assume that g and G satisfies (1.2), (1.3) and g ∈ Cper(R;L1
1 ∩ L∞

3 )

with G ∈ Cper(R;L∞
2 ) ∩ L2

per(R;Hs
2). We define the norm of g by

[g]s := ∥g∥C([0,T ];L1
1∩L∞

3 ) + ∥G∥C([0,T ];L∞
2 )∩L2(0,T ;Hs

2 )
.

Then there exist constants δ1 > 0 and C > 0 such that if [g]s ≤ δ1, the problem (3.1)

has a time periodic solution u = u(1) + u(∞) satisfying {u(1), u(∞)} ∈ Xs
sym,per(R) with

∥{u(1), u(∞)}∥Xs(0,T ) ≤ C[g]s. Furthermore, the uniqueness of time periodic solutions of

(3.1) holds in the class

{u = ⊤(ϕ,w);u = u(1) + u(∞), {u(1), u(∞)} ∈ Xs
sym,per(R), ∥{u(1), u(∞)}∥Xs(0,T ) ≤ Cδ1}.

We next consider the stationary problem for (1.1). We consider the following sta-

tionary problem on R2:{
div (ρv) = 0,

ρ(v · ∇)v − µ∆v − (µ+ µ′)∇div v +∇p(ρ) = ρg,
(3.7)

where g = g(x) is a given external force satisfying (1.3). Substituting ϕ = (ρ− ρ∗)/ρ∗
and w = v/γ with γ =

√
p′(ρ∗) into (3.7), we rewrite (3.7) to

Au = −B[u]u+G(u, g). (3.8)

The existence of the stationary solution is stated as follows.

Theorem 3.2. Let s be an integer satisfying s ≥ 3. Let g = ∇⊥G, where G is a

scaler function. Assume that G satisfies (1.3) and g ∈ L1
1 ∩ L∞

3 with G ∈ L∞
2 ∩Hs

2 . We

define the norm of g by

|||g|||s := ∥g∥L1
1∩L∞

3
+ ∥G∥L∞

2 ∩Hs
2
.

Then there exist constants δ2 > 0 and C > 0 such that if |||g|||s ≤ δ2, the problem

(3.8) has a stationary solution u = u(1) + u(∞) satisfying {u(1), u(∞)} ∈ Y s
sym with

∥{u(1), u(∞)}∥Y s ≤ C|||g|||s. Furthermore, the uniqueness of stationary solutions of (3.8)
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holds in the class {u = ⊤(ϕ,w);u = u(1) + u(∞), {u(1), u(∞)} ∈ Y s
sym, ∥{u(1), u(∞)}∥Y s ≤

Cδ2}.

In this paper we will give a proof of Theorem 3.1 only, since Theorem 3.2 can be

proved in a similar manner to the proof of Theorem 3.1. The only difference appears

in the analysis of the high frequency part. In fact, Theorem 3.2 can be proved in the

following way. As in [10], direct computations show that the low frequency part of

the solution operator for the linearized problem for (3.8) coincides with the leading

part of (I − S1(T ))
−1 which provides the key estimates in the proof of Theorem 3.1.

Here S1(T ) = e−TA is the low frequency part of the semigroup generated by A. (See

Proposition 5.1 below.) More precisely, it holds that

F{(I − S1(T ))
−1} ∼ − 1

T


ν + ν̃

γ2
− i⊤ξ

γ|ξ|2

− iξ

γ|ξ|2
1

ν|ξ|2

(
I2 −

ξ⊤ξ

|ξ|2

)
 as ξ → 0

and the the right-hand side corresponds to the fundamental solution for the linearized

problem of (3.8) in the Fourier space for the low frequency part. Therefore, one can obtain

the estimates for the low frequency part of the solution operator in (X (1)×Y (1))sym as

in Section 5. The high frequency part is analyzed in a similar manner to the case of time

periodic problem as in Section 6. The desired estimates for the high frequency part can

be obtained by the weighted L2 energy method. The only difference from the case of the

time periodic problem appears in proving the existence of the solution operator for the

high frequency part of the linearized problem. In the case of the stationary problem, one

can show the existence of the solution operator by the elliptic regularization method as in

[6], [8]. Although we consider the two dimensional problem, the existence of the solution

operator can be shown more easily than in [6], [8], since 0 belongs to the resolvent sets

of the elliptic operators −ϵ∆ (ϵ > 0) and −ν∆ − ν̃div restricted to the high frequency

part.

In the remaining of this paper we will give a proof of Theorem 3.1.

4. Reformulation of the problem.

In this section, we reformulate (3.1). We begin with to decompose u into a low fre-

quency part u(1) and a high frequency part u(∞), and then, we rewrite (3.1) to equations

for u(1) and u(∞) as in [4].

Similarly to [4], we define

u(1) := P1u, u(∞) := P∞u.

Applying the operators P1 and P∞ to (3.1), we see that

∂tu(1) +Au(1) = F low(u(1) + u(∞), g), (4.1)

∂tu(∞) +Au(∞) + P∞(B[u(1) + u(∞)]u(∞)) = Fhigh(u(1) + u(∞), g). (4.2)
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Here

F low(u(1) + u(∞), g) := P1[−B[u(1) + u(∞)](u(1) + u(∞)) +G(u(1) + u(∞), g)],

Fhigh(u(1) + u(∞), g) := P∞[−B[u(1) + u(∞)]u(1) +G(u(1) + u(∞), g)].

On the other hand, if some functions u(1) and u(∞) satisfy (4.1) and (4.2), then adding

(4.1) to (4.2), we derive that

∂t(u(1) + u(∞)) +A(u(1) + u(∞))

= −P∞(B[u(1) + u(∞)]u(∞)) + (F low + Fhigh)(u(1) + u(∞), g)

= −B[u(1) + u(∞)](u(1) + u(∞)) +G(u(1) + u(∞), g).

Defining u := u(1) + u(∞), we get

∂tu+Au+B[u]u = G(u, g).

Therefore, in order to obtain a solution u of (3.1), we look for a solution {u(1), u(∞)}
satisfying (4.1)–(4.2).

Concerning antisymmetry of (3.1) and (4.1)–(4.2), We state the following lemmas.

Recall that Γj (j = 1, 2, 3) is defined by

(Γ1u)(x) :=
⊤(ϕ(−x),−w1(−x), w2(−x)), (Γ2u)(x) :=

⊤(ϕ(−x), w1(−x),−w2(−x)),

(Γ3u)(x1, x2) :=
⊤(ϕ(x2, x1), w2(x2, x1), w1(x2, x1))

for u(x) = ⊤(ϕ(x), w1(x), w2(x)), x ∈ R2.

Lemma 4.1. We define g(x, t) := ⊤(0, g(x, t)) and let g satisfy (Γjg)(x, t) =

g(x, t) (x ∈ R2, t ∈ R, j = 1, 2, 3).

(i) Γju (j = 1, 2, 3) is a solution of (3.1) if u = ⊤(ϕ,w) is a solution of (3.1).

(ii) {Γju(1),Γju(∞)} (j = 1, 2, 3) is a solution of (4.1)–(4.2) if {u(1), u(∞)} is a

solution of (4.1)–(4.2).

Lemma 4.2. Let g satisfy (Γjg)(x, t) = g(x, t) (x ∈ R2, t ∈ R, j = 1, 2, 3).

(i) There holds

[Γj(∂tu+Au+B[u]u−G(u, g))](x, t) = [∂tu+Au+B[u]u−G(u, g)](x, t)

for x ∈ R2, t ∈ R, j = 1, 2, 3 if (Γju)(x, t) = u(x, t) (x ∈ R2, t ∈ R, j = 1, 2, 3).

(ii) There hold

[Γj(∂tu(1) +Au(1) − F low(u(1) + u(∞), g))](x, t)

= [∂tu(1) +Au(1) − F low(u(1) + u(∞), g)](x, t)

and

[Γj(∂tu(∞) +Au(∞) + P∞(B[u(1) + u(∞)]u(∞))− Fhigh(u(1) + u(∞), g))](x, t)
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= [∂tu(∞) +Au(∞) + P∞(B[u(1) + u(∞)]u(∞))− Fhigh(u(1) + u(∞), g)](x, t)

for x ∈ R2, t ∈ R, j = 1, 2, 3 if {Γju(1)(x, t),Γju(∞)(x, t)} = {u(1)(x, t), u(∞)(x, t)}
(x ∈ R2, t ∈ R, j = 1, 2, 3).

Direct computations verify Lemma 4.1 (i) and Lemma 4.2 (i). As for Lemma 4.1

(ii) and Lemma 4.2 (ii), since it holds that FΓj = −ΓjF (j = 1, 2), FΓ3 = Γ3F ,

χj(−ξ1, ξ2) = χj(ξ1,−ξ2) = χj(ξ2, ξ1) = χj(ξ1, ξ2) (j = 1,∞), we find that ΓkPj = PjΓk

(k = 1, 2, 3, j = 1,∞). Hence Lemma 4.1 (ii) and Lemma 4.2 (ii) follow from the above

relation by a direct computation.

Therefore, we consider (4.1)–(4.2) in space of functions satisfying {Γju(1),Γju(∞)} =

{u(1), u(∞)} (j = 1, 2, 3) by Lemma 4.1 and Lemma 4.2.

To prove the existence of time periodic solution on R2, we use the momentum for-

mulation for the low frequency part due to the slow decay of the low frequency part u(1)

in a weighted L∞ space as in [10].

Some inequalities are prepared for the low frequency part to state the momentum

formulation. The following lemma is concerned with properties of P1.

Lemma 4.3. [4, Lemma 4.3] (i) Let k be a nonnegative integer. Then P1 is a

bounded linear operator from L2 to Hk. In fact, it holds that

∥∇kP1f∥L2 ≤ C∥f∥L2 (f ∈ L2).

As a result, for any 2 ≤ p ≤ ∞, P1 is bounded from L2 to Lp.

(ii) Let k be a nonnegative integer. Then there hold the estimates

∥∇kf(1)∥L2 + ∥f(1)∥Lp ≤ C∥f(1)∥L2 (f(1) ∈ L2
(1)),

where 2 ≤ p ≤ ∞.

We state the following inequality for the weighted Lp norm of the low frequency

part.

