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1. Introduction. The Einstein’s field equations are the

fundamental equations in general relativity and play an

essential role in cosmology. This paper concerns the time-

periodic solutions of the following vacuum Einstein’s field

equations

Gµν
4
= Rµν − 1

2
gµνR = 0, (1)

or equivalently,

Rµν = 0, (2)

where gµν (µ, ν = 0, 1, 2, 3) is the unknown Lorentzian

metric, Rµν is the Ricci curvature tensor, R is the scalar

curvature and Gµν is the Einstein tensor.

It is well known that the exact solutions of the Ein-

stein’s field equations play a crucial role in general

relativity and cosmology. Typical examples are the

Schwarzschild solution and Kerr solution. Although

many interesting and important solutions have been ob-

tained (see, e.g., [1] and [5]), there are still many fun-

damental open problems. One such problem is if there

exists a “time-periodic” solution, which contains physi-

cal singularities such as black hole, to the Einstein’s field

equations. This paper continues the discussion of this

problem.

The first time-periodic solution of the vacuum Ein-

stein’s field equations was constructed by the first two

authors in [3]. The solution presented in [3] is time-

periodic, and describes a regular space-time, which has

vanishing Riemann curvature tensor but is inhomoge-

nous, anisotropic and not asymptotically flat. In par-

ticular, this space-time does not contain any essential

singularity, but contains some non-essential singularities

which correspond to steady event horizons, time-periodic

event horizon and has some interesting new physical phe-

nomena.

In this paper, we focus on finding the time-periodic so-

lutions, which contain physical singularities such as black

hole to the vacuum Einstein’s field equations (1). We

shall construct three kinds of new time-periodic solutions

of the vacuum Einstein’s field equations (1) whose Rie-

mann curvature tensors vanish, keep finite or go to the

infinity at some points in these space-times respectively.

The singularities of these new time-periodic solutions

are investigated and new physical phenomena are found.

Moreover, the applications of these solutions in modern

cosmology and general relativity may be expected. In the

forthcoming paper [4], we shall construct a time-periodic

solution of the Einstein’s field equations with black hole,

which describes the time-periodic cosmology with many

new and interesting physical phenomena.

2. Procedure of finding new solutions.

We consider the metric of the following form

(gµν) =




u v p 0
v 0 0 0
p 0 f 0
0 0 0 h


 , (3)
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where u, v, p, f and h are smooth functions of the coordi-

nates (t, x, y, z). It is easy to verify that the determinant

of (gµν) is given by

g
4
= det(gµν) = −v2fh. (4)

Throughout this paper, we assume that

g < 0. (H)

Without loss of generality, we may suppose that f and g

keep the same sign, for example,

f < 0 (resp. f > 0) and h < 0 (resp. g > 0). (5)

In what follows, we solve the Einstein’s field equations

(2) under the framework of the Lorentzian metric of the

form (3).

By a direct calculation, we have the Ricci tensor

R11 = −1
2

{
vx

v

(
fx

f
+

hx

h

)
+

1
2

[(
fx

f

)2

+
(

hx

h

)2
]
−

(
fxx

f
+

hxx

h

)}
.

(6)

It follows from (2) that

vx

v

(
fx

f
+

hx

h

)
+

1
2

[(
fx

f

)2

+
(

hx

h

)2
]
−

(
fxx

f
+

hxx

h

)
= 0.

(7)

This is an ordinary differential equation of first order on

the unknown function v. Solving (7) gives

v = V (t, y, z) exp
{∫

Θ(t, x, y, z)dx

}
, (8)

where

Θ =

[
fxx

f
+

hxx

h
− 1

2

(
fx

f

)2

− 1
2

(
hx

h

)2
]

fh

(fh)x
,

and V = V (t, y, z) is an integral function depending on

t, y and z. Here we assume that

(fh)x 6= 0. (9)

In particular, taking the ansatz

f = −K(t, x)2, h = N(t, y, z)K(t, x)2 (10)

and substituting it into (8) yields

v = V Kx. (11)

By the assumptions (H) and (9), we have

V 6= 0, K 6= 0, Kx 6= 0. (12)

Noting (10) and (11), by a direct calculation we obtain

R13 = −VzKx

KV
. (13)

It follows from (2) that

R13 = 0.

