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Low-frequency intermolecular dynamics in liquids is studied by ultrafast four- and six-wave mixing.
The theory of these nonlinear optical processes is given for electronically nonresonant optical
interactions up to fifth order in the electric field. The Born–Oppenheimer approximation is used to
separate the motional part of the response functions from coordinate independent electronic
hyperpolarizabilities. A large variety of experiments, involving far-infrared absorption, ordinary
Rayleigh–Raman or hyper Rayleigh–Raman scattering is covered by this theory. The response in
nonresonant six-wave mixing comprises four dynamically different processes. It is shown that one
of the terms contains information on the time scale~s! of intermolecular dynamics, that is not
available from lower-order nonresonant experiments. For instance, homogenous and
inhomogeneous contributions to line broadening can be distinguished. The optical response of
harmonic nuclear motion is calculated for nonlinear coordinate dependence of the polarizabilities.
Results for level-dependent and level-independent damping of the motion are compared. It is shown
that level-dependent damping destroys the interference between different quantum mechanical
pathways, yielding an extra contribution to the fifth-order response that has not been discussed
before. When two or more nuclear modes determine the optical response, their relative contributions
to the four- and six-wave mixing signals are in general different. These contributions are determined
by the coordinate dependence of the electronic polarizability, which is usually not fully known.
Model calculations are presented for the dynamic parameters of liquid CS2. The theory of this paper
will be employed in Part II, to analyze experimental results on femtosecond four- and six-wave
mixing. © 1996 American Institute of Physics.@S0021-9606~96!51439-X#

I. INTRODUCTION

A vast range of physical, chemical, and biological phe-
nomena occurs preferentially or even exclusively in a liquid
environment, due to the fact that the motions of the solvent
molecules provide a very efficient heat bath for internal de-
grees of freedom of the solute. This heat bath is responsible
for fluctuations in the structures and energy levels of mol-
ecules, and promotes or hinders thermally activated pro-
cesses in these systems. Understanding the motions of the
heat bath is therefore crucial for a comprehensive description
of the underlying microscopic processes.1,2 This is a complex
problem, since the molecules exhibit strong mutual interac-
tions in rapidly changing configurations. Even on a local
scale, structural order exists only for short times, because of
the random thermal motion of the molecules. Despite many
years of experimental and theoretical effort, the microscopic
aspects of low-frequency motions in liquids are still poorly
understood. The lack of understanding is partly due to the
limited information content of conventional experimental
techniques, as well as to unwarranted simplifying assump-
tions for potentials, employed in molecular dynamics simu-
lations.

Traditionally, the dynamics of atomic and molecular liq-
uids are studied by far-infrared~FIR! absorption
spectroscopy3,4 or by Rayleigh–Raman scattering,5–8 that
measure the Fourier transform of the one-time correlation
function of the dipole moment and polarizability, respec-
tively. In the thermal range below 300 cm21, the fluctuations
in these bulk properties are associated with the same low-
frequency intermolecular motions. However, a unified mi-
croscopic description of the results from these experiments is
rather complicated, since the different nuclear modes change
the dipole moment and the polarizability in different ways.
In particular, the part of the response that is due to many-
body effects, i.e., interaction-induced changes of the dipole
moment and polarizability, is based on different mecha-
nisms.

In the last decade, the conventional techniques have
been supplemented by a variety of stimulated time- and
frequency-domain light scattering experiments. Examples in
frequency domain are stimulated gain spectroscopy
~SGS!,9,10 tunable laser-induced gratings~TLIG!,11 and
stimulated Rayleigh-wing spectroscopy~SRWS!.12,13 Most
time-domain experiments are based on impulsive stimulated
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scattering, initiated by femtosecond pulses,14–17 but experi-
ments using the short correlation time of incoherent light
have also been reported.18 All Raman-active modes within
the large spectral width of a short pulse, i.e., that have a
period longer than the pulse duration, are excited impul-
sively. Two configurations are used for time-resolved mea-
surements of low-frequency dynamics: In optical Kerr effect
~OKE! experiments a strong, polarized pump pulse induces
transient birefringence in the originally isotropic liquid, that
causes a polarization rotation of a weak delayed probe
pulse.19–26In transient grating scattering~TGS! two interfer-
ing pulses induce a spatially modulated index grating in the
liquid that scatters a variably delayed probe pulse in the
Bragg direction.27–32

It has been shown theoretically33 and experi-
mentally34–36that the spontaneous and stimulated frequency-
and time-domain light scattering methods, discussed so far,
have in principle an equivalent information content and are
related by Fourier transformation, independent of any dy-
namical model. The basic physics can be expressed equally
well by time-domain response functions or by frequency-
domain susceptibilities. In practice the choice of the particu-
lar experimental technique will be determined by technical
considerations. Compared to spontaneous scattering, the
stimulated techniques have the advantage that the high-
frequency components are not underestimated, since the re-
sponse is directly proportional to the susceptibility or re-
sponse function. The main advantage of time- over
frequency-domain methods is that the difference between an
exponential decay and an overdamped oscillation, exhibiting
a distinct inertia-limited rise time, shows up more clearly in
time domain.27 In frequency domain, this information is con-
tained in the weak far wings of the spectral response. Optical
heterodyning, that was incorporated in the optical Kerr
effect,20,21 transient grating scattering,32 and stimulated gain
spectroscopy,9,10 allows one to measure the in- and out-of-
phase part of the material response separately, avoiding cross
terms between them.

The general picture that emerged from both frequency-
and time-domain work on intermolecular motions in liquids
is well-established: The optical field exerts a torque on the
molecules via the single-molecule dipole moment or the an-
isotropic part of the polarizability~essentially rotation ab-
sorption and rotation-Raman scattering!. Additionally, all
liquids, even those consisting of nonpolar and isotropically
polarizable atoms or molecules, show a collective optical
response of dimers, trimers, and higher aggregates, which is
often referred to as the collision- or interaction-induced
response.37–39 The short-time~high-frequency! part of the
response is inertial, i.e., due to their finite moment of inertia
the molecules cannot follow the optical excitation
instantaneously.20,27 For highly polarizable anisotropic mol-
ecules like carbon disulfide~CS2! and benzene, the inertial
response is attributed mainly to coherent librations. Both the
local equilibrium position and the librational frequency are
determined by the transient local cage structure, formed by
the neighboring molecules. Upon excitation of the libration
the cage is distorted and the molecule acquires a new equi-

librium position. The long-time~low-frequency! part of the
subsequent optical response arises from diffusive reorienta-
tion of the molecules, which can be described by conven-
tional Debye theory.40,41

In the itinerant oscillator model of liquid dynamics, ini-
tially developed for the explanation of FIR absorption
spectra,42–45 the single-molecule and the cage motion are
projected onto two coupled harmonic modes. Most results of
stimulated scattering experiments were analyzed by a sim-
pler model, that neglects this coupling. The ultrafast coherent
librations are then described by an underdamped harmonic
mode, while the slow incoherent diffusion is treated as an
independent heavily overdamped harmonic mode. In the in-
stantaneous normal-mode model of liquid dynamics, single-
molecule and cage motions are not identified as separate pro-
cesses. Instead, the excitations are considered to be collective
motions of many molecules,46–49similar to phonons in trans-
lationally invariant solids. For some systems it was shown
that the frequency distribution of normal modes resembles
the spectral density of coherent oscillations, as determined
from time- or frequency-domain experiments.50,51 This
seems to indicate that the optical coupling constants do not
depend on the frequency of such modes, and that the liquid
is, to a good approximation, static on the time scale of the
inverse frequencies of these modes.

