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Abstract. The open vote network (OV-Net [10]) is a secure two-round
multi-party protocol facilitating the computation of a sum of integer
votes without revealing their individual values. This is done without a
central authority trusted for privacy, and thus allows decentralised and
anonymous decision-making efficiently. As such, it has also been imple-
mented in other settings such as financial applications, see e.g. [15,17].

An inherent limitation of OV-Net is its lack of robustness against
denial-of-service attacks, which occur when at least one of the voters
participates in the first round of the protocol but (maliciously or acci-
dentally) not in the second. Unfortunately, such a situation is likely to
occur in any real-world implementation of the protocol with many par-
ticipants. This could incur serious time delays from either waiting for
the failing parties and perhaps having to perform extra protocol rounds
with the remaining participants.

This paper provides a solution to this problem by extending OV-Net
with mechanisms tolerating a number of unresponsive participants, the
basic idea being to run several sub-elections in parallel. The price to
pay is a carefully controlled privacy loss, an increase in computation,
and a statistical loss in accuracy, which we demonstrate how to measure
precisely.
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1 Introduction

Cryptographic voting protocols allow mutually-distrusting entities to verifiably
compute a voting result without revealing more about the private vote inputs
than the actual result. Most of these protocols involve a trusted authority respon-
sible for running the election or tallying the results. However, there exist a num-
ber of so-called “boardroom” or “self-tallying” schemes that do away with the
need for a central authority [13]. In such decentralised schemes, the election is
an interactive protocol between the voters only and it can even be made one-
round, i.e. non-interactive, in a public key setting [7]. Whether a centralised or
decentralised protocol is better-suited to a given situation depends on practical
and context-specific concerns such as whether the trusted authority assump-
tion makes sense. Especially, the decentralised protocol can be used in settings
where there is no natural trusted third party, e.g., a company surveying privacy-
sensitive data of the customers.

The open vote network (OV-Net) is a self-tallying voting scheme proposed by
Hao, Ryan and Zielinski [10]. Improving upon Hao and Zieliński’s earlier AV-net
[9,11], it is a 2-round protocol which makes it an appealing candidate for larger-
scale elections.1 One of OV-Net’s limitations, according to Hao–Ryan–Zieliński,
is that the protocol cannot handle denial-of-service (DoS) events:

“ (...) For example, if some voters refuse to send data in round 2, the tal-
lying process will fail. This kind of attack is overt; everyone will know who
the attackers are. To rectify this, voters need to expel the disrupters and
restart the protocol; their privacy remains intact. However the voting pro-
cess would be delayed, which may prove costly for large scale (countrywide)
elections (...)”—[10, Sect. 3.4]

While the protection of privacy and the identification of culprits are desirable
properties, the need to restart the protocol every time a voter drops out is a very
strong limitation. This weakness is what we set out to rectify in this paper, by
extending OV-Net to handle DoS events gracefully using parallel elections. Our
modifications come at a cost, which we investigate quantitatively.

Some earlier works have already tried to improve the security and efficiency
of OV-Net. In [12] fairness (i.e. preventing that voters get partial results before
casting their vote) was guaranteed by committing to the vote in the first round.
Further, the robustness against denial of service attacks was improved by intro-
ducing a recovery round: if some voters did not participate in the second round,
the remaining voters perform a third round to achieve the partial tally for their
cast votes. However this does not guarantee that there are no fallouts in the
recovery round. In [7] it was shown that using a bilinear group setting and
assuming a public key infrastructure, the voting protocol can be made non-
interactive, i.e. one-round. This decreases the run time considerably, but does
not in itself remove the robustness problem since the list of voters has to be

1 As comparison, the self-tallying protocol of Groth [8] has n + 1 rounds for n voters,
which makes it impractical to use for larger elections.



Time, Privacy, Robustness, Accuracy 21

determined before the election and the result cannot be computed without every
eligible voter participating. Finally, in [15] the OV-Net was implemented via a
smart contract that financially punishes voters who drops out of the election.
This gives an economic incentive to participate in the second round, but does
not prevent dedicated DoS attacks, nor involuntary dropouts e.g. due to lack
of network access, and it assumes that the participants are willing to risk the
economic punishment in the first place.

