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Guided acoustic waves are generated in nanopatterned silicon membranes with aluminum gratings

by optical excitation with a femtosecond laser. The spatial modulation of the photoacoustic

excitation leads to Lamb waves with wavelengths determined by the grating period. The excited

Lamb waves are optically detected for different grating periods and at distances up to several lm

between pump and probe spot. The measured frequencies are compared to the theoretical

dispersion relation for Lamb waves in thin silicon membranes. Compared to surface acoustic

waves in bulk silicon twice higher frequencies for Lamb waves (197 GHz with a 100 nm grating)

are generated in a membrane at equal grating periods.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4919132]

Lamb waves are acoustic waves guided between the

mechanically free opposite surfaces of an elastic plate.

Various methods for the generation and detection of Lamb

waves by lasers have been developed for applications in

noncontact nondestructive testing, in evaluation of thin films,

and in free-standing plates.1–5 These investigations include

the all-optical monitoring of zero-group-velocity Lamb

modes as demonstrated recently by Prada et al.4,5

Continuous progress in the development of methods for the

fabrication of membranes with a thickness in the nm range

for a variety of applications6 requires the evaluation of their

parameters and quality, e.g., their dispersion relation and

damping, the development of methods for both the genera-

tion and detection of acoustic waves at GHz frequencies.

Standing waves in free-standing films of lm thickness

have been first detected by Brillouin scattering.7 Recently,

femtosecond lasers have been successfully applied to gener-

ate and detect longitudinal acoustic modes in free-standing

silicon (Si) membranes with frequencies up to 500 GHz

corresponding to 20 nm wavelengths.8–10 As the dispersion

relations of propagating Lamb waves are emerging from

standing wave resonances,11 these experiments indicate that

propagating Lamb waves in membranes at similarly high

frequencies could be monitored all-optically as well, if the

conditions for their effective generation and detection are

achieved. Recently, Rayleigh waves with wavelengths down

to 45 nm (Refs. 12 and 13) and frequencies up to 90 GHz

(Ref. 12) have been generated and detected based on the dep-

osition of a metallic grating of nanometer periodicity on the

substrate surface. Rayleigh waves are surface acoustic waves

on a semi-infinite substrate.14 Here, we combine the femto-

second pump-probe technique applied earlier to the monitor-

ing of standing wave resonances8–10 and of Rayleigh

waves12 with nanostructuring of the surface12,13,15 in order

to achieve the generation and detection of propagating Lamb

waves at frequencies up to 197 GHz and wavelengths down

to 50 nm in thin semiconductor membranes. Those high fre-

quencies can be generated because for the same wave vectors

the dispersion relations of Lamb waves contain modes of

much higher frequencies than those of Rayleigh waves. The

highest frequencies of the detected coherent Lamb modes

are nearly three times higher than the highest frequencies of

thermal Lamb modes detected by classical Brillouin

scattering.16

Different samples with aluminum (Al) gratings from

100 nm to 500 nm period are prepared on crystalline Si mem-

branes (326 nm thickness). The grating stripes are oriented

perpendicular to the [110]-direction on the (001)-surface of

Si with a filling factor of 50%. The thickness of the Al is

17 nm and the stripes are partly embedded in the membrane

(see Fig. 1). A part of the membrane is covered by a uniform

Al film for reference measurements. Details regarding the

fabrication of the membranes and the gratings are discussed

in the previous publications.12,17

The method and setup used are similar to the one previ-

ously employed for the generation and detection of Rayleigh

waves.12 We excite and detect the Lamb waves with an

FIG. 1. Pump-probe scheme of the measurement on a thin Si membrane

with an Al grating. Pump and probe pulses are laterally displaced.a)martin.grossmann@uni-konstanz.de
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optical pump-probe technique based on high-speed asyn-