Lemma 4.4. [10, Lemma 4.3] Let k and ℓ be nonnegative integers and let 1 ≤ p ≤
∞. Then there holds the estimate

∥|x|ℓ∇kf(1)∥Lp ≤ C∥|x|ℓf(1)∥Lp (f(1) ∈ L2
(1) ∩ Lp

ℓ ).

The following inequality holds for the weighted L2 norm of the low frequency part.

Lemma 4.5. Let ϕ ∈ L∞
1 with ∇ϕ ∈ L2

1 and w(1) ∈ Y (1). Then, it holds that

∥P1(ϕw(1))∥Y (1),L2
≤ C(∥ϕ∥L∞

1
+ ∥∇ϕ∥L2

1
)(∥w(1)∥L∞

1
+ ∥∇w(1)∥L2)

uniformly for ϕ and w(1).

Lemma 4.5 follows directly from Lemma 4.4.

We introduce m(1) and u(1),m by
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m(1) := w(1) + P1(ϕw), u(1),m := ⊤(ϕ(1),m(1)), (4.3)

where ϕ = ϕ(1) + ϕ(∞) and w = w(1) + w(∞). The following Lemma is related to

reformulation to the momentum formulation for the low frequency part.

Lemma 4.6. [10, Lemma 4.5] Assume that {u(1), u(∞)} satisfies the system (4.1)–

(4.2). Then {u(1),m, u(∞)} satisfies the following system:

∂tu(1),m +Au(1),m = F low,m(u(1) + u(∞), g), (4.4)

∂tu(∞) +Au(∞) + P∞(B[u(1) + u(∞)]u(∞)) = Fhigh(u(1) + u(∞), g).

Here

F low,m(u(1) + u(∞), g) :=
⊤(0, F̃ low,m(u(1) + u(∞), g)),

F̃ low,m(u(1) + u(∞), g) := −P1{µ∆(ϕw) + µ̃∇div (ϕw) +
ρ∗
γ
∇(p(1)(ϕ)ϕ2)

+γdiv (ϕw ⊗ w)− 1

γ
((1 + ϕ)g)

+γ∂x2

(
w1w2

(w2)
2 − (w1)

2

)
+ γ∂x1

(
0

w2w1

)
+ γ∇(w1)

2}. (4.5)

Remark 4.7. Here we rewrite the convection term div (w ⊗ w) by

div (w ⊗ w) = ∂x2

(
w1w2

(w2)
2 − (w1)

2

)
+ ∂x1

(
0

w2w1

)
+∇(w1)

2

to use the antisymmetry effectively. See Proposition 7.1.

Similarly to Lemma 4.2, the following lemma follows from direct computations which

implies that the antisymmetry of (4.4) holds.

Lemma 4.8. (i) Γju(1),m (j = 1, 2, 3) is a solution of (4.4) if u(1),m = ⊤(ϕ(1),m(1))

is a solution of (4.4).

(ii) Let g satisfy (Γjg)(x, t) = g(x, t) (x ∈ R2, t ∈ R, j = 1, 2, 3). Then there hold

[Γj(∂tu(1),m +Au(1),m − F low,m(u(1),m + u(∞), g))](x, t)

= [∂tu(1),m +Au(1),m − F low,m(u(1),m + u(∞), g)](x, t)

for x ∈ R2, t ∈ R, j = 1, 2, 3 if {Γju(1),m(x, t),Γju(∞)(x, t)} = {u(1),m(x, t), u(∞)(x, t)}
(x ∈ R2, t ∈ R, j = 1, 2, 3).

If ϕ = ϕ(1) + ϕ(∞) is sufficiently small, we obtain the solution {u(1), u(∞)} of (4.1)–

(4.2) from the solution of (4.2), (4.3) and (4.4), i.e., we have the following.

Lemma 4.9. (i) Let s be an integer satisfying s ≥ 3 and u(1),m = ⊤(ϕ(1),m(1)) and

u(∞) = ⊤(ϕ(∞), w(∞)) satisfy {u(1),m, u(∞)} ∈ Xs
sym(a, b). Then there exists a positive

constant δ0 such that if ϕ = ϕ(1) + ϕ(∞) satisfies supt∈[a,b](∥ϕ∥L∞
1
+ ∥∇ϕ∥L2

1
) ≤ δ0, then
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there uniquely exists w(1) ∈ C([a, b];Y (1),#) ∩ H1(a, b;Y (1),#) satisfying the following

equation

w(1) = m(1) − P1(ϕ(w(1) + w(∞))), (4.6)

where ϕ = ϕ(1) + ϕ(∞). Furthermore, we have the estimates

∥w(1)∥C([a,b];Y (1))
≤ C(∥m(1)∥C([a,b];Y (1))

+ ∥w(∞)∥C([a,b];L2
1)
), (4.7)∫ b

a

∥∂tw(1)(τ)∥2Y (1)

dτ ≤ C((∥∂t∇ϕ(1)∥2C([a,b];L2
1)
+ ∥∂tϕ(∞)∥2C([a,b];L2

1)
)∥w(1)∥2C([a,b];L∞

1 )

+∥∂tϕ∥2C([a,b];L2)∥w(1)∥2
C([a,b];X (1),L∞ )

)

+

∫ b

a

C
(
∥∂tm(1)(τ)∥2Y (1)

+ ∥∂tϕ∥2C([a,b];L2)∥w(∞)(τ)∥2Hs
2

+∥∂tw(∞)(τ)∥2L2
1

)
dτ. (4.8)

(ii) Let s be an integer satisfying s ≥ 3 and u(1),m = ⊤(ϕ(1),m(1)) and u(∞) =
⊤(ϕ(∞), w(∞)) satisfy {u(1),m, u(∞)} ∈ Xs

sym(a, b). We suppose that ϕ = ϕ(1) + ϕ(∞)

satisfies supt∈[a,b](∥ϕ∥L∞
1

+ ∥∇ϕ∥L2) ≤ δ0 and {u(1),m, u(∞)} satisfies

∂tu(1),m +Au(1),m = F low,m(u(1) + u(∞), g),

w(1) = m(1) − P1(ϕw),

∂tu(∞) +Au(∞) + P∞(B[u(1) + u(∞)]u(∞)) = Fhigh(u(1) + u(∞), g).

Here w = w(1) + w(∞) and w(1) defined by (4.6). Then {u(1), u(∞)} satisfies (4.1)–(4.2)

with u(1) =
⊤(ϕ(1), w(1)).

By using Lemma 2.1 and Lemma 4.4, Lemma 4.9 can be proved by the same way

as the proof of [10, Lemma 4.6] and we omit the details.

Therefore, we consider (4.2), (4.4) and (4.6) because if we show the existence of a

solution {u(1),m, u(∞)} ∈ Xs
sym(a, b) satisfying (4.2), (4.4) and (4.6), then by Lemma 4.9,

we obtain a solution {u(1), u(∞)} ∈ Xs
sym(a, b) satisfying (4.1)–(4.2).

As in [10], we formulate (4.2), (4.4) and (4.6) by using time-T-mapping to solve the

time periodic problem. We consider the following linear problems for the low frequency

part and the high frequency part respectively:{
∂tu(1),m +Au(1),m = F(1),m,

u(1),m|t=0 = u01,m,
(4.9)

and {
∂tu(∞) +Au(∞) + P∞(B[ũ]u(∞)) = F(∞),

u(∞)|t=0 = u0∞,
(4.10)

where ũ = ⊤(ϕ̃, w̃), u01,m, u0∞, F(1),m and F(∞) are given functions.

The solution operators are introduced as follows. (The precise definition of these
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operators will be given later.) S1(t) stands for the solution operator for (4.9) with

F(1),m = 0, and S 1(t) stands for the solution operator for (4.9) with u01,m = 0. On

the other hand, S∞,ũ(t) stands for the solution operator for (4.10) with F(∞) = 0 and

S∞,ũ(t) stands for the solution operator for (4.10) with u0∞ = 0.

As in [10], we will look for {u(1),m, u(∞)} satisfying{
u(1),m(t) = S1(t)u01,m +S 1(t)[F low,m(u, g)],

u(∞)(t) = S∞,u(t)u0∞ +S∞,u(t)[Fhigh(u, g)],
(4.11)

where {
u01,m = (I − S1(T ))

−1S 1(T )[F low,m(u, g)],

u0∞ = (I − S∞,u(T ))
−1S∞,u(T )[Fhigh(u, g)],

(4.12)

u = ⊤(ϕ,w) is a function given by u(1),m = ⊤(ϕ(1),m(1)) and u(∞) = ⊤(ϕ(∞), w(∞))

through the relation

ϕ = ϕ(1) + ϕ(∞), w = w(1) + w(∞), w(1) = m(1) − P1(ϕw).

From (4.11) and (4.12), it holds that u(1),m(T ) = u(1),m(0), u(∞)(T ) = u(∞)(0). Hence we

look for a pair of functions {u(1),m, u(∞)} satisfying (4.11)–(4.12). The solution operators

S1(t) and S 1(t) are investigated and we state the estimate of a solution for the low

frequency part in Section 5; Some properties of S∞,u(t) and S∞,u(t) will be stated and

we estimate a solution for the high frequency part in Section 6.

In the remaining of this section some lemmas are stated which will be used in the

proof of Theorem 3.1.

We will estimate integral kernels which will appear in the analysis of the low fre-

quency part. Then we use the following lemma.

Lemma 4.10. [10, Lemma 4.8] Let ℓ be an integer satisfying that ℓ ≥ 1 and let

E(x) := Φℓ = F−1
Φ̂ℓ (x ∈ R2), where Φ̂ℓ ∈ C∞(R2 − {0}) is a function satisfying

∂α
ξ Φ̂ℓ ∈ L1 (|α| ≤ −1 + ℓ),

|∂β
ξ Φ̂ℓ| ≤ C|ξ|−2−|β|+ℓ (ξ ̸= 0, |β| ≥ 0).

Then the following estimate holds for x ̸= 0,

|E(x)| ≤ C|x|−ℓ.

The following lemma plays important roles to estimate a convolution with antisym-

metry for the low frequency part.