2 Preliminaries

2.1 Notations

Throughout this paper, we will use the following notations. If X is a finite set,
x

$←− X means that x is sampled uniformly at random from X. When working in
a cyclic group G generated by g, we write [x] to denote gx. If q > 1 is an integer,
we denote by Zq := Z/qZ the ring of integers modulo q. We denote by 1 the
vector whose coordinates are all 1. BD(p, n) denotes the binomial distribution
of mean p for a population n.

Note that due to the page limit a longer version of paper including proofs of
the obtained results and appendices can be accessed here [1].

2.2 Open Vote Network (OV-Net)

We recall here the OV-Net protocol in the simple case of a referendum: there
are two vote choices encoded as 0 or 1 and n voters; each voter will cast a vote
vi ∈ {0, 1} and the final tally will reveal the sum of all votes. Ultimately, we may
set a threshold to choose a final winner based on the tally, but this is beyond
the scope of OV-Net.

We assume that all participants have agreed ahead of time to use a given
cyclic group G of generator g in which the decisional Diffie–Hellman problem is
intractable. Let q be the order of G. Each voter i ∈ {1, . . . , n} samples a random

value xi
$←− Zq as a secret.

1. Round 1: Each voter i ∈ {1, . . . , n} publishes gxi along with a zero-
knowledge proof of knowledge (ZKP) of xi, e.g. a Schnorr proof [16].
When this round finishes, each voter i ∈ {1, . . . , n} does the following:

• checks the validity of the ZKP for all gxj , j ∈ {1, . . . , n}\{i},
• computes: gyi =

∏i−1
j=1 gxj /

∏n
j=i+1 gxj

2. Round 2: Each participant i ∈ {1, . . . , n} publishes gxiyigvi and a ZKP for
vi showing that vi ∈ {0, 1}. In practice, this proof can be implemented using
the technique of Cramer–Damg̊ard–Schoenmakers [5].

At the end of this procedure, each voter checks the proof of knowledge of
all others, and multiplies together all the gxiyigvi ’s. Since

∑
i xiyi = 0 by the

definition of yi, the result is g
∑n

i=1 vi , from which the value
∑n

i=1 vi can be recov-
ered by solving the discrete logarithm problem in G—this is tractable because
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n is small (by cryptographic standards), with the total world population being
less than 234. Thus generic algorithms such as Pollard’s ρ, with a complexity of
O(

√
q), can be used here.

Remark 1. The OV-Net protocol can be extended to more than two candi-
dates by an appropriate encoding of vi [2,6], with the final tally requiring a
(superincreasing) knapsack resolution after a discrete logarithm computation
[10, Sect. 2.2]. Here we focus on the simpler case of two candidates.

2.3 Denial of Service

In the description of OV-Net, we implicitly assume that all participants are
honest, to the extent that the proofs of knowledge are valid and that they follow
the protocol. If one or several voters publish an incorrect proof of knowledge,
or do not follow through with the protocol, then it is impossible to reach a
conclusion for this particular vote event. This is called a denial of service (DoS)
event.

When a DoS event occurs, the non-compliant voters can be identified and
removed from a subsequent vote. However the results for that particular vote
must be discarded (or cannot be computed) and a fresh vote must take place.
This is troublesome for several reasons. One reason is that as n becomes large,
disconnection or time-out events become more common and therefore the proto-
col’s failure probability increases. Another reason is that accounting for protocol
errors and re-voting adds complexity to real-world OV-Net implementations.

3 Parallel OV-Net

We consider a modification of OV-Net where users participate in several voting
sessions in parallel. However, not all voters take part to all votes, as we now
explain. Let n be the number of voters and M the number of parallel vote ses-
sions. Each voter will participate in k pseudo-randomly chosen sessions amongst
M .