An aspect that cannot be ignored in a description of liq-
uid state dynamics is the effect of damping processes on the
optical response. Due to the strong, random interactions,
dephasing can be expected to contribute significantly to the
spectral width. One major motivation of current research is
to elucidate the nature and mechanisms of such processes,
since they directly reflect the complex microscopic dynamics
in the liquid. Traditionally, dephasing processes are classi-
fied as homogeneous or inhomogeneous. The latter is due to
a static distribution of local environments of molecules, that
do not change on the time scale of the experiment, while
homogeneous broadening is caused by fast fluctuations, that
change the local environment on a time scale much faster
than the inverse width of the frequency response. Since
nuclear motions in liquids occur over a wide range of time
scales, the separation into ‘‘fast’’ and ‘‘slow’’ fluctuations is
questionable, and hence it is not clear whether it is fruitful to
discuss the optical response in terms of homogeneous and
inhomogeneous broadening.52–54

In order to clarify these open questions concerning the
optical response of liquids and its interpretation in terms of
liquid state dynamics, the predictions of different models
have to be compared to experimental results. Unfortunately,
FIR-absorption spectra and time- and frequency-domain
Rayleigh/Raman experiments provide information only on
the total spectral response of motional degrees of freedom in
liquids. They do not allow for an assessment of the dynamics
that underlies such spectra, although one might hope to gain
some understanding from a systematic study of spectra as a
function of some external parameter~temperature, pressure,
composition of the liquid, etc.!. These experiments contain
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only limited information, because they all depend on a
single-time correlation function or its Fourier transform.55,56

To unequivocally establish the time scale~s! of dynamics that
give rise to a spectrum, multitime techniques should be em-
ployed, which implies higher-order nonlinear optical tech-
niques. Examples of such type of experiments are resonant
four-wave mixing in the IR and the Raman echo, a seventh-
order nonlinear effect. They were used to study intramolecu-
lar vibrations of molecules in liquids, glasses, and
solids.57–64 In these studies the laser pulses were much
longer than the vibrational periods, so the vibrational motion
itself could not be resolved. On intermolecular motion, such
experiments have not yet been performed.

A few years ago, Tanimura and Mukamel proposed a
new fifth-order nonlinear optical technique to gain further
insight into the time scales of intermolecular dynamics in
liquids.65 The theory for this effect was originally based on
quantum path-integral techniques,66,67 that allows for a
Brownian oscillator description of the heat bath. Later, it was
extended to classical oscillators and phonons,68 and evalu-
ated in a coherent state representation.69 We will describe it
here in a perturbative treatment that makes explicit use of the
Born–Oppenheimer approximation, following the formalism
of Hellwarth.33 Damping will be modeled by state-dependent
dephasing in the limit of weak system–bath coupling. This
treatment yields the full description of nonresonant optical
response up to fifth order, and comprises processes involving
instantaneous four- and six-photon scattering, that have not
been discussed before. The different processes carry dis-
tinctly different dynamical information, which may cause se-
rious difficulties for the interpretation of experimental re-
sults. Our final results will be compared to existing
theory65,68,69 that avoids the weak coupling limit, but does
not account for the state dependence of the damping rates.

First results of time-domain fifth-order experiments were
recently reported by Tominaga and Yoshihara70–73 and by
ourselves.74,75 Surprisingly, the results of these two groups
differ in a number of important aspects, even when the same
sample was investigated. For pure liquid CS2, Tominaga and
Yoshihara concluded that the theory of Tanimura and
Mukamel65 explains their data very well for mainly homoge-
neous broadening.73 In contrast to this, we found for CS2 and
for some other liquids, that the theory fails to describe the
full temporally two-dimensional information content of our
data.75 Possible reasons for the discrepancies will be dis-
cussed in Part II of this work, where experimental results of
four- and six-wave mixing will be discussed in light of the
theory presented here.76

In the presence of more than one dynamical mode, there
is no direct way to predict the six-wave mixing result from a
lower-order response, even when the dephasing mechanisms
of the modes are known. The reason is that the nuclear co-
ordinate dependence of the electronic polarizability, which
determines the Raman cross sections in all orders, is in gen-
eral unknown. The different modes will therefore have dif-
ferent relative contributions in the various orders of nonlin-
ear response. Only in the case that the coordinate dependence
of the polarizability is known for all modes, clear predictions

can be made. Originally, Tanimura and Mukamel calculated
the nonlinear response for exponential coordinate depen-
dence, since this allows one to generate the response for any
coordinate dependence, using the appropriate derivatives of
the Liouville space generating functions.65 The exponential
form was also subsequently adopted to simulate the higher-
order nonlinear response of water,77 and used to fit experi-
mental results.70,72 However, it is physically unrealistic to
assume that all modes obey the same coordinate dependence,
especially when the modes describe phenomena of a com-
pletely different nature, such as coherent librations and dif-
fusive reorientation.

The paper is organized as follows: In Sec. II, the pertur-
bative treatment of nonlinear optics is reviewed, using the
Born–Oppenheimer approximation and assuming that all op-
tical fields are far below electronic resonances. Subse-
quently, in Sec. III the third- and fifth-order response func-
tions of a damped harmonic mode is worked out. Model
calculations are presented to show that the information con-
tent of six-wave mixing surpasses that of conventional four-
wave mixing experiments. Finally, in Sec. IV the results are
summarized and conclusions are drawn with respect to ap-
plication of the theory to the analysis of experimental results.

II. NONLINEAR OPTICS WITHIN THE
BORN–OPPENHEIMER APPROXIMATION

This section contains some aspects of nonlinear optical
response theory. One conclusion will be that there are, in
principle, more contributions to the fifth-order response than
previously considered in literature.65,68–73,77 The different
processes carry different dynamical information which may
affect the interpretation of experimental results. The pertur-
bation treatment of nonlinear optics is briefly reviewed in
Sec. II A. The results are valid under a large number of cir-
cumstances, e.g., for resonant and nonresonant radiation, and
for coordinate dependent coupling between matter and radia-
tion ~non-Condon effects!. In Sec. II B, the nonlinear optical
response for electronically nonresonant radiation is calcu-
lated, following the model of Hellwarth.33 The Born–
Oppenheimer approximation~BOA! yields a reduced de-
scription of the nuclear dynamics in the electronic ground
state, where the electrons are taken into account implicitly by
an effective potential among the nuclei. The coupling be-
tween radiation and matter is then given by effective cou-
pling constants: the electronic~hyper-! polarizabilities.

The third-order nonlinear optical response within the
BOA is calculated in Sec. II C. It describes, for instance,
various forms of Rayleigh/Raman scattering, and FIR four-
wave mixing processes, where the applied fields are resonant
with nuclear degrees of freedom. The fifth-order nonlinear
response function in the BOA is derived in Sec. II D. In its
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most general form it consists of 32 different contributions,
given in Appendix A. When the applied optical frequencies
are far above the nuclear resonances, only 4 of these 32
processes have to be considered.

A. Perturbation theory of nonlinear optical response

In a perturbative treatment of nonlinear optics the polar-
ization created by an applied optical field is usually ex-
panded in powers of that field

P~ t !5P~0!~ t !1P~1!~ t !1P~2!~ t !1P~3!~ t !1••• . ~1!

Here,P(n) depends on thenth power of the electric field. The
spatial dependence of the polarization, that leads to phase
matching conditions, is suppressed. In media with inversion
symmetry, and in particular in isotropic media like liquids,
the polarizations depending on even powers of the electric
field, P~0!(t), P~2!(t), and so on, vanish. Therefore we treat
here only linear, third-, and fifth-order polarizations. The po-
larization at timet depends on the electric fields applied at
all earlier times

Pi
~1!~ t !5E

2`

`

dt1Ri j
~1!~ t,t1!Ej~ t1!, ~2a!

