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We consider time-periodic structures of granular crystals consisting of alternate chrome steel (S) and tungsten carbide (W) spherical
particles where each unit cell follows the pattern of a 2 : 1 trimer: S-W-S. �e con	guration at the le
 boundary is driven by a
harmonic in-time actuation with given amplitude and frequency while the right one is a 	xed wall. Similar to the case of a dimer
chain, the combination of dissipation, driving of the boundary, and intrinsic nonlinearity leads to complex dynamics. For 	xed
driving frequencies in each of the spectral gaps, we 	nd that the nonlinear surface modes and the states dictated by the linear
drive collide in a saddle-node bifurcation as the driving amplitude is increased, beyond which the dynamics of the system becomes
chaotic. While the bifurcation structure is similar for solutions within the 	rst and second gap, those in the 	rst gap appear to be
less robust. We also conduct a continuation in driving frequency, where it is apparent that the nonlinearity of the system results in
a complex bifurcation diagram, involving an intricate set of loops of branches, especially within the spectral gap. �e theoretical
	ndings are qualitatively corroborated by the experimental full-	eld visualization of the time-periodic structures.

1. Introduction

Granular chains, which consist of closely packed arrays of
particles that interact elastically, have proven over the last
several decades to be an ideal testbed to theoretically and
experimentally study novel principles of nonlinear dynamics
[1–3]. Examples include, but are not limited to, solitary waves
[1, 2, 4, 5] and dispersive shocks [6–8], as well as bright
and dark discrete breathers [9–15]. Beyond such fundamental
aspects, their extreme tunability makes granular crystals
relevant for numerous applications such as shock and energy
absorbing layers [16–19], actuating devices [20], acoustic
lenses [21], acoustic diodes [12], and switches [22], as well as
sound scramblers [23, 24].

Our emphasis in the present work will be on coher-
ent nonlinear waveforms that are time-periodic. A special
instance of this is when the spatial pro	le is localized,
in which case the structure is termed a discrete breather.
�e study of discrete breathers has been a topic of intense
theoretical and experimental interest during the 25 years
since their theoretical inception, as has been summarized, for
example, in [25]. �e broad and diverse span of 	elds where
such structures have been of interest includes, among others,
optical waveguide arrays or photorefractive crystals [26],
micromechanical cantilever arrays [27], Josephson-junction
ladders [28, 29], layered antiferromagnetic crystals [30, 31],
halide-bridged transition metal complexes [32], dynamical
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models of the DNA double strand [33], and Bose-Einstein
condensates in optical lattices [34].

In Fermi-Pasta-Ulam type settings (which are intimately
connected to the case of precompressed granular crystals in
the weakly nonlinear regime, see, e.g., (1)) it was proven in
[35, 36] (see also the discussion in [25]) that small amplitude
discrete breathers are absent in spatially homogeneous (i.e.,
monoatomic) chains. Instead, dark breathers (those on top of
a non-vanishing background) have been found therein [15].
It is for that reason that the 	rst theoretical and experimental
investigations of breathers with a vanishing background (i.e.,
bright breathers) have taken place in granular chains with
some degree of spatial heterogeneity, which plays a critical
role in the emergence of such patterns. Examples include
chains with defects [9, 10, 12] (see also [37] for recent
experiments) and a spatial periodicity of two (i.e., dimer
lattices) [11, 13]. Motivated by these works, a theoretical
study of breathers in granular crystals with higher order
spatial periodicity (such as trimers and quadrimers) was
recently conducted in [14]. �erein, it was demonstrated that
breathers with a frequency in the highest 	nite gap appear
to be more robust than their counterparts with frequency
in the lower gaps. Another relevant study is [38], where
experimental and numerical analysis of band gap e�ects
related to transient behavior of driven dissipative granular
chains were studied.

�e goal of the present work is the systematic study
of time-periodic solutions (including breathers) of trimer
granular crystals with frequency in the 	rst or second gap,
as well as in the acoustic and optical bands. In particular,
we investigate the robustness of the breathers experimen-
tally using a full-	eld visualization technique based on
laser Doppler vibrometry. �is is a signi	cant improvement
over the aforementioned experimental observation of bright
breathers [11–13] where force sensors are placed at isolated
particles within the granular chain, which does not allow a
full-	eld representation of the breather. We complement this
study with a detailed theoretical probing of the more realistic
damped-driven variant of the pertinentmodel. Our extensive
analysis of such modes consists of the study of their family
under continuations in both the amplitude and the frequency
parameters of the external drive and a detailed comparison
of the 	ndings between numerically exact (up to a prescribed
tolerance) periodic orbit solutions and experimentally traced
counterparts thereof. We also note that there are limited
studies reporting the full-	eld experimental visualization of
time-periodic solutions in granular crystals. Indeed, the only
work to this e�ect that the authors are aware of is [15], which
deals with the much simpler setting of a monomer granular
crystal, where surface breathers are not addressed. Although
the theme of heterogeneous granular crystals has been receiv-
ing considerable theoretical and even experimental attention
recently, most of it has been focused on the realm of traveling
waves [39–42], while the emphasis herein will be on the time-
periodic, exponentially localized discrete breather states.