Lemma 4.11. Let E(x) (x ∈ R2) be a scalar function satisfying

|∂α
xE(x)| ≤ C

(1 + |x|)|α|+1
(|α| ≥ 0) (4.13)

and let f be a scalar function satisfying f ∈ L∞
2 . We assume that f satisfies
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f(−x1, x2) = −f(x1, x2) or f(x1,−x2) = −f(x1, x2) or f(x2, x1) = −f(x1, x2). (4.14)

Then there holds the following estimate.

|E ∗ f(x)| ≤
C∥f∥L∞

2

(1 + |x|)
. (4.15)

Proof. We first assume that |x| ≥ 1. We set R := |x|/2. Then we see that

E ∗ f(x) =

∫
R2

E(x− y)f(y)dy

=

∫
|x−y|≥R, |y|≥R

E(x− y)f(y)dy

+

∫
|x−y|≤R

E(x− y)f(y)dy +

∫
|y|≤R

E(x− y)f(y)dy

=: I1 + I2 + I3,

where,

I1 :=

∫
|x−y|≥R, |y|≥R

E(x− y)f(y)dy, I2 :=

∫
|x−y|≤R

E(x− y)f(y)dy,

I3 :=

∫
|y|≤R

E(x− y)f(y)dy.

Concerning the estimate for I1, since |y| ≤ |x|+ |x− y| ≤ 3|x− y| if |x− y| ≥ R and

|y| ≥ R, it follows from (4.13) that

|I1| ≤ C∥f∥L∞
2

∫
|y|≥R

1

(1 + |y|)3
dy ≤

C∥f∥L∞
2

1 + |x|
.

We next derive the estimate of I2. Since it holds that |y| ≥ |x| − |x − y| ≥ R if

|x− y| ≤ R, we obtain from (4.13) that

|I2| ≤
C∥f∥L∞

2

R2

∫
|x−y|≤R

1

(1 + |x− y|)
dy ≤

C∥f∥L∞
2

1 + |x|
.

As for the estimate of I3, we consider the case such that f satisfies f(−x1, x2) =

−f(x1, x2). We define ỹ := ⊤(−y1, y2) for y = ⊤(y1, y2) on R2 satisfying y1 ≥ 0. Note

that f(ỹ) = −f(y). This implies that

I3 =

∫
|y|≤R, y1≥0

E(x− y)f(y)dy +

∫
|y|≤R, y1≥0

E(x− ỹ)f(ỹ)dy

=

∫
|y|≤R, y1≥0

{E(x− y)− E(x− ỹ)}f(y)dy.

In addition, we see from (4.13) that
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|E(x− y)− E(x− ỹ)| ≤ C|y|
1 + |x− y|2

≤ C|y|
(1 +R)2

(4.16)

for |y| ≤ R. Hence we arrive at

|I3| ≤
C∥f∥L∞

2

(1 +R)2

∫
|y|≤R

1

1 + |y|
dy ≤

C∥f∥L∞
2

1 + |x|
.

Similarly, we obtain (4.15) in the case such that f satisfies f(x1,−x2) = −f(x1, x2). If

f satisfies f(x2, x1) = −f(x1, x2), by setting ỹ := ⊤(y2, y1) for y = ⊤(y1, y2) on R2, |I3|
is written as

|I3| =

∣∣∣∣∣
∫
|y|≤R, y2≥y1

E(x− y)f(y)dy +

∫
|y|≤R, y2≥y1

E(x− ỹ)f(ỹ)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
|y|≤R, y2≥y1

{E(x− y)− E(x− ỹ)}f(y)dy

∣∣∣∣∣ .
This together with (4.16) yields the required estimate (4.15). By using the estimates for

Ij (j = 1, 2, 3), we get the required estimate (4.15) for |x| ≥ 1.

As for the case |x| ≤ 1, the required estimate (4.15) can be verified by direct com-

putations and we omit the details. This completes the proof. □

In addition, we have the following estimates for a convolution.

Lemma 4.12. (i) Let E(x) (x ∈ R2) be a scalar function satisfying (4.13) and

let f be a scalar function which is written as f = ∂xj
f1 for j = 1 or 2 and satisfy

∥∂xjf1∥L∞
3

+ ∥f1∥L∞
2

< ∞. We assume that f1 satisfies (4.14). Then the following

estimate is true.

|E ∗ f(x)| ≤ C

(1 + |x|)2
(∥∂xjf1∥L∞

3
+ ∥f1∥L∞

2
).

(ii) Let E(x) (x ∈ R2) be a scalar function satisfying (4.13) and let f be a scalar

function of the form: f = ∂xjf1 for j = 1 or 2 and it holds that ∥∂xjf1∥L∞
3
+∥f1∥L∞

2
< ∞.

Then we have the following estimate.

|∂α
xE ∗ f(x)| ≤ C

(1 + |x|)1+|α| (∥∂xjf1∥L∞
3

+ ∥f1∥L∞
2
).

Lemma 4.12 yields in a similar manner to the proof of Lemma 4.11 and we omit the

proofs.

The following L2 estimates hold for the low frequency part.

Lemma 4.13. (i) Let E(ξ) (ξ ∈ R2) be a scalar function satisfying suppE ⊂ {|ξ| ≤
r∞} and

|∂α
ξ E(ξ)| ≤ C

|ξ|2+|α| for |ξ| ≤ r∞, |ξ| ̸= 0, |α| ≥ 0.
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Let f belong to L2
(1),1 ∩ L1

1 and we assume that the following case (1) or (2) hold ;

(1) f(−x1, x2) = −f(x1, x2), f(x1,−x2) = f(x1, x2),

(2) f(−x1, x2) = f(x1, x2), f(x1,−x2) = −f(x1, x2).

Then we have the estimate

∥F−1(Ef̂)∥Y (1),L2
≤ C∥f∥L2

1∩L1
1
.

(ii) We suppose that E(ξ) (ξ ∈ R2) is a scalar function satisfying suppE ⊂ {|ξ| ≤
r∞} and

|∂α
ξ E(ξ)| ≤ C

|ξ|1+|α| for |ξ| ≤ r∞, |ξ| ̸= 0, |α| ≥ 0.

and f belongs to L2
(1),1 ∩ L1

1 which satisfies the following case (1) or (2);

(1) f(−x1, x2) = −f(x1, x2), f(x1,−x2) = f(x1, x2),

(2) f(−x1, x2) = f(x1, x2), f(x1,−x2) = −f(x1, x2).

Then there holds the estimate

∥F−1(Ef̂)∥X (1),L2
≤ C∥f∥L2

1∩L1
1
.

Proof. (i) We assume that f satisfies (1) without loss of generality. Since

f̂(ξ1,−ξ2) = −f̂(ξ1, ξ2), it holds that f̂(ξ1, 0) = 0. Hence we see that

∥∇{F−1(Ef̂)}∥L2 ≤ C
∥∥∥ 1

|ξ|
f̂
∥∥∥
L2

≤ C
∥∥∥ξ2 1

|ξ|

∥∥∥
L2(|ξ|≤r∞)

∥∥∥∫ 1

0

∂ξ2 f̂(ξ1, τξ2)dτ
∥∥∥
L∞(|ξ|≤r∞)

≤ C∥xf∥L1 .

Similarly, we obtain the estimate

∥∇2{F−1(Ef̂)}∥L2
1
≤ C∥f∥L1

1∩L2
1
.

The assertion (ii) can be proved by the same way as that for (i). This completes the

proof. □

We find the following estimate for the nonlinear term on the low frequency part in

weighted L2 spaces.

Lemma 4.14. (i) Let w(1) ∈ Y (1),#. Then, it holds that

∥(w(1))
2∥L2 + ∥w(1)∂xjw(1)∥L2

1
≤ C∥w(1)∥2Y (1)

(j = 1, 2).
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(ii) Let ϕ ∈ X (1) and w(1) ∈ Y (1),#. Then, there holds the estimate

∥ϕw(1)∥L2 + ∥∂xj (ϕw(1))∥L2
1
≤ C∥ϕ∥X (1)

∥w(1)∥Y (1)

(j = 1, 2).

Proof. Concerning the assertion (i), applying Lemma 2.2, we see that

∥(w(1))
2∥L2 ≤ C∥w(1)∥L∞

1

∥∥∥w(1)

|x|

∥∥∥
L2

≤ C∥w(1)∥L∞
1
∥∇w(1)∥L2 .

Similarly we derive that

∥w(1)∂xjw(1)∥L2
1
≤ C∥w(1)∥2Y (1)

.

The assertion (ii) yields similarly to the proof of the estimate for (i). This completes the

proof. □

The following inequalities will be used for the analysis of the high frequency part.

Lemma 4.15. [4, Lemma 4.4] (i) Let k be a nonnegative integer. Then P∞ is a

bounded linear operator on Hk.

(ii) There hold the inequalities

∥P∞f∥L2 ≤ C∥∇f∥L2 (f ∈ H1),

∥F(∞)∥L2 ≤ C∥∇F(∞)∥L2 (F(∞) ∈ H1
(∞)).

Lemma 4.16. [10, Lemma 4.13] Let ℓ ∈ N. Then there exists a positive constant

C depending only on ℓ such that

∥P∞f∥L2
ℓ
≤ C∥∇f∥L2

ℓ
.

5. Estimates for solution on the low frequency part.

In this section we estimate a solution u(1) satisfying u(1)(0) = u(1)(T ) and

∂tu(1) +Au(1) = F(1), (5.1)

where F(1) =
⊤(0, F̃(1)).

We define A1 by the restriction of A on X (1) × Y (1). The symbol S1 and S 1(t)

are defined by S1(t) := e−tA1 and

S 1(t)F(1) :=

∫ t

0

S1(t− τ)F(1)(τ) dτ.

Recall that Γj (j = 1, 2, 3) are defined by

(Γ1u)(x) :=
⊤(ϕ(−x),−w1(−x), w2(−x)), (Γ2u)(x) :=

⊤(ϕ(−x), w1(−x),−w2(−x)),

(Γ3u)(x1, x2) :=
⊤(ϕ(x2, x1), w2(x2, x1), w1(x2, x1))
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for u(x) = ⊤(ϕ(x), w1(x), w2(x)) and x ∈ R2. We have the following.