More precisely, voter i picks k sessions before the protocol is run which we
call i’s selection. We assume that this selection is pseudo-random, i.e. that any
given selection happens with the same probability 1/

(
M
k

)
. As a result not all

sessions have the same number of voters, a phenomenon that we will need to
account for.

Remark 2. A natural question is whether we could impose a more clever rule,
that would guarantee that there is always the same number of voting opportu-
nities for each of them. Indeed, a solution is provided, in some cases, by Steiner
systems [3]: a Steiner system with parameters t, k, n, written S(t, k, n), is an n-
element set S together with a set of k-element subsets of S (called blocks) with
the property that each t-element subset of S is contained in exactly one block.

The existence of Steiner systems is deeply connected to number-theoretic
properties, and in particular the existence of a S(t, k, n + 1) system precludes
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that of a S(t, k, n). Thus, although we could initially form a balanced set of
voters in some initial setting, it cannot be done if any of the voters bails out (or
is disconnected).

However, it is not obvious how a decentralised pool of voters could agree on
such a setting in a non mutually-trusting way and without leaking private infor-
mation. It also remains an interesting question whether approximately balanced
block designs exist that are “stable” in the sense that they retain this property
when elements are removed. �

Should a voter drop out during a voting session, this particular session will be
discarded, but all sessions in which this voter didn’t participate will go through.
Unfortunately, this also discards all the votes of honest voters in the dropped
session. To overcome this exclusion we allow each voter to vote k times: in other
words, each voter will cast k votes into k independent ballots amongst the M .

Our claim is that in this case, the final tally’s result reflects the choice of hon-
est voters even after discarding all the sessions that were blocked by a dishonest
voter. Furthermore, when several voters are dishonest, their cumulative effect on
the final tally is weighed down by the fact that they shared many vote sessions.
Concretely, for k = M/2, the first dishonest voter makes about M/2 sessions
invalid; but amongst the remaining sessions only about M/4 can share a second
dishonest voter, etc. Hence, this setting tolerates roughly log2 M dropouts, at
the price of running M sessions.

In summary, by running several sessions, several competing phenomena
occur:

1. The overall protocol’s resilience against DoS events is improved as we run
more sessions—more sessions however bring an additional computational and
communication cost;

2. Sessions have a varying number of voters in them, and not every voter par-
takes in every session, which introduces a bias—we can expect this bias to
become small when many sessions are run;

3. The list of participants in each session is public, therefore some information
about individual voters’ preferences is leaked—running more sessions results
in a increased loss of privacy.

There is therefore a balance to be struck, and we must quantify these phenomena
more precisely.

4 Parallel OV-Net DoS Resilience

Let � be the number of voters causing a DoS event; they cause a (random)
number X� of sessions to be discarded. The protocol fails when all sessions have
been discarded, i.e., when X� ≥ M—this cannot happen when � < M/k. If
� ≥ M/k then it is possible to stop the protocol entirely when the selections
of dropping voters cover all sessions. However, the likelihood of this happening
when each selection is random and independent is low, as many of the dropping
voters will have sessions in common.
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This is a particular variant of the famous coupon collector’s problem, which
has been extensively studied.

Lemma 1. The average number of DoS events necessary to cause an overall
failure, when we run M parallel sessions and each voter partakes in k of them is

E[� | overall protocol failure] =
(

M

k

) M∑

r=1

(−1)r−1

(
M
r

)

(
M
k

) − (
M−r

k

) .

Proof. See Appendix A.1 in [1].

Figure 1 compares simulation results to the formula of Lemma 1, showing excel-
lent agreement. The simulation is for M = 50 and k varying from 1 to 49,
over 105 runs2. Using this information, we can choose parameters M and k to
accommodate a given number of potential drop-outs.

Fig. 1. Simulated and predicted minimum number of DoS events necessary to cause
an overall protocol failure, for M = 50 and k = 1, 2, . . . , 49.

When we have fewer than the critical number of DoS events, the remaining
sessions can be tallied. We can estimate the number of remaining valid sessions
as μ = M − X�:

Lemma 2. E(μ) = (M − k)
(
1 − k

M

)�−1

Proof. See Appendix A.2 in [1]

Finer results about the distribution X� are given in Appendix A.5 in [1].