�e paper is structured as follows. In Sections 2 and 3,
we describe the experimental and theoretical setups, respec-
tively. �e main results are presented in Section 4, where
time-periodic solutions with frequency in the 	rst/second

Table 1: Parameter values of the trimer granular chain (S-W-S).

Material
Parameter� [N/m2] � [m] ] � [kg/m3]

Chrome steel (S) 200 × 109 9.525 × 10−3 0.3 7780

Tungsten carbide (W) 628 × 109 9.525 × 10−3 0.28 14980

gaps and in the spectral bands are studied in both of these
setups and compared accordingly. Finally, Section 5 provides
our conclusions and discusses a number of future challenges.

2. Experimental Setup

Figure 1 shows a schematic of the experimental setup consist-
ing of a granular chain and a laser Doppler vibrometer. In
this study, we consider a granular chain composed of� = 21
spherical beads. �e beads are made out of chrome steel (S:
gray particles in Figure 1) and tungsten carbide (W: black
particles) materials. See Table 1 for nominal values of the
material parameters used herea
er. �e granular chain has a
spatial periodicity of three particles, and each unit cell follows
the pattern of a 2 : 1 trimer: S-W-S.�e spheres are supported
by four polytetra�uoroethylene (PTFE) rods, which allow
axial vibrations of particles with minimal friction, while
restricting their lateral movements. �e granular chain is
compressed by a moving wall at one end of the chain that
applies static force in a controllable manner via a linear stage
(see Figure 1). We measure the preapplied static force (�0 =10N in this study) by using a static force sensor mounted
on the moving wall. We assume that this moving wall is
stationary throughout our analysis, since it exhibits orders-
of-magnitude larger inertia compared to the particle’smasses.

�e granular chain is driven by a piezoelectric actuator
positioned on the other side of the chain. We impose
actuation signals of chosen amplitude and frequency through
an external function generator and a power ampli	er. �e
dynamics of individual particles are scoped by a laser
Doppler vibrometer (LDV, Polytec, OFV-534), which is capa-
ble of measuring particles’ velocities with a resolution of

0.02 �m/s/Hz1/2. �e LDV scans the granular chain through
the automatic sliding rail and measures the vibrational
motions of each particle three times for statistical pur-
poses. We obtain the full-	eld map of the granular chain’s
dynamics by synchronizing and reconstructing the acquired
data.

3. Theoretical Setup

�e equation we use to model the experimental setup is a
Fermi-Pasta-Ulam-type lattice with a Hertzian potential [1]
leading to

	̈� = 
�−1�� [
0,�−1 +	�−1 −	�]3/2+− 
��� [
0,� +	� −	�+1]3/2+ − 	̇�� , (1)
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Figure 1: Experimental setup of a 21-particle granular chain composed of chrome steel and tungsten carbide beads in a 2 : 1 ratio. Actuation
and sensing systems based on a piezoelectric force sensor and a laser Doppler vibrometer are also illustrated.

where � = 1, . . . , �, 	� = 	�(�) ∈ R is the displacement of
the �th bead from its equilibrium position at time � ∈ R,��
is the mass of the �th bead, 
0,� is a precompression factor

induced by the static force �0 = 
�
3/20,� , and the bracket
is de	ned by [�]+ = max(0, �). �e 3/2 power accounting
for the nonlinearity of the model is a result of the sphere-to-
sphere contact, that is, the so-calledHertzian contact [43].We
model the dissipation as a dash-pot, which can be interpreted
as the friction between individual grains and PTFE rods.
�is form of dissipation has been utilized in the context of
granular crystals in several previous works [12, 15], but it is
worth noting that works such as [6, 7] considered the internal
friction caused by contact interaction between grains. �e
strength of the dissipation is captured by the parameter �,
which serves as the sole parameter used to 	t experimental
data (� = 2.1ms in this study). �e elastic coe�cient 
�
depends on the interaction of bead � with bead � + 1 and for
spherical point contacts has the form [44]


� = 4����+1√����+1/ (�� + ��+1)
3��+1 (1 − ]2�) + 3�� (1 − ]2�+1) , (2)

where ��, ]�, and �� are the Young’s modulus, Poisson’s ratio,
and the radius, respectively, of the �th bead.�e le
 boundary
is an actuator and the right one is kept 	xed; that is,

	0 (�) = � cos (2����) ,	�+1 (�) = 0, (3)

where � and �� represent the driving amplitude and fre-
quency, respectively. Note that at the boundaries (i.e., � = 0

and � = �+1), we consider �at surface-sphere contacts while
the same material properties are assumed; thus, for example,
the elastic coe�cient at the le
 boundary takes the form


0 = 2�1√�1
3 (1 − ]2

1
) . (4)

3.1. Linear Regime and Dispersion Relation. Assuming the
dynamic strains that are small relative to the static precom-
pression, that is, ����	� − 	�+1����
0,� ≪ 1, (5)

equation (1) can then be well approximated by its linearized
form 	̈� = ��−1�� (	�−1 −	�) − ���� (	� −	�+1) − 	̇�� , (6)

with �� = 3/2
�
1/20,� corresponding to the linearized sti�-
nesses. Subsequently, (6) can be converted into a system of
2� 	rst-order equations and written conveniently in matrix
form as

