Time-Periodic Solutions of the Einstein's Field Equations II

De-Xing Kong ${ }^{1}$, Kefeng Liu ${ }^{2,3}$ and Ming Shen ${ }^{2}$
${ }^{1}$ Department of Mathematics, Zhejiang University, Hangzhou 310027, China
${ }^{2}$ Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China
${ }^{3}$ Department of Mathematics, University of California at Los Angeles, CA 90095, USA

(Dated: July 30, 2008)

Abstract

In this paper, we construct several kinds of new time-periodic solutions of the vacuum Einstein's field equations whose Riemann curvature tensors vanish, keep finite or take the infinity at some points in these space-times, respectively. The singularities of these new time-periodic solutions are investigated and some new physical phenomena are found. The applications of these solutions in modern cosmology and general relativity can be expected.

PACS numbers: 04.20.Jb; 04.20.Dw; 98.80.Jk; 02.30.Jr

1. Introduction. The Einstein's field equations are the fundamental equations in general relativity and play an essential role in cosmology. This paper concerns the timeperiodic solutions of the following vacuum Einstein's field equations

$$
\begin{equation*}
G_{\mu \nu} \triangleq R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0 \tag{1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
R_{\mu \nu}=0 \tag{2}
\end{equation*}
$$

where $g_{\mu \nu}(\mu, \nu=0,1,2,3)$ is the unknown Lorentzian metric, $R_{\mu \nu}$ is the Ricci curvature tensor, R is the scalar curvature and $G_{\mu \nu}$ is the Einstein tensor.

It is well known that the exact solutions of the Einstein's field equations play a crucial role in general relativity and cosmology. Typical examples are the Schwarzschild solution and Kerr solution. Although many interesting and important solutions have been obtained (see, e.g., [1] and [5]), there are still many fundamental open problems. One such problem is if there exists a "time-periodic" solution, which contains physical singularities such as black hole, to the Einstein's field equations. This paper continues the discussion of this problem.

The first time-periodic solution of the vacuum Einstein's field equations was constructed by the first two authors in [3]. The solution presented in [3] is timeperiodic, and describes a regular space-time, which has
vanishing Riemann curvature tensor but is inhomogenous, anisotropic and not asymptotically flat. In particular, this space-time does not contain any essential singularity, but contains some non-essential singularities which correspond to steady event horizons, time-periodic event horizon and has some interesting new physical phenomena.

In this paper, we focus on finding the time-periodic solutions, which contain physical singularities such as black hole to the vacuum Einstein's field equations (1). We shall construct three kinds of new time-periodic solutions of the vacuum Einstein's field equations (1) whose Riemann curvature tensors vanish, keep finite or go to the infinity at some points in these space-times respectively. The singularities of these new time-periodic solutions are investigated and new physical phenomena are found. Moreover, the applications of these solutions in modern cosmology and general relativity may be expected. In the forthcoming paper [4], we shall construct a time-periodic solution of the Einstein's field equations with black hole, which describes the time-periodic cosmology with many new and interesting physical phenomena.

2. Procedure of finding new solutions.

We consider the metric of the following form

$$
\left(g_{\mu \nu}\right)=\left(\begin{array}{llll}
u & v & p & 0 \tag{3}\\
v & 0 & 0 & 0 \\
p & 0 & f & 0 \\
0 & 0 & 0 & h
\end{array}\right)
$$

where u, v, p, f and h are smooth functions of the coordinates (t, x, y, z). It is easy to verify that the determinant of $\left(g_{\mu \nu}\right)$ is given by

$$
\begin{equation*}
g \triangleq \operatorname{det}\left(g_{\mu \nu}\right)=-v^{2} f h \tag{4}
\end{equation*}
$$

Throughout this paper, we assume that

$$
\begin{equation*}
g<0 \tag{H}
\end{equation*}
$$

Without loss of generality, we may suppose that f and g keep the same sign, for example,

$$
\begin{equation*}
f<0(\text { resp. } f>0) \quad \text { and } \quad h<0(\text { resp. } g>0) . \tag{5}
\end{equation*}
$$

In what follows, we solve the Einstein's field equations (2) under the framework of the Lorentzian metric of the form (3).

By a direct calculation, we have the Ricci tensor

$$
\begin{align*}
R_{11}= & -\frac{1}{2}\left\{\frac{v_{x}}{v}\left(\frac{f_{x}}{f}+\frac{h_{x}}{h}\right)+\right. \\
& \left.\frac{1}{2}\left[\left(\frac{f_{x}}{f}\right)^{2}+\left(\frac{h_{x}}{h}\right)^{2}\right]-\left(\frac{f_{x x}}{f}+\frac{h_{x x}}{h}\right)\right\} . \tag{6}
\end{align*}
$$

It follows from (2) that

$$
\begin{equation*}
\frac{v_{x}}{v}\left(\frac{f_{x}}{f}+\frac{h_{x}}{h}\right)+\frac{1}{2}\left[\left(\frac{f_{x}}{f}\right)^{2}+\left(\frac{h_{x}}{h}\right)^{2}\right]-\left(\frac{f_{x x}}{f}+\frac{h_{x x}}{h}\right)=0 . \tag{7}
\end{equation*}
$$

