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TIME PERIODIC SOLUTIONS OF THE NAVIER-STOKES EQUATIONS
WITH THE TIME PERIODIC POISEUILLE FLOW IN TWO

AND THREE DIMENSIONAL PERTURBED CHANNELS

TEPPEI KOBAYASHI

(Received September 25, 2012, revised April 8, 2013)

Abstract. H. Beirão da Veiga proved that, for a straight channel in Rn (n arbitar-
ily large) and for a given flux with the time periodicity, there exists a unique time periodic
Poiseuille flow in a straight channel in Rn. Furthermore, the existence of a time periodic
solution in a perturbed channel (Leray’s problem) is shown for the Stokes problem (arbitary
dimension) and for the Navier-Stokes problem (n ≤ 4). Concerning the Navier-Stokes case, a
quatitative condition requaired to show the existence of a time periodic solution depends not
just on the flux of the time periodic Poiseuille flow but also on the domain it self. In this pa-
per, by applying the result of H. Beirão da Veiga and C. J. Amick, we succeed in proving the
independence of such a condition on the particular domain.

1. The time periodic Poiseuille flow. In this section, for a straight channel inRn(n =
2, 3), which is parallel to the x1-axis, let us consider a time periodic flow of an incompressible
viscous fluid which is also parallel to the x1-axis.

In the case n = 2, for a > 0 we suppose Σ := (−a, a). In the case n = 3, we suppose
that Σ is a bounded smooth simply connected domain in R2. We write

ω = R ×Σ .

Then ω is a straight and infinite channel, which is parallel to the x1-axis, and Σ is a cross
section of the channel ω.

In the straight and infinite channel ω, let us consider the nonstationary Navier-Stokes
equations

(1.1)
∂u

∂t
− ν�u+ (u · ∇)u+ ∇p = 0 in R × ω ,

(1.2) divu = 0 in R × ω ,

(1.3) u = 0 on R × ∂ω

with the time periodic condition

(1.4) u(t) = u(t + T ) in ω
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and the flux condition

(1.5)
∫
Σ

u(t) · ndS = α(t) (t ∈ R) ,
where u = u(t, x) and p = p(t, x) are the unknown velocity and the unknown pressure of the
fluid motion in ω, respectively, ν is the given viscosity constant, T (> 0) is a given constant,
n is the unit parallel vector to the x1-axis and α(t) is a given T -periodic real function.

Since we look for a solution pallalel to the x1-axis, we may assume that

u(t, x) = (v(t, x), 0) (n = 2) ,

u(t, x) = (v(t, x), 0, 0) (n = 3) .

Then it follows that v does not depend on x1 from (1.2), (u · ∇)u = 0 and p depends only on
t and x1 from (1.1). Therefore we obtain the problem

(1.6)
∂v

∂t
− ν�v = − ∂p

∂x1
in R ×Σ ,

(1.7) v = 0 on R × ∂Σ

with the time periodic condition

(1.8) v(t) = v(t + T ) in Σ (t ∈ R)
and the flux condition

(1.9)
∫
Σ

v(t)dS = α(t) (t ∈ R) ,

where � = ∂2/∂x2
2 (n = 2), � = ∂2/∂x2

2 + ∂2/∂x2
3 (n = 3). We can consider the corre-

sponding problem also in R2. We recall that, by appealing to the ideas introduced [4], Galdi
and Robertson [8] showed that, for n = 2, the axial pressure gradient and the flow rate are
connected through a simple relation.

It is easy to see that v does not depend on x1 and p depends only on t and x1. Therefore
it follows from the equation (1.6) that ∂v/∂t−ν�v and ∂p/∂x1 depends only on t . Moreover,
we assume that

p(t, x1) = ψ(t)x1 ,

where ψ = ψ(t) is the unknown function. Integrating (1.6) onΣ , we obtain

ψ(t) = − 1

|Σ|
(
α′(t)− ν

∫
Σ

�v(t)dS

)
,

where |Σ| is the Lebesgue measure ofΣ . Therefore there exists a time periodic solution u of
the Navier-Stokes equations (1.1)–(1.5) in ω, with the form u = (v, 0) or u = (v, 0, 0), if
and only if v is a solution of the problem

(1.10) v′ + νAv − ν

|Σ| (Av, e)e = α′

|Σ| e
with the time periodic condition

(1.11) v(t) = v(t + T ) (t ∈ R)
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and the flux condition

(1.12) (v(t), e) = α(t) (t ∈ R) ,
where e(y) = 1 (y ∈ Σ), A = −� with the domain D(A) = H 2(Σ) ∩ H 1

0 (Σ), (v, e) =∫
Σ
vedS.

Before stating the time periodic result, we introduce the function space. Let X be a
Banach space. We set

H 1
π(R)= {ϕ ∈ H 1

loc(R); ϕ(t) = ϕ(t + T ) a.e. t ∈ R} ,
L2
π (R;X)= {ϕ ∈ L2

loc(R;X); ϕ(t) = ϕ(t + T ) in X for a.e. t ∈ R} ,
Cπ (R;X)= {ϕ ∈ C(R;X); ϕ(t) = ϕ(t + T ) in X for t ∈ R} .