Combining (12) and (13) gives

Vz = 0. (14)

This implies that the function V depends only on t, y

but is independent of x and z. Noting (10)-(11) and

using (14), we calculate

R12 = − 1
2V

(
pxx

Kx
− Kxxpx

K2
x

− 2pKx

K2
+

2KxVy

K

)
. (15)

Solving p from the equation R12 = 0 yields

p = AK2 + VyK +
B

K
, (16)

where A and B are integral functions depending on t,

y and z. Noting (10)-(11) and using (14) and (16), we

observe that the equation R23 = 0 is equivalent to

Bz − 2K3Az = 0. (17)

Since K is a function depending only on t, x, and A, B

are functions depending on t, y and z, we can obtain

that

B = 2K3A + C(t, x, y), (18)

where C is an integral function depending on t, x and y.

For simplicity, we take

A = B = C = 0. (19)
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Thus, (16) simplifies to

p = VyK. (20)

From now on, we assume that the function N only

depends on y, that is to say,

N = N(y). (21)

Substituting (10)-(11), (14) and (20)-(21) into the equa-

tion R02 = 0 yields

uxVy + V (uyx − 4VyKxt) = 0. (22)

Solving u from the equation (22) leads to

u = 2KtV. (23)

Noting (10)-(11), (14), (20)-(21) and (23), by a direct

calculation we obtain

R03 = 0, (24)





R22 = (4N2V 2)−1
[
2NV 2Nyy − 4N2V Vyy

+4N2V 2
y − 2NV NyVy − V 2N2

y

]
,

R33 = −(4NV 2)−1
[
2NV 2Nyy − 4N2V Vyy

+4N2V 2
y − 2NV NyVy − V 2N2

y

]
(25)

and

R00 = (2KNV 2)−1
[
4NVtV

2
y + 2NV 2Vtyy − 2NV VtVyy

−4NV VyVty − V NyVtVy + V 2NyVty

]
.
(26)

Therefore, under the assumptions mentioned above, the

Einstein’s field equations (2) are reduced to

−Nyy

N
+

1
2

(
Ny

N

)2

+2
Vyy

V
+

NyVy

NV
−2

(
Vy

V

)2

= 0 (27)

and

4V 2
y Vt + 2V 2Vyyt − 2V VyyVt − 4V VyVyt

−V VyVtNy

N
+

V 2VytNy

N
= 0.

(28)

On the other hand, (27) can be rewritten as

2
(

Vy

V

)

y

+
VyNy

V N
−

(
Ny

N

)

y

− 1
2

(
Ny

N

)2

= 0 (29)

and (28) is equivalent to

2
(

Vy

V

)

yt

+
(

Vy

V

)

t

Ny

N
= 0. (30)

Noting (21) and differentiating (29) with respect to t

gives (30) directly. This shows that (29) implies (30).

Hence in the present situation, the Einstein’s field equa-

tions (2) are essentially (29). Solving V from the equation

(29) yields

V = w(t)|N(y)|1/2 exp
{

q(t)
∫
|N(y)|−1/2dy

}
, (31)

where w = w(t) and q = q(t) are two integral functions

only depending on t. Thus, we can obtain the following

solution of the vacuum Einstein’s field equations in the

coordinates (t, x, y, z)

ds2 = (dt, dx, dy, dz)(gµν)(dt, dx, dy, dz)T , (32)

where

(gµν) =




2KtV KxV KVy 0
KxV 0 0 0
KVy 0 −K2 0

0 0 0 NK2


 , (33)

in which N = N(y) is an arbitrary function of y, K =

K(t, x) is an arbitrary function of t, x, and V is given

by (31).

By calculations, the Riemann curvature tensor reads

Rαβµν = 0, ∀ αβµν 6= 0202 or 0303, (34)

while

R0202 = Kwqq′|N |−1/2 exp
{

q

∫
|N |−1/2dy

}
(35)

and

R0303 = Kwqq′|N |1/2 exp
{

q

∫
|N |−1/2dy

}
. (36)

3. Time-periodic solutions. This section is devoted

to constructing some new time-periodic solutions of the

vacuum Einstein’s field equations.

