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Abstract
The late Miocene Messinian salinity crisis was an evaporitic episode that occurred 
throughout the Mediterranean; it concluded with a transition from hypersaline to 
fresher-water “lake sea” (Lago Mare) conditions prior to the Pliocene. Whereas numer-
ous researchers propose that Lago Mare sediments accumulated in a Mediterranean-
wide lake filled with Paratethyan waters, other workers reject this hypothesis. Here, to 
test this Paratethyan-overflow model, we develop a novel time-probabilistic approach 
to evaluate the distribution of precession-related deposits. We apply our methodol-
ogy to 24 circum-Mediterranean sites, focusing on two previously untested param-
eters: the probability of preserving intrabasin precession cycles; and the similarities 
in interbasin preservation. Our results, which show an increase in preservation and 
similarity in successively younger cycles, display a trend opposite to what is expected 
from a flooded Mediterranean. Consequently, we conclude that Lago Mare accumula-
tions were deposited in disconnected, shallow lacustrine environments, thereby cast-
ing doubt on the widely accepted Paratethyan-supply hypothesis.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 Chevron U.S.A. Inc and University of Oxford. Terra Nova published by John Wiley & Sons Ltd.

1  |  INTRODUC TION

The late Miocene Messinian salinity crisis (MSC) was a pan-
Mediterranean episode (5.97–5.33 Ma; Gautier et al., 1994; Krijgsman 
et al., 1999; Manzi et al., 2013) responsible for the emplacement of 
>1 × 106 km3 of halite, gypsum, and anhydrite as well as overlying si-
liciclastics and mixed-lithology sediments (Figure 1a; Ryan, 1973; Haq 
et al., 2020). Whereas the crisis is interpreted to have begun with the 
onset of evaporitic conditions caused by shoaling across the Betic 
and Rifian corridors (Duggen et al., 2003; Simon and Meijer, 2015), it 
is thought to have concluded during “lake sea” (Lago Mare—LM) con-
ditions caused by Paratethyan overspill, which introduced endemic 
fauna (Cita, 1973; Hsü et al., 1977). Though many topics in MSC re-
search are debated widely, the subject of a Paratethyan spillover is 
among the most contentious (see Andreetto et al., 2021).

To date, two well-established models have been proposed to ex-
plain the detailed chronology of the MSC. Although both models invoke 
Paratethyan overflow, they differ in the number of purported con-
nections. For example, in the first hypothesis, termed the “consensus 
model” (Figure 1b; CIESM, 2008 and Roveri et al., 2014), one LM inter-
val is used to infer a single Paratethyan invasion. In the second hypothe-
sis, herein termed the “alternative model” (Figure 1c), three LM intervals 
are recognised, two of which are interpreted to represent episodes 
of Paratethyan supply (Clauzon et al.,  2005; Do Couto et al.,  2014; 
Popescu et al., 2015). While both the consensus model and alternative 
model use biota to draw conclusions regarding a Paratethyan overspill, 
neither hypothesis evaluates the host sediments independently of the 
organisms contained within them. Consequently, we test the concept of 
Paratethyan flooding using only LM accumulations. Our results, which 
provide new insight into the dynamics of the terminal MSC, propose not 
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only an updated framework for the latest Messinian deposits but also 
an evaluation of formerly unconsidered parameters.

2  |  DATA AND METHODS

To test the hypothesis of a Paratethyan spillover, previously published 
data were compiled from 24 circum-Mediterranean locations spanning 
the following countries (from west to east): Spain; Morocco; Algeria; 
Italy; Tunisia; Libya; Greece; Egypt; Cyprus; Lebanon; Israel; and 
Turkey. Of the 24 locales assessed, 16 were situated onshore, while the 
remaining eight were positioned offshore. Using these publicly avail-
able data, a new analytical approach, herein termed “time probability”, 
was created to evaluate objectively the preservation of individual MSC 
precession cycles (21.7 kyr/cycle with approximately 29 cycles span-
ning the MSC [5.97–5.33 Ma]; Krijgsman et al., 1999). Although we ap-
plied our methodology to precession-paced sedimentation, it can be 
employed on any age-constrained accumulations where knowledge 
exists of a specified temporal range of deposition. In addition to the 
creation of a time-probabilistic framework, similarities between inter-
basin preservation and rates of precession-scaled sedimentation were 
calculated. While we compared our results to those expected from the 
consensus model, we were unable to test the alternative model due 
to a lack of temporal consistency among workers (compare Clauzon 
et al., 2005, Do Couto et al., 2014, and Popescu et al., 2015).