2 The corresponding Python code is available from the authors upon request.
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5 Tally-Combining Algorithms

In this section we formalise how a final result can be obtained from the parallel
OV-Net protocol. It is practical at this point to use vector notations.

We make the assumptions that voters are consistent, i.e., that they make the
same choice across all the voting sessions in which they participate3. We denote
vi the choice of voter i, and collect this (unknown) information into a vector
v = (v1, . . . , vn). If the vote went through with no incident, we would obtain the
final tally: V =

∑n
i=1 vi = v · 1.

When a voter drops out, all the sessions in which he participated are dis-
carded. Let 0 < μ ≤ M be the number of remaining sessions and for each
session j ∈ {1, . . . , μ} let sj,i be the number of times that voter i partic-
ipated in session j; hence sj,i can take values in {0, 1} with the minimum
value meaning that voter i did not partake in session j, and the maximum
value indicating that they voted during session j. The tally for session j is
therefore tj :=

∑n
i=1 sj,ivi = v · sj where sj := (sj,1, . . . , sj,n). By defini-

tion, sj,i = 0 if voter i dropped out, and sj is non-zero (otherwise μ = 0).
At the end of the procedure, the following information is public knowledge:
T := (t1, . . . , tμ) S := (s1, . . . , sμ).

The question is now: given (S,T ), and the parameters pp = (n, k,M, μ) how
well can we approximate V ? To answer this question we need a precise definition
of the error.

Definition 1 (Average- and worst-case error). Let A be an algorithm tak-
ing as input S, T and (implicitly) pp, and returning a real number. We refer to
A as a tally-combining algorithm, and we write δ(v,S) := V − A(S,T ) for the
tallying error.

Since δ depends on a choice of v, which is not public information, and since
S is a collection of randomly chosen selections, it is more meaningful to consider
the average error:

πA
avg := Ev ,S [δ(v,S)],

where v and S span all their possible values.
While A may give results that are close to V on average, there may be cor-

ner cases in which the predicted value wanders substantially away from V ; this
phenomenon is controlled by the worst-case error:

πA
wc := max

v ,S
|δ(v,S)| ,

where again v and S span all their possible values.

A simple tally-combining algorithm is given by averaging the tallies and rescaling
to account for lost sessions, i.e.

Anäıve(−, T ) =
M

μk
(1 · T )

3 This makes our analysis simpler, but in practice a voter casting inconsistent votes
simply weakens his own position.
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(we must divide by k since each voter casts k votes).

Lemma 3. The näıve tally-combining algorithm gives:

πnäıve = 0
avg

Proof. See Appendix A in [1].

See also [1] for the worst case values.
More generally, let x = (x1, . . . , xμ) be a vector of real coefficients, and define

the weighed tally-combining algorithm Ax(T ) = x · T , which gives the result

Vx = x · T = v ·
⎛

⎝
μ∑

j=1

xjsj

⎞

⎠ = v · βx .

How do we choose x? The following result partially answers this question.

Theorem 1. A sufficient condition for the bias of Ax to be zero in average is
1·(1−w) = 0 where w = x1s1+· · ·+xμsμ. Furthermore, under these conditions,
standard deviation is proportional to ‖1 − w‖22.
Proof. See Appendix A.4 in [1].

If S spans Rn, then by definition of a generating family we can find {x1, . . . , xμ}
such that w = 1.4 Concretely, we can construct an orthonormal basis of Rn from
vectors of S and project 1 onto each coordinate. We dub this method of com-
puting x the minimum variance tally-combining algorithm (MV, Table 1). When
S span R

n, the MV algorithm gives an exact result (zero bias and variance).

Table 1. Algorithm for minimum variance tally combining (MV).