3.1 Regular time-periodic space-times with vanishing

Riemann curvature tensor. Take q = constant and let

V = ρ(t)κ(y), where κ is defined by

κ(y) = c1

√
|N | exp

{
c2

∫
|N |−1/2dy

}
, (37)
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in which c1 and c2 are two integrable constants. In this

case, the solution to the vacuum Einstein’s filed equations

in the coordinates (t, x, y, z) reads

ds2 = (dt, dx, dy, dz)(gµν)(dt, dx, dy, dz)T , (38)

where

(gµν) =




2ρκ∂tK ρκ∂xK ρK∂yκ 0
ρκ∂xK 0 0 0
ρK∂yκ 0 −K2 0

0 0 0 NK2


 . (39)

Theorem 1 The vacuum Einstein’s filed equations (2)

have a solution described by (38) and (39), and the Rie-

mann curvature tensor of this solution vanishes. ¥
As an example, let





w(t) = cos t,

q(t) = 0,

K(t, x) = ex sin t,

N(y) = −(2 + sin y)2.

(40)

In the present situation, we obtain the following solution

of the vacuum Einstein’s filed equations (2)

(ηµν) =




η00 η01 η02 0
η01 0 0 0
η02 0 η22 0
0 0 0 η33


 , (41)

where




η00 = 2ex(2 + sin y) cos2 t,

η01 =
1
2
ex(2 + sin y) sin(2t),

η02 =
1
2
ex cos y sin(2t),

η22 = −[ex sin t]2,

η33 = −[ex(2 + sin y) sin t]2.

(42)

By (4),

η
4
= det(ηµν) = −1

4
e6x(2 + sin y)4 sin4 t sin2(2t). (43)

Property 1 The solution (41) of the vacuum Einstein’s

filed equations (2) is time-periodic. ¥
Proof. In fact, the first equality in (42) implies that

η00 > 0 for t 6= kπ + π/2 (k ∈ N) and x 6= −∞.

On the other hand, by direct calculations,
∣∣∣∣
η00 η01

η01 0

∣∣∣∣ = −1
4
e2x(2 + sin y)2 sin2(2t) < 0,

∣∣∣∣∣∣
η00 η01 η02

η01 0 0
η02 0 η22

∣∣∣∣∣∣
= −η2

01η22 > 0

and
∣∣∣∣∣∣∣

η00 η01 η02 0
η01 0 0 0
η02 0 η22 0
0 0 0 η33

∣∣∣∣∣∣∣
= −η2

01η22η33 < 0

for t 6= kπ, kπ + π/2 (k ∈ N) and x 6= −∞.

In Property 3 below, we will show that t = kπ, kπ +

π/2 (k ∈ N) are the singularities of the space-time de-

scribed by (41), but they are not essential (or say, phys-

ical) singularities, these non-essential singularities corre-

spond to the event horizons of the space-time described

by (41) with (42); while, when x = −∞, the space-time

(41) degenerates to a point.

The above discussion implies that the variable t is a

time coordinate. Therefore, it follows from (42) that the

Lorentzian metric

ds2 = (dt, dx, dy, dz)(ηµν)(dt, dx, dy, dz)T (44)

is indeed a time-periodic solution of the vacuum Ein-

stein’s field equations (2), where (ηµν) is given by (41).

This proves Property 1. ¤
Noting (34)-(36) and the second equality in (40) gives

Property 2 The Lorentzian metric (44) (in which (ηµν)

is given by (41) and (42)) describes a regular space-time,

this space-time is Riemannian flat, that is to say, its Rie-

mann curvature tensor vanishes. ¥
Remark 1 The first time-periodic solution to the Ein-

stein’s field equations was constructed by Kong and Liu

[3]. The time-periodic solution presented in [3] also has

the vanishing Riemann curvature tensor.

It follows from (43) that the hypersurfaces t = kπ,

kπ + π/2 (k ∈ N) and x = ±∞ are singularities of the
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space-time (44) (in which (ηµν) is given by (41) and (42)),

however, by Property 2, these singularities are not phys-

ical (or say, not essential). According to the definition

of event horizon (see e.g., Wald [6]), it is easy to show

that the hypersurfaces t = kπ, kπ + π/2 (k ∈ N) and

x = +∞ are the event horizons of the space-time (44)

(in which (ηµν) is given by (41) and (42)). Therefore, we

have

Property 3 The Lorentzian metric (44) (in which (ηµν)

is given by (41) and (42)) does not contain any essential

singularity. These non-essential singularities consist of

the hypersurfaces t = kπ, kπ + π/2 (k ∈ N) and x =

±∞. The singularities t = kπ, kπ + π/2 (k ∈ N) and

x = +∞ correspond to the event horizons, while, when

x = −∞, the space-time (44) degenerates to a point.