Beirão da Veiga [4] proved that for n ≥ 2 if a flux α ∈ H 1
π(R) is given, then there exists a

unique time periodic solution vα of this problem (1.10)–(1.12) satisfying

vα ∈L2
π(R;H 1

0 (Σ) ∩H 2(Σ)) ∩ Cπ(R;H 1
0 (Σ)) ,

(vα)′ ∈L2
π(R;L2(Σ)) .

In this paper, we consider the case n = 2 and n = 3.
We apply the regularity result for the heat equations to vα . Therefore it is easy to prove

that

vα ∈L2
π(R;H 1

0 (Σ) ∩Hn+1(Σ)) ∩ Cπ(R;H 1
0 (Σ)) ,

(vα)′ ∈L2
π(R;Hn−1(Σ)) .

Set

V α(t, x)= (vα(t, x), 0) (n = 2) ,

V α(t, x)= (vα(t, x), 0, 0) (n = 3) .

In this paper, let us call V α “the time periodic Poiseuille flow”.

2. Time periodic problem in a perturbed channel. In the case n = 2, for ai >
0 (i = 1, 2) we set Σi := (−ai, ai). In the case n = 3, we define Σi as a bounded smooth
simply connected domain in R2. We write

ωi = R ×Σi (i = 1, 2) .

In the channel ωi , if a flux α ∈ H 1
π(R) is given, then there exists a unique solution vαi of the

time periodic problem (1.10)–(1.12) on Σi . Set

V αi (t, x)= (vαi (t, x), 0) (n = 2) ,

V αi (t, x)= (vαi (t, x), 0, 0) (n = 3) .

For a certain L > 0 we set

ω01 = {x ∈ ω1; x1 ≤ −L} ,
ω02 = {x ∈ ω2; x1 ≥ L} .
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FIGURE 1.

Let Ω a smooth and unbounded domain in Rn(n = 2, 3) and ∂Ω a boundary of the domain
Ω . We suppose

Ω ∩ ω01 = ω01 ,

Ω ∩ ω02 = ω02 .

Let ω0 beΩ\(ω01 ∪ω02). ω0 is a perturbed and bounded part, ω01 and ω02 are channel parts.
The boundary ∂Ω of Ω has connected components Γ0, Γ1, . . . , ΓJ of C∞-surface such that
Γ1, . . . , ΓJ lie inside of Γ0 with Γi ∩ Γj = ∅ for i �= j , and such that ∂Ω = ⋃J

j=0 Γj . Let
us call the domainΩ “a perturbed channel”. See the Figure 1.

In this paper, for a perturbed channelΩ we consider the Navier-Stokes equations

(2.1)
∂u

∂t
− ν�u+ (u · ∇)u+ ∇p = f in (0, T )×Ω ,

(2.2) divu = 0 in (0, T )×Ω

with the boundary condition

(2.3) u = 0 on (0, T )× ∂Ω ,

(2.4) u → V αi as |x| → ∞ in ω0i (i = 1, 2)

and the time periodic condition

(2.5) u(0) = u(T ) in Ω,

where u = u(t, x) and p = p(t, x) are the unknown velocity and the unknown pressure of an
incompressible viscous fluid in Ω , respectively, while ν > 0 is the kinematic viscosity and f
is the prescribed external force.

We will seek a solution of (2.1)–(2.5) of the form

u = v + V α ,

where the velocity field V α is to be such that

divV α = 0 in Ω ,

V α = 0 on ∂Ω ,

V α = V αi in ω0i (i = 1, 2) ,
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V α(t) = V αi (t + T ) in Ω (t ∈ R) ,
V α|ω0 ∈ H 1

π((0, T );H 1(ω0)) ,

whereH 1(ω0) = {H 1(ω0)}n (n = 2, 3). Let us callV α “the extended time periodic Poiseuille
flow”.

Beirão da Veiga [4] treated the above time periodic problem. He proved that there exists a
time periodic solution with the time periodic Poiseuille flow under the restricted flux condition

C(Ω)
√
ν + ν−2‖α‖H 1(0,T ) ≤ 1

2
ν ,

where the constant C(Ω) depends onΩ .
Amick [2] obtaind the following stationary result. S is the two or three dimensional

unbounded straight cylinder, where in the case n = 3 any cross section Σ of S is a circle. V
is the classical stationary Poiseuille flow in S, so it does not depend on the time. We set

(2.6) σ(V ) = sup
ϕ∈H 1

0,σ (S)

((ϕ · ∇)ϕ, V )S
‖∇ϕ‖2

2,S

.

The constant σ(V ) depends only on the cylinder S and the classical Poiseuille flow V . Amick
[2] proved that in a two and three dimensional perturbed cylinderical domain, there exists a
stationary solution with the classical Poiseuille flow V under the restricted flux condition

(2.7) σ(V ) < ν .

This result is applied to the time periodic problem under the same inequality (2.7) by Kobaya-
shi [13].