Input: S = {sj}, T , μ, n
Output: Vx , x, w

1. Z ← ∅
2. For each sj ∈ S, if sj is linearly independent from Z, Z ← Z ∪ sj

3. ̂Z ← GramSchmidtOrthogonalisation(Z)
4. For each ẑj , let x̂j ← 1 · ẑj

5. w ← ∑

j x̂j · ẑj

6. M ← (zj · ẑ�)j,�

7. x ← (M�)−1 · w
8. Vx ← x · T
9. Return Vx, x, w

4 The average value of μ such that S spans R
n is

∑n
k=1

2k

2k−1
. See [4] for more precise

results.
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However, when S does not span R
n, the MV algorithm can only find a vector

w close to 1, namely the closest such vector in terms of Euclidean distance that
can be expressed in terms of vectors in S. This is still the solution resulting in
the smallest variance, but no longer the solution with the least bias!

This leads us to consider the following approach: we can construct tally-
combining algorithms that guarantee zero bias, and select amongst these an
algorithm that minimizes variance. Indeed, the constraint 1 · (1 − w) = 0 can
be guaranteed by determining x1 as a linear function of other variables5. It
remains to minimize ‖1 − w‖22 which is simply a quadratic form in μ − 1 vari-
ables. Therefore its minimum is easy to find as it amounts to solving a linear
system in μ−1 rational variables. We call the corresponding algorithm the zero-
bias minimum variance tally-combining algorithm (ZBMV, Table 2). In Table 2,
“symbolic expression” refers to the notion that x1, . . . , xμ are not evaluated but
are symbols to be manipulated formally.

Table 2. Algorithm for zero-bias minimum variance tally combining.

Input: S = {sj}, T , μ, n
Output: Vx , x

1. Let x1 be the symbolic expression 1
1·s1

(

n − ∑μ
j=2 xj(1 · sj)

)

2. Let D be the symbolic expression ‖1 − ∑μ
j=1 xjsj‖2

2

3. (x�
2, . . . , x

�
μ) ← solutions of the linear system ∇D = 0

4. x�
1 ← 1

1·s1

(

n − ∑μ
j=2 x�

j (1 · sj)
)

5. x ← (x�
1, . . . , x

�
μ)

6. Vx ← x · T
7. Return Vx, x

5.1 Comparing Tally-Combining Algorithms

Let’s consider a toy example to illustrate how the three discussed tally-combining
algorithms compare. Throughout this section, we take n = 4, M = 6, μ = 3,
k = 3 and s1 = (1, 1, 1, 0), s2 = (1, 1, 0, 0), s3 = (0, 1, 0, 1) and T = (1, 0, 0).6

The results are summarized in Table 3.

Algorithm 1 (Zero-bias minimum variance). We can express x1 in terms
of x2 and x3 to ensure zero bias:

x1 =
1

1 · s1
(n − x2(1 · s2) − x3(1 · s3)) =

1
3

(4 − 2x2 − 2x3) .

5 There is nothing special about s1, any other vector of S can be used. Note that
1 · s1 �= 0.

6 Note that in this example, knowing the tallies t1 and t2 reveals one participant’s
vote. This privacy issue is addressed later in the paper.
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Table 3. Comparison between tally-combining algorithms on the toy example.

Tally-combining algorithm Bias Variance Tally

1 · (1 − w) ‖1 − w‖2
2 x · T

Näıve algorithm −2/3 4/3 2/3

ZBMV 0 5/7 6/7

MV 1/3 1/3 1

We are left to determine x2 and x3, which we choose to minimize the distance
of w = x1s1 + · · · + x3s3 to 1, i.e. the quantity

‖1 − w‖22 =
n∑

i=1

(1 − wi)
2 = (1 − x1 − x2)2 + (1 − x1 − x2 − x3)2 + (1 − x1)2

+ (1 − x3)2 =
1
3
(4 + 5x2

2 + 2x2(x3 − 3) + 3x2
3 − 2x3)

This achieves its global minimum value of 5/7 at x�
2 = 4/7 and x�

3 = 1/7.
Therefore, we have: x = 1

7 (6, 4, 1). In particular, w = x�
1s1 + · · · + x�

3s3 =
1
7 (10, 11, 6, 1) (note that computing this vector is not necessary for the algorithm).