2.1  |  Facies

Previous work was compiled to better understand the temporal 
distribution of MSC facies throughout the Mediterranean; con-
sequently, depositional interpretations were kept consistent with 
original publications. Because our study focused on evaluating the 
events leading up to and including a purported Paratethyan water 
source, particular attention was given to cycles spanning 5.60–
5.33 Ma (“stage 2” and “stage 3” of the consensus model).

2.2  |  Probability of intrabasin preservation

Restoring MSC accumulations to the time domain is complicated by 
variable uncertainties in age control; this is particularly the case for 
resolving deposits to the precession scale. To address this variabil-
ity, cyclic accumulations were dealt with in terms of independent 
probabilities. Whereas our methodology treats repetitive deposits 
as having been driven by precession (the current view of the MSC; 
see Krijgsman et al., 1999), this may be invalid locally as accumula-
tions could have been controlled by auto-cyclic processes (avulsion).

Figure 2a presents a summary of our approach, whereby uncer-
tainties in age drive the probability of occurrence for individual de-
posits. As such, we introduce the following equation:

where p is the probability of occurrence of an individual accumulation 
within a given precession cycle; d is the number of cyclic deposits; and 
c is the number of precession cycles. For example, if one accumulation 
(d = 1) is well constrained to one precession cycle (c = 1), the proba-
bility of occurrence for that interval is 1.0 (1/1 or 100%). Yet, if one 
deposit (d = 1) has poorly constrained age control limiting it to three 
potential precession cycles (c = 3), the probability of occurrence for 
each of the three intervals is 0.33 (1/3 or 33%). Therefore, because it 
is not possible to know the exact temporal position of such an accu-
mulation, it can be deduced that there is a 1/3 chance that the deposit 
will occupy any one of the three precessional intervals. This same logic 
applies to multiple, stacked, accumulations which compose the strati-
graphic architecture of post-evaporitic facies.

2.3  |  Difference in interbasin preservation

In addition to calculating the probability that precession cycles are 
recorded in a single basin, interbasin differences were also calcu-
lated. Figure  2b shows a summary of this approach whereby the 
probability of a given precession cycle (at a specific location) was 
subtracted from all other sites (over the same time). This methodol-
ogy yielded a result where all precession deposits were scaled to one 
another. For example, over a given 21.7 kyr interval, if two locations 
each yield a probability of 0.5 (50% chance cycles would accumu-
late), the difference (0.0), suggests that they are 100% similar. Yet, if 
a 0.9 probability exists at one location, which is compared to another 
site with a 0.1 probability, their difference suggests that sites differ 
by 0.8 (80%), indicating that they are dissimilar. This methodology 
was applied to the final 13 precession cycles of the MSC, which were 
plotted as matrices and reduced to single average values of variance.

2.4  |  Rates of precession-scaled sedimentation

Along with the probability of preserving precession deposits, sedi-
mentation rates were approached probabilistically. Consequently, (1)p = d∕c,

Statement of significance

This study presents a test of the prevailing palaeo-
environmental hypothesis for the late Miocene Messinian 
salinity crisis (5.97–5.33  Ma) that prior to the earliest 
Pliocene, there existed a single Mediterranean-wide lake 
filled with Paratethyan waters. Using a new methodology, 
which draws on independent probabilities, we constructed 
a pan-Mediterranean, time-stratigraphic framework to test 
this Paratethyan-spillover model. Our study shows that 
there exists no compelling stratigraphic evidence for an in-
terconnection, supports the notion of regional non-marine 
conditions, and therefore challenges the widely accepted 
assumption of a major Paratethyan water source.
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averages taken over longer durations are driven downward (“Sadler 
effect”; Sadler, 1981). For example, if a 10 m-thick accumulation is con-
strained to one precession cycle (21.7 kyr), the average sedimentation 
rate for that interval is 0.046 cm/yr. Yet, given a 10 m-thick deposit 
with age control constrained to three precession cycles (65.1 kyr), the 
average sedimentation rate is 0.015 cm/yr (1/3 of 0.046 cm/yr).