Proposition 5.1. (i) A1 is a bounded linear operator on X (1) × Y (1). More-

over, S1(t) is a uniformly continuous semigroup on X (1) ×Y (1) and S1(t) satisfies the

following estimates for all T ′ > 0;

S1(t)u(1) ∈ C1([0, T ′];X (1) ×Y (1)), ∂tS1(·)u(1) ∈ C([0, T ′];L2),

∂tS1(t)u(1) = −A1S1(t)u(1) (= −AS1(t)u(1)), S1(0)u(1) = u(1) for u(1) ∈ X (1) ×Y (1),

∥∂k
t S1(·)u(1)∥C([0,T ′];X (1)×Y (1))

≤ C∥u(1)∥X (1),L∞×Y (1),L∞
,

for u(1) ∈ X (1) ×Y (1), k = 0, 1,

∥∂tS1(t)u(1)∥C([0,T ′];L2) ≤ C∥u(1)∥X (1)×Y (1)

,

and

∥∂t∇S1(t)u(1)∥C([0,T ′];L2
1)

≤ C∥u(1)∥X (1)×Y (1)

,

for u(1) ∈ X (1) ×Y (1), where C is a positive constant depending on T ′.

(ii) It holds for each F(1) ∈ C([0, T ];X (1))× L2(0, T ;Y (1)) that

S 1(·)F(1) ∈ C1([0, T ];X (1))× [C([0, T ];Y (1))×H1(0, T ;Y (1))],

and

∂tS 1(t)F(1) +A1S 1(t)F(1) = F(1)(t), S 1(0)F(1) = 0,

∥S 1(·)F(1)∥C([0,T ];X (1)×Y (1))
≤ C∥F(1)∥C([0,T ];X (1))×L2(0,T ;Y (1))

,

∥∂tS 1(·)F(1)∥C([0,T ];X (1))×L2(0,T ;Y (1))
≤ C∥F(1)∥C([0,T ];X (1))×L2(0,T ;Y (1))

,

where C is a positive constant depending on T . In addition, ∂tS 1(·)F(1) ∈ C([0, T ];L2),

∂t∇S 1(·)F(1) ∈ C([0, T ];L2
1) for F(1) ∈ C([0, T ];L2

1) and we have

∥∂tS 1(·)F(1)∥C([0,T ];L2) ≤ C∥F(1)∥C([0,T ];L2),

and

∥∂t∇S 1(·)F(1)∥C([0,T ];L2
1)

≤ C∥∇F(1)∥C([0,T ];L2
1)
,

where C is a positive constant depending on T .

(iii) There holds the following relation between S1 and S 1.
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S1(t)S 1(t
′)F(1) = S 1(t

′)[S1(t)F(1)]

for any t ≥ 0, t′ ∈ [0, T ] and F(1) ∈ C([0, T ];X (1))× L2(0, T ;Y (1)).

(iv) ΓjS1(t) = S1(t)Γj and ΓjS 1(t) = S 1(t)Γj for j = 1, 2, 3. Therefore the

assertions (i)–(iii) above hold with function spaces X (1) and Y (1) replaced by (X (1))3
and (Y (1))#, respectively.

The assertions (i)–(iii) follows by the same way as that in [10, Proposition 5.1]. The

assertion (iv) is verified by the fact ΓjA1 = A1Γj , which derive that ΓjS1(t) = S1(t)Γj

for j = 1, 2, 3.

We next investigate invertibility of I − S1(T ).

Proposition 5.2. There uniquely exists u ∈ (X (1) × Y (1))sym that satisfies

(I − S1(T ))u = F(1) and u satisfies the estimate in each (i)–(ii) for F(1) satisfying the

conditions given in either (i)–(iii), respectively.

(i) F(1) = ∂α
x f(1) ∈ L∞

3,sym∩L2
(1),1 with f(1) ∈ L2

(1)∩L
∞
2 for some α satisfying |α| = 1

and f(1) satisfies the following condition

f(1)(−x1, x2) = −f(1)(x1, x2) or f(1)(x1,−x2) = −f(1)(x1, x2)

or f(1)(x2, x1) = −f(1)(x1, x2); (5.2)

∥u∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}. (5.3)

(ii) F(1) =
⊤(0,∇f(1)) ∈ L∞

3,sym ∩ L2
(1),1 with f(1) ∈ L2

(1) ∩ L∞
2 ;

∥u∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}. (5.4)

(iii) F(1) = ∂α
x f(1) ∈ L∞

3,sym ∩ L2
(1),1 with f(1) ∈ L2

(1) ∩ L∞
2 for some α satisfying

|α| ≥ 2;

∥u∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}. (5.5)

To prove Proposition 5.2, we use the following lemmas.

Lemma 5.3. [10, Lemma 5.3] (i) The set of all eigenvalues of −Âξ consists of

λj(ξ) (j = 1,±), where{
λ1(ξ) = −ν|ξ|2,
λ±(ξ) = −1

2
(ν + ν̃)|ξ|2 ± 1

2

√
(ν + ν̃)2|ξ|4 − 4γ2|ξ|2.

If |ξ| < 2γ/(ν + ν̃), then

Reλ± = −1

2
(ν + ν̃)|ξ|2, Imλ± = ±γ|ξ|

√
1− (ν + ν̃)2

4γ2
|ξ|2.
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(ii) For |ξ| < 2γ/(ν + ν̃), e−tÂξ has the spectral resolution

e−tÂξ =
∑

j=1,±
etλj(ξ)Πj(ξ),

where Πj(ξ) are eigenprojections for λj(ξ) (j = 1,±), and Πj(ξ) (j = 1,±) satisfy

Π1(ξ) =

(
0 0

0 I2 − ξ⊤ξ/|ξ|2
)
,

Π±(ξ) = ± 1

λ+ − λ−

(
−λ∓ −iγ⊤ξ

−iγξ λ±ξ
⊤ξ/|ξ|2

)
.

Furthermore, if 0 < r∞ < 2γ/(ν + ν̃), then there exists a constant C > 0 such that the

estimates

∥Πj(ξ)∥ ≤ C (j = 1,±), (5.6)

hold for |ξ| ≤ r∞.

Hereafter we fix 0 < r1 < r∞ < 2γ/(ν + ν̃) so that (5.6) in Lemma 5.3 holds for

|ξ| ≤ r∞.

Lemma 5.4. [10, Lemma 5.4] Let α be a multi-index. Then the following estimates

hold true uniformly for ξ with |ξ| ≤ r∞ and t ∈ [0, T ].

(i) |∂α
ξ λ1| ≤ C|ξ|2−|α|, |∂α

ξ λ±| ≤ C|ξ|1−|α| (|α| ≥ 0).

(ii) |(∂α
ξ Π1)F̂(1)| ≤ C|ξ|−|α|| ˆ̃F(1)|, |(∂α

ξ Π±)F̂(1)| ≤ C|ξ|−|α||F̂(1)| (|α| ≥ 0), where

F(1) =
⊤(F 0

(1), F̃(1)).

(iii) |∂α
ξ (e

λ1t)| ≤ C|ξ|2−|α| (|α| ≥ 1).

(iv) |∂α
ξ (e

λ±t)| ≤ C|ξ|1−|α| (|α| ≥ 1).

(v) |(∂α
ξ e

−tÂξ)F̂(1)| ≤ C(|ξ|1−|α|| ˆF 0
(1)| + |ξ|−|α|| ˆ̃F(1)|) (|α| ≥ 1), where F(1) =

⊤(F 0
(1), F̃(1)).

(vi) |∂α
ξ (I − eλ1t)−1| ≤ C|ξ|−2−|α| (|α| ≥ 0).

(vii) |∂α
ξ (I − eλ±t)−1| ≤ C|ξ|−1−|α| (|α| ≥ 0).

We define

E1,j(x) := F−1(χ̂0(I − eλjT )−1Πj) (j = 1,±) (x ∈ R2), (5.7)

where χ0 is a cut-off function defined by χ0 := F−1χ̂0 with χ̂0 satisfying

χ̂0 ∈ C∞(R2), 0 ≤ χ̂0 ≤ 1, χ̂0 = 1 on {|ξ| ≤ r∞}, supp χ̂0 ⊂ {|ξ| ≤ 2r∞}. (5.8)

We have the following estimates for E1,j .
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Lemma 5.5. There hold

|∂α
xE1,1(x)| ≤ C(1 + |x|)−(1+|α|)

for |α| ≥ 1, x ∈ R2 and

|∂α
xE1,±(x)| ≤ C(1 + |x|)−(1+|α|)

for |α| ≥ 0, x ∈ R2.

By using Lemma 4.10 and Lemma 5.4, Lemma 5.5 can be proved in a similar manner

to the proof of [10, Lemma 5.5] and we omit the details.

Since Π1 is the projection to the solenoidal vector space on R2, we have the following

property for Π1.

Lemma 5.6. It holds that

Π1(ξ)∇̂F (ξ) = 0 (ξ ̸= 0, |ξ| ≤ r∞),

where F is a scalar function in H1.

We are now in a position to prove Proposition 5.2.

Proof of Proposition 5.2. (i) We suppose that F(1) = ∂x2f(1) without loss of

generality. We define u = ⊤(ϕ,w) by

u := F−1((I − e−TÂξ)−1F̂(1))

= F−1((iξ2)(I − e−TÂξ)−1f̂(1)) = E ∗ f(1),

where

E := F−1{(iξ2
∑

j∈{1,±}

Ê1,j)},

E1,j are the ones defined in (5.7). We obtain from Lemma 5.5 that

|∂α
x E(x)| ≤ C(1 + |x|)−(1+|α|) (5.9)

for |α| ≥ 0, x ∈ R2. Therefore, by Lemma 4.11, Lemma 4.12 (i) and (5.9), we find that

∥w∥L∞
1

+ ∥∇w∥L∞
2

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2
}. (5.10)

Concerning the weighted L∞ estimate for ϕ, We also obtain from Lemma 4.4, Lemma

4.12 (ii) and Lemma 5.5 that

∥ϕ∥L∞
1

+ ∥∇ϕ∥L∞
2

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2
}.

This together with Lemma 5.4 and (5.10), we get that u ∈ X (1) ×Y (1), (I −S1(T ))u =

F(1) and u satisfies the estimate (5.3). By the assumption of F(1) and Proposition 5.1 (i)
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and (iii) we see that Γju = u (j = 1, 2, 3), i.e., u ∈ (X (1) ×Y (1))sym.