Algorithm 2 (Minimum variance). We begin by computing an orthonor-

mal basis Ẑ from S: ẑ1 = 1√
3
(1, 1, 0, 0) ẑ2 =

(
1√
6
, 1√

6
,−

√
2
3 , 0

)
ẑ3 =

(− 1√
6
, 1√

6
, 0,

√
2
3 ) which gives x̂1 =

√
3, x̂2 = 0, x̂3 =

√
2/3, from which we

get w = 1
3 (2, 4, 3, 2) and finally x =

(
1,− 1

3 , 2
3

)
.

As expected this tally-combining algorithm has smaller variance (since ‖1 −
w‖22 = 1/3), compared with the ZBMV algorithm in of Algorithm 1, but its bias
is not guaranteed to be zero (since 1 · (1 − w) = 1/3).

Algorithm 3 (Näıve tally combining). Let’s use the näıve tally-combining
algorithm, i.e., x = M

μk1. We assume here that M = 6, μ = 3 and k = 3 so that
x = 2

31, yielding w = (43 , 2, 2
3 , 2

3 ). The bias for this algorithm is −2/3, however
this algorithm has larger variance than the other two, since ‖1 − w‖22 = 4/3.

6 Privacy of Parallel OV-Net

In this section we investigate the decrease in privacy which we can expect due
to the multiple parallel elections which are tallied individually, thus giving the
adversary extra information. As an example, let us consider a simple referendum.
If the outcome is unanimous , we of course lose privacy. However, the probability
of this might be small. However, if we split the voters into two elections, the
probability is roughly the square root of the old probability, i.e. much higher.

Recall that M is the number of the parallel and independent elections, n
is the total number of voters and k is the number of elections that each voter
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has randomly chosen to participate in. We denote by Mi the set of voters who
participated in election i and we consider that the elections are enumerated from
1 to M . Let Res(Mi) be the random variable that gives the number of ‘Yes’ votes
in the set Mi. We recall also that Yi is the random variable that gives the number
of voters in the set Mi.

6.1 Definitions and Assumptions

To quantify privacy, we use the δ-privacy definition for voting from [14] which
assumes that, besides the voting elements of a voting protocol, there exists an
additional party called an observer O, who can observe publicly available infor-
mation. Moreover, we assume that among the n honest voters, there exists a
voter Vobs who is under observation. For the sake of clarity, Vobs will refer at the
same time to the voter under observation and to its vote.

Definition 2 Let P be a voting protocol and Vobs be the voter under observation.
We say that P achieves δ-privacy if the difference between the probabilities

P[(πO||πVobs
(Yes)||πv)(l) → 1] and P[(πO||πVobs

(No)||πv)(l) → 1]

is δ-bounded as a function of the security parameter �, where πO, πVobs
and πv

are respectively the programs run by the observer O, the voter under observation
Vobs and all the honest voters v (clearly without Vobs).

To calculate the privacy we use the following result from [14]

δ(n) =
∑

r∈M∗
Yes,No

(ANo
r − AYes

r ) (1)

where M∗
Yes,No = {r ∈ R : AYes

r ≤ ANo
r }, R is the set of all possible election

results and Aj
r denotes the probability that the choices of the honest voters yield

the result r of the election given that Vobs’s choice is j.
We consider a referendum with n honest voters with a uniform distribution

between yes and no votes. For simplicity, we will assume that nobody abstains.
We also assume that no voters are corrupted. This is reasonable, since instruct-
ing corrupted voters to vote in a special way does not give further advantage
compared to simply knowing the corrupted voters’ votes. Moreover, we assume
that at least one of the elections in which Vobs participated is surviving.

6.2 Basic Cases: M = k = 1 and M ≥ 1, k = 1

The δ for a single referendum is:

δ(n) =
(

1
2

)n 1
n

n∑

a=0

(
n

a

)

|2a − n|

=

⎧
⎨

⎩

2−n
(

n
n
2

)
if n is even

21−n

n

(
n

1+[n
2 ]

) (
1 +

[n

2

])
Otherwise
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where the first equality holds using the result from (1) and the second one using
the binomial theorem.