Ẏ = AY, (7)

with Y = (	1, . . . , 	�, V1(= 	̇1), . . . , V�(= 	̇�))� and
A = (O I

C (−1/�) I) , (8)

whereO and I represent the�×� zero and identitymatrices,
respectively, and the�×� (tridiagonal) matrixC is given by
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Figure 2: Eigenfrequency spectrum of the trimer granular chain for parameter values given in Table 1 and � = 2.1ms. (a) Spectrum
corresponding to (10) for � = 21 beads. Note that the horizontal dashed black lines correspond to the cut-o� frequencies listed in Table 2.
(b) Numerically obtained frequencies of the in	nite lattice using (14) as a function of the wavenumber (!").

C =(((((((((
(

−�0 + �1�1

�1�1

0 ⋅ ⋅ ⋅ 0�1�2

−�1 + �2�2

�2�2

...
0 d d d 0... ��−2��−1 −��−2 + ��−1��−1 ��−1��−1
0 ⋅ ⋅ ⋅ 0

��−1�� −��−1 + ����

)))))))))
)

. (9)

Note that in the above linearization we applied 	xed bound-
ary conditions at both ends of the chain; that is,	0 = 	�+1 = 0
(we account for the actuator in the following subsection).�is

equation is solved by 2� = 3�4���, where 5 corresponds to the
angular frequency (with 5 = 2��) and where

Ay = 6y, (10)

with (6, y) corresponding to the eigenvalue-eigenvector pair,
while 6 = 75 and y = (31, . . . , 32�)�. �e eigenfrequency
spectrum (� = −7(6/2�)) using the values of Table 1 and � =
2.1ms is shown in Figure 2(a).

On the other hand, the dispersion relation for the trimer
chain con	guration within an in	nite lattice can be obtained
using a Bloch wave ansatz [45]. We 	rst rewrite (6) in the
following convenient form

	̈3	−2 = �3�1

(	3	−3 −	3	−2) − �1�1

(	3	−2 −	3	−1)
− 	̇3	−2� , (11a)

	̈3	−1 = �1�2

(	3	−2 −	3	−1) − �1�2

(	3	−1 −	3	)
− 	̇3	−1� , (11b)

	̈3	 = �1�1

(	3	−1 −	3	) − �3�1

(	3	 −	3	+1) − 	̇3	� , (11c)

with : ∈ Z
+, where we made use of the spatial periodicity

of the trimer lattice; that is,�3	 = �3	−2 ≡ �1(= �3) and�3	−2 = �3	−1 ≡ �1(= �2) and�3	−1 ≡ �2 and �3	 ≡ �3.
�e Bloch wave ansatz has the form	3	−2 = <14�(
�	+��), (12a)	3	−1 = <24�(
�	+��), (12b)	3	 = <34�(
�	+��), (12c)

where <1, <2, and <3 are the wave amplitudes, ! is the
wavenumber, and " is the size (or the equilibrium length)
of one unit cell of the lattice. Substitution of (12a), (12b), and
(12c) into (11a), (11b), and (11c) yields
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((
(

52 − �1 + �3�1

− 75� �1�1

�3�1

4−�
��1�2

52 − 2�1�2

− 75� �1�2�3�1

4�
� �1�1

52 − �1 + �3�1

− 75�
))
)

(<1<2<3) = (0

0

0

). (13)

�e nonzero solution condition of the matrix-system (13), or
dispersion relation (i.e., the vanishing of the determinant of
the above homogeneous linear system), has the form

�2

1
�256 − 73�2

1
�2� 55

−�1 [2 [�3�2 +�1 (�1 +�2)] + 3�1�2�2 ]54

+ 7�1� [4 [�3�2 +�1 (�1 +�2)] + �1�2�2 ]53

− 4�2

1
�3sin

2 (!"
2
)

+ [�1 (�1 + 2�3) (2�1 +�2)
+ 2�1�2 [�3�2 +�1 (�1 +�2)]] 52 − 7�1� (�1+ 2�3) (2�1 +�2) 5 = 0,

(14)

which has (nontrivial) solutions at ! = 0 and ! = �/" (i.e.,
	rst Brillouin zone) given by

��,1 (! = 0) = 7 1

2�� (lower acoustic) ,
��,2 (! = 0) = ± 1

2�√�1 + 2�3�1

− 1

4�2 + 7 1

4��(second lower optic) ,
��,3 (! = 0) = ± 1

2�√�1 (2�1 +�2)�1�2

− 1

4�2 + 7 1

4��(	rst upper optic) ,
��,4 (!= �") = ± 1

2�√ �1�1

− 1

4�2 + 7 1

4��(	rst lower optic) ,

��,5 (!= �")
= ± 1

2�√�1 (2�1 +�2) + 2�3�2 − �̃
2�1�2

− 1

4�2+ 7 1

4�� (upper acoustic) ,
��,6 (!= �")
= ± 1

2�√�1 (2�1 +�2) + 2�3�2 + �̃
2�1�2

− 1

4�2
+ 7 1

4�� (second upper optic) ,
(15)

where �̃ = √[�1(2�1 +�2) + 2�3�2]2 − 16�1�3�1�2.