(ii) By Lemma 5.6, we derive that

u := F−1((I − e−TÂξ)−1F̂(1)) = F−1{
∑

j∈{±}

Ê1,jF̂(1)}

for F(1) = ⊤(0,∇f(1)) ∈ L∞
3,sym ∩ L2

(1),1 with f(1) ∈ L2
(1) ∩ L∞

2 . It then follows from

Lemma 4.12 (ii), Proposition 5.1, Lemma 5.4 and Lemma 5.5 that u ∈ (X (1)×Y (1))sym,

(I − S1(T ))u = F(1) and u satisfies the estimate

∥u∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}.

We arrive at the assertion (iii) from Lemma 4.12 (ii), Lemma 5.4 and Lemma 5.5

similarly to the assertion (ii). This completes the proof. □

In view of Proposition 5.2, if F(1) satisfies the each condition (i)–(iii) below, the

I−S1(T ) has bounded inverse (I−S1(T ))
−1 in (X (1)×Y (1))sym satisfying the estimate

in (i)–(iii) respectively;

(i) F(1) = ∂α
x f(1) ∈ L∞

3,sym∩L2
(1),1 with f(1) ∈ L2

(1)∩L∞
2 for some α satisfying |α| = 1

and f(1) satisfies (5.2);

∥(I − S1(T ))
−1F(1)∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}.

(ii) F(1) =
⊤(0,∇f(1)) ∈ L∞

3,sym ∩ L2
(1),1 with f(1) ∈ L2

(1) ∩ L∞
2 ;

∥(I − S1(T ))
−1F(1)∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}.

(iii) F(1) = ∂α
x f(1) ∈ L∞

3,sym ∩ L2
(1),1 with f(1) ∈ L2

(1) ∩ L∞
2 for some α satisfying

|α| ≥ 2;

∥(I − S1(T ))
−1F(1)∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}.

We can write S 1(t)F(1) and S1(t)S 1(T )(I − S1(T ))
−1F(1) as

S1(t)S 1(T )(I − S1(T ))
−1F(1) =

∫ T

0

E1(t, σ) ∗ F(1)(σ)dσ, (5.11)

S 1(t)F(1) =

∫ t

0

S1(t− τ)F(1)(τ)dτ =

∫ t

0

E2(t, τ) ∗ F(1)(τ)dτ, (5.12)

where E1(t, σ) and E2(t, τ) are defined by

E1(t, σ) := F−1{χ̂0e
−tÂξ(I − e−TÂξ)−1e−(T−σ)Âξ},

E2(t, τ) := F−1{χ̂0e
−(t−τ)Âξ}

for σ ∈ [0, T ], 0 ≤ τ ≤ t ≤ T , χ̂0 is the cut-off function defined by (5.8). Then

E1(t, σ) ∗ F(1) and E2(t, τ) ∗ F(1) are estimated as follows.
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Lemma 5.7. E1(t, σ) ∗ F(1) ∈ (X (1) × Y (1))sym and E2(t, τ) ∗ F(1) ∈ (X (1) ×
Y (1))sym (t, σ, τ ∈ [0, T ], j = 1, 2) if F(1) satisfies the conditions given in either (i)–(iii)

and E1(t, σ) ∗ F(1), E2(t, τ) ∗ F(1) satisfy the following estimate in each (i)–(iii).

(i) F(1) = ∂α
x f(1) ∈ L∞

3,sym∩L2
(1),1 with f(1) ∈ L2

(1)∩L
∞
2 for some α satisfying |α| = 1

and f(1) satisfies (5.2);

∥E1(t, σ) ∗ F(1)∥X (1)×Y (1)

+ ∥E2(t, τ) ∗ F(1)∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}

uniformly for σ ∈ [0, T ] and 0 ≤ τ ≤ t ≤ T .

(ii) F(1) =
⊤(0,∇f(1)) ∈ L∞

3,sym ∩ L2
(1),1 with f(1) ∈ L2

(1) ∩ L∞
2 ;

∥E1(t, σ) ∗ F(1)∥X (1)×Y (1)

+ ∥E2(t, τ) ∗ F(1)∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}

uniformly for σ ∈ [0, T ] and 0 ≤ τ ≤ t ≤ T .

(iii) F(1) = ∂α
x f(1) ∈ L∞

3,sym ∩ L2
(1),1 with f(1) ∈ L2

(1) ∩ L∞
2 for some α satisfying

|α| ≥ 2;

∥E1(t, σ) ∗ F(1)∥X (1)×Y (1)

+ ∥E2(t, τ) ∗ F(1)∥X (1)×Y (1)

≤ C{∥F(1)∥L∞
3

+ ∥f(1)∥L∞
2

+ ∥f(1)∥L2 + ∥F(1)∥L2
1
}

uniformly for σ ∈ [0, T ] and 0 ≤ τ ≤ t ≤ T .

Proof of Lemma 5.7. It follows from Lemmas 5.3 and 5.4 that

|∂β
ξ (χ̂0(iξ)

αe−tÂξ(I − e−TÂξ)−1e−(T−σ)Âξ)| ≤ C|ξ|−2+|α|−|β|,

|∂β
ξ (χ̂0(iξ)

αe−(t−τ)Âξ)| ≤ C|ξ||α|−|β|,

for σ ∈ [0, T ], 0 ≤ τ ≤ t ≤ T and |α|, |β| ≥ 0. Hence by Lemma 4.10 we see that

|∂α
xE1(x)| ≤ C(1 + |x|)−|α| (|α| ≥ 1), (5.13)

|∂α
xE2(x)| ≤ C(1 + |x|)−(2+|α|) (|α| ≥ 0). (5.14)

This together with Lemma 4.11 and Lemma 4.12 we obtain the desired estimate in a

similar manner to the proof of Proposition 5.2. This completes the proof. □

The symbol Ψ1 and Ψ2 stand for

Ψ1[F̃(1)](t) := S1(t)S 1(T )(I − S1(T ))
−1

(
0

F̃(1)

)
, Ψ2[F̃(1)](t) := S 1(t)

(
0

F̃(1)

)
. (5.15)

For Ψ1 and Ψ2 we derive the following estimates.

Proposition 5.8. (i) If F̃(1) satisfies F̃(1) = ∂α
x f(1) ∈ L2(0, T ;L∞

3,# ∩ L2
(1),1)
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with f(1) ∈ L2(0, T ;L2
(1) ∩ L∞

2 ) for some α satisfying |α| = 1 and f(1) satisfies (5.2),

then Ψj [F̃(1)] ∈ C1([0, T ];X (1),3)× [C([0, T ];Y (1),#) ∩H1(0, T ;Y (1),#)] (j = 1, 2) and

Ψj [F̃(1)] satisfy the following estimates.

∥∂k
t Ψj [F̃(1)]∥C([0,T ];X (1))×L2(0,T ;Y (1))

≤ C(∥F̃(1)∥L2(0,T ;L∞
3 ∩L2

1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2))

for k = 0, 1 and j = 1, 2.

(ii) We have that Ψj [F̃(1)] ∈ C1([0, T ];X (1),3) × [C([0, T ];Y (1),#) ∩
H1(0, T ;Y (1),#)] (j = 1, 2) for F̃(1) = ∇f(1) ∈ L2(0, T ;L∞

3,# ∩ L2
(1),1) with

f(1) ∈ L2(0, T ;L2
(1) ∩ L∞

2 ) and Ψj [F̃(1)] satisfy the estimates

∥∂k
t Ψj [F̃(1)]∥C([0,T ];X (1))×L2(0,T ;Y (1))

≤ C(∥F̃(1)∥L2(0,T ;L∞
3 ∩L2

1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2))

for k = 0, 1 and j = 1, 2.

(iii) Let F̃(1) = ∂α
x f(1) ∈ L2(0, T ;L∞

3,# ∩ L2
(1),1) with f(1) ∈ L2(0, T ;L2

(1) ∩ L∞
2 ) for

some α satisfying |α| ≥ 2. Then Ψj [F̃(1)] ∈ C1([0, T ];X (1),3) × [C([0, T ];Y (1),#) ∩
H1(0, T ;Y (1),#)] (j = 1, 2) and Ψj [F̃(1)] satisfy the estimates

∥∂k
t Ψj [F̃(1)]∥C([0,T ];X (1))×L2(0,T ;Y (1))

≤ C(∥F̃(1)∥L2(0,T ;L∞
3 ∩L2

1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2))

for k = 0, 1 and j = 1, 2.

Proof. As for the assertion (i), it follows from Proposition 5.1 (i), (ii) and Lemma

5.7 that

∥Ψj [F̃(1)]∥C([0,T ];X (1))×L2(0,T ;Y (1))
≤ C(∥F̃(1)∥L2(0,T ;L∞

3 ∩L2
1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2))

for j = 1, 2,

∥∂tΨ1[F̃(1)]∥C([0,T ];X (1))×L2(0,T ;Y (1))
≤ C(∥F̃(1)∥L2(0,T ;L∞

3 ∩L2
1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2)),

and

∥∂tΨ2[F̃(1)]∥C([0,T ];X (1))×L2(0,T ;Y (1))

≤ C(∥F̃(1)∥L2(0,T ;L∞
3 ∩L2

1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2)) + ∥F̃(1)∥L2(0,T ;Y (1))
).

Note that F̃(1) = χ0 ∗ F̃(1), where χ0 = F−1χ̂0, χ̂0 is the cut-off function defined by (5.8).

Since χ̂0 belongs to the Schwartz space on R2, we get that

|∂α
xχ0(x)| ≤ C(1 + |x|)−(2+|α|) for |α| ≥ 0.

Therefore, we derive the following estimate for ∥F̃(1)∥L2(0,T ;Y (1))
in a similar manner to

the proof of Proposition 5.2.

∥F̃(1)∥L2(0,T ;Y (1))
≤ C(∥F̃(1)∥L2(0,T ;L∞

3 ∩L2
1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2)).
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Consequently, we obtain the desired estimate in (i). Similarly, we can verify the assertion

(ii)–(iii). This completes the proof. □

By using Proposition 5.8, we give estimates for a solution of (5.1) satisfying u(1)(0) =

u(1)(T ).

Proposition 5.9. Set

Ψ[F̃(1)](t) := Ψ1[F̃(1)] + Ψ2[F̃(1)], (5.16)

for F(1) =
⊤(0, F̃(1)), where Ψ1 and Ψ2 were defined by (5.15). If F̃(1) satisfies the con-

ditions given in either (i)–(iii), then Ψ[F̃(1)] is a solution of (5.1) with F(1) =
⊤(0, F̃(1))

in Z (1),sym(0, T ) satisfying Ψ[F̃(1)](0) = Ψ[F̃(1)](T ) and Ψ[F̃(1)] satisfies the estimate in

each (i)–(iii), respectively.