The formula above refers to the case M = k = 1 where all voters had chosen
to vote in the same and unique election 1. For the case M > 1 and k = 1, δ
becomes a random variable and the expected value of δ of the election in which
Vobs is participating can be defined as follows:

δexpected(n,M) =
n∑

n′=1

P(Y ′
i = n′)δ(n′) (2)

where Y ′
i is the random variable that gives the number of voters who participated

in the election i, including Vobs; and Y ′
i ∼ 1 + BD(n − 1, k

M ). Equation (2) for
k = 1 and M > 1 becomes:

δexpected(n,M) =
n∑

n′=1

(
n − 1
n′ − 1

) (
1
M

)n′−1 (

1 − 1
M

)n−n′

δ(n′)

Figure 2 shows that privacy is almost lost when M � n.

Fig. 2. The relationship between M and δexpected for different values of n =
10, 102, 103, 104.

6.3 General Case

In this part we give a general formula of δ. To this end, we consider the following.
Let y = (y1, . . . , yM ) be an assignment of voters such that Card(Mi) = yi for
i ∈ [1,M ]. We can obtain all the possible assignments of voters by respecting the
condition

∑M
i=1 yi = nk. Let r = (r1, · · · , rM ) be a possible result corresponding
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to the assignment y with ri = Res(Mi) for i ∈ [1,M ]. r verifies the conditions
(
∑M

i=1 ri) mod k = 0 and ri ≤ yi for i ∈ [1,M ]. Remember that Res(Mi) gives
the number of “Yes” votes in Mi. We have Res(Mi) ∼ BD(yi,

1
2 ) for i ∈ [1,M ].

Intuitively, δ can be expressed as the following:

δ(n,M, k) =
∑

y1+···+yM=nk

P(Y1 = y1, . . . , YM = yM ) ·
∑

r∈M∗
Yes,No

(ANo
r − AYes

r )

By definition of Aj
r we have Aj

r = P(Res(M1) = r1, . . . ,Res(MM ) =
rM/Vobs = j) with j ∈ {Yes, No}.

To proceed we will introduce an additional notation. Remember that Mi

denotes the voters in election i. Define Σk as the subsets of {1, . . . , M} of car-
dinality k. For σ ∈ Σk we define M ′

σ =
⋂

i∈σ Mi, i.e. the voters participating
in the elections in the set σ. Note that the assignment of voters to elections is
uniformly random, i.e. each voter is assigned uniformly and uniquely to a M ′

σ.
Also Zσ is the random variable determining the number of voters in M ′

σ.
There are c =

(
M
k

)
possible M ′

σs . Suppose that σs are enumerated from 1 to
c. Let z = (zσ1 , . . . , zσc

) be an assignment of voters such that zσi
= Card(M ′

σi
),

for (σi, i) ∈ Σk × [1, c]. All the possible assignments of voters z are obtained by
respecting the condition

∑
σi∈Σk

zσi
= n.

The variables Zσ, σ ∈ Σk correspond to the problem of putting n indistin-
guishable balls into c distinguishable boxes, i.e. the vector Z = (Zσ1 , . . . , Zσc

) fol-
lows a multinomial distribution with equal parameters pi = 1/c, and

∑
σ∈Σ zσ =

n including Vobs. We can now calculate the probability for the assignment of the
voters, and rewrite our formula as:

δ(n,M, k) =
∑

z1+···+zc=n

P(Zσ1 = zσ1 , · · · , Zσc
= zσc

) ·
∑

r∈M∗
Yes,No

(ANo
r − AYes

r )

Let r′ = (r′
σ1

, . . . , r′
σc

) such that r′
σi

= Res(M ′
σi

) for (σi, i) ∈ Σk × [1, c]. The
variables Res(M ′

σ), σ ∈ Σk, are independent and follow the binomial distribution
of parameters zσ and 1/2.