chronous optical sampling (ASOPS) with femtosecond lasers

at GHz repetition rate.18 The measurements are performed in

a confocal microscope configuration, in which the laser spots

can be focussed below 2 lm full width at half maximum

(FWHM) on the sample surface. The pump (probe) polariza-

tion is perpendicular (parallel) to the grating stripes. For

measurements of the propagation of the Lamb waves, pump

and probe spots can be spatially displaced relative to each

other in the focal plane. The wavelengths for the pump and

probe are 790 nm with a power of 20 mW and 820 nm with a

power of 3.5 mW, respectively. For the single

stripe measurement, one and a half and four times larger

intensities were used in the pump and the probe laser beams,

respectively.

Fig. 2 shows three different temporal transients for a

grating with 100 nm period, corresponding to three different

distances between pump and probe spots. The top graph

shows the measurement with spatially overlapping pump and

probe spots. A strong change in reflectivity can be seen in

the beginning of the transient, marking the time at which the

pump pulse excites electron-hole pairs in the Si membrane.

Superimposed on the decay of the electronic contribution are

oscillations, which are shown in the inset. The background is

subtracted in order to improve the visibility of the oscillatory

components. These are coherently excited acoustic phonons

representing acoustic eigenmodes of the membrane. The

middle and bottom graphs show two measurements with dis-

tances of 6.8 lm and 7.8 lm between the pump and probe

spots. The oscillation maxima (the center of the wavepackets

indicated by the black arrows) are centered around 300 ps

for the shorter and 800 ps for the longer distances. The

temporal difference between the two maxima reflects the

additional propagation length, which the acoustic wave

packet needs to travel in the membrane from the pump to the

probe spot. The 1 lm larger distance results in 500 ps delay,

which corresponds to a group velocity of around 2000m/s.

The acoustic wave packet would need for the 6.8 lm dis-

tance, 3.4 ns. We can therefore conclude that due to the high

repetition rate of the lasers (800MHz), the measured signal

stems from a preceding pump pulse at a multiple of the

inverse repetition rate (1.25 ns). The propagating Lamb

modes are discussed in more detail below.

In Figs. 3(a)–3(c), the Fourier spectra for the 100 nm

grating corresponding to the time-domain data in Fig. 2 are

shown. The spectrum where both pump and probe are spa-

tially overlapping (a) shows a dense frequency distribution.

The two spectra ((b) and (c)), taken at a distance of 6.8 and

7.8 lm between pump and probe, show a strong change of

the amplitude ratios of different spectral components and a

less dense mode spectrum; a total of sixteen modes can be

clearly resolved. As previously observed for Rayleigh waves,

we assume that the grating structure excites wavevectors

corresponding to the inverse grating period.12 Additionally,

the Fourier analysis reveals that odd spatial harmonics are

excited due to the fact that the grating is not sinusoidal but

rectangular, while even spatial harmonics can be excited

because of defects in the grating periodicity.

The observed frequencies are plotted in Fig. 4 for two

different wave vectors, i.e., their corresponding grating pe-

riod: the basic grating period and the first even harmonic

(black diamonds). Further, we plot the Lamb dispersion rela-

tion for a thin Si plate along the [110]-direction.19 By look-

ing at the basic wave vector, most of the measured

frequencies can be clearly assigned to a mode given by the

Lamb dispersion. Slight discrepancies can be explained by

the measurement system: the sample is excited every 1.25 ns

with 800MHz, which limits the frequency resolution to

around 1 GHz and also limits the determination of the wave-

vector due to the finite length of the wave packet excited

with the grating; the grating is illuminated with a pump spot

of less than 2 lm FWHM. When the grating period gets

smaller, the error due to the finite laser spot decreases. As

well, the fabrication process gives both a variation in grating

period and membrane thickness (65 nm), leading to an

increased error for smaller grating periods. Both

FIG. 2. Time-resolved modulation of the reflected probe beam DR/R0 of the

326 nm Si membrane with Al grating (17 nm thickness and 100 nm period)

on top. The transient at the top shows the modulation when pump and probe

spots are overlapped on the grating. The transient in the middle (bottom)

shows the modulation when pump and probe are separated by 6.8lm

(7.8lm). The arrows indicate the position of the center of the individual

wavepackets. Note a change in the amplitude of DR/R0 by three orders of

magnitude between top and middle/bottom graphs.