(i) F̃(1) = ∂α
x f(1) ∈ L2(0, T ;L∞

3,# ∩ L2
(1),1) with f(1) ∈ L2(0, T ;L2

(1) ∩ L∞
2 ) for some

α satisfying |α| = 1 and f(1) satisfies (5.2);

∥Ψ[F̃(1)]∥Z (1)(0,T )
≤ C(∥F̃(1)∥L2(0,T ;L∞

3 ∩L2
1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2)). (5.17)

(ii) F̃(1) = ∇f(1) ∈ L2(0, T ;L∞
3,# ∩ L2

(1),1) with f(1) ∈ L2(0, T ;L2
(1) ∩ L∞

2 );

∥Ψ[F̃(1)]∥Z (1)(0,T )
≤ C(∥F̃(1)∥L2(0,T ;L∞

3 ∩L2
1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2)). (5.18)

(iii) F̃(1) = ∂α
x f(1) ∈ L2(0, T ;L∞

3,# ∩ L2
(1),1) with f(1) ∈ L2(0, T ;L2

(1) ∩ L∞
2 ) for some

α satisfying |α| ≥ 2;

∥Ψ[F̃(1)]∥Z (1)(0,T )
≤ C(∥F̃(1)∥L2(0,T ;L∞

3 ∩L2
1)
+ ∥f(1)∥L2(0,T ;L∞

2 ∩L2)). (5.19)

Proof. By Proposition 5.1 (iii) and Proposition 5.2 we see that Ψ[F̃(1)] is a solu-

tion of (5.1) with F(1) =
⊤(0, F̃(1)) and satisfies Ψ[F̃(1)](0) = Ψ[F̃(1)](T ). The estimates

and antisymmetry of Ψ[F̃(1)] in (i)–(iii) are verified by Proposition 5.8. This completes

the proof. □

6. Estimates for solution on the high frequency part.

In this section we estimate a solution for the high frequency part. We begin with

some properties of S∞,ũ(t) and S∞,ũ(t).

As for the solvability of (4.10), we state the following proposition.

Proposition 6.1. Let s be an integer satisfying s ≥ 3. Set k = s−1 or s. Assume

that

∇w̃ ∈ C([0, T ′];Hs−1) ∩ L2(0, T ′;Hs),

u0∞ = ⊤(ϕ0∞, w0∞) ∈ Hk
(∞),

F(∞) =
⊤(F 0

(∞), F̃(∞)) ∈ L2(0, T ′;Hk
(∞) ×Hk−1

(∞) ).
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Here T ′ is a given positive number. Then there exists a unique solution u(∞) =
⊤(ϕ(∞), w(∞)) of (4.10) satisfying

ϕ(∞) ∈ C([0, T ′];Hk
(∞)),

w(∞) ∈ C([0, T ′];Hk
(∞)) ∩ L2(0, T ′;Hk+1

(∞) ) ∩H1(0, T ′;Hk−1
(∞) ).

One can verify Proposition 6.1 in a similar manner to the proof of [4, Proposition

6.4] and we omit the details.

Remark 6.2. Concerning the space dimension n, in [4, Proposition 6.4] we assume

that n ≥ 3. But we can replace the space dimension to n = 2 by taking a look at the

fact that [2, Theorem 4.1] holds for the space dimension n = 2 and the proof of [4,

Proposition 6.4]. See also [10, Remark 6.2] for the condition of w̃.

Therefore, it follows from Proposition 6.1 that we can define S∞,ũ(t) (t ≥ 0) and

S∞,ũ(t) (t ∈ [0, T ]) as follows.

Let an integer s satisfy s ≥ 3 and a function ũ = ⊤(ϕ̃, w̃) satisfy

ϕ̃ ∈ Cper(R;Hs), ∇w̃ ∈ Cper(R;Hs−1) ∩ L2
per(R;Hs). (6.1)

Let k = s− 1 or s. We define an operator S∞,ũ(t) : H
k
(∞) −→ Hk

(∞) (t ≥ 0) by

u(∞)(t) = S∞,ũ(t)u0∞ for u0∞ = ⊤(ϕ0∞, w0∞) ∈ Hk
(∞),

where u(∞)(t) is the solution of (4.10) with F(∞) = 0. Moreover, we define an operator

S∞,ũ(t) : L
2(0, T ;Hk

(∞) ×Hk−1
(∞) ) −→ Hk

(∞) (t ∈ [0, T ]) by

u(∞)(t) = S∞,ũ(t)[F(∞)] for F(∞) =
⊤(F 0

(∞), F̃(∞)) ∈ L2(0, T ;Hk
(∞) ×Hk−1

(∞) ),

where u(∞)(t) is the solution of (4.10) with u0∞ = 0.

We have the following properties for S∞,ũ(t) and S∞,ũ(t) in the weighted L2-

Sobolev spaces.

Proposition 6.3. Let s be a nonnegative integer satisfying s ≥ 3 and let k = s−1

or s. We suppose that ũ = ⊤(ϕ̃, w̃) satisfies (6.1). Then there exists a constant δ > 0

such that if ∥∇w̃∥C([0,T ];Hs−1)∩L2(0,T ;Hs) ≤ δ, then the following assertions hold true.

(i) For u0∞ = ⊤(ϕ0∞, w0∞) ∈ Hk
(∞),2, there holds S∞,ũ(·)u0∞ ∈ C([0,∞);Hk

(∞),2)

and there exist constants a > 0 and C > 0 such that S∞,ũ(t) satisfies the following

estimate for all t ≥ 0 and u0∞ ∈ Hk
(∞),2.

∥S∞,ũ(t)u0∞∥Hk
(∞),2

≤ Ce−at∥u0∞∥Hk
(∞),2

.

(ii) For F(∞) = ⊤(F 0
(∞), F̃(∞)) ∈ L2(0, T ;Hk

(∞),2 × Hk−1
(∞),2), there holds

S∞,ũ(·)F(∞) ∈ C([0, T ];Hk
(∞),2) and S∞,ũ(t) satisfies the following estimate for

t ∈ [0, T ] and F(∞) ∈ L2(0, T ;Hk
(∞),2 × Hk−1

(∞),2) with a positive constant C depending

on T .
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∥S∞,ũ(t)[F(∞)]∥Hk
(∞),2

≤ C

{∫ t

0

e−a(t−τ)∥F(∞)∥2Hk
(∞),2

×Hk−1
(∞),2

dτ

}1/2

.

(iii) We define rHk
(∞),2

(S∞,ũ(T )) by the spectral radius of S∞,ũ(T ) on Hk
(∞),2. Then

it holds that rHk
(∞),2

(S∞,ũ(T )) < 1.

(iv) I − S∞,ũ(T ) has a bounded inverse (I − S∞,ũ(T ))
−1 on Hk

(∞),2 satisfying

∥(I − S∞,ũ(T ))
−1u∥Hk

(∞),2
≤ C∥u∥Hk

(∞),2
for u ∈ Hk

(∞),2.

(v) Suppose that Γj ũ = ũ for j = 1, 2, 3. Then it holds that ΓjS∞,ũ(t) = S∞,ũ(t)Γj

and ΓjS∞,ũ(t) = S∞,ũ(t)Γj. Accordingly, the assertions (i)–(iv) hold true in function

spaces Hk
(∞),2 and Hk

(∞),2 ×Hk−1
(∞),2 replaced by (Hk

(∞),2)sym and (Hk
(∞),2 ×Hk−1

(∞),2)sym,

respectively if Γj ũ = ũ (j = 1, 2, 3).

We can verify Proposition 6.3 in a similar manner to the proof of [4, Proposition

6.5] and we omit the proof.

Remark 6.4. As for the space dimension n, in [4, Proposition 6.5] it is assumed

that n ≥ 3. But it is replaced by n = 2 due to taking a look at the proof of [4, Proposition

6.4]. See also [10, Remark 6.2] for the condition of w̃.

We are now in a position to give the following estimate for a solution u(∞) of (4.10)

satisfying u(∞)(0) = u(∞)(T ).

Proposition 6.5. Let s be a nonnegative integer satisfying s ≥ 3. We suppose

that

F(∞) =
⊤(F 0

(∞), F̃(∞)) ∈ L2(0, T ; (Hk
(∞),2 ×Hk−1

(∞),2)sym),

with k = s− 1 or s. We also assume that ũ = ⊤(ϕ̃, w̃) satisfies (6.1). Then there exists

a positive constant δ such that if

∥∇w̃∥C([0,T ];Hs−1)∩L2(0,T ;Hs) ≤ δ,

then the following assertion holds true.

The function

u(∞)(t) := S∞,ũ(t)(I − S∞,ũ(T ))
−1S∞,ũ(T )[F(∞)] +S∞,ũ(t)[F(∞)] (6.2)

is a solution of (4.10) in Z k
(∞),2,sym(0, T ) satisfying u(∞)(0) = u(∞)(T ) and the estimate

∥u(∞)∥Z k

(∞),2(0,T )
≤ C∥F(∞)∥L2(0,T ;Hk

(∞),2
×Hk−1

(∞),2
).

Proposition 6.5 is directly derived by Proposition 6.3.
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7. Proof of Theorem 3.1.

In this section we prove Theorem 3.1.

The estimates for the nonlinear and inhomogeneous terms are established here. We

set F low,m(u, g) and Fhigh(u, g) by

F low,m(u, g) :=

(
0

F̃ low,m(u, g)

)
,

Fhigh(u, g) =

(
F 0
high(u)

F̃high(u, g)

)
:= P∞

(
−γw · ∇ϕ(1) + F 0(u)

F̃ (u, g)

)
,

where u = ⊤(ϕ,w) is given by u(1),m = ⊤(ϕ(1),m(1)) and u(∞) =
⊤(ϕ(∞), w(∞)) through

the relation

ϕ = ϕ(1) + ϕ(∞), w = w(1) + w(∞), w(1) = m(1) − P1(ϕw),

F̃ low,m(u, g), F 0(u) and F̃ (u, g) were given in (4.5), (3.5) and (3.6), respectively,

As for the estimate F low,m(u, g), we use the notation Ψ introduced in section 5, i.e.,

Ψ[F̃(1)](t) := S1(t)S 1(T )(I − S1(T ))
−1

(
0

F̃(1)

)
+S 1(t)

(
0

F̃(1)

)
.