3  |  RESULTS

Based on data from previous publications and the analyses re-
ported here, post-evaporitic facies are interpreted to have formed in 

non-marine settings during the latest Messinian. Although the num-
ber of precession cycles is not consistent among locations, there ex-
ists an average tendency towards both increased preservation and  
similarity in successively younger sediments. Taken together, rates 
of precession-scaled sedimentation show a marked west-to-east in-
crease, with the highest values in the eastern Mediterranean.

3.1  |  Facies

Post-evaporitic accumulations throughout the Mediterranean 
comprise mixed-lithology sediments, siliciclastics, carbonates, and 

F I G U R E  1  Map and chronology of late Miocene deposits associated with the Messinian salinity crisis (MSC). (a) Post-evaporitic sediments 
in the western Mediterranean are underfilled relative to their basal surfaces, whereas the opposite trend is observed in the east. The focus 
of the study is the 24 locations listed at the bottom of the figure. Evaporitic and post-evaporitic polygons modified from Lofi (2018); Lago 
Mare (LM—“lake sea”) accumulations from Carnevale et al. (2006) and Orszag-Sperber (2006); and extent of Dacic, Exinian, and Pannonian 
basins (Paratethys) from van Baak et al. (2017). The map does not include the evaporitic lower unit (LU) underlying both the upper unit (UU) 
and mobile unit (MU) in the western Mediterranean. (b) Three-step “consensus model” (modified from CIESM, 2008 and Roveri et al., 2014) 
showing a single LM interval, interpreted to represent a sole Paratethyan supply from 5.42 to 5.33 Ma. (c) Alternative model (after Do Couto 
et al., 2014) displaying three LM intervals, two of which are interpreted to signify Paratethyan overspill during base-level highstands (5.64–
5.60 Ma—LM3, and 5.46–5.33 Ma—LM1). Differences between workers are noted [Colour figure can be viewed at wileyonlinelibrary.com]
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evaporites; they are interpreted to have formed in numerous sub-
basins under alluvial, fluvial, and lacustrine conditions (Figure  3 
and references therein). Non-marine intervals are highly vari-
able, display marked lateral and vertical changes in facies, and are 

associated locally with conglomerates, palaeosols, burrows, root 
traces, and desiccation cracks (evidence of sub-aerial exposure). 
Deposits are enveloped by both unconformable and conformable 
surfaces, with the lower horizon defined as either the “intermediate 

F I G U R E  2  Summary of methods used in the study, see text for details. (a) Time-probabilistic framework showing the likelihood of 
occurrence for intrabasin precession cycles. (b) Interbasin differences in preservation probability. (c) Probability-scaled sedimentation rates 
[Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

(c)
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F I G U R E  3  Time-stratigraphic record of the MSC (see Figure 1 for locations) using the “consensus model” (see CIESM, 2008 and 
Roveri et al., 2014). The number of preserved cycles and their inferred temporal ranges are identified by circles and squares, respectively. 
References used for each location are noted; see Material S1 [Colour figure can be viewed at wileyonlinelibrary.com]
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erosion surface” (IES) or the “intermediate surface” (IS; Lofi, 2018). 
The upper horizon (“top erosion surface”—TES or “top surface”—TS; 
Lofi,  2018) represents the termination of the MSC and coincides 
with the Miocene–Pliocene boundary.

3.2  |  Probability of intrabasin preservation

Figure  4a displays our time-probabilistic framework, which was 
created by applying the analysis in Figure  2a to the sites listed in 
Figure  3 (see supplemental material). Results from this evaluation 
show that precession-controlled accumulations are preserved ir-
regularly, separated locally by hiatuses, and distributed more vari-
ably throughout western areas than in the east. Where present, 
preservation probabilities range from >10% to 100% and without a 
clear spatial trend. Superimposing facies over the time-probabilistic 
framework (Figure 5) reveals that irregular trends are confined pri-
marily to post-evaporitic sediments.

Whereas individual locales show no apparent trend in pres-
ervation, a clear pattern emerges when averages are taken for all 
24 sites. This trend, which is displayed in Figure  4b, exhibits four 
distinct modes of probability constrained with the following ap-
proximate intervals: 5.97–5.61  Ma; 5.61–5.51  Ma; 5.51–5.40  Ma; 
and 5.40–5.33 Ma. While the earliest interval displays a consistent 
likelihood of occurrence for evaporitic deposits, the latest intervals 
show a stepwise increase in probabilities for three post-evaporitic 
pulses (pulse 1, p = 0.35; pulse 2, p = 0.46 and pulse 3, p = 0.60). 
Boundaries separating pulses appear to coincide generally with low 
values of eccentricity.