In this paper the above upper bound (2.7) is replaced by a more general, and natural,
upper bound, where roughly speaking, in definition (2.6) the classical Poiseuille flow V will
be replaced by the time periodic Poiseuille flow V α(t). Such a constant denotes γ̂ α. For the
details, see Definitions 3.2 and 3.3. If

(2.8) γ̂ α < ν ,

we prove that for the perturbed channel Ω there exists a time periodic weak solution of the
Navier-Stokes equations with the time periodic Poiseuille flow.

Before stating our results we introduce some function spaces. C∞
0,σ (Ω) is the set of all

real smooth vector functions with compact support in Ω such that divϕ = 0. L2
σ (Ω) is the

closure of C∞
0,σ (Ω) in L2(Ω). The L2 inner product and norm onΩ are denoted as (·, ·) and

‖·‖2, respectively. H 1
0(Ω) andH 1

0,σ (Ω) are the closures ofC∞
0 (Ω) andC∞

0,σ (Ω) inH 1(Ω),

respectively. H 1
0(Ω) and H 1

0,σ (Ω) are the Hilbert spaces with respect to the inner product
((u, v)) = (∇u ,∇v).

Let X be a Banach space. C([0, T ];X), L2((0, T );X), L∞((0, T );X) and H 1((0, T );
X) are the usual Banach spaces. Cπ([0, T ];X) and H 1

π((0, T );X) are the sets of all the
C([0, T ];X) andH 1

π((0, T );X) functions, respectively, satisfying the time periodic condition
u(0) = u(T ) in X.
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3. Results. Our definition of a time periodic weak solution of the Navier-Stokes equa-
tions (2.1)–(2.5) is as follows.

DEFINITION 3.1. A measurable function u = u(t, x) in (0, T ) × Ω is called a time
periodic weak solution of the Navier-Stokes equations if u satisfies the following condition.

(1) v := u− V α ∈ L2((0, T );H 1
0,σ (Ω)) ∩ L∞((0, T );L2

σ (Ω)).
(2) u satisfies∫ T

0
−(u,ϕ)ψ ′ + {ν(∇u ,∇ϕ)+ ((u · ∇)u,ϕ)}ψdt

=
∫ T

0
(H 1

0,σ )
′ 〈f ,ϕ〉H 1

0,σ
ψdt (ϕ ∈ H 1

0,σ (Ω),ψ ∈ C∞
0 (0, T )) .

(3) v is time periodic in L2(Ω), that is to say, v satisfies

v(0) = v(T ) in L2(Ω) .

In the straight channel ωi (not Ω), we define a constant concerning the time periodic
Poiseuille flow.

DEFINITION 3.2. We set

(3.1) γ αi (t) := sup
ϕ∈H 1

0,σ (ωi)

((ϕ · ∇)ϕ,V αi (t))ωi
‖∇ϕ‖2

2,ωi

(i = 1, 2, t ∈ [0, T ]) .

For the detailed property of γ αi (t), see Proposition 4.1.

DEFINITION 3.3. We set

γ̂ αi := sup
t∈[0,T ]

γ αi (t) (i = 1, 2) ,

γ̂ α := max{γ̂ α1 , γ̂ α2 } .
Our main theorem on the existence of a time periodic weak solution now reads.

THEOREM 3.1. Suppose that f ∈ L2((0, T ); (H 1
0,σ (Ω))

′) and γ̂ α < ν. Then there
exists a time periodic weak solution.

REMARK 3.1. In this paper, we assume that the semi-infinite channels ω01 and ω02 are
parallel to the x1-axis. But the inequality γ̂ α < ν implies that these semi-infinite channels
may not be parallel.

REMARK 3.2. In this paper, the domain Ω has two outlets ω01 and ω02. We can solve
the J outlets problem applying the similar inequality. We consider a straight channel ωi =
R × Σi (i = 1, . . . , J, J ≥ 3), where Σi is a cross section as Section 1. For a given flux
function αi ∈ H 1

π(R) and in ωi , we have the time periodic Poiseuille flow V
αi
i . We assume

that αi satisfies
∑J
i=1 αi(t) = 0 (t ∈ R). We suppose thatΩ has J outlets ω0i (i = 1, . . . , J )

where ω0i is a semi-infinite channel with the cross section Σi . In the domainΩ , we consider
a time periodic problem with the time periodic Poiseuille flow V

αi
i . We define constant γ̂ =
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max1≤i≤J {γ̂ αii } as Definitions 3.2 and 3.3. Suppose that γ̂ < ν. Then there exists a time
periodic weak solution in Ω .

4. The detailed property of γiα(t). In this section we show the property of the γ αi (t).

PROPOSITION 4.1. Let α, β ∈ H 1
π(R). Then we have

(1) γ αi ∈ H 1
π(R),

(2) γ αi (t) > 0,
(3) γ λαi (t) = |λ|γ αi (t),
(4) γ α+β

i (t) = γ αi (t)+ γ
β
i (t).