�e solutions (15) correspond to the cut-o� frequencies of the
spectral bands. �e above values are (in principle) complex
since we consider dissipative dynamics in the system (1)
(embodied by the 	̇�/� term) in order to model the exper-
imental setup. �erefore, the reported frequencies herea
er
will correspond to the real part of these values, that is, the
part contributing to the dispersion properties of the solutions
rather than their decay. In Table 2, the predicted values of the
cut-o� frequencies are presented (up to two decimal places)
using the values of the material parameters of Table 1 and� = 2.1ms.

Finally, upon solving numerically the dispersion relation
(cf. (14)), the frequency as a function of the dimensionless
wavenumber (H") is presented in Figure 2(b) together with
the cut-o� frequencies of Table 2. Note that these cut-o�
frequencies are also plotted as horizontal dashed black lines
in Figure 2(a) for comparison. It can be discerned from both
panels of Figure 2 that there exist two 	nite gaps in the
frequency spectrum (in general their number is one less than
the period of the granular crystal), namely, [��,5, ��,4] and[��,3, ��,2], together with one semi-in	nite gap [��,6,∞). We
also note the presence of two additional localized modes
depicted in Figure 2(a) between the 	rst and second optical
pass bands due to the 	xed boundary conditions. �ese
modes, denoted by black dots in Figure 2(a), correspond
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Table 2: Calculated cut-o� frequencies (in kHz) using (15).��,5 ��,4 ��,3 ��,2 ��,6
3.04 4.23 6.04 6.71 7.37
to surface modes and their existence has been previously
discussed, for example, in [11].

3.2. Steady-State Analysis in the Linear Regime. In order to
account for the actuation in the linear problem we add an
external forcing term to (7) in the form

Ẏ = AY+ F (�) , (16)

where the sole nonzero entry of F is at the (� + 1)th node
and has the form ��+1 = �(�0/�1)cos(5��) and the matrix
A is given by (8). An inhomogeneous solution of (16) can be
obtained by introducing the ansatz

Y =(((((((
(

�1 cos (5��) + J1 sin (5��)...�� cos (5��) + J� sin (5��)−�15� sin (5��) + J15� cos (5��)...−��5� sin (5��) + J�5� cos (5��)

)))))))
)

, (17)

with unknown (real) parameters �	 and J	 (: = 1, . . . , �).
Inserting (17) into (16) yields a system of linear equations
which can be easily solved:

ÃX = F̃, (18)

where

Ã = ( C̃ (5� ) I−(5� ) I C̃
), (19)

C̃ = −(C + 52

�I) with C given by (9), while X = (�1, . . . , ��,J1, . . . , J�) is the vector containing the unknown coe�cients

and F̃ = (�(�0/�1), 0, . . . , 0). We refer to (17) as the
asymptotic equilibrium of the linear problem (as dictated
by the actuator), since all solutions of the linear problem
approach it for � → ∞. Clearly, this state will be spatially
localized if the forcing frequency �� lies within a spectral
gap; otherwise it will be spatially extended (with the former
corresponding to a surface breather, which we discuss in
the following section). For small driving amplitude �, we
	nd that the long-term dynamics of the system approaches
an asymptotic state that is reasonably well approximated by
(17). However, for larger driving amplitudes the e�ect of the
nonlinearity becomes signi	cant, and we can no longer rely
on the linear analysis.

In order to understand the dynamics in the high-
amplitude regime, we perform a bifurcation analysis of time-
periodic solutions of the nonlinear problem (1) using a
Newton-Raphson method that yields exact time-periodic
solutions (to a prescribed tolerance) and their linear sta-
bility through the computation of Floquet multipliers (see
appendix for details). We use the asymptotic linear state (17)
as an initial guess for the Newton iterations.

4. Main Results

Besides the linear limit considered above, another relevant
situation is that of the Hamiltonian system, that is, with
1/� → 0 in (1) and � → 0 in (3). It is well known that time-
periodic solutions that are localized in space (i.e., breathers)
exist in a host of discrete Hamiltonian systems [25], including
granular crystals with spatial periodicity [11]. In particular,
Hamiltonian trimer granular chains were recently studied in
[14]. �ere, it was observed that breathers with frequency
in the second spectral gap are more robust than those with
frequency in the 	rst spectral gap. Features that appear to
enhance the stability of the higher gap breathers are (i)
tails avoiding resonances with the spectral bands and (ii)
lighter beads oscillating out-of-phase. In that sense, the
breathers found in the second spectral gap of trimers are
somewhat reminiscent of breathers found in the gap of
dimer lattices [11]. Furthermore, breathers of damped-driven
dimer granular crystals (i.e., (1) with a spatial periodicity
of two) were studied recently in [13]. In that setting, the
breathers become surface breathers since they are localized
at the surface, rather than the center of the chain. Yet, if
one translates the surface breather to the center of the chain,
it bears a strong resemblance to a “bulk” breather. �us,
nonlinearity, periodicity, and discreteness enabled two classes
of relevant states: �e nonlinear surface breathers and ones
tuned to the external actuator (i.e., those proximal to the
asymptotic linear state dictated by the actuator). �ese two
waveforms were observed to collide and disappear in a limit
cycle saddle-node bifurcation as the actuation amplitude was
increased [13]. Beyond this critical point, no stable, periodic
solutions were found to exist in the dimer case of [13] and
the dynamics were found to “jump” to a chaotic branch. We
aim to identify similar features in the case of the trimer with
a particular emphasis on the di�erences arising due to the
higher order periodicity of the system. To that end, we 	rst
present results on surface breathers with frequency in the
second gap and perform parameter continuation in driving
amplitude to draw comparisons to the bifurcation structure
in dimer granular lattices. Following that, we investigate
breathers in the 	rst spectral gap and compare them to
their second gap breather counterparts. Finally we identify
both localized and spatially extended states as the driving
frequency is varied through the entire range of spectral values
covering both gaps and the three pass bands between which
they arise.