¥

We now investigate the physical behavior of the space-

time (44).

Fixing y and z, we get the induced metric

ds2 = η00dt2 + 2η01dtdx. (45)

Consider the null curves in the (t, x)-plan, which are de-

fined by

η00dt2 + 2η01dtdx = 0. (46)

Noting (42) gives

dt = 0 and
dt

dx
= − tan t. (47)

Thus, the null curves and light-cones are shown in Figure

1.

6t

π

π
2

0 -
x

FIG. 1: Null curves and light-cones in the domains 0 < t <
π/2 and π/2 < t < π.

We next study the geometric behavior of the t-slices.

For any fixed t ∈ R, it follows from (44) that the in-

duced metric of the t-slice reads

ds2 = η22dy2 + η33dz2

= −e2x sin2 t[dy2 + (2 + sin y)2dz2].
(48)

When t = kπ (k ∈ N), the metric (48) becomes

ds2 = 0.

This implies that the t-slice reduces to a point. On the

other hand, in the present situation, the metric (44) be-

comes

ds2 = 2ex(2 + sin y)dt2.

When t 6= kπ (k ∈ N), (48) shows that the t-slice is

a three-dimensional cone-like manifold centered at x =

−∞.

3.2 Regular time-periodic space-times with non-

vanishing Riemann curvature tensor. We next construct

the regular time-periodic space-times with non-vanishing

Riemann curvature tensor.
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To do so, let




w(t) = cos t,

q(t) = sin t,

K(x, t) = ex sin t,

N = − 1
(2 + sin y)2

.

(49)

Then, by (31),

V =
cos t exp {(2y − cos y) sin t}

2 + sin y
.

Thus, in the present situation, we have the following so-

lution of the vacuum Einstein’s field equations (2)

η̃µν =




η̃00 η̃01 η̃02 0
η̃01 0 0 0
η̃02 0 η̃22 0
0 0 0 η̃33


 , (50)

where




η̃00 =
2ex cos2 t exp {(2y − cos y) sin t}

2 + sin y
,

η̃01 =
ex sin(2t) exp {(2y − cos y) sin t}

2(2 + sin y)
,

η̃02 = ex

{
sin t cos t− cos t cos y

(2 + sin y)2

}
sin t

× exp {(2y − cos y) sin t} ,

η̃22 = −e2x sin2 t,

η̃33 = − e2x sin2 t

(2 + sin y)2
.

(51)

By (4),

η̃
4
= det(η̃µν) = −(η̃01)2η̃22η̃33

= −e6x+2(2y−cos y) sin t sin2(2t) sin4 t

4(2 + sin y)4
.

(52)

Introduce

4(t, x, y) = 6x + 2(2y − cos y) sin t.

Thus, it follows from (52) that

η̃ < 0 (53)

for t 6= kπ, kπ+π/2 (k ∈ N) and4 6= −∞. It is obvious

that the hypersurfaces t = kπ, kπ + π/2 (k ∈ N) and

4 = ±∞ are the singularities of the space-time described

by (50) with (51). As in Subsection 3.1, we can prove

that the hypersurfaces t = kπ, kπ + π/2 (k ∈ N) are

not essential (or say, physical) singularities, these non-

essential singularities correspond to the event horizons of

the space-time described by (50) with (51).

Similar to Property 1, we have

Property 4 The solution (50) (in which (η̃µν) is given

by (51)) of the vacuum Einstein’s filed equations (2) is

time-periodic. ¥
Similar to Property 2, we have

Property 5 The Lorentzian metric (50) (in which (η̃µν)

is given by (51)) describes a regular space-time, this

space-time has a non-vanishing Riemann curvature ten-

sor. ¥
Proof. In the present situation, by (34)

Rαβµν = 0, ∀ αβµν 6= 0202 or 0303, (54)

while

R0202 = ex(2 + sin y) cos2 t sin2 t

× exp {(2y − cos y) sin t} ,
(55)

and

R0303 =
ex cos2 t sin2 t exp {(2y − cos y) sin t}

2 + sin y
. (56)

Property 5 follows from (54)-(56) directly. Thus the proof

is completed. ¤
In particular, when t 6= kπ, kπ + π/2 (k ∈ N), it

follows from (55) and (56) that

R0202, R0303 −→∞ as x + (2y − cos y) sin t →∞.