This is an ordinary differential equation of first order on the unknown function v. Solving (7) gives

$$
\begin{equation*}
v=V(t, y, z) \exp \left\{\int \Theta(t, x, y, z) d x\right\} \tag{8}
\end{equation*}
$$

where

$$
\Theta=\left[\frac{f_{x x}}{f}+\frac{h_{x x}}{h}-\frac{1}{2}\left(\frac{f_{x}}{f}\right)^{2}-\frac{1}{2}\left(\frac{h_{x}}{h}\right)^{2}\right] \frac{f h}{(f h)_{x}}
$$

and $V=V(t, y, z)$ is an integral function depending on t, y and z. Here we assume that

$$
\begin{equation*}
(f h)_{x} \neq 0 . \tag{9}
\end{equation*}
$$

In particular, taking the ansatz

$$
\begin{equation*}
f=-K(t, x)^{2}, \quad h=N(t, y, z) K(t, x)^{2} \tag{10}
\end{equation*}
$$

and substituting it into (8) yields

$$
\begin{equation*}
v=V K_{x} \tag{11}
\end{equation*}
$$

By the assumptions (H) and (9), we have

$$
\begin{equation*}
V \neq 0, \quad K \neq 0, \quad K_{x} \neq 0 \tag{12}
\end{equation*}
$$

Noting (10) and (11), by a direct calculation we obtain

$$
\begin{equation*}
R_{13}=-\frac{V_{z} K_{x}}{K V} \tag{13}
\end{equation*}
$$

It follows from (2) that

$$
R_{13}=0
$$

Combining (12) and (13) gives

$$
\begin{equation*}
V_{z}=0 \tag{14}
\end{equation*}
$$

This implies that the function V depends only on t, y but is independent of x and z. Noting (10)-(11) and using (14), we calculate

$$
\begin{equation*}
R_{12}=-\frac{1}{2 V}\left(\frac{p_{x x}}{K_{x}}-\frac{K_{x x} p_{x}}{K_{x}^{2}}-\frac{2 p K_{x}}{K^{2}}+\frac{2 K_{x} V_{y}}{K}\right) . \tag{15}
\end{equation*}
$$

Solving p from the equation $R_{12}=0$ yields

$$
\begin{equation*}
p=A K^{2}+V_{y} K+\frac{B}{K}, \tag{16}
\end{equation*}
$$

where A and B are integral functions depending on t, y and z. Noting (10)-(11) and using (14) and (16), we observe that the equation $R_{23}=0$ is equivalent to

$$
\begin{equation*}
B_{z}-2 K^{3} A_{z}=0 \tag{17}
\end{equation*}
$$

Since K is a function depending only on t, x, and A, B are functions depending on t, y and z, we can obtain that

$$
\begin{equation*}
B=2 K^{3} A+C(t, x, y) \tag{18}
\end{equation*}
$$

where C is an integral function depending on t, x and y. For simplicity, we take

$$
\begin{equation*}
A=B=C=0 \tag{19}
\end{equation*}
$$

Thus, (16) simplifies to

$$
\begin{equation*}
p=V_{y} K \tag{20}
\end{equation*}
$$

From now on, we assume that the function N only depends on y, that is to say,

$$
\begin{equation*}
N=N(y) \tag{21}
\end{equation*}
$$

Substituting (10)-(11), (14) and (20)-(21) into the equation $R_{02}=0$ yields

$$
\begin{equation*}
u_{x} V_{y}+V\left(u_{y x}-4 V_{y} K_{x t}\right)=0 \tag{22}
\end{equation*}
$$

Solving u from the equation (22) leads to

$$
\begin{equation*}
u=2 K_{t} V . \tag{23}
\end{equation*}
$$

Noting (10)-(11), (14), (20)-(21) and (23), by a direct calculation we obtain

$$
\begin{gather*}
R_{03}=0 \tag{24}\\
\left\{\begin{array}{c}
R_{22}=\left(4 N^{2} V^{2}\right)^{-1}\left[2 N V^{2} N_{y y}-4 N^{2} V V_{y y}\right. \\
\left.+4 N^{2} V_{y}^{2}-2 N V N_{y} V_{y}-V^{2} N_{y}^{2}\right] \\
R_{33}=-\left(4 N V^{2}\right)^{-1}\left[2 N V^{2} N_{y y}-4 N^{2} V V_{y y}\right. \\
\left.+4 N^{2} V_{y}^{2}-2 N V N_{y} V_{y}-V^{2} N_{y}^{2}\right]
\end{array}\right. \tag{25}
\end{gather*}
$$

and

$$
\begin{gather*}
R_{00}=\left(2 K N V^{2}\right)^{-1}\left[4 N V_{t} V_{y}^{2}+2 N V^{2} V_{t y y}-2 N V V_{t} V_{y y}\right. \\
\left.-4 N V V_{y} V_{t y}-V N_{y} V_{t} V_{y}+V^{2} N_{y} V_{t y}\right] . \tag{26}
\end{gather*}
$$

Therefore, under the assumptions mentioned above, the Einstein's field equations (2) are reduced to

$$
\begin{equation*}
-\frac{N_{y y}}{N}+\frac{1}{2}\left(\frac{N_{y}}{N}\right)^{2}+2 \frac{V_{y y}}{V}+\frac{N_{y} V_{y}}{N V}-2\left(\frac{V_{y}}{V}\right)^{2}=0 \tag{27}
\end{equation*}
$$

and

$$
\begin{align*}
4 V_{y}^{2} V_{t}+2 V^{2} V_{y y t} & -2 V V_{y y} V_{t}-4 V V_{y} V_{y t} \\
& -\frac{V V_{y} V_{t} N_{y}}{N}+\frac{V^{2} V_{y t} N_{y}}{N}=0 . \tag{28}
\end{align*}
$$