Pi
~3!~ t !5E

2`

`

dt1E
2`

`

dt2E
2`

`

dt3

3Ri jkl
~3! ~ t,t1 ,t2 ,t3!Ej~ t1!Ek~ t2!El~ t3!, ~2b!

Pi
~5!~ t !5E

2`

`

dt1E
2`

`

dt2E
2`

`

dt3E
2`

`

dt4E
2`

`

dt5

3Ri jklmn
~5! ~ t,t1 ,t2 ,t3 ,t4 ,t5!Ej~ t1!

3Ek~ t2!El~ t3!Em~ t4!En~ t5!. ~2c!

Thenth order time-domain response functionR(n) is a tensor
of rank n11. We use the convention that repeated space
indices in a product are to be summed over. The last inter-
action with fieldEj occurs at timet1, the second to last
interaction with fieldEk at timet2, and so on. This is shown
schematically in Fig. 1~a! up to fifth order. For first- and
third-order response the number of interactions has to be
reduced correspondingly.

The optical field couples with the medium via the time-
dependent microscopic charge distribution. In the Heisen-
berg picture, the polarizationP(t) is given by the expectation
value of the dipole operatorp

P~ t !5^U21~ t !pU~ t !&. ~3!

Here,p is the total dipole moment associated with the instan-
taneous positions of all charged particlesa ~nuclei and elec-
trons!:

p5(
a

eara , ~4!

andU(t) is the time evolution operator that satisfies

i\
dU

dt
5~H01HI~ t !!U. ~5!

H0 is the Hamiltonian of the unperturbed system andH1 is
the interaction Hamiltonian, that in the electric dipole ap-
proximation is given by:

HI~ t !52p–E~ t !. ~6!

The polarization@Eq. ~3!# can be evaluated to arbitrary order
in the applied fieldE(t) by expandingU21(t) andU(t) in
powers ofHI(t), using standard iteration techniques.33,78,79

We do not repeat the derivations here, but only quote the
main result for the dipole operator in the Heisenberg picture

U21~ t !piU~ t !

5 p̃i~ t !1S 2 i

\ D E
2`

t

dt1@ p̃i~ t !,H̃I~ t1!#

1S 2 i

\ D 2E
2`

t

dt1E
2`

t1
dt2@@ p̃i~ t !,H̃I~ t1!#,H̃I~ t2!#

1••• . ~7!

FIG. 1. Definition of the time variables as used in this paper. In~a! the five
time variablest1– t5 are shown, denoting the times when the fieldsEj–En

act on the system to generate a nonlinear polarizationPi at time t. In ~b! it
is shown thatt5t1, t25t3 , andt45t5 is a necessary condition for nonreso-
nant excitation. The nonlinear response functions will be expressed in terms
of the time differencest1[t32t4 and t2[t12t2 . In third-order scattering
there is only one propagation periodt1[t12t2 . In ~c! the experimental
situation for six-wave mixing is depicted. Two pairs of excitation pulses,
separated by timeT1, are followed by a probe pulse with delayT2. For finite
pulse durations, a range of time differencest1 andt2 occurs.
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Here [A,B]5AB2BA denotes a commutator andÃ(t)
means that the operatorA is transformed to the interaction
picture

Ã~ t !5U0
21~ t !AU0~ t !, ~8!

whereU0(t)5exp~2iH 0t/\! is the time evolution operator
of the unperturbed system. Comparing Eqs.~7! and~6! with
Eqs. ~2!, the time domain~non-! linear response functions
are obtained

Ri j
~1!~ t,t1!5

i

\
^@ p̃i~ t !,p̃ j~ t1!#&H~ t2t1!, ~9a!

Ri jkl
~3! ~ t,t1 ,t2 ,t3!5S i\ D 3^@@@ p̃i~ t !,p̃ j~ t1!#,p̃k~ t2!#,p̃l~ t3!#&

3H~ t2t1!H~ t12t2!H~ t22t3!, ~9b!

Ri jklmn
~5! ~ t,t1 ,t2 ,t3 ,t4 ,t5!

5S i\ D 5^@@@@@ p̃i~ t !,p̃ j~ t1!#,p̃k~ t2!#,p̃l~ t3!# p̃m~ t4!‡,

p̃n~ t5!#&

3H~ t2t1!H~ t12t2!H~ t22t3!H~ t32t4!H~ t42t5!.

~9c!

HereH(t) represents Heavysides step function. The pertur-
bative procedure yields a full time ordering of the interac-
tions: the interaction att2 always occurs before the interac-
tion at t1 and so on.

B. The Born–Oppenheimer approximation

In transparent media, where all optical frequencies are
well below any electronic resonances, the electrons follow
the applied field and the moving nuclei adiabatically. Then,
the Born–Oppenheimer approximation~BOA! holds and can
be incorporated in the perturbative calculation of the nonlin-
ear polarization.33 The electrons can be eliminated from the
general treatment of Sec. II A, by assuming that they are
always in their ground state, irrespective of the nuclear con-
figuration and the external field strength. In the unperturbed
system, their presence manifests itself as an effective poten-
tial for nuclear motion. The unperturbed HamiltonianH0

BO in
the BOA is given by the sum of the kinetic energy of the
nuclei TN , the Coulomb interaction among them, and the
ground state energyW00 of the electrons

H0
BO5TN1 (

aÞb

eaeb

ura2rbu
1W00. ~10!

Here the sum is to be taken over the nuclei only. Since the
electrons follow the applied optical field instantaneously, the
change of their ground state energy at any moment can be

described by time-independent perturbation theory. This
yields an expansion of the electron ground state energyW0 in
powers of the electric field:

W05W002~m iEi1
1
2a i j EiEj1

1
3b i jkEiEjEk

1 1
4g i jkl EiEjEkEl1

1
5e i jklmEiEjEkElEm

1 1
6z i jklmnEiEjEkElEmEn1••• !. ~11!

Every coefficientW00,m i ,a i j ,... in this expansion depends
explicitly, but in a generally unknown way, on the nuclear
coordinates.W00 is again the electronic ground state energy
in absence of any electric field, whilemi is the electronic
dipole moment,ai j is the electronic susceptibility, and
b i jk ,g i jkl ,... are higher-order hyperpolarizabilities.

Now, the interaction HamiltonianHI
BO(t) consists of an

electronic part, that is due to the change of the electronic
ground state energy by the applied field and given by the
term in the brackets in Eq.~11!, and a nuclear part due to
direct coupling of the optical field with the charged nuclei33

HI
BO~ t !52~miEi1

1
2a i j EiEj1

1
3b i jkEiEjEk

1 1
4g i jkl EiEjEkEl1

1
5e i jklmEiEjEkElEm

1 1
6z i jklmnEiEjEkElEmEn1••• !. ~12!

Herem[m1(eara is the electric dipole in absence of the
optical field; it depends only on the nuclear configuration.

The total dipole operatorpBO also consists of a nuclear
and an electronic part

pBO5S (
a

eara2
dW0

dE D 52
dHI

BO

dE
. ~13!

Using Eq.~12!, it becomes clear thatpBO is explicitly field
dependent

pi
BO5mi1a i j Ej1b i jkEjEk1g i jkl EjEkEl

1e i jklmEjEkElEm1z i jklmnEjEkElEmEn1••• .

~14!

The prefactors 1/2, 1/3, 1/4, and so on in the expansion of
W0 @Eq. ~11!# were chosen such that they disappear here.
This is due to the fact that the polarizability tensors are to-
tally symmetric~Kleinman symmetry!.78

Using the reduced HamiltonianH0
BO of the unperturbed

system @Eq. ~10!#, the interaction HamiltonianHI
BO @Eq.