By this proposition, Definition 3.2 is meaningful.
4.1. Proof of Proposition 4.1. Let us prove (1). It is easy to see that, for any |h| < 1

and ϕ ∈ H 1
0,σ (ωi), the inequality

((ϕ · ∇)ϕ,V αi (t + h))ωi − ((ϕ · ∇)ϕ,V αi (t))ωi
‖∇ϕ‖2

2,ωi

≤ C‖vαi (t + h)− vαi (t)‖Hn−1(Σi)

holds true, where C depends on Sobolev’s Imbedding Theorem Hn−1(Σi) ↪→ L∞(Σi) and
the Poincaré inequality in ωi . Therefore it follows that

(4.1)
∣∣γ αi (t + h)− γ αi (t)

∣∣ ≤ C‖vαi (t + h)− vαi (t)‖Hn−1(Σi)
.

Since vα ∈ H 1((0, T );Hn−1(Σi)), for any interval (a, b) ⊂ (0, T ) we have
∫ b

a

‖vαi (t + h)− vαi (t)‖2
Hn−1(Σi)

h
dt ≤ C

∫ T

0
‖(vαi )′(t)‖2

Hn−1(Σi)
dt .

Hence it follows from (4.1) that γ αi ∈ H 1(0, T ).
Let us prove (2). Let ϕ be H 1

0,σ (ωi). Set ξ (x) = ϕ(−x). Then ξ ∈ H 1
0,σ (ωi). We have

by a direct calculation

((ϕ · ∇)ϕ,V αi (t))ωi
‖∇ϕ‖2

2,ωi

= − ((ξ · ∇)ξ ,V αi (t))ωi
‖∇ξ‖2

2,ωi

.

Therefore we get the inequality

(4.2) −γ αi (t) ≤ ((ϕ · ∇)ϕ,V αi (t))ωi
‖∇ϕ‖2

2,ωi

≤ γ αi (t) .

This proves that γ αi (t) ≥ 0. Now we assume that

(4.3) γ αi (t) = 0 .

It follows from (4.2) that

((ϕ · ∇)ϕ,V αi (t))ωi = 0 (ϕ ∈ H 1
0,σ (ωi)) .

Now for any ψ ∈ C∞
0 (ωi), we set

ϕ =
(
∂ψ

∂x2
,− ∂ψ

∂x1

)
in ωi (n = 2) ,
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ϕ =
(
∂ψ

∂x2
,− ∂ψ

∂x1
, 0

)
in ωi (n = 3) .

Then ϕ ∈ C∞
0,σ (ωi). It follows that

0 = ((ϕ · ∇)ϕ,V αi (t))ωi =
∫
ωi

ψ
∂3ψ

∂x1∂x
2
2

vαi dx .

It implies that

(4.4)
∂3ψ

∂x1∂2x2
= 0 in ωi .

Since ψ ∈ C∞
0 (ωi) is an arbitrary function, this is a contradiction. This proves (2).

Let us prove (3). We know that λvαi and vλαi are solutions of (1.10)–(1.11)with the flux
condition λα. Therefore we have λV αi = V λαi . It implies that γ λαi (t) = λγ αi (t) for any λ > 0.
Let ϕ be H 1

0,σ (ωi). Set ξ (x) = ϕ(−x). Then ξ ∈ H 1
0,σ (ωi). We obtain

((ϕ · ∇)ϕ,V λαi (t))ωi
‖∇ϕ‖2

2,ωi

= −λ((ξ · ∇)ξ ,V αi (t))ωi
‖∇ξ‖2

2,ωi

by a direct calculation. It implies that γ λαi (t) = −λγ αi (t) for any λ < 0.

Let us prove (4). We know that vα+β
i and vαi + v

β
i are solutions of (1.10)–(1.11) with

the flux condition α + β. Therefore we have V α+β
i = V αi + V

β
i . It implies the equality

γ
α+β
i (t) = γ αi (t)+ γ

β
i (t).

5. Preliminary.
5.1. Lemma. In this subsection we show some useful inequlity for the proof of the

existence of a time periodic weak solution.

LEMMA 5.1. Let u ∈ H 1
0(Ω). Then

‖u‖2
L4(Ω)

≤ 21/2‖u‖2‖∇u‖2 (n = 2) ,

‖u‖2
L4(Ω)

≤ 2‖u‖1/2
2 ‖∇u‖3/2

2 (n = 3) .

LEMMA 5.2. Let u ∈ H 1
0,σ (Ω) and v, w ∈ H 1(Ω). Then

((u · ∇)v,w) = −((u · ∇)w, v) ,
((u · ∇)v, v) = 0 .

Moreover, let v, w ∈ H 1
0(Ω). Then

|((u · ∇)v,w)| ≤ C‖∇u‖2‖∇v‖2‖∇w‖2 .

LEMMA 5.3. For any ε > 0 and w ∈ C([0, T ];Ln(Ω)) (n = 2, 3), there exist an
integer N and functions ψj ∈ L2(Ω) (j = 1, . . . , N) such that

∫ T

0
|((u · ∇)v,w)|dt ≤ ε

∫ T

0
(‖∇u‖2

2 + ‖∇v‖2
2 + ‖u‖2‖∇v‖2)dt +

N∑
j=1

∫ T

0
|(u,ψj )|2dt
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for any u, v ∈ L2((0, T );H 1
0,σ (Ω)).