4.1. Driving in the Second Spectral Gap. We 	rst consider
a 	xed driving frequency of �� = 6.3087 kHz, which



Mathematical Problems in Engineering 7

5 10 15 20

−0.01

0

0.01

� n
(m

/s
)

n

(a)

0 0.04 0.08 0.12
0

0.004

0.008

0.012

(A)

(D)

(B)

(C)

� 4
(m

/s
)

a (�m)

(b)

0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

� 4
(m

/s
)

a (�m)

(c)
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lies within the second spectral gap (see Table 2). For low
driving amplitude there is a single time-periodic state (i.e.,
the one proximal to the driven linear state), which the
experimentally observed dynamics follows (see panels (a)
and (b) in Figure 3). A continuation in driving amplitude
of numerically exact time-periodic solutions (see the blue,
red, and green lines of Figure 3(b)) reveals the existence of
three branches of solutions for a range of driving amplitudes.

�e branch indicated by label (A) is proximal to the linear
driven state given by (17) (shown as a gray dashed line in
Figure 3(b)). Each solutionmaking up this branch is in-phase
with the boundary actuator (see Figure 4(a)) and has lighter
masses that are out-of-phase with respect to each other (see,
e.g., Figure 7(a)). �ese solutions are asymptotically stable,
which is also evident in the experiments (see Figure 3(a) and
the blackmarkers with error bars in Figure 3(b)). At a driving
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Figure 4: Displacement pro	les and corresponding Floquet multipliers of time-periodic solutions obtained at a driving frequency of �� =
6.3087 kHz for a driving amplitude of (a) � = 0.2 nm, (b) � = 30 nm, (c) � = 40 nm, and (d) � = 0.1 �m. �ese solutions correspond to
the (A)–(D) labels of Figure 3(b). �e lighter masses (i.e., the Steel beads) oscillate (nearly) out-of-phase and are shown as blue diamonds
whereas the heavier masses (the Tungsten Carbide ones) are shown as orange squares.

amplitude of � ≈ 22.75 nm, an unstable and stable branch
of nonlinear surface breathers arise through a saddle-node
bifurcation (see labels (B) and (C) of Figure 3(b), resp.). At
the bifurcation point � ≈ 22.75 nm, the pro	le strongly
resembles that of the corresponding Hamiltonian breather
(when shi
ed to the center of the chain), hence the name
surface breather. It is important to note that the presence of
dissipation does not allow for this branch to bifurcate near� → 0 (where this bifurcation would occur in the absence
of dissipation). Instead, the need of the drive to overcome the
dissipation ensures that the bifurcation will emerge at a 	nite
value of �. As � is increased, the solutions constituting the
unstable “separatrix” branch (b) resemble progressively more
the ones of branch (a); see Figure 4(b). For example, branch
(b) progressively becomes in-phase with the actuator as � is
increased. Indeed these two branches collide and annihilate
at � ≈ 32.26 nm. On the other hand, the (stable, at least for
a parametric interval in �) nonlinear surface breather (c) is
out-of-phasewith the actuator (see Figure 4(c)).�is solution
loses its stability through a Neimark-Sacker bifurcation,
which is the result of a Floquet multiplier (lying o� the real
line) acquiring modulus greater than unity (see label (D) of

Figures 3(b) and 4(d)). Such a Floquet multiplier indicates
concurrent growth and oscillatory dynamics of perturbations
and thus the instability is deemed as an oscillatory one.
Solutions with an oscillatory instability are marked in green
in Figure 3(b), whereas red dashed lines correspond to purely
real instabilities (see also Figure 4(b) as a case example)
and solid blue lines denote asymptotically stable regions.
�e reason for making the distinction between real and
oscillatory instabilities is that quasi periodicity and chaos
o
en lurk in regimes in parameter space where solutions
possess such instabilities [13]. Indeed, past the above men-
tioned saddle-node bifurcation, as the amplitude is further
increased, for an additional narrow parametric regime, the
computational dynamics (gray circles in Figure 3(c)) follows
the upper nonlinear surfacemode of branch (c); yet, once this
branch becomes unstable the dynamics appears to reach a
chaotic state. In the experimental dynamics (black squares in
Figure 3(c)), a very similar pattern is observed qualitatively,
although the quantitative details appear to di�er some-
what. Admittedly, as more nonlinear regimes of the system’s
dynamics are accessed (as � increases), such disparities are
progressively more likely due to the opening of gaps between
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Figure 5: Same as Figure 3 but for a driving frequency of �� = 3.7718 kHz, which lies in the 	rst spectral gap. (a) Pro	le of solution for
a driving amplitude of � = 0.24816 �m. (b) �e bifurcation diagram for �� = 3.7718 kHz (shown here) is similar to the one presented in
Figure 3(b), which was for a driving frequency in the second gap (�� = 6.3087 kHz). However, the bifurcation points occur for much larger
values of the driving amplitude and the structure of the solutions themselves varies considerably in comparison to the second gap (see text).
(c) Zoomed out version of panel (b). In this case, the jump of the experimental data is likely due to driving out of a controllable range (see
text), rather than to chaos, as in the case of the second gap breathers.