On the other hand, (27) can be rewritten as

$$
\begin{equation*}
2\left(\frac{V_{y}}{V}\right)_{y}+\frac{V_{y} N_{y}}{V N}-\left(\frac{N_{y}}{N}\right)_{y}-\frac{1}{2}\left(\frac{N_{y}}{N}\right)^{2}=0 \tag{29}
\end{equation*}
$$

and (28) is equivalent to

$$
\begin{equation*}
2\left(\frac{V_{y}}{V}\right)_{y t}+\left(\frac{V_{y}}{V}\right)_{t} \frac{N_{y}}{N}=0 \tag{30}
\end{equation*}
$$

Noting (21) and differentiating (29) with respect to t gives (30) directly. This shows that (29) implies (30). Hence in the present situation, the Einstein's field equations (2) are essentially (29). Solving V from the equation (29) yields

$$
\begin{equation*}
V=w(t)|N(y)|^{1 / 2} \exp \left\{q(t) \int|N(y)|^{-1 / 2} d y\right\} \tag{31}
\end{equation*}
$$

where $w=w(t)$ and $q=q(t)$ are two integral functions only depending on t. Thus, we can obtain the following solution of the vacuum Einstein's field equations in the coordinates (t, x, y, z)

$$
\begin{equation*}
d s^{2}=(d t, d x, d y, d z)\left(g_{\mu \nu}\right)(d t, d x, d y, d z)^{T} \tag{32}
\end{equation*}
$$

where

$$
\left(g_{\mu \nu}\right)=\left(\begin{array}{cccc}
2 K_{t} V & K_{x} V & K V_{y} & 0 \tag{33}\\
K_{x} V & 0 & 0 & 0 \\
K V_{y} & 0 & -K^{2} & 0 \\
0 & 0 & 0 & N K^{2}
\end{array}\right)
$$

in which $N=N(y)$ is an arbitrary function of $y, K=$ $K(t, x)$ is an arbitrary function of t, x, and V is given by (31).

By calculations, the Riemann curvature tensor reads

$$
\begin{equation*}
R_{\alpha \beta \mu \nu}=0, \quad \forall \alpha \beta \mu \nu \neq 0202 \text { or } 0303, \tag{34}
\end{equation*}
$$

while

$$
\begin{equation*}
R_{0202}=K w q q^{\prime}|N|^{-1 / 2} \exp \left\{q \int|N|^{-1 / 2} d y\right\} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0303}=K w q q^{\prime}|N|^{1 / 2} \exp \left\{q \int|N|^{-1 / 2} d y\right\} \tag{36}
\end{equation*}
$$

3. Time-periodic solutions. This section is devoted to constructing some new time-periodic solutions of the vacuum Einstein's field equations.
3.1 Regular time-periodic space-times with vanishing Riemann curvature tensor. Take $q=$ constant and let $V=\rho(t) \kappa(y)$, where κ is defined by

$$
\begin{equation*}
\kappa(y)=c_{1} \sqrt{|N|} \exp \left\{c_{2} \int|N|^{-1 / 2} d y\right\} \tag{37}
\end{equation*}
$$

in which c_{1} and c_{2} are two integrable constants. In this case, the solution to the vacuum Einstein's filed equations in the coordinates (t, x, y, z) reads

$$
\begin{equation*}
d s^{2}=(d t, d x, d y, d z)\left(g_{\mu \nu}\right)(d t, d x, d y, d z)^{T} \tag{38}
\end{equation*}
$$

where

$$
\left(g_{\mu \nu}\right)=\left(\begin{array}{cccc}
2 \rho \kappa \partial_{t} K & \rho \kappa \partial_{x} K & \rho K \partial_{y} \kappa & 0 \tag{39}\\
\rho \kappa \partial_{x} K & 0 & 0 & 0 \\
\rho K \partial_{y} \kappa & 0 & -K^{2} & 0 \\
0 & 0 & 0 & N K^{2}
\end{array}\right)
$$

Theorem 1 The vacuum Einstein's filed equations (2) have a solution described by (38) and (39), and the Riemann curvature tensor of this solution vanishes.

As an example, let

$$
\left\{\begin{array}{l}
w(t)=\cos t \tag{40}\\
q(t)=0 \\
K(t, x)=e^{x} \sin t \\
N(y)=-(2+\sin y)^{2}
\end{array}\right.
$$

In the present situation, we obtain the following solution of the vacuum Einstein's filed equations (2)

$$
\left(\eta_{\mu \nu}\right)=\left(\begin{array}{cccc}
\eta_{00} & \eta_{01} & \eta_{02} & 0 \tag{41}\\
\eta_{01} & 0 & 0 & 0 \\
\eta_{02} & 0 & \eta_{22} & 0 \\
0 & 0 & 0 & \eta_{33}
\end{array}\right)
$$

where

$$
\left\{\begin{align*}
\eta_{00} & =2 e^{x}(2+\sin y) \cos ^{2} t \tag{42}\\
\eta_{01} & =\frac{1}{2} e^{x}(2+\sin y) \sin (2 t) \\
\eta_{02} & =\frac{1}{2} e^{x} \cos y \sin (2 t) \\
\eta_{22} & =-\left[e^{x} \sin t\right]^{2} \\
\eta_{33} & =-\left[e^{x}(2+\sin y) \sin t\right]^{2}
\end{align*}\right.
$$

By (4),

$$
\begin{equation*}
\eta \triangleq \operatorname{det}\left(\eta_{\mu \nu}\right)=-\frac{1}{4} e^{6 x}(2+\sin y)^{4} \sin ^{4} t \sin ^{2}(2 t) \tag{43}
\end{equation*}
$$

Property 1 The solution (41) of the vacuum Einstein's filed equations (2) is time-periodic.