FIG. 3. (a)–(c) Fourier spectra of the different time transients in Fig. 2. (d)

The damping distance over frequency is plotted for the 100 nm and the

500 nm grating and the expected frequencies given by the Lamb dispersion

relation are shown by vertical lines (for symmetric modes in red and for

antisymmetric in black).
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contributions lead to a nearly homogeneous error of 5%–6%

for the wavevector of every grating period.

There are some frequencies, however, that cannot be

attributed to a frequency given by the dispersion relation.

Here, the higher harmonics are important. We checked, for

example, that the experimental frequency of 196.8 GHz is

closer to the theoretical frequency of 196.3 GHz of the 15th

asymmetric Lamb mode with the second harmonic of the

grating period than to the frequency of 192.1 GHz of the

19th symmetric Lamb mode with the basic grating period.

The second harmonic therefore means that this mode has a

wavelength of 50 nm.

In the spectra with the spatially separated pump and probe,

the 58.4GHz mode has the largest amplitude. It corresponds to

a Lamb wave of 100nm wavelength with a phase velocity of

about 5840m/s, which is close to the transversal speed of

sound in bulk Si. We attribute the large amplitude to the fact

that in the dispersion relation, two Lamb modes are close to-

gether in the vicinity of this frequency and wavevector.

There are two modes which cannot be explained by any

of the harmonics: at 24.9 and 44.1GHz. Due to the spatial

width of the pump laser spot we also excite modes with a

small wavevector, quite smaller than for the grating period

itself. As can be seen in Fig. 4, two modes can be found at

small wave vectors that match the measured frequencies

very well. A priori we cannot distinguish any of the meas-

ured frequencies by their excitation processes (finite spot

size, grating period, and higher harmonic). However, as

explained above, for some of the individual frequencies we

are sure that they correspond to higher harmonics of the gra-

ting period.

Figure 3(d) shows the damping for the individual modes.

The damping distance, i.e., the distance over which the am-

plitude reaches 1/e, was evaluated by fitting the FFT ampli-

tudes with an exponential decay over distance. For the lower

frequencies, damping distances around 2 lm are found,

while for the higher frequencies lower damping distances

around 1 lm are found.

We perform the same experiments on samples with gra-

ting periods of 200 to 500 nm in 100 nm steps. Up to 21

modes are visible. All observed frequencies are plotted in

Fig. 4 with respect to their grating period including the first

three harmonics. Because it is not possible to distinguish,

which mode belongs to which wavevector, we did not assign

any mode to an individual wavevector. As for the 100 nm

grating case, most of the measured frequencies can be clearly

assigned to a frequency given by the Lamb dispersion.

The damping distance for the 500 nm grating is shown in

Fig. 3(d) together with the 100 nm case. For both structures,

a similar frequency dependent damping behavior can

be seen.