For the proof of this lemma, see Masuda [17, Lemma 2.5].
5.2. Auxiliary proposition for the extended time periodic flow. The following

propositions are improved for the time periodic Poiseuille flow. For the original propositions,
see Amick [2].

For a fixed t ∈ [0, T ] we define a functional r(t) as

(5.1) ϕ ∈ H 1
0,σ (Ω) �→ ((V α)′(t),ϕ)+ ν(∇V α(t) ,∇ϕ)+ ((V α(t) · ∇)V α(t),ϕ) .

Then we have the following proposition.

PROPOSITION 5.1. The map r(t) is a linear and continuous functional on H 1
0,σ (Ω).

Furthermore we have (H 1
0,σ )

′ 〈r,ϕ〉H 1
0,σ

∈ L2(0, T ) for any ϕ ∈ H 1
0,σ (Ω).

For the proof of this proposition, see Amick [2, Lemma 3.4].
Suppose that θ ∈ C∞(R) satisfies

0 ≤ θ(s)≤ 1 (s ∈ R) ,
θ(s)= 1 (s ≤ −1) ,

θ(s)= 0 (s ≥ 0) .

For any δ > 0, we set

θδ(x) =
⎧⎨
⎩
θ(δx1) (x ∈ ω01) ,

θ(−δx1) (x ∈ ω02) ,

0 otherwise .

Then we have the following proposition.

PROPOSITION 5.2. For any ε > 0, there exists an s ∈ H 1
π((0, T );H 1

0,σ (Ω)) with
compact support such that the inequality

((v · ∇)v,V α) ≤ ((v · ∇)v, s)+ ((v · ∇)v,V αθ2
δ )+ (ε + c0δ)‖∇v‖2

2 (v ∈ H 1
0,σ (Ω))

holds true, where the constant c0 does not depend on ε and δ.

For the proof of this proposition, see Amick [2, p.495–p.496].
We set

(5.2) Γδ(t) := sup
v∈H1

0,σ (Ω)

((v · ∇)v,V α(t)θ2
δ )

‖∇v‖2
2,Ω

.

Then we have the following proposition.

PROPOSITION 5.3. We have

lim
δ→+0

Γδ(t) = max{γ1(t), γ2(t)} .
For the proof of this proposition, see Amick [2, Theorem 4.3].
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6. Proof of Theorem 3.1.
6.1. Time periodic weak solution in a bounded domain. In this section, we prove

Theorem 3.1 for a three dimensional domain. The proof for a two dimensional domain is
similar.

We consider that a sequence of bounded domains Ωn (n ∈ N) such that ω0 ⊂ Ω1,
Ωn ⊂ Ωn+1,

⋃
n∈N Ωn = Ω and ∂Ωn is of class C∞. Let Γ n0 be the outer boundary of Ωn.

FIGURE 2.

In the bounded domain Ωn, we consider the time periodic problems of the Navier-Stokes
equations with the Dirichlet boundary condition

∂u

∂t
− ν�u+ (u · ∇)u+ ∇p = f in (0, T )×Ωn ,

divu= 0 in (0, T )×Ωn ,

u= V α on (0, T )× ∂Ωn ,

u(0)= u(T ) in Ωn .

Precisely, the boundary value V α|∂Ωn satisfies

V α|∂Ωn ∈ H 1
π((0, T );H

1
2 (∂Ωn)) ,∫

Γ n0

V α · ndS = 0 ,

V α = 0 on Γj (j = 1, . . . , J ) .

Therefore there exists a solenoidal bnε ∈ H 1
π((0, T );H 1(Ωn)) such that

bnε = V α on (0, T )× ∂Ωn ,

|((ϕ · ∇)ϕ, bnε (t))Ωn |< ε‖∇ϕ‖2
Ωn (ϕ ∈ H 1

0,σ (Ω
n), t ∈ [0, T ]) .(6.1)

Here, we obtained the inequality (6.1) for three dimensional bounded domains. Correspond-
ing results in dimension two are given in Kobayashi [14], Lemma 2.6. From (6.1), there exists
a solenoidal un ∈ L2((0, T );H 1(Ωn)) ∩ L∞((0, T );L2

σ (Ω
n)) such that

(6.2)
d

dt
(un,ϕ)n + ν(∇un ,∇ϕ)n + ((un · ∇)un,ϕ)n = 〈f ,ϕ〉 (ϕ ∈ V (Ωn)) ,

(6.3) un = V α on (0, T )× ∂Ωn (in the trace sense) ,
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(6.4) un(0) = un(T ) in L2(Ωn) ,

where (·, ·)n denotes the L2 inner product on Ωn. For the proof, see Yudović [26].
6.2. The estimate of an initial value. In the pervious subsection, for the bounded

domainΩn we obtain the time periodic solution un. Set

vn =
{
un − V α in Ωn ,

0 in Ω\Ωn .