In the case M = c, which means k = M − 1 or k = 1, there is a one-to-one
correspondence between the sets (Mi)i∈[1,M ] and (M ′

σ)σ∈Σk
. However this is not

true in general and we have a relation between r and r′ defined by the function
f as follows:⎛

⎜
⎝

r1
...

rM

⎞

⎟
⎠ = B ·

⎛

⎜
⎝

r′
σ1
...

r′
σc

⎞

⎟
⎠ = f(r′

σ1
, · · · , r′

σc
) where B = (biσ)1≤i≤M

σ∈Σk

and biσ =

1i∈σ.
We can now calculate the probability Av

r as: Av
r =

∑
r′|r=f(r′) A′v

r′ and we
have: A′v

r′ = P(Res(M ′
σ1

) = r′
σ1

, · · · ,Res(M ′
σc

) = r′
σc

/Vobs = v).
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Suppose that Vobs is in the subset M ′
σ1

. It is symmetric to choose any other

subset. We have: A′v
r′ =

(
1
2

)zσ1−1

· h(zσ1 , r
′
σ1

) · ∏c
i=2

(
1
2

)zσi

· (zσi
r′

σi

)
where

h(x, y) =

{(
x−1
y−1

)
if v = “Yes”

(
x−1

y

)
if v = “No”

Remember that: M∗
Yes,No = {r′ : A′Yes

r′ ≤ A′No
r′ }, and A′No

r′ ≥ A′Yes
r′ is true

when r′
σ1

∈ [0, [ zσ1
2 ]]. We have

∑[
zσ1
2 ]

r′
1=0 (A′No

r′ − A′Yes
r′ ) =

1
2

∑zσ1
r′
1=0 |A′No

r′ − A′Yes
r′ |.

Since Vobs is in M ′
σ1

, the vector to consider is Z ′ = (Zσ1 − 1, Zσ2 , · · · , Zσc
).

The formula of δ becomes:

δ(n, M, k) = an ·
n∑

zσ1=1

E(zσ1)

zσ1 !

n∑

zσ2=0

· · ·
n∑

zσc=0

δ∑
σ∈Σ zσ ,n

zσ2 ! · · · zσc !
= an ·

n∑

z=1

E(z)

z!
· (c − 1)n−z

(n − z)!

with an =
(n − 1)!

cn−1
·
(

1
2

)n

, E(z) = 2n−z+1
(

z
[ z
2 ]

)·[ z
2

]
and δi,j is the Kroenecker

delta function.

Fig. 3. Privacy leakage as function of n for the cases (M, k) = (3, 2), (4, 2).

7 Conclusions and Further Research

Conclusions. In this paper, we presented a new version of the protocol OV-Net
which run several elections in parallel to achieve robustness against DoS fail-
ures without having to resort to time-consuming extra rounds. We computed
quantitatively the increase in robustness from having M parallel elections with
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each voter participating in k of these, and demonstrated that robustness can
be significantly improved. The improvement in time and robustness comes at a
cost in terms of accuracy and privacy. We stress that our protocol is well fitting
for decision-making applications where accuracy and privacy is not of ultimate
importance. We presented three different algorithms on how to optimally com-
pute the tally using this new OV-Net version and we quantitatively measured
the privacy decrease that is expected due to the multiple partial election results.
The results allow the protocol initiator to choose parameters to carefully balance
the wanted robustness with a controlled privacy loss, statistical loss in accuracy,
as well as increased computation.

Future work. An idea to consider is redistribution i.e. elections are conducted in
several electoral districts. Unlike general elections, where the final result is known
for the entire country only, in redistributed elections results are consolidated
per district and only then added up. This could confine problematic voters to a
district of their own, as follows: partition the n voters into d districts of n′ = n/d
voters, then run a vote in each of them. Then recompose the result by adding
up the final tally. This strategy confines the DoS problem to districts that do
not influence each other. However, DoS tolerance is not exactly multiplied by
d because each district is not allowed to exceed k unresponsive voters. In other
words, tolerance is multiplied by d as long as the constraint that there are no
more than k unresponsive voters per district is respected.
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