(57)

However, a direct calculation gives

R , RαβγδRαβγδ ≡ 0. (58)

Thus, we obtain

Property 6 The Lorentzian metric (50) (in which (η̃µν)

is given by (51)) does not contain any essential singular-

ity. These non-essential singularities consist of the hy-

persurfaces t = kπ, kπ + π/2 (k ∈ N) and 4 = ±∞, in
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which the hypersurfaces t = kπ, kπ + π/2 (k ∈ N) are

the event horizons. Moreover, the Riemann curvature

tensor satisfies the properties (57) and (58). ¥
We next analyze the singularity behavior of 4 = ±∞.

Case 1: Fixing y ∈ R, we observe that

4→ ±∞⇐⇒ x → ±∞.

This situation is similar to the case x → ±∞ discussed in

Subsection 3.1. That is to say, x = +∞ corresponds to

the event horizon, while, when x → −∞, the space-time

(50) with (51) degenerates to a point.

Case 2: Fixing x ∈ R, we observe that

4→ ±∞⇐⇒ y → ±∞.

In the present situation, it holds that

t 6= kπ (k ∈ N).

Without loss of generality, we may assume that

sin t > 0.

For the case that sin t < 0, we have a similar discussion.

Thus, noting (57), we have

R0202, R0303 −→∞ as y →∞.

Moreover, by the definition of the event horizon we can

show that y = +∞ is not a event horizon. On the other

hand, when y → −∞, the space-time (50) with (51) de-

generates to a point.

Case 3: For the situation that x → ±∞ and y → ±∞ si-

multaneously, we have a similar discussion, here we omit

the details.

For the space-time (50) with (51), the null curves and

light-cones are shown just as in Figure 1. On the other

hand, for any fixed t ∈ R, the induced metric of the t-slice

reads

ds2 = η̃22dy2 + η̃33dz2

= −e2x sin2 t[dy2 + (2 + sin y)−2dz2].
(59)

Obviously, in the present situation, the t-slice possesses

similar properties shown in the last paragraph in Subsec-

tion 3.1.

In particular, if we take (t, x, y, z) as the spherical coor-

dinates (t, r, θ, ϕ) with t ∈ R, r ∈ [0,∞), θ ∈ [0, 2π), ϕ ∈
[−π/2, π/2], then the metric (50) with (51) describes a

regular time-periodic space-time with non-vanishing Rie-

mann curvature tensor. This space-time does not contain

any essential singularity, these non-essential singularities

consist of the hypersurfaces t = kπ, kπ + π/2 (k ∈ N)

which are the event horizons. The Riemann curvature

tensor satisfies (58) and

R0202, R0303 −→∞ as r →∞.

Moreover, when t 6= kπ (k ∈ N), the t-slice is a three

dimensional bugle-like manifold with the base at x = 0;

while, when t = kπ (k ∈ N), the t-slice reduces to a point.

3.3 Time-periodic space-times with physical singulari-

ties. This subsection is devoted to constructing the time-

periodic space-times with physical singularities.

To do so, let




w(t) = cos t,

q(t) = sin t,

K(x, t) =
sin t

x2
,

N = − 1
(2 + cos y)2

.

(60)

Then, by (31) we have

V =
cos t exp {(2y + sin y) sin t)}

2 + cos y
.

Thus, in the present situation, the solution of the vacuum

Einstein’s field equations (2) in the coordinates (t, x, y, z)

reads

ds2 = (dt, dx, dy, dz)(η̂µν)(dt, dx, dy, dz)T , (61)

where

(η̂µν) =




η̂00 η̂01 η̂02 0
η̂01 0 0 0
η̂02 0 η̂22 0
0 0 0 η̂33


 , (62)
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in which




η̂00 =
2 cos2 t exp {(sin y + 2y) sin t}

(2 + cos y)x2
,

η̂01 = − sin(2t) exp {(sin y + 2y) sin t}
(2 + cos y)x3

,

η̂02 =
sin t

x2

{
cos t sin y

(2 + cos y)2
+

sin(2t)
2

}
×

exp {(sin y + 2y) sin t} ,

η̂22 = − sin2 t

x4
,

η̂33 = − sin2 t

(2 + cos y)2x4
.