In this subsection, we will prove that ‖vn(0)‖2,Ω is bounded with respect to n.
It follows that

(6.5)

vn ∈ L2((0, T );H 1
0,σ (Ω)) ∩ L∞((0, T );L2

σ (Ω)) ,

(vn)
′ ∈ L1((0, T ); (H 1

0,σ (Ω))
′) ,

d

dt
(vn,ϕ)+ ν((vn,ϕ))+ ((vn · ∇)vn,ϕ)+ ((vn · ∇)V α,ϕ)+ ((V α · ∇)v,ϕ)

= 〈G,ϕ〉 ,

(6.6) vn(0) = vn(T ) in L2(Ω) ,

where ϕ is extended as a 0 function on the outside Ωn,

〈G,ϕ〉 = 〈f ,ϕ〉 − ((V α)′,ϕ)− ν(∇V α,∇ϕ)− ((V α · ∇)V α,ϕ) (ϕ ∈ H 1
0,σ (Ω)) .

Setting ϕ = vn in (6.5), we obtain

(6.7)
1

2

d

dt
‖vn‖2

2 + ν‖∇vn‖2
2 = ((vn · ∇)vn,V α)+ 〈G, vn〉 .

We apply Proposition 5.2 to ((vn · ∇)vn,V α). Then for any ε > 0 and δ > 0, there exists an
s ∈ H 1

π((0, T );H 1
0,σ (Ω)) with compact support such that

(6.8) ((vn · ∇)vn,V α) ≤ ((vn · ∇)vn, s)+ ((vn · ∇)vn,V αθ2
δ )+ (ε + c0δ)‖∇vn‖2

2 .

Furthermore, it follows that

((vn · ∇)vn,V αθ2
δ ) = ((vn · ∇)vn,V αθ2

δ )

‖∇vn‖2
2

‖∇vn‖2
2 ≤ Γδ(t)‖∇vn‖2

2 .

We choose ε > 0 such that
ν − γ̂ α − 4ε > 0 .

Applying Proposition 5.3 to Γδ(t), we can choose δ > 0 such that

Γδ(t) ≤ γ̂ α + ε .

Moreover, we choose δ > 0 such that

ν − γ̂ α − 4ε − c0δ > 0 .

It holds that
1

2

d

dt
‖vn‖2

2 + (ν − γ̂ α − 3ε − c0δ)‖∇vn‖2
2 ≤ ((vn · ∇)vn, s)+ C‖G‖2

(H 1
0,σ )

′ ,
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where the constant C depends only on ε. There exists an N ∈ N such that supp(ϕ) ⊂ Ωn for
all n ≥ N . We may set ϕ = s in (6.5). Since

d

dt
(vn, s) = 〈v′

n, s〉 + (vn, s
′) ,

we have

((vn · ∇)vn, s) = − d

dt
(vn, s)− (vn, s

′)− ν((vn, s))

− ((vn · ∇)V α, s)− ((V α · ∇)vn, s)+ 〈G, s〉
≤ − d

dt
(vn, s)+ ε‖∇vn‖2

2 + C(‖∇s‖2
2 + ‖s ′‖2

2 + ‖G‖2
(H 1

0,σ )
′) ,

where the constant C depnds on V α , ε and the Poincaré inequality. We defineK1(t) by

K1(t) = C(‖∇s(t)‖2
2 + ‖s ′(t)‖2

2 + ‖G(t)‖2
(H 1

0,σ )
′) .

Then it follows that

(6.9)
1

2

d

dt
‖vn‖2

2 + (ν − γ̂ α − 4ε − c0δ)‖∇vn‖2
2 ≤ − d

dt
(vn, s)+K1 .

Applying the Poincaré inequality to the second term of the left-hand side of (6.9), we have

(6.10)
d

dt
‖vn‖2

2 + μ‖vn‖2
2 ≤ −2

d

dt
(vn, s)+ 2K1 ,

where

μ = 2(ν − γ̂ α − 4ε − c0δ)

C(Ω)2
.

For a certain ξ > 0 (smaller than μ), multiplying (6.10) by e(μ−ξ)t , we obtain

(6.11)

e(μ−ξ)t d
dt

‖vn(t)‖2
2 + μe(μ−ξ)t‖vn(t)‖2

2

≤ −2e(μ−ξ)t d
dt
(vn(t), s(t))+ 2K1(t)e

(μ−ξ)t

= −2
d

dt
{(vn(t), s(t))e(μ−ξ)t } + 2(μ− ξ)e(μ−ξ)t (vn(t), s(t))+ 2K1(t)e

(μ−ξ)t

≤ −2
d

dt
{(vn(t), s(t))e(μ−ξ)t } + ξe(μ−ξ)t‖vn(t)‖2

2 + (C‖s(t)‖2
2 + 2K1(t))e

(μ−ξ)t ,

where the constant C depends only on μ and ξ . Indeed, it follows from (6.11) that

(6.12)
d

dt
(e(μ−ξ)t‖vn(t)‖2

2) ≤ −2
d

dt
{(vn(t), s(t))e(μ−ξ)t } +K2(t) ,

where

K2(t) = (C‖s(t)‖2
2 + 2K1(t))e

(μ−ξ)t .
Integrating (6.12) on [0, T ], we have

‖vn(T )‖2
2e
(μ−ξ)T ≤ ‖vn(0)‖2

2 − 2(vn(T ), s(T ))e(μ−ξ)T + 2(vn(0), s(0))+K ,
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where