~12!#, and the dipole operatorpBO @Eq. ~14!#, the nonlinear
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response functions can be calculated without explicit consid-
eration of the electronic degrees of freedom. The polarization
is now given by

Pi~ t !5^~UBO~ t !!21pi
BOUBO~ t !&, ~15!

where the expectation value is calculated by tracing over the

nuclear subspace only. The time evolution operatorUBO(t)
in the BOA obeys an equation of motion similar to Eq.~5!,
but now H0 and HI(t) have to be replaced byH0

BO and
HI
BO(t), respectively. WhenUBO(t) is again solved itera-

tively, the result for the dipole operator in the Heisenberg
representation, up to the fifth iteration step, is

~UBO~ t !!21pi
BOUBO~ t !

5 p̃ i
BO~ t !1S 2 i

\ D E
2`

t

dt1@ p̃i
BO~ t !,H̃I

BO~ t1!#1S 2 i

\ D 2E
2`

t

dt1E
2`

t1
dt2@@ p̃ i

BO~ t !,H̃I
BO~ t1!#,H̃I

BO~ t2!#

1S 2 i

\ D 3E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3@@@ p̃ i

BO~ t !,H̃I
BO~ t1!#,H̃I

BO~ t2!#,H̃I
BO~ t3!#

1S 2 i

\ D 4E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3E

2`

t3
dt4@@@@ p̃ i

BO~ t !,H̃I
BO~ t1!#,H̃I

BO~ t2!#,H̃I
BO~ t3!#,H̃I

BO~ t4!#

1S 2 i

\ D 5E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3E

2`

t3
dt4E

2`

t4
dt5@@@@@ p̃ i

BO~ t !,H̃I
BO~ t1!#,H̃I

BO~ t2!#,H̃I
BO~ t3!#,H̃I

BO~ t4!#,H̃I
BO~ t5!#. ~16!

Ã(t) now means that operatorA is transformed to the inter-
action picture in the BOA. Its time evolution is governed by
the time evolution operatorU0

BO(t)5exp~2iH 0
BOt/\!.

Analogous to Sec. II A, the response functions can be
calculated by inserting Eqs.~12! and ~14! for HI

BO(t) and
pi
BO(t) in Eq. ~16!, and comparing the result to Eqs.~2!.

Since both operators are power series in the applied field,
several terms of Eq.~16! contribute to a given order inE.
For example, the result for linear response is:

Ri j
~1!~ t,t1!5^a i j &d~ t2t1!1

i

\
^@m̃i~ t !,m̃j~ t1!#&H~ t2t1!.

~17!

The first part results from the first term of Eq.~16!, and is
due to linear electronic polarization. It is instantaneous and

gives rise to Rayleigh scattering, where the frequencies of
the annihilated and created photons are equal. The second
part originates from the second term of Eq.~16! and de-
scribes FIR absorption, which can be neglected when the
frequency of the applied field is well above the nuclear reso-
nances.

C. Third-order nonlinear optical response

In centrosymmetric media there are no second-order
nonlinear optical effects, so we continue our treatment with
the third-order response. The corresponding response func-
tion can be evaluated by collecting all terms in Eq.~16! that
are of third order inE. The result is

Ri jkl
~3! ~ t,t1 ,t2 ,t3!5^g i jkl &d~ t2t1!d~ t12t2!d~ t22t3! ~18a!

1
i

\
^@ã i j ~ t !,

1
2ãkl~ t2!#&d~ t2t1!H~ t12t2!d~ t22t3! ~18b!

1
i

\
^@m̃i~ t !,

1
3b̃ jkl~ t1!#&H~ t2t1!d~ t12t2!d~ t22t3! ~18c!

1
i

\
^@b̃ i jk~ t !,m̃l~ t3!#&d~ t2t1!d~ t12t2!H~ t22t3! ~18d!

1S i\ D 2^@@m̃i~ t !,m̃j~ t1!#,
1
2ãkl~ t2!#&H~ t2t1!H~ t12t2!d~ t22t3! ~18e!
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1S i\ D 2^@@m̃i~ t !,
1
2ã jk~ t1!#,m̃l~ t3!#&H~ t2t1!d~ t12t2!H~ t22t3! ~18f!

1S i\ D 2^@@ã i j ~ t !,m̃k~ t2!#,m̃l~ t3!#&d~ t2t1!H~ t12t2!H~ t22t3! ~18g!

1S i\ D 3^@@@m̃i~ t !,m̃j~ t1!#,m̃k~ t2!#,m̃l~ t3!#&H~ t2t1!H~ t12t2!H~ t22t3!. ~18h!

Here the first four terms of Eq.~16! yield parts~18a!, ~18b!–
~18d!, ~18e!–~18g!, and ~18h!, respectively. They describe
distinct physical processes. In Eq.~18a! the optical interac-
tion occurs through the instantaneous nonlinear electronic
hyperpolarizability, where three photons excite virtual levels
to generate a fourth one. This process is depicted in an en-
ergy level diagram in Fig. 2~a!. Part ~18b! describes
Rayleigh/Raman scattering. This is shown schematically in
Fig. 2~b!: at time t25t3 a coherent superposition of nuclear
states is created, that after a propagation periodt1[t12t2 is
converted into an optical signal at timet5t1 . Although an
energy level representation can give a raw impression of
these processes, the dynamics are better characterized by
looking at the quantum evolution of the nuclear states in
Liouville space. This can be depicted in the form of double-
sided Feynman diagrams. For the electronic hyperpolariz-
ability @Eq. ~18a!#, this is shown in Fig. 3~a!, while the Ra-
man process@Eq. 18~b!# is described by the sum of two
diagrams, shown as Figs. 3~b.1! and 3~b.2!.

All remaining terms contain the dipole moment operator
and vanish when all applied frequencies are well above the
nuclear resonances. Parts~18c!–~18g! may be observed in
double-resonance experiments, that have not been reported
yet. The last part~18h! describes resonant IR four-wave mix-
ing experiments like pump–probe, photon–echo, and grating
scattering, that all have been performed on various
samples.57–61 A detailed description is analogous to that of
resonant four-wave mixing experiments with visible light,
and is presented in standard textbooks on nonlinear

spectroscopy.79,80 Hence, when the applied frequencies are
well above all nuclear resonances, the third-order response
function consists of only two terms@Eqs. ~18a! and ~18b!#.
These will be employed in Sec. III to derive expressions for
the femtosecond optical Kerr effect and grating scattering
experiments.

D. Fifth-order nonlinear optical response

The fifth-order response function is obtained by inserting
the expansions of the interaction Hamiltonian@Eq. ~12!# and
the dipole operator@Eq. ~14!# in Eq. ~16!, taking the expec-
tation value@Eq. ~15!#, collecting all terms that are of fifth
order in the electric field, and comparing the result to Eq.
~2c!. In this way, we find that the first and sixth term of Eq.
~16! each yield one contribution, the second and the fifth
term both give five, and the third and fourth term each yield
ten. Thus, the full response function consists of 32 indepen-
dent terms. The complete expression is given in Appendix A.

In the remainder of this paper we will concentrate on the
situation where all applied optical fields are far above the
nuclear resonances. In this case all terms containing the elec-
tric dipole moment operatorm are negligible. Term~A4! of
the complete expression describes hyper Rayleigh–Raman
scattering, where two of the involved photons are at the
second-harmonic frequency of the applied radiation.81,82

When only the fundamental wavelength is detected, this term
can be ignored. Then, the fifth-order response function con-
sists only of terms~A1!, ~A3!, ~A5!, and~A12!