the spheres and the limited applicability (in such regimes)
of the simple Hertzian contact law. See also the discussion
in Section 4.3 for more details on possible explanations for
disagreement in high amplitude regimes.

4.2. Driving in the First Spectral Gap. We now consider a
	xed driving frequency of�� = 3.7718 kHz, which lies within
the 	rst spectral gap. Qualitatively, the breather solutions
and their bifurcation structure are similar to those in the
second gap (compare Figures 3 and 4 with Figures 5 and 6).
However, there are several di�erences, which we highlight
here. For example, the lighter masses now oscillate (nearly)
in-phase, rather that out-of-phase (for comparison, see panels
(a) and (b) in Figure 7). �e emergence of the nonlinear

surface modes occurs for a much larger value of the driving
amplitude (� ≈ 0.1778 �m) as well as the bifurcation
of the state (a) dictated by the actuator with the relevant
branch of the nonlinear surface modes (� ≈ 1.3 �m).
Indeed, the latter turns out to be out-of-range for exper-
imentally controllable driving amplitudes given the stroke
of the piezoelectric actuator and the power by the electric
ampli	er in our experimental setup. �us, applications such
as bifurcation based recti	cation [12] are not suitable for
breather frequencies in the 	rst gap in the present setting.
Although the range of amplitudes yielding stable solutions
is much larger, these solutions are still e�ectively linear (see
the dashed gray line in Figure 5(b)). Another peculiar feature
particular to this case is that the branch (a) loses its stability
through a Neimark-Sacker bifurcation (� ≈ 0.9 �m), rather
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Figure 6: Displacement pro	les and corresponding Floquet multipliers of time-periodic solutions obtained at a driving frequency of �� =
3.7718 kHz for a driving amplitude of (a) � = 50 nm, (b) � = 0.94 �m, (c) � = 1.2 �m, and (d) � = 0.94 �m.�ese solutions correspond to the
(A)–(D) labels of Figure 5(b).�e lighter masses (i.e., the Steel beads) oscillate in-phase and are shown as blue diamonds whereas the heavier
masses (the Tungsten Carbide ones) are shown as orange squares.

than through a saddle-node bifurcation with the nonlinear
surface mode, although it regains stability shortly therea
er
(� ≈ 0.9876 �m). Interestingly, however, the corresponding
experimental branch deviates from the theoretical (near-
linear) branch close to this destabilization point, apparently
leading to large amplitude, chaotic behavior therea
er.

As an additional feature worth mentioning, there are
breathers within the 	rst gap that resonate with the linear
modes. For example, any breather with a frequency �� ∈[3.3550, 3.6850] will have a second harmonic that lies in the
second optical band. Indeed, the breather solution depicted
in Figure 7(c) has a frequency �� = 3.4429, but the tail
oscillates with twice that frequency (i.e., it is resonating with
the linear mode at a frequency of 2��). Finally, we note that
the magnitude of the instabilities tends to be much larger in
the 	rst spectral gap, due possibly to their spatial structure
(see, e.g., Figure 6(d)), in agreement with what was found in
[14].

While a detailed probing of the spatial pro	les and the
corresponding bifurcation structure in the 	rst and second
gap reveal several di�erences, a common theme is that the
experimental data points generally follow rather accurately
the theoretically predicted curve. In particular, the agreement
between experiment and theory is rather satisfactory as long
as the data points are within the stable parametric regions.

�is is clearly depicted in panel (b) of Figures 3 and 5. Note
that the linear asymptotic equilibrium (shown by the dashed
gray line and corresponding to |	� −	�+1|/
0 → 0) becomes
closer to the theoretically predicted curve for small relative
displacements (see, e.g., (5)), a feature that we also use as a
consistency check for the numerics. In both cases (	rst or
second gap) once the amplitude � of the actuator reaches
a critical value (� ≈ 0.32016 �m for the second gap and� ≈ 0.82416 �m for the 	rst gap), the experimental data
experience jumps, seemingly leading to chaotic behavior.
Importantly, these jumps arise close to the destabilization
points of the respective branches. Nevertheless, it should also
be pointed out that, in some of these regimes (especially
so in the case of Figure 5), these driving amplitudes may
be near or beyond the regime of (accurately) controllable
experimentally accessible amplitudes. See the discussion in
Section 4.3 for more details on possible explanations for
disagreement in high amplitude regimes.