3.3  |  Difference between interbasin preservation

Along with probabilities, similarities in interbasin preservation show a 
marked increase in successively younger intervals (temporal reduction in 

F I G U R E  4  Time-probabilistic framework for the MSC (based on Figure 3). (a) Probabilities for 24 sites used in the study, showing variable 
nature of preservation throughout the Mediterranean. (b) Three marked increases in average probabilities (pulses 1–3) are noted from 5.61 
to 5.51 Ma, 5.51 to 5.40 Ma, and 5.40 to 5.33 Ma and appear to coincide with low values of eccentricity [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b)

F I G U R E  5  Generalised distribution of MSC facies, superimposed 
over the time-probabilistic framework of Figure 4. The change from 
evaporitic to post-evaporitic deposits occurs transitionally [Colour 
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  6  Similarities and variances for the last 13 precession cycles of the MSC (5.62–5.33 Ma). (a) Matrices showing similarities for all 
sites (for each precession cycle). (b) Temporal reductions in variance mark increased similarities in successively younger intervals [Colour 
figure can be viewed at wileyonlinelibrary.com]

(a)

(b)
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variance; Figure 6a). When average variances (Figure 6b) are calculated 
over pulses 1–3, they decrease from 0.097 to 0.091 to 0.062, suggest-
ing that accumulations became more similar first by approximately 7% 
(pulses 1–2) then by 47% (pulses 2–3). These results show that facies 
in closer temporal proximity to the Miocene–Pliocene boundary have 
higher rates of similarity than those situated at more distant positions.

3.4  |  Rates of probability-scaled sedimentation

Figure 7a shows spatial trends in maximum thickness and probability-
scaled sedimentation rates from 5.60 to 5.33 Ma. Thicknesses are 
highly variable, span three orders of magnitude, and are thinnest in 
the Alikanas Basin (Greece) and thickest in the Adana Basin (Turkey). 
When considering “stage 3,” sedimentation rates in the west-
ern Mediterranean (Figure 7b) are approximately four to six times 
lower than those in the central (Figure 7c) and eastern (Figure 7d) 
Mediterranean, respectively. Although the central Mediterranean 
shows an irregular pattern, rates in western and eastern areas show 
a weak (increasing) trend in successively younger intervals.

4  |  DISCUSSION

To test the Paratethyan-overflow hypothesis, the chronology from 
the consensus model was used to calculate expected values for the 
aforementioned statistical parameters; divergences among these 

attributes and those reported above were then used to gauge the 
predictive fidelity of the consensus model. Because highstand 
exchange is the inferred mechanism of Paratethyan supply (see 
Andreetto et al.,  2021), the ensuing analysis is necessarily a test 
of the effect of base-level change on controlling time-dependent 
trends in facies, probabilities, and similarities.

Figure 8a shows a conceptual spatial–temporal reconstruction of 
the MSC using the chronology of the consensus model. It summarises 
the current view that a single cycle of base-level change drove the 
following three MSC stages: “stage 1” (5.97–5.60 Ma)—highstand and 
base-level fall; “stage 2” (5.60–5.55 Ma)—base-level low stand; and 
“stage 3” (5.55–5.33 Ma)—the base-level rise and highstand. During 
“stage 3”, a Paratethyan overspill is interpreted to have initiated 
abruptly at 5.42 Ma and to have lasted until the Miocene–Pliocene 
boundary at 5.33 Ma (Roveri et al., 2014). This water mass exchange 
is interpreted primarily from biota (Grossi et al.,  2008), which are 
thought to have been introduced during Paratethyan spillover. 
Although no direct estimates of palaeo-water depth are given for 
such a Mediterranean-wide lake filled with Paratethyan waters, hun-
dreds to thousands of meters are implied (see Krijgsman et al., 2018; 
their fig. 1).