Ri jklmn
~5! 5^z i jklmn&d~ t2t1!d~ t12t2!d~ t22t3!d~ t32t4!d~ t42t5! ~19a!

1
i

\
^@ã i j ~ t !,

1
4g̃klmn~ t2!#&d~ t2t1!H~ t12t2!d~ t22t3!d~ t32t4!d~ t42t5! ~19b!

1
i

\
^@g̃ i jkl ~ t !,

1
2ãmn~ t4!#&d~ t2t1!d~ t12t2!d~ t22t3!H~ t32t4!d~ t42t5! ~19c!

1S i\ D 2^@@ã i j ~ t !,
1
2ãkl~ t2!#,

1
2ãmn~ t4!#&d~ t2t1!H~ t12t2!d~ t22t3!H~ t32t4!d~ t42t5!. ~19d!

7370 Steffen, Fourkas, and Duppen: Time resolved four- and six-wave mixing

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996



The processes that correspond to these four terms are
depicted in an energy level scheme in Fig. 4. The first term is
due to the instantaneous electronic hyperpolarizability,
where five photons, via virtual electronic levels, generate a
sixth one @Fig. 4~a!#. It contains no information on the
nuclear dynamics. The second term describes excitation of a
nuclear coherence by a four-photon process, governed by the
coordinate dependent hyperpolarizabilityg(q). After a
propagation periodt25t12t2 the nuclear coherence is con-
verted into an optical signal by a Raman process, governed
by the coordinate dependent polarizabilitya(q), as shown in
Fig. 4~b!. Such a sequence of interactions was shown to be
responsible for subharmonic Raman resonances in fifth-order
frequency-domain spectroscopy in gases.83 The third term is
the mirror image of the second one: the nuclear coherence is

excited by Raman scattering and after a propagation period
t15t32t4 it is converted into an optical signal by a four-
photon process@Fig. 4~c!#. Since the second and third term
each depend on only one propagation time, they contain in-
formation on the nuclear dynamics, similar to the usual third-
order Raman term, discussed in Sec. II C.

FIG. 2. Energy level diagrams for third-order scattering due to~a! electronic
hyperpolarizability, and~b! Rayleigh/Raman scattering. These processes are
described by Eqs.~18a! and~18b!, respectively. The dashed horizontal lines
are virtual levels that have an infinitely short lifetime in the BOA. The solid
horizontal lines depict real nuclear states in the electronic ground state.
Solid arrows indicate applied photons, while the wavy line symbolizes the
generated photon.

FIG. 3. Feynman diagrams for the third-order scattering of Fig. 2. The
nuclear dynamics during excitation of virtual states is neglected in the BOA.
The coupling is governed by the polarizabilitya when two photons meet at
a vertex, and by the hyperpolarizabilityg when four photons are involved.
Multiple arrows at a vertex means that all possible field permutations should
be taken. The wavy line is the generated photon. One diagram~a! describes
instantaneous scattering due to electronic hyperpolarizability@see Fig. 2~a!#,
while two diagrams@~b.1! and ~b.2!# are required to describe Raman scat-
tering @see Fig. 2~b!#.

FIG. 4. Energy level diagrams for fifth-order scattering. These processes are
described by Eqs.~19a!–~19d!. Interactions and energy levels are defined as
in Fig. 2. ~a! Pure electronic fifth-order polarization gives rise to instanta-
neous scattering.~b! Hyper-Raman scattering excites a nuclear coherence,
that after a propagation timet2 is converted into an optical signal by an
ordinary Raman process.~c! Raman scattering is followed after timet1 by a
four-photon hyper-Raman interaction.~d! Three subsequent scattering
events give rise to a two-dimensional Raman process, that contains both
propagation timest1 andt2.

FIG. 5. Feynman diagrams for fifth-order scattering:~a!–~d! refer to the
corresponding processes of Fig. 4. The definition of vertices and arrows is as
in Fig. 3. ~a! Scattering due to the purely electronic hyperpolarizabilityz is
depicted by one diagram.~b! and~c! Both processes involving hyper-Raman
scattering consist of the sum of two diagrams.~d! The description of two-
dimensional Raman scattering requires four diagrams. In the inhomoge-
neous limit of nuclear dynamics, these diagrams contain the possibility of
rephasing of nuclear coherence, which may yield a motional echo.
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The term~19d! describes three subsequent Raman scat-
tering processes@Fig. 4~d!#. It contains two independent
propagation periodst15t32t4 andt25t12t2 , and therefore
has the capability to provide additional dynamical informa-
tion, not available from lower-order experiments. It is this
term that was first discussed in the work of Tanimura and
Mukamel,65 which was followed by a number of other
theoretical68,69 and experimental papers.70–72,74,75This pro-
cess allows one, in principle, to distinguish between homo-
geneous and inhomogeneous contributions to line broaden-
ing of nuclear transitions. Thereby, it provides information
on the time scale of structural fluctuations in liquids, as will
be discussed in Sec. III. The Liouville-space double-sided
Feynman diagrams of all fifth-order terms of Eq.~19! are
depicted in Fig. 5. The first term can be described by a single
diagram@Fig. 5~a!#, the second and third terms by sums of
two diagrams@Figs. 5~b.1! and 5~b.2!, and Figs. 5~c.1! and
5~c.2!, respectively#, and the last term with two propagation
times needs four diagrams to capture all possible pathways
of nuclear propagation@Figs. 5~d.1!–5~d.4!#.84

The relative magnitude of the four terms of Eq.~19!
depends in general on the investigated sample and the wave-
length of the radiation. When the energy of two or three
photons becomes~pre! resonant with electronic levels, the
processes that depend on the corresponding hyperpolariz-
abilities can be resonantly enhanced. The contribution due to
the purely electronic polarization can be easily distinguished
experimentally, since it is instantaneous. The distinction be-
tween the second and third processes and the fourth one,
however, is less straightforward. For a reliable interpretation
of the experimental results, it is essential to assign the signal
unambiguously to one of the processes of Eq.~19!, since
they contain entirely different dynamical information.76

The theoretical approach, sketched in this section, is eas-
ily extended to higher order processes. For instance, the
seventh-order response, using nonresonant optical fields and
excluding second-harmonic detection, contains eight differ-
ent terms. Of these, one is instantaneous, three contain a
single propagation period, three others contain two propaga-
tion periods, and in one process three independent propaga-
tion times occur. The Raman echo is one of the effects de-
scribed by this last term. Again, new information on the
nuclear dynamics can be expected. Here, we will not discuss
the seventh-order response any further, since the highest-
order nonlinear experiments on low frequency modes in liq-
uids, reported so far, are of fifth order.70–75

III. OPTICAL DYNAMICS OF NUCLEAR MOTIONS IN
LIQUIDS

The nonlinear optical theory of Sec. II can be employed
to analyze third- and fifth-order experiments when a model
for the nuclear motion is adopted. In Sec. III A, the response
functions are first formulated in terms of nuclear eigenstates.
These results are valid for any Hamiltonian and any func-
tional form of the coordinate dependent~hyper! polarizabil-
ity operators. Then, the assumption of harmonic nuclear mo-
tion is made, and the polarizability operators are expanded

into a power series of the nuclear coordinate. In Sec. III B
damping is treated in the weak coupling limit for level-
dependent and level-independent decay rates. The results are
compared to existing theory of Mukamel and
co-workers.65,68,69 Inhomogeneity of the nuclear spectrum
leads to the generation of motional echoes in the fifth-order
response. Model calculations are shown for the parameters of
an intermolecular mode of liquid CS2. In Sec. III C the non-
linear response is considered when two or more nuclear
modes determine the optical response.