4.3. A Full Driving Frequency Continuation. Our previous
considerations suggest that the driving frequency plays an
important role in the observed dynamics of the time-periodic
solutions. Figure 8 complements those results by showing a
frequency continuation for a 	xed driving amplitude � =
0.24816 �m. For this driving amplitude, the response is highly
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Figure 7: (a) Displacement versus time over one period of motion of two adjacent steel masses 	
3
(�) and 	

4
(�) for a solution in the second

spectral gap (with �� = 6.3087 kHz and � = 40 nm). In this case the motion is (nearly) out-of-phase. (b) Same as (a), but for a solution in the
	rst spectral gap (with �� = 3.7718 kHz and � = 50 nm), in which case the motion is in-phase. (c) Velocities versus time for the motion of
steel masses V

2
(�) and V

15
(�) for a solution with frequency �� = 3.4429 kHz and amplitude � = 50 nm. Solid lines correspond to numerical

results while the dash-dotted lines correspond to experimental data (mean of the three runs). Notice that the tail oscillates with twice the
frequency of the primary nodes near the le
 boundary, where 2�� lies in the second optical band.

nonlinear, where the ratio of dynamic to static compression
ranges as high as, for example, |	� − 	�+1|/
0,� = 1.5. In
the low amplitude (i.e., near linear) range, the peaks in the
force response coincide with the eigenfrequency spectrum
presented in Figure 2(a), with all solutions being stable. For
the chosen value of driving amplitude, the features of the
diagram at a low driving frequency are similar to their linear
counterparts (see, e.g., the smooth resonant peaks in the
acoustic band of Figure 8(a)). Similar to Figures 3 and 5,
the experimentally obtained values match the numerically
obtained, dynamically stable response quite well, with a few
notable exceptions: (i) in narrow parametric regions around

�� ≈ 2.35 kHz and �� ≈ 2.7 kHz where the experimental
points experience jumps and (ii) the experimentally observed
velocities for the same frequency are upshi
ed when com-
pared with the theoretical curve (see, e.g., the region �� ≈
1−5.2 kHz in Figure 8(a)where the peaks donot align exactly).
Possible explanations for such discrepancies are given below,
but we also note that discrepancies in experimental and
theoretical dispersion curves of granular crystals have also
been previously discussed; see, for a recent example, [45].

In general, as the driving amplitude is increased, the peaks
in the bifurcation diagram bend (in some cases, they bend
into the gap) in a way reminiscent of the familiar fold-over
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Figure 8: �e bifurcation diagram corresponding to the maximum velocity of bead 4 as a function of the actuation frequency �� and for
a value of the actuation amplitude of � = 0.24816 �m is presented with smooth curves. �e color indexing is the same as in Figures 3 and
5. �e black squares with error bars represent the experimentally measured mean values of the velocities which were obtained using three
experimental runs. Furthermore, the light gray areas enclosed by vertical dash-dotted black lines correspond to the frequency gaps according
to Table 2 (see also Figure 2). Note that panel (b) is a zoom-in of panel (a).

event of driven oscillators; see, for example, [46] for a recent
study extending this to chains. �is, in turn, causes a series
of intricate bifurcations and a loss of stability (see, e.g., the
second gap in Figure 8(a)). In particular, large regions of
oscillatory instabilities are born, and hence, we expect regions
of quasi periodicity and of potentially chaotic response
(see, e.g., Section 4.1). Not surprisingly, the experimentally
observed values depart from the theoretical prediction once
stability is lost. However, the general rising and falling pattern
are captured qualitatively, see Figure 8(b). Nevertheless, it
is worthwhile to note that the latter 	gure contains a very
elaborate set of loops and a highmultiplicity of corresponding
(unstable) periodic orbit families for which no clear physical
intuition is apparent at present. More troubling, however, is
the fact that there are also some stable regions where the
experimental points are o� the theoretical curve. A systematic
study using numerical simulations revealed that, within these
narrow stable regions at hand (see, e.g., Figure 8(b)), a large
number of periods are required in order to converge to the
exact periodic solution. In particular, it happens that the
Floquet multipliers are inside the unit circle, but also very
close to it, suggesting that the experimental time window of
50ms used is not su�ciently long to observe experimentally
the periodic structures predicted theoretically by our model.
�us, the reported experimental observations in this regime
appear to be capturing a transient stage and not the eventual
asymptotic formof the dynamical pro	le. A	nal comment on
the possible discrepancy between themodel and experiments
is due to the fact that in this highly nonlinear regime (of
large driving amplitudes), the beads come out of contact (the
dynamic force exceeds the static force), in which case other
dynamic e�ects, such as particles’ rotations, could have a
signi	cant role. Such features are not described in our simple
model (1). In fact, the contact points of the particles cannot be
perfectly aligned in experiments due to the clearance between
the beads and the support rods. �is is likely to result in

dynamic buckling of the chain under the strong excitations,
which are considered in some of the cases above. Here also,
it is plausible that additional forms of dissipation a�ect the
particle motions, leading the experimental 	ndings (in such
settings) to underpredict the velocities observed in direct
numerical simulations. Nonetheless, the overall experimental
trends of bifurcation in Figure 8(a) are in fair qualitative
agreement with the theoretical predictions.