(63)

By (4), we have

η̂
4
= det(η̂µν) = −(η̂01)2η̂22η̂33

= −e2(2y+sin y) sin t sin2(2t) sin4 t

x14(2 + cos y)4
.

(64)

It follows from (63) that

η̂ < 0 (65)

for t 6= kπ, kπ + π/2 (k ∈ N) and x 6= 0. Obviously, the

hypersurfaces t = kπ, kπ + π/2 (k ∈ N) and x = 0 are

the singularities of the space-time described by (61) with

(62)-(63). As before, we can prove that the hypersur-

faces t = kπ, kπ+π/2 (k ∈ N) are not essential (or, say,

physical) singularities, and these non-essential singular-

ities correspond to the event horizons of the space-time

described by (61) with (62)-(63), however x = 0 is an

essential (or, say, physical) singularity (see Property 8

below).

Similar to Property 1, we have

Property 7 The solution (61) (in which (η̂µν) is given by

(62) and (63)) of the vacuum Einstein’s field equations

(2) is time-periodic. ¥
Proof. In fact, the first equality in (63) implies that

η̂00 > 0 for t 6= kπ + π/2 (k ∈ N) and x 6= 0. (66)

On the other hand, by direct calculations we have
∣∣∣∣
η̂00 η̂01

η̂01 0

∣∣∣∣ = −η̂2
01 < 0, (67)

∣∣∣∣∣∣
η̂00 η̂01 η̂02

η̂01 0 0
η̂02 0 η̂22

∣∣∣∣∣∣
= −η̂2

01η̂22 > 0 (68)

and
∣∣∣∣∣∣∣

η̂00 η̂01 η̂02 0
η̂01 0 0 0
η̂02 0 η̂22 0
0 0 0 η̂33

∣∣∣∣∣∣∣
= −η̂2

01η̂22η̂33 < 0 (69)

for t 6= kπ, kπ + π/2 (k ∈ N) and x 6= 0.

The above discussion implies that the variable t is a

time coordinate. Therefore, it follows from (63) that the

Lorentzian metric (61) is indeed a time-periodic solution

of the vacuum Einstein’s field equations (2), where (η̂µν)

is given by (63). This proves Property 7. ¤
Property 8 When t 6= kπ, kπ + π/2 (k ∈ N), for any

fixed y ∈ R it holds that

R0202 → +∞ and R0303 → +∞, as x → 0. (70)

¥
Proof. By direct calculations, we obtain from (35) and

(36) that

R0202 =
(2 + cos y) sin2(2t) exp {(sin y + 2y) sin t}

4x2
,

(71)

and

R0303 =
sin2(2t) exp {(sin(y) + 2y) sin t}

4x2(2 + cos y)
. (72)

(70) follows from (71) and (72) directly. The proof is

finished. ¤
On the other hand, a direct calculation yields

R , RαβγδRαβγδ ≡ 0. (73)

Therefore, we have

Property 9 The Lorentzian metric (61) describes a time-

periodic space-time, this space-time contains two kinds

of singularities: the hypersurfaces t = kπ, kπ+π/2 (k ∈
N), which are non-essential singularities and correspond

to the event horizons, and x = 0, which is an essential

(or, say, physical) singularity. ¥
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We now analyze the behavior of the singularities of the

space-time characterized by (61) with (63).

By (64), we shall investigate the following cases: (a)

t = kπ, kπ + π/2 (k ∈ N); (b) y → ±∞; (c) x → ±∞;

(d) x → 0.

Case a: t = kπ, kπ + π/2 (k ∈ N). According to

the definition of the event horizon, the hypersurfaces t =

kπ, kπ + π/2 (k ∈ N) are the event horizons of the

space-time described by (61) with (63).

Case b: y → ±∞. Noting (64), in this case we may

assume that t 6= kπ (k ∈ N) (if t = kπ, then the situation

becomes trivial). Without loss of generality, we may as-

sume that sin t > 0. Therefore, it follows from (71) and

(72) that, for any fixed x 6= 0 it holds that

R0202, R0303 −→∞ as y → +∞ (74)

and

R0202, R0303 −→ 0 as y → −∞. (75)

(74) implies that y = +∞ is also a essential singularity,

while y = −∞ is not because of (75).