Proof. In fact, the first equality in (42) implies that $\eta_{00}>0 \quad$ for $t \neq k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x \neq-\infty$.

On the other hand, by direct calculations,

$$
\begin{aligned}
& \left|\begin{array}{cc}
\eta_{00} & \eta_{01} \\
\eta_{01} & 0
\end{array}\right|=-\frac{1}{4} e^{2 x}(2+\sin y)^{2} \sin ^{2}(2 t)<0 \\
& \quad\left|\begin{array}{ccc}
\eta_{00} & \eta_{01} & \eta_{02} \\
\eta_{01} & 0 & 0 \\
\eta_{02} & 0 & \eta_{22}
\end{array}\right|=-\eta_{01}^{2} \eta_{22}>0
\end{aligned}
$$

and

$$
\left|\begin{array}{cccc}
\eta_{00} & \eta_{01} & \eta_{02} & 0 \\
\eta_{01} & 0 & 0 & 0 \\
\eta_{02} & 0 & \eta_{22} & 0 \\
0 & 0 & 0 & \eta_{33}
\end{array}\right|=-\eta_{01}^{2} \eta_{22} \eta_{33}<0
$$

for $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x \neq-\infty$.
In Property 3 below, we will show that $t=k \pi, k \pi+$ $\pi / 2 \quad(k \in \mathbb{N})$ are the singularities of the space-time described by (41), but they are not essential (or say, physical) singularities, these non-essential singularities correspond to the event horizons of the space-time described by (41) with (42); while, when $x=-\infty$, the space-time (41) degenerates to a point.

The above discussion implies that the variable t is a time coordinate. Therefore, it follows from (42) that the Lorentzian metric

$$
\begin{equation*}
d s^{2}=(d t, d x, d y, d z)\left(\eta_{\mu \nu}\right)(d t, d x, d y, d z)^{T} \tag{44}
\end{equation*}
$$

is indeed a time-periodic solution of the vacuum Einstein's field equations (2), where $\left(\eta_{\mu \nu}\right)$ is given by (41). This proves Property 1.

Noting (34)-(36) and the second equality in (40) gives Property 2 The Lorentzian metric (44) (in which $\left(\eta_{\mu \nu}\right)$ is given by (41) and (42)) describes a regular space-time, this space-time is Riemannian flat, that is to say, its Riemann curvature tensor vanishes.
Remark 1 The first time-periodic solution to the Einstein's field equations was constructed by Kong and Liu [3]. The time-periodic solution presented in [3] also has the vanishing Riemann curvature tensor.

It follows from (43) that the hypersurfaces $t=k \pi$, $k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x= \pm \infty$ are singularities of the
space-time (44) (in which $\left(\eta_{\mu \nu}\right)$ is given by (41) and (42)), however, by Property 2, these singularities are not physical (or say, not essential). According to the definition of event horizon (see e.g., Wald [6]), it is easy to show that the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x=+\infty$ are the event horizons of the space-time (44) (in which $\left(\eta_{\mu \nu}\right)$ is given by (41) and (42)). Therefore, we have

Property 3 The Lorentzian metric (44) (in which $\left(\eta_{\mu \nu}\right)$ is given by (41) and (42)) does not contain any essential singularity. These non-essential singularities consist of the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x=$ $\pm \infty$. The singularities $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x=+\infty$ correspond to the event horizons, while, when $x=-\infty$, the space-time (44) degenerates to a point.

We now investigate the physical behavior of the spacetime (44).

Fixing y and z, we get the induced metric

$$
\begin{equation*}
d s^{2}=\eta_{00} d t^{2}+2 \eta_{01} d t d x \tag{45}
\end{equation*}
$$

Consider the null curves in the (t, x)-plan, which are defined by

$$
\begin{equation*}
\eta_{00} d t^{2}+2 \eta_{01} d t d x=0 \tag{46}
\end{equation*}
$$

Noting (42) gives

$$
\begin{equation*}
d t=0 \quad \text { and } \quad \frac{d t}{d x}=-\tan t \tag{47}
\end{equation*}
$$

Thus, the null curves and light-cones are shown in Figure 1.

FIG. 1: Null curves and light-cones in the domains $0<t<$ $\pi / 2$ and $\pi / 2<t<\pi$.

We next study the geometric behavior of the t-slices.
For any fixed $t \in \mathbb{R}$, it follows from (44) that the induced metric of the t-slice reads

$$
\begin{align*}
d s^{2} & =\eta_{22} d y^{2}+\eta_{33} d z^{2} \\
& =-e^{2 x} \sin ^{2} t\left[d y^{2}+(2+\sin y)^{2} d z^{2}\right] . \tag{48}
\end{align*}
$$

When $t=k \pi(k \in \mathbb{N})$, the metric (48) becomes

$$
d s^{2}=0
$$

This implies that the t-slice reduces to a point. On the other hand, in the present situation, the metric (44) becomes

$$
d s^{2}=2 e^{x}(2+\sin y) d t^{2}
$$

When $t \neq k \pi(k \in \mathbb{N})$, (48) shows that the t-slice is a three-dimensional cone-like manifold centered at $x=$ $-\infty$.
3.2 Regular time-periodic space-times with nonvanishing Riemann curvature tensor. We next construct the regular time-periodic space-times with non-vanishing Riemann curvature tensor.