5. Conclusions and Future Challenges

We have presented a natural extension of earlier consid-
erations of (i) Hamiltonian breathers in trimer chains and
(ii) surface breathers in damped-driven dimers, by study-
ing a damped-driven trimer granular crystal through a
combination of experimental and theoretical/computational
approaches. We found that the breathers with frequency
in the second gap are in analogy with those in the sole
gap of the damped-driven dimer, in which the interplay
of damped-driven dynamics with nonlinearity and spatial
discreteness gives rise to saddle-node bifurcations of time-
periodic solutions and turning points beyond which there
is no stable ordered dynamics as well as surface modes and
generally rather complex and tortuous bifurcation diagrams.
While similar structures are found in the 	rst gap, they appear
to be less robust (given the magnitude of their instabilities)
and can resonate with the higher-order linear bands, a
feature interesting in its own right. A continuation in driving
frequency revealed that the nonlinearity causes the resonant
peaks to bend, possibility into a spectral gap. However, this
nonlinear bending also causes the solutions to lose stability
in various ways, such as Neimark-Sacker and saddle-node
bifurcations. More importantly, all of these features were
validated experimentally through laser Doppler vibrometry,
allowing, for the 	rst time to our knowledge, the full-	eld
visualization of surface breathers in granular crystals.
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Several interesting questions remain unexplored, includ-
ing, for example, the mechanism leading to the emergence
of the observed chaotic dynamics and the more accurate
quantitative description of that regime.We also observed that
the bifurcation structure is generally more complex in the
case of breathers that are resonant with the linear modes,
which bears further probing. Other possible avenues for
future research include the investigation of dark breathers
in such chains. Recall that, as in [15], dark breathers may
bifurcate from the top edge of the acoustic, 	rst, or second
optical band, under suitable drive. Lastly, it would be quite
interesting to generalize considerations of breathers and
surface modes in two-dimensional hexagonal lattices with
both homogeneous and heterogeneous compositions. Such
studies are currently under consideration andwill be reported
in future publications.

Appendix

Numerical Methods and Linear Stability

In this Appendix we shortly discuss the numerical methods
employed for 	nding exact time-periodic solutions of (1)
together with the parametric continuation techniques for
identifying families of such solutions as either the value of
the actuation frequency �� (or, equivalently, the period O� =
1/��) or amplitude � changes. �e interested reader can 	nd
more information along these directions, for example, in
[47, 48] (among others) and references therein.

In order to 	nd time-periodic solutions of (1), we convert
the latter into a system of 	rst order ODEswritten in compact
form

ẋ = F (�, u, k) , (A.1)

with x = (u, k)�, while u = (	1, . . . , 	�)� and k = u̇
represent the �-dimensional position and velocity vectors,

respectively. Next, we de	ne the Poincaré map: P(x(0)) =
x(0) − x(O�) where x(0) is the initial condition and x(O�) is
the result of integrating (A.1) forward in time until � = O�
(using, e.g., the DOP853 [49] or ODE [50] time integrators).
�en, a periodic solution with period O� (i.e., satisfying the
property x(0) = x(O�)) will be a root of the map P. To this
end, Newton’smethod is applied to themapP and thus yields
the following numerical iteration scheme

x
(0,
+1) = x

(0,
) − [J]−1
x(0,�)P (x(0,
)) , (A.2)

together with the Jacobian of the map P, namely, J = I −P(O�)where I is the 2�×2� identitymatrix;P is the solution
to the variational problem: Ṗ = (QxF)P with initial dataP(0) = I, whileQxF is the Jacobian of the equations ofmotion

(A.1) evaluated at the point x(0,
).
Subsequently, the iteration scheme (A.2) is fed by a suit-

able initial guess (for 	xed values of the actuation amplitude� and frequency ��) and applied until a user-prescribed
tolerance criterion is satis	ed.�us, a time-periodic solution
is obtained upon successful convergence (andwith high accu-
racy) together with the eigenvalues or Floquet multipliers

(denoted by 6) of themonodromymatrixP(O�)which convey
important information about the stability of the solution
in question. In particular, a periodic solution is deemed
asymptotically stable (or a stable limit cycle) if there are no
Floquet multipliers outside the unit circle whereas a periodic
solution with Floquet multipliers lying outside the unit circle
is deemed to be linearly unstable. Note that the iteration
scheme (A.2) can be initialized using the linear asymptotic
equilibrium given by (17). Alternatively, one may start with
zero initial data and directly integrate the equations ofmotion
(A.1) forward in time. �en, (A.2) can be initialized with the
output waveform of the time integrator at a particular time.

Having obtained an exact periodic solution to (1) for given
values of � and��, we perform parametric continuations over
these parameters using the computer so
ware AUTO [51],
which employs a pseudo-arclength continuation and thus
enables the computation of branches past turning points.�is
way, we are able to trace entire families of periodic solutions
and study their corresponding stability characteristics in
terms of the Floquet multipliers.
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