The abrupt flooding of the Mediterranean would have resulted 
in significant and rapid landward migrations of depositional sys-
tems and shorelines. Such an event would have also caused the 
burial of antecedent non-marine deposits by deep-marine accu-
mulations. The latter would have been marked by significantly 
lower sedimentation rates engendered by increased distances 

F I G U R E  7  Thicknesses and maximum sedimentation rates for western, central, and eastern regions. (a) Maximum thicknesses are 
observed in the eastern Mediterranean. (b-d) Probability-scaled sedimentation rates show a general west-to-east increase [Colour figure can 
be viewed at wileyonlinelibrary.com]

(a)

(b) (c) (d)
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from sediment sources and by the onshore capture of sedimen-
tation. Figure  8b shows the resultant stratigraphic architecture 
of these purported processes at three pseudo-wells (analogous to 
Figure 3) and highlights the implied spatial–temporal framework 
of MSC facies.

Along with the physical stratigraphy of “stage 3”, the consensus 
model is inconsistent with the temporal relationships implied from the 
model itself. In the former, non-marine deposits are not overlain by 
deep-marine accumulations (Figure 8a, left), and sedimentation rates 
are not observed to be lower. In the latter, although the consensus 
model necessitates that “stage 3” onshore-younging accumulations 
are overlain by a basinward-expanding hiatus (Figure 8b, right), such 
relationships are not observed. Whereas large-magnitude flooding 
would have also produced decreased probabilities and similarities in 
successively younger sediments (driven by regional backstepping), 
these trends are opposite of those observed.

To correct for spatial and temporal inconsistencies in the con-
sensus model, we propose an updated hypothesis that better ex-
plains observed trends in facies, similarities, and probabilities. 
Figure 9 summarises this model, in which depositional patterns are 
controlled by in-filling of alluvial, fluvial, and lacustrine systems after 
significant drawdown (“stage 2”). Such in-filling is marked by three 
depositional pulses (1–3, with relatively static sedimentation rates) 
that produced increasing trends in probabilities and similarities. 
Although local patterns in backstepping and basinward shifts in fa-
cies are observed, they have been explained by both basin-centred, 
load-induced subsidence (driving basin-margin uplift and erosion; 
Duggen et al.,  2003; Norman and Chase,  1986; Ryan,  2008) and 
by increased fluvial runoff (Madof et al., 2019). These mechanisms 
therefore imply that biota were delivered by an unknown source 
(potentially avian; Benson, 1978) and that organisms may have been 
introduced early in “stage 3”. A trend towards increased biodiversity 

F I G U R E  8  Conceptual spatial–temporal reconstruction of 
the MSC using the chronology of the “consensus model” (see 
CIESM, 2008 and Roveri et al., 2014). (a) The Paratethyan spillover 
from 5.42 to 5.33 Ma results in the burial of antecedent non-marine 
deposits and the landward migration of depositional systems. (b) 
Three pseudo-wells show the implied stratigraphic architecture 
(left) and temporal relationships (right). Decreased preservation 
probability in successively younger sediments is caused by regional 
flooding, which is also responsible for an overlying basinward-
expanding hiatus [Colour figure can be viewed at wileyonlinelibrary.
com]

(a)

(b)

F I G U R E  9  Proposed model for the terminal MSC (5.61–5.33 
Ma) showing three distinct intervals of basin in-filling (pulses 1–3). 
(a) In deeper palaeogeographic regions, accumulations deposit at 
earlier times (compared to those in shallower positions); in marginal 
locations, tilting and rotation (up and down arrows) are driven 
by basin-centred, load-induced subsidence. (b) Spatial–temporal 
trends in accumulation showing implied facies and probabilities. 
When compared to those inferred from the “consensus model,” 
this interpretation better describes the observed patterns 
throughout the Mediterranean [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a)

(b)
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in successively younger intervals, which parallels patterns in proba-
bility and similarity, indicates that biota flourished under late “stage 
3” conditions (Grossi et al., 2008).

5  |  CONCLUSION

A compilation of 24 pan-Mediterranean locations has led to the 
construction of a time-stratigraphic framework for the MSC (5.97–
5.33 Ma). We find that terminal Messinian deposits (“stage 3”) ac-
cumulated in alluvial, fluvial, and lacustrine settings and exhibit a 
time-dependent increase in probability and similarity. Although nu-
merous workers invoke a Paratethyan source (brackish to freshwa-
ter) to explain Mediterranean post-evaporitic facies and biota, we 
argue instead that the accumulations themselves provide no com-
pelling evidence for such an overflow. Our conclusions, which pro-
pose a more plausible non-marine scenario, provide a new model for 
the demise of the most misunderstood evaporitic episode in Earth 
history.
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