To do so, let

$$
\left\{\begin{array}{l}
w(t)=\cos t \tag{49}\\
q(t)=\sin t \\
K(x, t)=e^{x} \sin t \\
N=-\frac{1}{(2+\sin y)^{2}}
\end{array}\right.
$$

Then, by (31),

$$
V=\frac{\cos t \exp \{(2 y-\cos y) \sin t\}}{2+\sin y}
$$

Thus, in the present situation, we have the following solution of the vacuum Einstein's field equations (2)

$$
\widetilde{\eta}_{\mu \nu}=\left(\begin{array}{cccc}
\widetilde{\eta}_{00} & \widetilde{\eta}_{01} & \widetilde{\eta}_{02} & 0 \tag{50}\\
\widetilde{\eta}_{01} & 0 & 0 & 0 \\
\widetilde{\eta}_{02} & 0 & \widetilde{\eta}_{22} & 0 \\
0 & 0 & 0 & \widetilde{\eta}_{33}
\end{array}\right)
$$

where

$$
\left\{\begin{align*}
\widetilde{\eta}_{00}= & \frac{2 e^{x} \cos ^{2} t \exp \{(2 y-\cos y) \sin t\}}{2+\sin y} \\
\widetilde{\eta}_{01}= & \frac{e^{x} \sin (2 t) \exp \{(2 y-\cos y) \sin t\}}{2(2+\sin y)} \tag{51}\\
\widetilde{\eta}_{02}= & e^{x}\left\{\sin t \cos t-\frac{\cos t \cos y}{(2+\sin y)^{2}}\right\} \sin t \\
& \times \exp \{(2 y-\cos y) \sin t\} \\
\widetilde{\eta}_{22}= & -e^{2 x} \sin ^{2} t \\
\widetilde{\eta}_{33}= & -\frac{e^{2 x} \sin ^{2} t}{(2+\sin y)^{2}}
\end{align*}\right.
$$

By (4),

$$
\begin{align*}
\widetilde{\eta} & \triangleq \operatorname{det}\left(\widetilde{\eta}_{\mu \nu}\right)=-\left(\widetilde{\eta}_{01}\right)^{2} \widetilde{\eta}_{22} \widetilde{\eta}_{33} \\
& =-\frac{e^{6 x+2(2 y-\cos y) \sin t} \sin ^{2}(2 t) \sin ^{4} t}{4(2+\sin y)^{4}} \tag{52}
\end{align*}
$$

Introduce

$$
\triangle(t, x, y)=6 x+2(2 y-\cos y) \sin t
$$

Thus, it follows from (52) that

$$
\begin{equation*}
\widetilde{\eta}<0 \tag{53}
\end{equation*}
$$

for $t \neq k \pi, k \pi+\pi / 2(k \in \mathbb{N})$ and $\triangle \neq-\infty$. It is obvious that the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $\triangle= \pm \infty$ are the singularities of the space-time described
by (50) with (51). As in Subsection 3.1, we can prove that the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ are not essential (or say, physical) singularities, these nonessential singularities correspond to the event horizons of the space-time described by (50) with (51).

Similar to Property 1, we have
Property 4 The solution (50) (in which ($\widetilde{\eta}_{\mu \nu}$) is given by (51)) of the vacuum Einstein's filed equations (2) is time-periodic.

Similar to Property 2, we have
Property 5 The Lorentzian metric (50) (in which ($\widetilde{\eta}_{\mu \nu}$) is given by (51)) describes a regular space-time, this space-time has a non-vanishing Riemann curvature tensor.

Proof. In the present situation, by (34)

$$
\begin{equation*}
R_{\alpha \beta \mu \nu}=0, \quad \forall \alpha \beta \mu \nu \neq 0202 \text { or } 0303, \tag{54}
\end{equation*}
$$

while

$$
\begin{align*}
R_{0202}= & e^{x}(2+\sin y) \cos ^{2} t \sin ^{2} t \tag{55}\\
& \times \exp \{(2 y-\cos y) \sin t\}
\end{align*}
$$

and

$$
\begin{equation*}
R_{0303}=\frac{e^{x} \cos ^{2} t \sin ^{2} t \exp \{(2 y-\cos y) \sin t\}}{2+\sin y} \tag{56}
\end{equation*}
$$

Property 5 follows from (54)-(56) directly. Thus the proof is completed.

In particular, when $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$, it follows from (55) and (56) that

$$
\begin{equation*}
R_{0202}, R_{0303} \longrightarrow \infty \text { as } x+(2 y-\cos y) \sin t \rightarrow \infty \tag{57}
\end{equation*}
$$

However, a direct calculation gives

$$
\begin{equation*}
\mathbf{R} \triangleq R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta} \equiv 0 \tag{58}
\end{equation*}
$$

Thus, we obtain
Property 6 The Lorentzian metric (50) (in which $\left(\widetilde{\eta}_{\mu \nu}\right)$ is given by (51)) does not contain any essential singularity. These non-essential singularities consist of the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $\triangle= \pm \infty$, in
which the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ are the event horizons. Moreover, the Riemann curvature tensor satisfies the properties (57) and (58).

We next analyze the singularity behavior of $\triangle= \pm \infty$.
Case 1: Fixing $y \in \mathbb{R}$, we observe that

$$
\triangle \rightarrow \pm \infty \Longleftrightarrow x \rightarrow \pm \infty
$$

This situation is similar to the case $x \rightarrow \pm \infty$ discussed in Subsection 3.1. That is to say, $x=+\infty$ corresponds to the event horizon, while, when $x \rightarrow-\infty$, the space-time (50) with (51) degenerates to a point.