A. The nonlinear response of harmonic nuclear
motion

For nonresonant radiation fields, the third-order polariza-
tion can be obtained by inserting Eqs.~18a! and~18b! in Eq.
~2b!, as discussed in Sec. II C, while the corresponding fifth-
order polarization is found by inserting Eq.~19! in Eq. ~2c!,
as discussed in Sec. II D. For simplicity, the tensorial nota-
tion of the response function will be suppressed from now
on. It can be incorporated without major difficulties, to
evaluate the polarization selectivity of the various contribu-
tions to the signals.85,86 The response functions will be ex-
pressed in terms of the positive propagation timest1 andt2,
instead of the absolute timest1 ,t2 ,... ~see Fig. 1!. This is
more convenient, since some of the absolute times were
found to be identical under all circumstances~Sec. II!. Thus,
the third-order polarization can be written as

P~3!~ t !5E~ t !E
0

`

dt1R
~3!~t1!E

2~ t2t1!, ~20!

where

R~3!~t1!5^g&d~t1!1
i

2\
^@ã~t1!,ã~0!#&. ~21!

The two terms correspond to Figs. 2~a! and 2~b! and 3~a! and
3~b!, respectively. The corresponding fifth-order polarization
is

P~5!~ t !5E~ t !E
0

`

dt1E
0

`

dt2 R
~5!~t1 ,t2!E

2~ t2t1!

3E2~ t2t12t2!, ~22!

where

R~5!~t1 ,t2!5^z&d~t1!d~t2!

1
i

4\
^@ã~t2!,g̃~0!#&d~t1!

1
i

2\
^@g̃~t1!,ã~0!#&d~t2!

2
1

4\2 ^@@ã~t21t1!,ã~t1!#,ã~0!#&.

~23!

These four terms correspond to Figs. 4~a!–4~d! and 5~a!–
5~d!, respectively. The meaning of these expressions be-
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comes clear when the commutators are written out in their
various factors, and the~hyper! polarizability operators are
transformed back from the interaction picture

^luÃ~ t !um&5^luAum&ei ~el2em!t/\[Alme
ivlmt. ~24!

Here, ul&,um&,... are the eigenstates of nuclear motion in the
BOA, and the difference of energy eigenvalues is repre-
sented byel2em[\vlm . The third- and fifth-order response
functions in this representation read

R~3!~t1!5^g&d~t1!

2
1

\ (
l,m

P~l!alm~q!aml~q!sin~vlmt1!, ~25!

R~5!~t1 ,t2!5^z&d~t1!d~t2!2
1

\ (
l,m

P~l!alm~q!gml~q!

3@ 1
2 d~t1!sin~vlmt2!1d~t2!sin~vlmt1!#

2
1

2\2 (
l,m,n

P~l!alm~q!amn~q!anl~q!

3@cos~vlmt11vlnt2!

2cos~vlmt11vnmt2!#. ~26!

In Eqs.~25! and~26!, P~l! denotes the equilibrium distribu-
tion of statesul&. We want to stress that the treatment at this
point does not depend on the specific forms of the Hamil-
tonianH0

BO or the ~hyper! polarizability operatorsa(q) and
g(q). These general expressions, that we believe have not
been published before, describe the third- and fifth-order
nonlinear response due to nuclear motion under nonresonant
excitation. The Feynman diagrams of Figs. 3 and 5 are pic-
torial representations of the involved quantum mechanical
pathways. To calculate the matrix elementsalm and glm a
model has to be adopted for the nuclear motion and these
polarizability operators.

For harmonic motion, the eigenstatesul& are known, and
the Hamiltonian and the harmonic coordinate can be ex-
pressed in terms of the raising and lowering operatorsa† and
a: H0

BO5\v~a†a11/2! andq5(\/2mv)1/2(a†1a). The co-
ordinate dependence of the~hyper! polarizability operatorsa
andg is in general not known exactly, and usually expanded
into a power series ofq. When they do not depend onq at
all, the~hyper-! Raman transition probabilities vanish. When
a is linear in q and the hyperpolarizabilityg can be ne-
glected, the fifth-order response does not exist because two-
quantum transitions are forbidden, and hence all diagrams of
Fig. 5~d! vanish separately~see below!. For seventh-order
response, each diagram yields a finite contribution, but for
level-independent damping the total response still does not
exist. The reason is that the contributions from the various
diagrams interfere destructively. When the decay rates are
level dependent, this interference is not perfect, and hence
the seventh-order response no longer vanishes.87

Thus, fifth-order experiments in harmonic systems are
only possible when eithera is nonlinear inq and/or the
hyperpolarizabilityg yields extra contributions. Here, we ex-
panda up to second order inq: a(q)5a1q1a2q

2, andg,
which is supposed to be smaller thana, up to first order,
g(q)5g1q. Using these expansions, and writingq in terms
of the raising and lowering operatorsa† and a, the matrix
elementsalm(q) and glm(q) of Eqs. ~25! and ~26! are ex-
pressed in terms of the well-known harmonic oscillator ma-
trix elements

^lua†um&5^muaul&5Am11d~m11!,l ,

^lua†a†um&5^muaaul&5A~m11!~m12!d~m12!,l , ~27!

^luaa†um&5^muaa†ul&5~m11!dm,l .

In this way, Eqs.~25! and ~26! are easily evaluated. The
general results, explicitly written in terms of the quantum
states of the system, are shown in Appendix B. As discussed
in Sec. III B, damping is included in the weak coupling limit.
Here, we first treat the situation when damping is negligible,
to show the general structure of the response functions. The
third-order result then is

R~3!~t1!5^g&d~t1!1
a1
2

2mv
sin~vt1!

1
a2
2\

2m2v2 (
l

~2l11!P~l!sin~2vt1!. ~28!

A one-quantum nuclear transition has a probability propor-
tional toa1, leading to oscillations at frequencyv. The sec-
ond coefficienta2 allows for two-quantum transitions, since
q2 containsa2 and ~a†!2. This yields temperature dependent
oscillations at 2v. The corresponding fifth-order response
function reads

R~5!~t1 ,t2!5^z&d~t1!d~t2!1
a1g1

4mv
d~t1!sin~vt2!

1
a1g1

2mv
d~t2!sin~vt1!

1
a2
3\

2m3v3 (
l

~2l11!P~l!

3@cos 2vt12cos 2v~t21t1!#

1
a1
2a2

4m2v2 @cosv~t12t2!2cosv~t11t2!

1cosvt12cosv~t112t2!#. ~29!

Note that the term proportional to cosv~2t11t2! in the ex-
pression forR~5!~t1,t2! in Appendix B has disappeared here,
due to perfect destructive interference of the involved quan-
tum mechanical pathways. As will be discussed in Sec. III B,
the interference is destroyed when the damping of the motion
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is explicitly level dependent. Then, the fifth-order optical
response will indeed contain a part that oscillates with
cosv~2t11t2!.