We have the following estimate for Ψ[F̃ low,m(u, g)] in Z (1),sym(0, T ).

Proposition 7.1. Let u(1),m = ⊤(ϕ(1),m(1)) ∈ (X (1) × Y (1))sym and u(∞) =
⊤(ϕ(∞), w(∞)) ∈ Hs

(∞),2,sym satisfying

sup
0≤t≤T

∥u(1),m(t)∥X (1)×Y (1)

+ sup
0≤t≤T

∥u(∞)(t)∥Hs
2

+ sup
0≤t≤T

∥ϕ(t)∥L∞
1

+ sup
0≤t≤T

∥∇ϕ(t)∥L2
1
≤ min{δ0, δ,

1

2
},

where δ0, δ are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ϕ =

ϕ(1) + ϕ(∞). Then we obtain the following estimate

∥Ψ[F̃ low,m(u, g)]∥Z (1)(0,T )

≤ C∥{u(1),m, u(∞)}∥2Xs(0,T ) + C
(
1 + ∥{u(1),m, u(∞)}∥Xs(0,T )

)
[g]s,

uniformly for u(1),m and u(∞).

Proof. Let u(j) = ⊤(ϕ(j), w(j)) (j = 1,∞), w(j) = ⊤(w
(j)
1 , w

(j)
2 ) and we define

G1(u
(1), u(2)) := −P1

{
γ∂x2

(
w

(1)
1 w

(2)
2

w
(1)
2 w

(2)
2 − w

(1)
1 w

(2)
1

)
+ γ∂x1

(
0

w
(1)
1 w

(2)
2

)}
,
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G2(u
(1), u(2)) := −P1(γ∇(w

(1)
1 w

(2)
1 )),

G3(u
(1), u(2)) := −P1(µ∆(ϕ(1)w(2)) + µ̃∇div (ϕ(1)w(2))),

G4(ϕ, u
(1), u(2)) := −P1

(
ρ∗
γ
∇(p̃(ϕ)ϕ(1)ϕ(2))

)
,

G5(ϕ, u
(1), u(2)) := −P1(γdiv (ϕw

(1) ⊗ w(2))),

Hk(u
(1), u(2)) := Gk(u

(1), u(2)) +Gk(u
(2), u(1)), (k = 1, 2, 3),

Hk(ϕ, u
(1), u(2)) := Gk(ϕ, u

(1), u(2)) +Gk(ϕ, u
(2), u(1)), (k = 4, 5).

And we then write Ψ[F̃ low,m(u, g)] as

Ψ[F̃ low,m(u, g)] =
3∑

k=1

(
Ψ[Gk(u(1), u(1))] + Ψ[Hk(u(1), u(∞))] + Ψ[Gk(u(∞), u(∞))]

)
+

5∑
k=4

Ψ[Gk(ϕ, u(1), u(1))] + Ψ[Hk(ϕ, u(1), u(∞))] + Ψ[Gk(ϕ, u(∞), u(∞))]

+Ψ

[
1

γ
(1 + ϕ(1))g

]
+Ψ

[
1

γ
ϕ(∞)g

]
.

Using Lemma 4.14 and (5.17) we have the following estimate for Ψ[G1(u(1), u(1))].

∥Ψ[G1(u(1), u(1))]∥Z (1)(0,T )
≤ C∥{u(1), u(∞)}∥2Xs(0,T ).

Concerning the estimates Ψ[G2(u(1), u(1))] and Ψ[G4(ϕ, u(1), u(1))], applying Lemma 4.14

and (5.18) with f(1) = (w(1))
2 and f(1) = p̃(ϕ)ϕ2

(1) we obtain the estimates

∥Ψ[G2(u(1), u(1))]∥Z (1)(0,T )
≤ C∥{u(1), u(∞)}∥2Xs(0,T ),

∥Ψ[G4(ϕ, u(1), u(1))]∥Z (1)(0,T )
≤ C∥{u(1), u(∞)}∥2Xs(0,T ).

By using Lemma 4.14 and (5.19) we arrive at the following estimate for Ψ[G3(u(1), u(1))].

∥Ψ[G3(u(1), u(1))]∥Z (1)(0,T )
≤ C∥{u(1), u(∞)}∥2Xs(0,T ).

It follows from Lemma 4.4, Lemma 4.14 and (5.17) that we get

∥Ψ[G1(u(1), u(∞))]∥Z (1)(0,T )
≤ C∥{u(1), u(∞)}∥2Xs(0,T ),

∥Ψ[G1(u(∞), u(∞))]∥Z (1)(0,T )
≤ C∥{u(1), u(∞)}∥2Xs(0,T ).

Similarly, by Lemma 4.4, Lemma 4.14, (5.18) and (5.19) we obtain for k = 2, 3 that

∥Ψ[Gk(u(1), u(∞))]∥Z (1)(0,T )
+ ∥Ψ[G4(ϕ, u(1), u(∞))]∥Z (1)(0,T )

+∥Ψ[Gk(u(∞), u(∞))]∥Z (1)(0,T )
∥Ψ[G4(ϕ, u(∞), u(∞))]∥Z (1)(0,T )



11-7524: 2017.12.26

276 K. Tsuda

≤ C∥{u(1), u(∞)}∥2Xs(0,T ).

G5(ϕ, u, u) is estimated by same way as that in the estimate for Ψ[G1(u(1), u(1))] and we

see that

∥Ψ[G5(ϕ, u, u)]∥Z (1)(0,T )
≤ C∥{u(1), u(∞)}∥2Xs(0,T ).

As for the estimates for Ψ[(1+ϕ(1))g] and Ψ[ϕ(∞)g], it holds from Lemma 4.13 and (5.17)

that

∥Ψ[(1 + ϕ(1))g]∥Z (1)(0,T )
+ ∥Ψ[ϕ(∞)g]∥Z (1)(0,T )

≤ C(1 + ∥{u(1), u(∞)}∥Xs(0,T ))[g]s.

Therefore, we find that

∥Ψ[F̃ low,m(u, g)]∥Z (1)(0,T )
≤ C∥{u(1), u(∞)}∥2Xs(0,T ) + C

(
1 + ∥{u(1), u(∞)}∥Xs(0,T )

)
[g]s.

Consequently, we obtain the desired estimate by applying Lemma 4.9 (i). This completes

the proof. □

We state the estimates for the nonlinear and inhomogeneous terms of the high fre-

quency part.

Proposition 7.2. Let u(1),m = ⊤(ϕ(1),m(1)) ∈ (X (1) × Y (1))sym and u(∞) =
⊤(ϕ(∞), w(∞)) ∈ Hs

(∞),2,sym satisfying

sup
0≤t≤T

∥u(1),m(t)∥X (1)×Y (1)

+ sup
0≤t≤T

∥u(∞)(t)∥Hs
2

+ sup
0≤t≤T

∥ϕ(t)∥L∞
1

+ sup
0≤t≤T

∥∇ϕ(t)∥L2
1
≤ min

{
δ0, δ,

1

2

}
,

where δ0, δ are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ϕ =

ϕ(1) + ϕ(∞). Then we have the estimate

∥Fhigh(u, g)∥L2(0,T ;Hs
2×Hs−1

2 )

≤ C∥{u(1),m, u(∞)}∥2Xs(0,T ) + C
(
1 + ∥{u(1),m, u(∞)}∥Xs(0,T )

)
[g]s,

uniformly for u(1),m and u(∞).

Proposition 7.2 follows in a similar manner to the proof of [10, Proposition 7.2] and

we omit the details.

By the same way as that in the proof of Proposition 7.1, we have the following

estimate for F low,m(u(1), g)− F low,m(u(2), g).

Proposition 7.3. Let u
(k)
(1),m = ⊤(ϕ

(k)
(1) ,m

(k)
(1)) ∈ (X (1) × Y (1))sym and u

(k)
(∞) =

⊤(ϕ
(k)
(∞), w

(k)
(∞)) ∈ Hs

(∞),2,sym satisfying
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sup
0≤t≤T

∥u(k)
(1),m(t)∥X (1)×Y (1)

+ sup
0≤t≤T

∥u(k)
(∞)(t)∥Hs

2

+ sup
0≤t≤T

∥ϕ(k)(t)∥L∞
1

+ sup
0≤t≤T

∥∇ϕ(k)(t)∥L2
1
≤ min

{
δ0, δ,

1

2

}
,

where δ0, δ are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ϕ(k) =

ϕ
(k)
(1) + ϕ

(k)
(∞) (k = 1, 2). Then it holds that

∥Ψ[F̃ low,m(u(1), g)− F̃ low,m(u(2), g)]∥Z (1)(0,T )

≤ C
2∑

k=1

∥∥∥{u(k)
(1),m, u

(k)
(∞)

}∥∥∥
Xs(0,T )

∥∥∥{u(1)
(1),m − u

(2)
(1),m, u

(1)
(∞) − u

(2)
(∞)

}∥∥∥
Xs−1(0,T )

+C[g]s

∥∥∥{u(1)
(1),m − u

(2)
(1),m, u

(1)
(∞) − u

(2)
(∞)

}∥∥∥
Xs−1(0,T )

,

uniformly for u
(k)
(1),m and u

(k)
(∞).

We next estimate Fhigh(u
(1), g)− Fhigh(u

(2), g).

Proposition 7.4. Let u
(k)
(1),m = ⊤(ϕ

(k)
(1) ,m

(k)
(1)) ∈ (X (1) × Y (1))sym and u

(k)
(∞) =

⊤(ϕ
(k)
(∞), w

(k)
(∞)) ∈ Hs

(∞),2,sym satisfying

sup
0≤t≤T

∥u(k)
(1),m(t)∥X (1)×Y (1)

+ sup
0≤t≤T

∥u(k)
(∞)(t)∥Hs

2

+ sup
0≤t≤T

∥ϕ(k)(t)∥L∞
1

+ sup
0≤t≤T

∥∇ϕ(k)(t)∥L2
1
≤ min

{
δ0, δ,

1

2

}
,

where δ0, δ are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ϕ(k) =

ϕ
(k)
(1) + ϕ

(k)
(∞) (k = 1, 2). Then it holds that

∥Fhigh(u
(1), g)− Fhigh(u

(2), g)]∥L2(0,T ;Hs−1
2 ×Hs−2

2 )

≤ C
2∑

k=1

∥∥∥{u(k)
(1),m, u

(k)
(∞)

}∥∥∥
Xs(0,T )

∥∥∥{u(1)
(1),m − u

(2)
(1),m, u

(1)
(∞) − u

(2)
(∞)

}∥∥∥
Xs−1(0,T )

+C[g]s

∥∥∥{u(1)
(1),m − u

(2)
(1),m, u

(1)
(∞) − u

(2)
(∞)

}∥∥∥
Xs−1(0,T )

,

uniformly for u
(k)
(1),m and u

(k)
(∞).