K =
∫ T

0
K2(t)dt .

Since vn and s are time periodic in L2(Ω), for any λ > 0 we have

‖vn(0)‖2
2e
(μ−ξ)T ≤ ‖vn(0)‖2

2 + (λ‖vn(0)‖2
2 + C‖s(0)‖2

2)e
(μ−ξ)T

+ λ‖vn(0)‖2
2 + C‖s(0)‖2

2 +K ,

where the constant C depends only on λ. We set

H =Ke−(μ−ξ)T + C‖s(0)‖2
2(e

−(μ−ξ)T + 1) ,

θ = 1 − λ− (1 + λ)e−(μ−ξ)T .

We choose λ > 0 such that θ is greater than 0. Then we have

‖vn(0)‖2
2 ≤ H

θ
=: M0 .

Consequetly, the sequence ‖vn(0)‖2 is bounded with respect to n.
6.3. A priori estimate and weak limit. In this subsection, we prove that vn is a

bounded sequence in L2((0, T );H 1
0,σ (Ω)) ∩ L∞((0, T );L2

σ (Ω)).
It follows from the equation (6.7) that

1

2

d

dt
‖vn‖2

2 + ν‖∇vn‖2
2 = ((vn · ∇)vn,V α)+ 〈G, vn〉
≤ C(V α)‖vn‖2‖∇vn‖2 + ‖G‖(H 1

0,σ )
′‖∇vn‖2

≤ C1

2
‖vn‖2

2 + ν

2
‖∇vn‖2

2 + C2

2
‖G‖2

(H 1
0,σ )

′ ,

where the constant C1 depends only on V α and ν, the constant C2 depends only on ν. So it
follows

(6.13)
d

dt
‖vn‖2

2 + ν‖∇vn‖2
2 ≤ C1‖vn‖2 + C2‖G‖(H 1

0,σ )
′ .

Applying the Gronwall inequality to (6.13) and integrating from 0 to t (≤ T ), we obtain

‖vn(t)‖2
2 ≤ M0e

C1T + C2

∫ T

0
eC1t‖G‖2

(H 1
0,σ )

′dt =: M1 .

Integrating (6.13) on [0, T ], we deduce the inequality∫ T

0
‖∇vn‖2

2dt ≤ 1

ν
(C1TM1 + C2

∫ T

0
‖G‖2

(H 1
0,σ )

′dt) =: M2 .

For each ϕ ∈ C∞
0,σ (Ω), we choose J ∈ N such that supp(ϕ) ⊂ Ωn for any n ≥ J . Then

we have

|(vn(t),ϕ)| ≤ ‖vn(t)‖2‖ϕ‖2 ≤ M1‖ϕ‖2

and

|(vn(t),ϕ)− (vn(s),ϕ)|
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=
∣∣∣∣
∫ t

s

d

dτ
(vn(τ ),ϕ)dτ

∣∣∣∣
≤

∫ t

s

ν|((vn,ϕ))| + |((vn · ∇)vn,ϕ)| + |((vn · ∇)V α,ϕ)| + |((V α · ∇)vn,ϕ)| + |〈G,ϕ〉|dτ

≤
∫ t

s

(ν‖∇vn‖2 + 2‖vn‖1/2
2 ‖∇vn‖3/2

2 + 2C(V α)‖∇vn‖2 + ‖G‖(H 1
0,σ )

′)‖∇ϕ‖2dτ

≤ (M3|t − s|1/2 +M4|t − s|1/4)‖∇ϕ‖2 ,

where the constant M3 and M4 do not depend on n. Therefore {(vn(t),ϕ)}n≥J is uniformly
bounded and equicontinuous on [0, T ].

Since {vn} is a bounded sequence in L2((0, T );H 1
0,σ (Ω)) ∩ L∞((0, T );L2

σ (Ω)), there

exists a subsequence {vn,k}k of {vn} and v ∈ L2((0, T );H 1
0,σ (Ω)) ∩ L∞((0, T );L2

σ (Ω))

such that

(6.14) vn,k → v (k → ∞) in

{
L∞((0, T );L2

σ (Ω)) weak star ,
L2((0, T );H 1

0,σ (Ω)) weakly .

For any ϕ ∈ C∞
0,σ (Ω), there exists a subsequence {vn,k,i} of {vn,k} such that

(6.15) (vn,k,i ,ϕ) = (v,ϕ) uniformly on [0, T ] (i → ∞)

holds by the Ascoli-Arzelá Theorem.
We will prove that the convergence (6.15) holds for any ϕ ∈ L2(Ω). We have the

orthogonal decomposition

ϕ = ϕσ + ϕp (ϕσ ∈ L2
σ (Ω),ϕp ∈ (L2

σ (Ω))
⊥) .

Since C∞
0,σ (Ω) is dence in L2

σ (Ω), for any η > 0 there exists a ϕησ ∈ C∞
0,σ (Ω) such that

‖ϕησ − ϕσ‖2 < η .