The first term of Eq.~29! is due to the hyperpolarizabil-
ity z @Figs. 4~a! and 5~a!#, and contains no information on the
nuclear dynamics. The second@Figs. 4~b! and 5~b!# and third
terms@Figs. 4~c! and 5~c!# are similar to the third-order re-
sponse Eq.~28!. They contain the same dynamical informa-
tion but one of the two temporally separated interactions is
an instantaneous four photon interaction governed by the hy-
perpolarizabilityg. The last two terms describe the tempo-
rally two-dimensional Raman process of Figs. 4~d! and 5~d!.
The first of these, consisting of two parts, involves three
transitions that all depend onq2. The part proportional to
cos@2v~t11t2!# is generated by a two-quantum transition,
followed by a zero-quantum transition and another two-
quantum transition after propagationst1 andt2, respectively.
The zero-quantum transition, which does not change the state
of the system, is possible becauseq2 comprises a term pro-
portional to ~2a†a11!. The system is in a coherent two-
quantum superposition state,ul&^l62u or ul62&^lu, during
both propagation periods. The part proportional to cos@2vt1#
is caused by two subsequent two-quantum transitions, fol-
lowed by a zero-quantum transition. Duringt1 the system is
in a coherent two-quantum superposition state, while during
t2 it is in a population state,ul&^lu or ul62&^l62u.

The last term of Eq.~29!, which consists of four parts,
always comprises two one-quantum transitions and one two-
quantum transition, in different time order. The states of the
system during the two propagation periods can be easily con-
structed from the corresponding Feynman diagrams@Fig.
5~d!# or the expression forR~5!~t1,t2! in Appendix B, in
which the states are explicitly shown. This term is propor-
tional to the inverse of the oscillation frequency squared,
while the pure two-quantum one is inversely proportional to
v3. Note that these are stronger frequency dependencies than

that of the leading term of the third-order nuclear response
~;v21!.

B. Relaxation phenomena

So far, the treatment of the nonlinear optical response is
incomplete, in the sense that damping of the induced nuclear
motion is not included, yet. In condensed matter it is gener-
ally impossible to describe all degrees of freedom exactly.
Usually, a few degrees of freedom that dominate the optical
response are described explicitly and called ‘‘the system.’’ In
our case this is the harmonic oscillation of Sec. III A. All
other variables are accounted for by an implicit description
of their influence on the dynamics of the system. They form
the ‘‘heat bath,’’ which is responsible for dephasing and re-
laxation phenomena of the system. The separation of system
and bath variables is not unique and depends on the desired
level of sophistication.79,88

The effect of the bath can be easily incorporated phe-
nomenologically, when the coupling between the system and
the heat-bath is weak and fluctuates very fast~Markovian
dynamics!. Then, exponential decay rates can be introduced
to describe the damping of the density matrix elements
ul&^mu. This is analogous to adding an imaginary part to the
system transition frequencies, according to:
vlm→vlm1iGlm , whereGlm 5 Gml 5 (gl 1 gm)/21 Glm* .
HereGlm* is the pure dephasing rate and 1/gl is the lifetime
of statel. Note that the real part of the frequency remains
unchanged. When the decay is assumed to be independent of
the quantum numbers of the involved states, the damping is
fully characterized by a single population decay rateg and
the dephasing ratesG1 andG2, which describe the decay of
the one- and two-quantum coherencesul61&^lu and
ul62&^lu, respectively. The third- and fifth-order responses
are then easily calculated from the general expressions in
Appendix B. The results are

R~3!~t1!5^g&d~t1!1
a1
2

2mv
e2G1t1 sin~vt1!1

a2
2\

2m2v2 (
l

~2l11!P~l!e2G2t1 sin~2vt1!, ~30!

R~5!~t1 ,t2!5^z&d~t1!d~t2!1
a1g1

4mv
d~t1!e

2G1t2 sin~vt2!1
a1g1

2mv
d~t2!e

2G1t1 sin~vt1!

1
a2
3\

2m3v3 (
l

~2l11!P~l!e2G2t1@e2gt2 cos 2vt12e2G2t2 cos 2v~t21t1!#

1
a1
2a2

4m2v2 e
2G1t1@e2G1t2 cosv~t12t2!2e2G1t2 cosv~t11t2!1e2gt2 cosvt12e2G2t2 cosv~t112t2!#.

~31!
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There are more sophisticated ways to account for dissi-
pation in quantum systems that do not rely on the weak
coupling or Markovian limits.66 Grabert et al.89 treated
dephasing and relaxation in a fully quantum mechanical con-
text, by linear coupling of the system with a bath, consisting
of an ensemble of quantum oscillators. It is then possible to
eliminate the bath coordinates and to derive reduced expres-
sions for the system dynamics. This theory was applied to
nonlinear optical experiments by Tanimura and
Mukamel.65,67 Here, we do not repeat the details of this
theory but only quote the main result. The third- and fifth-
order response was calculated in lowest order ofq. In the
limit of the frequency-independent damping rateg, and pro-
vided that there is no inhomogeneous distribution of oscilla-
tor eigenfrequencies, their expressions for the response func-
tions can be rewritten to resemble parts of our Eqs.~30! and
~31!

R~3!~t1!;expS 2
gt1
2 D sin Vt1 , ~32!

R~5!~t1 ,t2!;expS 2
g~t11t2!

2 D @cosV~t12t2!

2cosV~t11t2!#

1expS 2
g~t112t2!

2 D
3@cosVt12cosV~t112t2!#. ~33!

Here,V5~v22g2/4!1/2 is the reduced eigenfrequency of the
underdamped oscillator whenv.g/2 holds. For an over-
damped oscillator~v,g/2!, Eqs. ~32! and ~33! have to be
continued analytically: the reduced eigenfrequency is then
V5~g2/42v2!1/2, and the sin and cos have to be replaced by
sinh and cosh. In contrast to the phenomenological weak
coupling model, the Brownian oscillator treatment accounts
for the frequency shift of a damped oscillator and for a con-
tinuous change from underdamped to overdamped motion,
when the damping rateg is increased.

Equations~30! and~31! can also be compared to expres-
sions derived by Leegwater and Mukamel for the nonlinear
optical response in the limit of classical nuclear motion.68

Unfortunately, a number of mathematical errors were made
in that paper, as was later realized by Khidekel and
Mukamel.69 Those authors derived expressions very similar
to ours, except for a few sign errors in the various terms.
Also, rather unrealistic decay functions were calculated,
since Lorentzian inhomogeneity was taken as the only damp-
ing mechanism. As a consequence the fifth-order response
contains terms that do not decay at all, due to perfect rephas-
ing of macroscopic coherence.69

Equations~32! and~33! can be directly compared to Eqs.

~30! and ~31!, whenG15
1
2G25

1
2g is assumed to hold. Then,

apart from the renormalization of the oscillator frequency,
Eq. ~32! is identical to the lowest order term~;q! of Eq.
~30!, and Eq.~33! is identical to the lowest order term~;q3!
of the two-dimensional part of Eq.~31!. The equality of the
damping parameters suggest that the dephasing rate in Refs.
65 and 67 is lifetime limited~G15

1
2g!, and increases linearly

with the number of quanta involved in the transition
~G15

1
2G2!. The combination of these two requirements, how-

ever, is incompatible with the assumption of state indepen-
dent damping parameters that was made by us here and also
by Tanimura and Mukamel.65,67 In fact, it can be shown90–93

that a harmonic system, linearly coupled to a bath, has a
lifetime that is inversely proportional to the quantum number
of the state, while quadratic coupling gives rise to a pure
dephasing rate that is proportional to the square of the dif-
ference between the quantum numbers of two states

Glm5 1
2@~l1m!~11h!12h#g1~l2m!2G* . ~34!

Here h5exp~2\v/kT! is the Boltzmann factor that results
from detailed balancing of the upward and downward tran-
sition probabilities, as is briefly explained in Appendix B.
Note that the damping ratesGlm have now acquired an ex-
plicit temperature and frequency dependence. When such
quantum number dependence is introduced, the third-order
response function of Appendix B can be written as

R~3!~t1!5^g&d~t1!1
a1
2

2mv

~12h!2

~12he2gt1~11h!!2

3exp2$@G*1 1
2g~113h!#t1%sin vt1

1
2a2

2\

~2mv!2
~12h!2~11h!