Proposition 7.4 easily follows from Lemmas 2.1–2.4, Lemma 4.4, Lemma 4.15 and

Lemma 4.16 in a similar manner to the proof of Proposition 7.2.

The following estimate is concerned with Proposition 7.6.

Proposition 7.5. (i) Let u(1),m = ⊤(ϕ(1),m(1)) ∈ (X (1) ×Y (1))sym and u(∞) =
⊤(ϕ(∞), w(∞)) ∈ Hs

(∞),2,sym satisfying
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sup
0≤t≤T

∥u(1),m(t)∥X (1)×Y (1)

+ sup
0≤t≤T

∥u(∞)(t)∥Hs
2

+ sup
0≤t≤T

∥ϕ(t)∥L∞
1

+ sup
0≤t≤T

∥∇ϕ(t)∥L2
1
≤ min

{
δ0, δ,

1

2

}
,

where δ0, δ are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ϕ =

ϕ(1) + ϕ(∞). Then it holds that

∥F low,m(u, g)∥C([0,T ];L2) + ∥∇F low,m(u, g)∥C([0,T ];L2
1)

≤ C∥{u(1),m, u(∞)}∥2Xs(0,T ) + C
(
1 + ∥{u(1),m, u(∞)}∥Xs(0,T )

)
[g]s,

uniformly for u(1),m and u(∞).

(ii) Let u
(k)
(1),m = ⊤(ϕ

(k)
(1) ,m

(k)
(1)) ∈ (X (1) × Y (1))sym and u

(k)
(∞) = ⊤(ϕ

(k)
(∞), w

(k)
(∞)) ∈

Hs
(∞),2,sym satisfying

sup
0≤t≤T

∥u(k)
(1),m(t)∥X (1)×Y (1)

+ sup
0≤t≤T

∥u(k)
(∞)(t)∥Hs

2

+ sup
0≤t≤T

∥ϕ(k)(t)∥L∞
1

+ sup
0≤t≤T

∥∇ϕ(k)(t)∥L2
1
≤ min

{
δ0, δ,

1

2

}
,

where δ0, δ are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ϕ(k) =

ϕ
(k)
(1) + ϕ

(k)
(∞) (k = 1, 2). Then it holds that

∥F low,m(u(1), g)− F low,m(u(2), g)∥L2 + ∥∇F low,m(u(1), g)− F low,m(u(2), g)∥L2
1

≤ C
2∑

k=1

∥∥∥{u(k)
(1),m, u

(k)
(∞)

}∥∥∥
Xs(0,T )

∥∥∥{u(1)
(1),m − u

(2)
(1),m, u

(1)
(∞) − u

(2)
(∞)

}∥∥∥
Xs−1(0,T )

+C[g]s

∥∥∥{u(1)
(1),m − u

(2)
(1),m, u

(1)
(∞) − u

(2)
(∞)

}∥∥∥
Xs−1(0,T )

,

uniformly for u
(k)
(1),m and u

(k)
(∞).

Proposition 7.5 follows from direct computations based on Lemma 4.14.

We obtain the existence of a solution {u(1),m, u(∞)} of (4.2), (4.4) and (4.6) on [0, T ]

satisfying u(1),m(0) = u(1),m(T ) and u(∞)(0) = u(∞)(T ) by similar iteration argument to

that in [10].

u
(0)
(1),m = ⊤(ϕ

(0)
(1),m

(0)
(1)) and u

(0)
(∞) =

⊤(ϕ
(0)
(∞), w

(0)
(∞)) are defined by

u
(0)
(1),m(t) := S1(t)S 1(T )[(I − S1(T ))

−1G1] +S 1(t)[G1],

w
(0)
(1) = m

(0)
(1) − P1(ϕ

(0)w(0)),

u
(0)
(∞)(t) := S∞,0(t)(I − S∞,0(T ))

−1S∞,0(T )[G∞] +S∞,0(t)[G∞],

(7.1)

where t ∈ [0, T ], G = ⊤(0, 1
γ g(x, t)), G1 = P1G , G∞ = P∞G, ϕ(0) = ϕ

(0)
(1) + ϕ

(0)
(∞) and
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w(0) = w
(0)
(1) + w

(0)
(∞). Note that u

(0)
(1),m(0) = u

(0)
(1),m(T ) and u

(0)
(∞)(0) = u

(0)
(∞)(T ).

u
(N)
(1),m = ⊤(ϕ

(N)
(1) ,m

(N)
(1) ) and u

(N)
(∞) =

⊤(ϕ
(N)
(∞), w

(N)
(∞)) are defined, inductively for N ≥

1, by

u
(N)
(1),m(t) := S1(t)S 1(T )[(I − S1(T ))

−1F low,m(u(N−1), g)] +S 1(t)[F low,m(u(N−1), g)],

w
(N)
(1) = m

(N)
(1) − P1(ϕ

(N)w(N)),

u
(N)
(∞)(t) := S∞,u(N−1)(t)(I − S∞,u(N−1)(T ))−1S∞,u(N−1)(T )[Fhigh(u

(N−1), g)]

+S∞,u(N−1)(t)[Fhigh(u
(N−1), g)],

(7.2)

where t ∈ [0, T ], u(N−1) = u
(N−1)
(1) +u

(N−1)
(∞) , u

(N−1)
(1) = ⊤(ϕ

(N−1)
(1) , w

(N−1)
(1) ), ϕ(N) = ϕ

(N)
(1) +

ϕ
(N)
(∞) and w(N) = w

(N)
(1) +w

(N)
(∞). Note that u

(N)
(1),m(0) = u

(N)
(1),m(T ) and u

(0)
(∞)(0) = u

(0)
(∞)(T ).

The symbol BXk
sym(a,b)(r) stands for the closed unit ball in Xk

sym(a, b) centered at 0

with radius r, i.e.,

BXk
sym(a,b)(r) :=

{
{u(1),m, u(∞)} ∈ Xk

sym(a, b); ∥{u(1),m, u(∞)}∥Xk(a,b) ≤ r
}
.

We have the following proposition from Propositions 5.1, 6.5, 7.1, 7.2, and 7.5 by

the same argument as that in [10].

Proposition 7.6. There exists a constant δ1 > 0 such that if [g]s ≤ δ1, then it

holds that

(i)
∥∥∥{u(N)

(1),m, u
(N)
(∞)

}∥∥∥
Xs(0,T )

≤ C1[g]s,

for all N ≥ 0, and

(ii)

∥∥∥{u(N+1)
(1),m − u

(N)
(1),m, u

(N+1)
(∞) − u

(N)
(∞)

}∥∥∥
Xs−1(0,T )

≤C1[g]s

∥∥∥{u(N)
(1),m − u

(N−1)
(1),m , u

(N)
(∞) − u

(N−1)
(∞)

}∥∥∥
Xs−1(0,T )

,

for N ≥ 1. Here C1 is a constant independent of g and N .

Concerning the existence of a solution {u(1),m, u(∞)} of (4.2), (4.4) and (4.6) on

[0, T ] satisfying u(1),m(0) = u(1),m(T ) and u(∞)(0) = u(∞)(T ), we state the following

Proposition 7.7. There exists a constant δ2 > 0 such that if [g]s ≤ δ2, then

the system (4.2), (4.4) and (4.6) has a unique solution {u(1),m, u(∞)} on [0, T ] in

BXs
sym(0,T )(C1[g]s) satisfying u(1),m(0) = u(1),m(T ) and u(∞)(0) = u(∞)(T ). The unique-

ness of solutions of (4.2), (4.4) and (4.6) on [0, T ] satisfying u(1),m(0) = u(1),m(T ) and

u(∞)(0) = u(∞)(T ) holds in BXs
sym(0,T )(C1δ2).

Corollary 7.8. There exists a constant δ3 > 0 such that if [g]s ≤ δ3, then

the system (4.1)–(4.2) has a unique solution {u(1), u(∞)} on [0, T ] in BXs
sym(0,T )(C2[g]s)

satisfying u(j)(0) = u(j)(T ) (j = 1,∞) where u(j) =
⊤(ϕ(j), w(j)) (j = 1,∞) and C2 is a
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constant independent of g. The uniqueness of solutions of (4.1)–(4.2) on [0, T ] satisfying

u(j)(0) = u(j)(T ) (j = 1,∞) holds in BXs
sym(0,T )(C2δ3).

Proposition 7.7 and Corollary 7.8 follow from Lemma 4.9 (i) and Proposition 7.7 by

the same way as that in [10] and we omit the proofs.

As for the unique existence of solutions of the initial value problem, (4.1)–(4.2), the

following proposition can be proved from the estimates in sections 5–7, as in [4], [10].

Proposition 7.9. Let h ∈ R and let U0 = U01 + U0∞ with U01 ∈ X (1),sym ×
Y (1),syn and U0∞ ∈ Hs

(∞),2,sym. Then there exist constants δ4 > 0 and C3 > 0 such that

if

M(U01, U0∞, g) := ∥U01∥X (1)×Y (1)

+ ∥U0∞∥Hs
(∞),2

+ [g]s ≤ δ4,

there exists a solution {u(1), u(∞)} of the initial value problem for (4.1)–(4.2) on [h, h+T ]

in BXs
sym(h,h+T )(C3M(U01, U0∞, g)) satisfying the initial condition u(j)|t=h = U0j (j =

0,∞). The uniqueness for this initial value problem holds in BXs
sym(h,h+T )(C3δ4).

Therefore, we can extend {u(1), u(∞)} periodically on R as a time periodic solution

of (4.1)–(4.2) by using Corollary 7.8 and Proposition 7.9 in the same argument as that

given in [4]. Consequently, we obtain Theorem 3.1. This completes the proof.
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