Case 2: Fixing $x \in \mathbb{R}$, we observe that

$$
\triangle \rightarrow \pm \infty \Longleftrightarrow y \rightarrow \pm \infty
$$

In the present situation, it holds that

$$
t \neq k \pi(k \in \mathbb{N})
$$

Without loss of generality, we may assume that

$$
\sin t>0
$$

For the case that $\sin t<0$, we have a similar discussion. Thus, noting (57), we have

$$
R_{0202}, R_{0303} \longrightarrow \infty \quad \text { as } y \rightarrow \infty
$$

Moreover, by the definition of the event horizon we can show that $y=+\infty$ is not a event horizon. On the other hand, when $y \rightarrow-\infty$, the space-time (50) with (51) degenerates to a point.
Case 3: For the situation that $x \rightarrow \pm \infty$ and $y \rightarrow \pm \infty$ simultaneously, we have a similar discussion, here we omit the details.

For the space-time (50) with (51), the null curves and light-cones are shown just as in Figure 1. On the other hand, for any fixed $t \in \mathbb{R}$, the induced metric of the t-slice reads

$$
\begin{align*}
d s^{2} & =\widetilde{\eta}_{22} d y^{2}+\widetilde{\eta}_{33} d z^{2} \\
& =-e^{2 x} \sin ^{2} t\left[d y^{2}+(2+\sin y)^{-2} d z^{2}\right] \tag{59}
\end{align*}
$$

Obviously, in the present situation, the t-slice possesses similar properties shown in the last paragraph in Subsection 3.1.

In particular, if we take (t, x, y, z) as the spherical coordinates (t, r, θ, φ) with $t \in \mathbb{R}, r \in[0, \infty), \theta \in[0,2 \pi), \varphi \in$ $[-\pi / 2, \pi / 2]$, then the metric (50) with (51) describes a regular time-periodic space-time with non-vanishing Riemann curvature tensor. This space-time does not contain any essential singularity, these non-essential singularities consist of the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ which are the event horizons. The Riemann curvature tensor satisfies (58) and

$$
R_{0202}, R_{0303} \longrightarrow \infty \quad \text { as } r \rightarrow \infty .
$$

Moreover, when $t \neq k \pi(k \in \mathbb{N})$, the t-slice is a three dimensional bugle-like manifold with the base at $x=0$; while, when $t=k \pi(k \in \mathbb{N})$, the t-slice reduces to a point.
3.3 Time-periodic space-times with physical singularities. This subsection is devoted to constructing the timeperiodic space-times with physical singularities.

To do so, let

$$
\left\{\begin{array}{l}
w(t)=\cos t \tag{60}\\
q(t)=\sin t \\
K(x, t)=\frac{\sin t}{x^{2}} \\
N=-\frac{1}{(2+\cos y)^{2}}
\end{array}\right.
$$

Then, by (31) we have

$$
V=\frac{\cos t \exp \{(2 y+\sin y) \sin t)\}}{2+\cos y}
$$

Thus, in the present situation, the solution of the vacuum Einstein's field equations (2) in the coordinates (t, x, y, z) reads

$$
\begin{equation*}
d s^{2}=(d t, d x, d y, d z)\left(\hat{\eta}_{\mu \nu}\right)(d t, d x, d y, d z)^{T} \tag{61}
\end{equation*}
$$

where

$$
\left(\hat{\eta}_{\mu \nu}\right)=\left(\begin{array}{cccc}
\hat{\eta}_{00} & \hat{\eta}_{01} & \hat{\eta}_{02} & 0 \tag{62}\\
\hat{\eta}_{01} & 0 & 0 & 0 \\
\hat{\eta}_{02} & 0 & \hat{\eta}_{22} & 0 \\
0 & 0 & 0 & \hat{\eta}_{33}
\end{array}\right)
$$

in which

$$
\left\{\begin{align*}
\hat{\eta}_{00}= & \frac{2 \cos ^{2} t \exp \{(\sin y+2 y) \sin t\}}{(2+\cos y) x^{2}} \tag{63}\\
\hat{\eta}_{01}= & -\frac{\sin (2 t) \exp \{(\sin y+2 y) \sin t\}}{(2+\cos y) x^{3}} \\
\hat{\eta}_{02}= & \frac{\sin t}{x^{2}\left\{\frac{\cos t \sin y}{(2+\cos y)^{2}}+\frac{\sin (2 t)}{2}\right\} \times} \\
& \exp \{(\sin y+2 y) \sin t\} \\
\hat{\eta}_{22}= & -\frac{\sin ^{2} t}{x^{4}} \\
\hat{\eta}_{33}= & -\frac{\sin ^{2} t}{(2+\cos y)^{2} x^{4}} .
\end{align*}\right.
$$

By (4), we have

$$
\begin{align*}
\hat{\eta} & \triangleq \operatorname{det}\left(\hat{\eta}_{\mu \nu}\right)=-\left(\hat{\eta}_{01}\right)^{2} \hat{\eta}_{22} \hat{\eta}_{33} \\
& =-\frac{e^{2(2 y+\sin y) \sin t} \sin ^{2}(2 t) \sin ^{4} t}{x^{14}(2+\cos y)^{4}} . \tag{64}
\end{align*}
$$

It follows from (63) that

$$
\begin{equation*}
\hat{\eta}<0 \tag{65}
\end{equation*}
$$

for $t \neq k \pi, k \pi+\pi / 2(k \in \mathbb{N})$ and $x \neq 0$. Obviously, the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x=0$ are the singularities of the space-time described by (61) with (62)-(63). As before, we can prove that the hypersurfaces $t=k \pi, k \pi+\pi / 2(k \in \mathbb{N})$ are not essential (or, say, physical) singularities, and these non-essential singularities correspond to the event horizons of the space-time described by (61) with (62)-(63), however $x=0$ is an essential (or, say, physical) singularity (see Property 8 below).