We have

|(v − vn,ϕ)| ≤ |(v − vn,ϕσ − ϕησ )| + |(v − wn,ϕ
η
σ )|

≤ 2M1η + |(v − wn,ϕ
η
σ )|(6.16)

because vn is bounded in L∞((0, T );L2
σ (Ω)). We can choose a subsequence {vn,k}k of {vn}n

such that the second term of the right-hand side of (6.16) goes to 0. Therefore, for any ϕ ∈
L2(Ω) there exists a subsequence {vn,k,i} such that (vn,k,i ,ϕ) converges to (v,ϕ) uniformly
on [0, T ].

6.4. Time periodic weak solution. In this subsection we prove that u = v + V α is a
time periodic weak solution.

For any ϕ ∈ C∞
0,σ (Ω), we choose J ∈ N such that supp(ϕ) ⊂ Ωn for any n ≥ J . We

mulitiply (6.5) by ψ ∈ C∞
0 (0, T ) and integrate on [0, T ]. Then we have∫ T

0
−(vn,ϕ)ψ ′ + {ν((vn,ϕ))+ ((vn · ∇)vn,ϕ)(6.17)

+ ((vn · ∇)V α),ϕ)+ ((V α · ∇)vn,ϕ)}ψdt
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=
∫ T

0
〈G,ϕ〉ψdt .

It follows from (6.14) that there exists a subsequence {vn,k}k∈N such that the left-hand side
of (6.17) except the nonliner term converges to∫ T

0
−(v,ϕ)ψ ′ + {ν((v,ϕ))+ ((v · ∇)V α),ϕ)+ ((V α · ∇)v,ϕ)}ψdt .

We prove that there exists a subsequence {vn,k,i} such that

(6.18)
∫ T

0
((vn,k,i · ∇)vn,k,i ,ϕ)ψdt →

∫ T

0
((v · ∇)v,ϕ)ψdt (i → ∞) .

We have∫ T

0
((vn,k · ∇)vn,k,ϕ)ψdt −

∫ T

0
((v · ∇)v,ϕ)ψdt(6.19)

=
∫ T

0
((vn,k − v) · ∇vn,k,ϕ)ψdt −

∫ T

0
(ψv · ∇ϕ, vn,k − v)dt (=: I1 + I2) .

Now let us consider I1. Applying Lemma 5.3 to I1, we see that for any η > 0 there exists
an integer N1 and ψ l ∈ L2(Ω) (l = 1, . . . , N1) such that

(6.20) |I1| ≤ M5η +
N1∑
l=1

∫ T

0
|(vn,k − v,ψ l )|2dt,

where the constantM5 does not depend on n.
Let us consider I2. Since we know that ψ(t)v(t) · ∇ϕ ∈ L2(Ω) for a.e. t ∈ (0, T ), it

follows that

ψ(t)v(t) · ∇ϕ = Φσ (t)+Φp(t) (Φσ (t) ∈ L2
σ (Ω),Φp(t) ∈ (L2

σ (Ω))
⊥) .

Since vn,k(t)− v(t) ∈ L2
σ (Ω) for a.e. t ∈ (0, T ), we have

(6.21)
∫ T

0
(ψv · ∇ϕ, vn,k − v)dt =

∫ T

0
(Φσ , vn,k − v)dt .

Consequently, it follows from (6.20) and (6.21) that

(6.22) |I1| + |I2| ≤ M5η +
N1∑
l=1

∫ T

0
|(vn,k − v,ψ l )|2dt +

∣∣∣∣
∫ T

0
(Φσ , vn,k − v)dt

∣∣∣∣ .
We can choose a subsequence {vn,k,i}i∈N of {vn,k}k∈N such that the second and third terms
of the right-hand side of (6.22) converge to 0 from (6.15). This proves the convergence of
(6.18).

The above convergence implies that v satisfies∫ T

0
−(v,ϕ)ψ ′ + {ν((v,ϕ))+ ((v · ∇)v,ϕ)+ ((v · ∇)V α,ϕ)+ ((V α · ∇)v,ϕ)}ψdt

=
∫ T

0
〈G,ϕ〉ψdt .
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Since C∞
0,σ (Ω) ⊂ H 1

0,σ (Ω) is dense, we have
∫ T

0
−(v,ϕ)ψ ′ + {ν((v,ϕ))+ ((v · ∇)v,ϕ)+ ((v · ∇)V α,ϕ)+ ((V α · ∇)v,ϕ)}ψdt

=
∫ T

0
〈G,ϕ〉ψdt (ϕ ∈ H 1

0,σ (Ω),ψ ∈ C∞
0 (0, T )) .

Lastly, we prove that v is time periodic in L2(Ω). For any ϕ ∈ L2(Ω), there exists a
subsequence {vn,k} such that the limit (6.15) holds true. Therefore, it follows that

(v(0)− v(T ),ϕ) = (v(0)− vn,k(0),ϕ)+ (vn,k(T )− v(T ),ϕ) → 0 (k → ∞) ,

that is to say, v is time periodic in L2(Ω). We set

u = v + V α .

Then u is a time periodic weak solution.
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