Case c: x → ±∞. By (63), in this case the space-time

characterized by (61) reduces to a point.

Case d: x → 0. Property 8 shows that x = 0 is a

physical singularity. This is the biggest difference be-

tween the space-times presented in Subsections 3.1-3.2

and the one given this subsection. In order to illustrate

its physical meaning, we take (t, x, y, z) as the spheri-

cal coordinates (t, r, θ, ϕ) with t ∈ R, r ∈ [0,∞), θ ∈
[0, 2π), ϕ ∈ [−π/2, π/2]. In the coordinates (t, r, θ, ϕ),

the metric (61) with (63) describe a time-periodic space-

time which possesses three kind of singularities:

(i) t 6= kπ (k ∈ N): they are the event horizons;

(ii) r → +∞: the space-time degenerates to a point;

(iii) r → 0: it is a physical singularity.

For the case (iii), in fact Property 8 shows that every

point in the set

SB
4
= {(t, r, θ, ϕ) | r = 0, t 6= kπ, kπ + π/2 (k ∈ N)}

is a singular point. Noting (34) and (70), we name the

set of singular points SB as a quasi-black-hole. Property

8 also shows that the space-time (61) is not homogenous

and not asymptotically flat. This space-time perhaps has

some new applications in cosmology due to the recent

WMAP data, since the recent WMAP data show that our

Universe exists anisotropy (see [2]). This inhomogenous

property of the new space-time (61) may provide a way

to give an explanation of this phenomena.

We next investigate the physical behavior of the space-

time (61).

Fixing y and z, we get the induced metric

ds2 = η̂00dt2 + 2η̂01dtdx. (76)

Consider the null curves in the (t, x)-plan defined by

η̂00dt2 + 2η̂01dtdx = 0. (77)

Noting (63) leads to

dt = 0 and
dt

dx
= −2 tan t

x
. (78)

Let

ρ = 2 ln |x|. (79)

Then the second equation in (78) becomes

dt

dρ
= − tan t. (80)

Thus, in the (t, ρ)-plan the null curves and light-cones

are shown in Figure 1 in which x should be replaced by

ρ.

We now study the geometric behavior of the t-slices.

For any fixed t ∈ R, the induced metric of the t-slice

reads

ds2 = − sin2 t

x4
[dy2 + (2 + cos y)−2dz2]. (81)

When t = kπ (k ∈ N), the metric (81) becomes

ds2 = 0.
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This implies that the t-slice reduces to a point. On the

other hand, in this case the metric (61) becomes

ds2 =
2

(2 + cos y)x2
dt2.

When t 6= kπ (k ∈ N), (81) shows that the t-slice is

a three-dimensional manifold with cone-like singularities

at x = ∞ and x = −∞, respectively. In particular, if

we take (t, x, y, z) as the spherical coordinates (t, r, θ, ϕ),

then the induced metric (81) becomes

ds2 = − sin2 t

r4
[dθ2 + (2 + cos θ)−2dϕ2]. (82)

In this case the t-slice is a three-dimensional cone-like

manifold centered at r = ∞.

At the end of this subsection, we would like to empha-

size that the space-time (61) possesses a physical singu-

larity, i.e., x = 0 which is named as a quasi-black-hole in

this paper.

4. Summary and discussion. In this paper we describe

a new method to find exact solutions of the Einstein’s

field equations (1). Using our method, we can construct

many interesting exact solutions, in particular, the time-

periodic solutions of the vacuum Einstein’s field equa-

tions. More precisely, we have constructed three kinds

of new time-periodic solutions of the vacuum Einstein’s

field equations: the regular time-periodic solution with

vanishing Riemann curvature tensor, the regular time-

periodic solution with finite Riemann curvature tensor

and the time-periodic solution with physical singulari-

ties. We have also analyzed the singularities of these new

time-periodic solutions and investigate some new physi-

cal phenomena enjoyed by these new space-times.

In particular, in the spherical coordinates (t, r, θ, ϕ) we

construct a time-periodic space-time with essential sin-

gularities. This space-time possesses an interesting and

important singularity which is named as a quasi-black-

hole. This space-time is inhomogenous and not asymp-

totically flat and can perhaps be used to explain the phe-

nomenon that our Universe exists anisotropy from the

recent WMAP data (see [2]). We believe some applica-

tions of these new space-times in modern cosmology and

general relativity can be expected.
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