Similar to Property 1, we have
Property 7 The solution (61) (in which ($\hat{\eta}_{\mu \nu}$) is given by (62) and (63)) of the vacuum Einstein's field equations (2) is time-periodic.

Proof. In fact, the first equality in (63) implies that

$$
\begin{equation*}
\hat{\eta}_{00}>0 \quad \text { for } t \neq k \pi+\pi / 2 \quad(k \in \mathbb{N}) \text { and } x \neq 0 \tag{66}
\end{equation*}
$$

On the other hand, by direct calculations we have

$$
\left|\begin{array}{cc}
\hat{\eta}_{00} & \hat{\eta}_{01} \tag{67}\\
\hat{\eta}_{01} & 0
\end{array}\right|=-\hat{\eta}_{01}^{2}<0,
$$

$$
\left|\begin{array}{ccc}
\hat{\eta}_{00} & \hat{\eta}_{01} & \hat{\eta}_{02} \tag{68}\\
\hat{\eta}_{01} & 0 & 0 \\
\hat{\eta}_{02} & 0 & \hat{\eta}_{22}
\end{array}\right|=-\hat{\eta}_{01}^{2} \hat{\eta}_{22}>0
$$

and

$$
\left|\begin{array}{cccc}
\hat{\eta}_{00} & \hat{\eta}_{01} & \hat{\eta}_{02} & 0 \tag{69}\\
\hat{\eta}_{01} & 0 & 0 & 0 \\
\hat{\eta}_{02} & 0 & \hat{\eta}_{22} & 0 \\
0 & 0 & 0 & \hat{\eta}_{33}
\end{array}\right|=-\hat{\eta}_{01}^{2} \hat{\eta}_{22} \hat{\eta}_{33}<0
$$

for $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x \neq 0$.
The above discussion implies that the variable t is a time coordinate. Therefore, it follows from (63) that the Lorentzian metric (61) is indeed a time-periodic solution of the vacuum Einstein's field equations (2), where ($\hat{\eta}_{\mu \nu}$) is given by (63). This proves Property 7.
Property 8 When $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$, for any fixed $y \in \mathbb{R}$ it holds that

$$
\begin{equation*}
R_{0202} \rightarrow+\infty \quad \text { and } \quad R_{0303} \rightarrow+\infty, \quad \text { as } x \rightarrow 0 \tag{70}
\end{equation*}
$$

Proof. By direct calculations, we obtain from (35) and (36) that

$$
\begin{equation*}
R_{0202}=\frac{(2+\cos y) \sin ^{2}(2 t) \exp \{(\sin y+2 y) \sin t\}}{4 x^{2}} \tag{71}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0303}=\frac{\sin ^{2}(2 t) \exp \{(\sin (y)+2 y) \sin t\}}{4 x^{2}(2+\cos y)} \tag{72}
\end{equation*}
$$

(70) follows from (71) and (72) directly. The proof is finished.

On the other hand, a direct calculation yields

$$
\begin{equation*}
\mathbf{R} \triangleq R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta} \equiv 0 \tag{73}
\end{equation*}
$$

Therefore, we have
Property 9 The Lorentzian metric (61) describes a timeperiodic space-time, this space-time contains two kinds of singularities: the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in$ \mathbb{N}), which are non-essential singularities and correspond to the event horizons, and $x=0$, which is an essential (or, say, physical) singularity.

We now analyze the behavior of the singularities of the space-time characterized by (61) with (63).
By (64), we shall investigate the following cases: (a) $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N}) ;(\mathrm{b}) y \rightarrow \pm \infty ;(\mathrm{c}) x \rightarrow \pm \infty$; (d) $x \rightarrow 0$.

Case a: $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$. According to the definition of the event horizon, the hypersurfaces $t=$ $k \pi, \quad k \pi+\pi / 2 \quad(k \in \mathbb{N})$ are the event horizons of the space-time described by (61) with (63).
Case b: $y \rightarrow \pm \infty$. Noting (64), in this case we may assume that $t \neq k \pi(k \in \mathbb{N})$ (if $t=k \pi$, then the situation becomes trivial). Without loss of generality, we may assume that $\sin t>0$. Therefore, it follows from (71) and (72) that, for any fixed $x \neq 0$ it holds that

$$
\begin{equation*}
R_{0202}, \quad R_{0303} \longrightarrow \infty \quad \text { as } y \rightarrow+\infty \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0202}, \quad R_{0303} \longrightarrow 0 \quad \text { as } y \rightarrow-\infty . \tag{75}
\end{equation*}
$$

(74) implies that $y=+\infty$ is also a essential singularity, while $y=-\infty$ is not because of (75).

Case c: $x \rightarrow \pm \infty$. By (63), in this case the space-time characterized by (61) reduces to a point.
Case d: $x \rightarrow 0$. Property 8 shows that $x=0$ is a physical singularity. This is the biggest difference between the space-times presented in Subsections 3.1-3.2 and the one given this subsection. In order to illustrate its physical meaning, we take (t, x, y, z) as the spherical coordinates (t, r, θ, φ) with $t \in \mathbb{R}, r \in[0, \infty), \theta \in$ $[0,2 \pi), \varphi \in[-\pi / 2, \pi / 2]$. In the coordinates (t, r, θ, φ), the metric (61) with (63) describe a time-periodic spacetime which possesses three kind of singularities:
(i) $t \neq k \pi(k \in \mathbb{N})$: they are the event horizons;
(ii) $r \rightarrow+\infty$: the space-time degenerates to a point;
(iii) $r \rightarrow 0$: it is a physical singularity.