The measured Lamb modes are excited due to two dif-

ferent physical mechanisms: one is the thermo-elastically

generated stress in the Al grating, leading to a local negative

strain, and the other one is due to the deformation potential

in Si, leading to a positive strain. Both effects need to be

taken into consideration. The periodic expansion of the Al

metal stripes on top of the grating as well as the compression

of the underlying membrane, which is being masked for opti-

cal excitation by the grating on top,20 also lead to a periodic

modulation. To calculate both contributions is beyond the

scope of this article, as not only the strain is difficult to

calculate due to carrier diffusion21,22 but also the optical field

that excites the structure.23,24

We attribute the absence of some expected modes to the

mutual compensation of two different contributions to the

detection process: Two physical mechanisms play a role in

the detection of the Lamb mode. These are the photoelastic

effect in Al and Si and the interferometric effect in the Si

membrane. The interferometric effect is caused by surface

corrugation due to the Lamb waves, i.e., the relative motion

of the opposite surfaces, which causes modification of the

membrane thickness. Quite recently, it has been demon-

strated25 that the optical detection process of confined

eigenmodes can be either enhanced or reduced to zero fol-

lowing a selection rule. In particular, it has been shown that

detection configurations exist where the coherent acoustic

phonons and probe light sensitivity functions are orthogonal,

leading to cancelation of the photoelastic detection

mechanism.

We investigate the detection process more closely with

a different sample structure. The excitation was performed

on two (nominal) 100 nm gratings on the same wafers (A1

and A2). We first compared these nominally identical

gratings by detecting the spectra of their vibrations with the

pump and probe beams overlapping on the gratings (see top

panel in Fig. 5). This comparison demonstrates that the main

spectral characteristics are well reproduced especially at fre-

quencies of propagating Lamb modes (above 50GHz). Then,

we detected the Lamb spectra in the case where the pump

and probe beams are spatially separated. In sample A1, the

Lamb waves were propagating all their path of 6.8 lm along

the grating, while in the sample A2 they propagated 5 lm

along the grating and 10 lm along the free surface of the Si

membrane between the edge of the grating and a single

detecting stripe (width: 1.5 lm). The comparison of the

detected spectra in the bottom panel of Fig. 5 indicates that

the metallic grating enhances the optical detection especially

of high frequency Lamb modes.

FIG. 4. Dispersion relation of Lamb modes in a thin Si membrane in the

[110]-direction. Black lines mark the symmetric modes and red lines mark

the asymmetric ones. The data points correspond to the first, second, and

third harmonic of the grating period (left to right) and the corresponding

measured frequencies (see Fig. 3).
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One also has to keep in mind that the Al grating may not

only allow to excite ultra-high frequency modes but also

affect the eigenmodes of the membrane. Although the differ-

ence in longitudinal impedances of Al and Si is negligible,

the difference in shear impedances is significant and, thus,

the modification of the spectra of the Lamb modes in the

presence of the Al grating is to be expected. However, it has

been demonstrated earlier12 that even for the Rayleigh waves

of 100 nm length localized within 100 nm from the surface

covered by a similar Al grating, the frequency shift does not

exceed 10%. The higher order Lamb modes, guided by the

complete thickness of the membrane (324 nm), that are over-

lapping with the fingers are more than three times weaker

than that. Thus, we would expect that the frequency modifi-

cation caused by the grating does not exceed 5%–6%. These

effects should be taken into account if a precise identification

of the Lamb modes is necessary.

We showed that thin Si membranes represent an excel-

lent system to generate guided waves in the hypersonic

frequency range. For the same wavelength, higher-order

Lamb modes are of higher frequency in comparison with

Rayleigh waves. This provides the opportunity to generate

higher frequencies by laser-excited structures with the same

spatial modulation. We were able to generate frequencies up

to 197 GHz with wavelengths down to 50 nm.

There is currently growing interest to the application of

the resonances of guided acoustic waves in nanocantilevers

for the evaluation of liquids,26,27 to the interaction of

Rayleigh surface acoustic waves with other types of excita-

tions, and also with charge carriers in the vicinity of the solid

surface (see Refs. 28–30 and the references therein). Thus,

we can reasonably expect that Lamb waves of hundreds of

GHz frequencies and tens of nanometers wavelengths would

find applications not only in the testing and evaluation of

thin membranes but also for studying the fundamental prob-

lems of liquid rheology at GHz frequencies through experi-

ments with liquid-loaded membranes and for probing the

interaction of travelling acoustic waves with charge carriers

and other type of excitations in solids in nanometer-confined

geometries.31
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