For the case (iii), in fact Property 8 shows that every point in the set

$$
\mathfrak{S}_{B} \triangleq\{(t, r, \theta, \varphi) \mid r=0, t \neq k \pi, k \pi+\pi / 2(k \in \mathbb{N})\}
$$

is a singular point. Noting (34) and (70), we name the set of singular points \mathfrak{S}_{B} as a quasi-black-hole. Property 8 also shows that the space-time (61) is not homogenous and not asymptotically flat. This space-time perhaps has some new applications in cosmology due to the recent WMAP data, since the recent WMAP data show that our Universe exists anisotropy (see [2]). This inhomogenous property of the new space-time (61) may provide a way to give an explanation of this phenomena.

We next investigate the physical behavior of the spacetime (61).

Fixing y and z, we get the induced metric

$$
\begin{equation*}
d s^{2}=\hat{\eta}_{00} d t^{2}+2 \hat{\eta}_{01} d t d x \tag{76}
\end{equation*}
$$

Consider the null curves in the (t, x)-plan defined by

$$
\begin{equation*}
\hat{\eta}_{00} d t^{2}+2 \hat{\eta}_{01} d t d x=0 . \tag{77}
\end{equation*}
$$

Noting (63) leads to

$$
\begin{equation*}
d t=0 \quad \text { and } \quad \frac{d t}{d x}=-\frac{2 \tan t}{x} \tag{78}
\end{equation*}
$$

Let

$$
\begin{equation*}
\rho=2 \ln |x| . \tag{79}
\end{equation*}
$$

Then the second equation in (78) becomes

$$
\begin{equation*}
\frac{d t}{d \rho}=-\tan t \tag{80}
\end{equation*}
$$

Thus, in the (t, ρ)-plan the null curves and light-cones are shown in Figure 1 in which x should be replaced by ρ.

We now study the geometric behavior of the t-slices.
For any fixed $t \in \mathbb{R}$, the induced metric of the t-slice reads

$$
\begin{equation*}
d s^{2}=-\frac{\sin ^{2} t}{x^{4}}\left[d y^{2}+(2+\cos y)^{-2} d z^{2}\right] \tag{81}
\end{equation*}
$$

When $t=k \pi(k \in \mathbb{N})$, the metric (81) becomes

$$
d s^{2}=0
$$

This implies that the t-slice reduces to a point. On the other hand, in this case the metric (61) becomes

$$
d s^{2}=\frac{2}{(2+\cos y) x^{2}} d t^{2}
$$

When $t \neq k \pi(k \in \mathbb{N})$, (81) shows that the t-slice is a three-dimensional manifold with cone-like singularities at $x=\infty$ and $x=-\infty$, respectively. In particular, if we take (t, x, y, z) as the spherical coordinates (t, r, θ, φ), then the induced metric (81) becomes

$$
\begin{equation*}
d s^{2}=-\frac{\sin ^{2} t}{r^{4}}\left[d \theta^{2}+(2+\cos \theta)^{-2} d \varphi^{2}\right] . \tag{82}
\end{equation*}
$$

In this case the t-slice is a three-dimensional cone-like manifold centered at $r=\infty$.

At the end of this subsection, we would like to emphasize that the space-time (61) possesses a physical singularity, i.e., $x=0$ which is named as a quasi-black-hole in this paper.
4. Summary and discussion. In this paper we describe a new method to find exact solutions of the Einstein's field equations (1). Using our method, we can construct many interesting exact solutions, in particular, the timeperiodic solutions of the vacuum Einstein's field equations. More precisely, we have constructed three kinds
of new time-periodic solutions of the vacuum Einstein's field equations: the regular time-periodic solution with vanishing Riemann curvature tensor, the regular timeperiodic solution with finite Riemann curvature tensor and the time-periodic solution with physical singularities. We have also analyzed the singularities of these new time-periodic solutions and investigate some new physical phenomena enjoyed by these new space-times.

In particular, in the spherical coordinates (t, r, θ, φ) we construct a time-periodic space-time with essential singularities. This space-time possesses an interesting and important singularity which is named as a quasi-blackhole. This space-time is inhomogenous and not asymptotically flat and can perhaps be used to explain the phenomenon that our Universe exists anisotropy from the recent WMAP data (see [2]). We believe some applications of these new space-times in modern cosmology and general relativity can be expected.

The work of Kong was supported in part by the NSF of China (Grant No. 10671124) and the Qiu-Shi Professor Fellowship from Zhejiang University, China; the work of Liu was supported by the NSF and NSF of China.
[1] J. Bičák, Selected solutions of Einstein's field equations: their role in general relativity and astrophysics, in Einstein's field equations and their physical implications, Lecture Notes in Phys. 540, Springer, Berlin, 2000, 1-126.
[2] G. Hinshaw, et al., arXiv:astro-ph/0603451.
[3] D.-X. Kong and K.-F. Liu, Time-periodic solutions of the Einstein's field equations, arXiv:0805.1100v2.
[4] D.-X. Kong and K.-F. Liu, Time-periodic cosomolgy, to appear.
[5] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einstein's field equations (second edition), Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003.
[6] R. M. Wald, General relativity, the University of Chicago Press, Chicago and London, 1984.