~12he2gt1~11h!!3

3exp$2@4G*1g~112h!#t1%sin 2vt1 . ~35!

In the limit of low temperature~T→0!, this reduces to
Eq. ~30! with G15G*11

2g andG254G*1g. This is consistent
with the definition of the damping according to Eq.~34!,
since forT→0 the sinvt1 term is solely due to the superpo-
sitions u0&^1u and u1&^0u, while the sin 2vt1 term results from
the superpositionsu0&^2u and u2&^0u. As the temperature is
raised, the decay rates become faster@Eq. ~34!# and states
with shorter lifetimes become populated. This leads to in-
creased damping of the third-order response function.

The corresponding fifth-order response function reads
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R~5!~t1 ,t2!5^z&d~t1!d~t2!1
a1g1

2mv
~12h!2S exp$2@G*1

1
2g~113h!#t2%

~12h exp@2g~11h!t2# !2
1

2
d~t1!sin vt21

exp$2@G*1
1
2g~113h!#t1%

~12h exp@2g~11h!t1# !2
d~t2!sin vt1D

1
a2
3\

2~2mv!3
~12h!2~11h!S 2

8 exp$2@4G*1g~112h!#~t11t2!%

~12h exp$2g~11h!~t11t2!%!3
cos 2v~t11t2!

1
2$5 exp@22g~11h!t2#211~exp@22g~11h!t2#25!h exp@2g~11h!~t11t2!#%exp$2@4G*1g~112h!#t12ght2%

~12h exp@2g~11h!~t11t2!# !4
cos 2vt1D

1
a1
2a2

2~2mv!2
~12h!2S 2~exp@2g~11h!t2#2h exp@2g~11h!t1# !exp$2@G*1

1
2g~113h!#~t11t2!%

~12h exp@2g~11h!~t11t2!# !3
cosv~t12t2!

2
2 exp$2@G*1

1
2 g~113h!#~t11t2!%

~12h exp@2g~11h!~t11t2!# !2
cosv~t11t2!

1
$3 exp@2g~11h!t2#211~exp@2g~11h!t2#23!h exp@2g~11h!~t11t2!#%exp$2@G*1

1
2g~113h!#t12ght2%

~12h exp@2g~11h!~t11t2!# !3
cosvt1

2
2~12h exp@2g~11h!t1# !exp$2@G*1

1
2g~113h!#t12@4G*1g~112h!#t2%

~12h exp@2g~11h!~t11t2!# !3
cosv~t112t2!

1
2~11h!~12exp@2g~11h!t2# !exp$2@4G*1g~112h!#t12@G*1

1
2g~113h!#t2%

~12h exp@2g~11h!~t11t2!# !3
cosv~2t11t2!D . ~36!

This expression does not reduce to Eq.~31! in the low
temperature limit, since there the ground state population
also decays with rateg, while the ground state is stable here.
Furthermore, the one-quantum coherencesu0&^1u and u1&^2u,
that occur in Eq.~36!, now decay in different ways@see Eq.
~34!#. The term oscillating as cosv~2t11t2! vanishes when
the decay rates do not depend on the quantum states, as can
be seen from the general expression in Appendix B. Hence,
it is not present in Eqs.~29!, ~31!, and ~33!. With state-
dependent decay rates, the perfect destructive interference
between different quantum mechanical pathways is partly
destroyed, which yields this additional term to the response
function that has not been reported before. This situation is
analogous to that discussed by Fourkaset al.,90 who showed
that a harmonic oscillator, linearly coupled to a resonant op-
tical field, can behave nonlinearly due to damping processes.

In addition to the homogeneous damping, discussed so
far, inhomogeneity can be taken into account by considering
a distribution of environments for the oscillator. This leads to
a distributiong~v! of oscillator frequencies, yielding the fol-
lowing nonlinear response functions

Rinh
~3!~t1!5E

0

1`

dvg~v!R~3!~v,t1!, ~37a!

Rinh
~5!~t1 ,t2!5E

0

1`

dvg~v!R~5!~v,t1 ,t2!, ~37b!

whereR~3!~v,t1! andR
~5!~v,t1,t2! are given by Eqs.~28! and

~29!, Eqs.~30! and~31!, or Eqs.~35! and~36!, whatever the
homogeneous dynamics is that applies to the situation. The
general effect of inhomogeneous broadening is clear from
Eqs. ~37!. The damping of all third-order and most fifth-

order terms increases, due to the fact that a distribution of sin
and cos functions beat against each other. The only excep-
tion is the cosv~t12t2! term of the fifth-order response,
which is insensitive to any distributiong~v! for t15t2. This
fifth-order effect, which is based on macroscopic rephasing
of coherent motion, therefore enables the experimental sepa-
ration of homogeneous and inhomogeneous contributions to
the nuclear spectrum. This is not possible in third-order re-
sponse.

Whether rephasing is possible in a nonlinear experiment
depends on the quantum mechanical pathway of propagation
and the dynamics of the nuclear motion. The physics of the
rephasing process can be illustrated by the Liouville space
pathways of the system, that give rise to this special part of

FIG. 6. The four Feynman diagrams that allow for rephasing in the inho-
mogeneous limit of nuclear dynamics. Due to the fact that in a harmonic
ladder system the inhomogeneous distribution is correlated for the different
transitions, dephasing on one transition can be compensated by rephasing on
another one. For details consult the text.
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the total response. The corresponding Feynman diagrams are
shown in Fig. 6. They are special cases of the general dia-
grams, shown as Figs. 5~d.1!–5~d.4!. Initially a one-quantum
transition creates a coherent superposition, e.g.,ul&^l61u,
and the system acquires a phase exp~6ivt1! during the first
propagation period. For a large inhomogeneous distribution
of frequencies, the macroscopic phase coherence rapidly de-
cays. The second interaction induces a two-quantum transi-
tion, which converts the system into the coherence
ul62&^l61u or ul&^71u. During the second propagation pe-
riod, the system acquires the phase exp~7ivt2!. Whent2 is
equal tot1, the phases of the two propagation periods com-
pensate for each other, independent of the particular fre-
quency of the oscillator, and the macroscopic phase coher-
ence is recovered, leading to a motional echo. When the
inhomogeneous broadening is very small compared to the
homogeneous broadening, the decay during the periodst1
and t2 is irreversible, and there is no motional echo. This
demonstrates the unique information content of the fifth-
order experiment compared with the third-order experiment.

To illustrate the sensitivity of the fifth-order response to
the character of the nuclear dynamics, the response of a
single-harmonic mode was calculated in the limits of purely
homogeneous and inhomogeneous dephasing. This is shown
in Fig. 7. For simplicity we assumed the homogeneous
damping to be level independent. The central frequency and
width of the third-order spectral response~full width at half-
maximum! were taken to be 40 and 50 cm21, respectively,
which are typical values for many molecular liquids, and in
particular for CS2.

75,76 In the homogeneous limit the ampli-
tudes of the different curves have been rescaled to the same
value in order to compare the position and the shape of the
traces. The loss of macroscopic coherence is irreversible and
hence the amplitude reaches its maximum always at the same
propagation timet2, independent of the delayt1.

The situation is completely different when pure inhomo-
geneous broadening causes the same spectral width. The
fifth-order response function in the static limit is given by
Eq. ~37b! with all homogeneous damping rates equal to zero

@Eq. ~29!#. The amplitudes of these traces have not been
rescaled. After an initial rapid decay, the signal amplitude
remains constant, irrespective of the value of the propagation
time t1. The maximum occurs whent2 is equal tot1. This
behavior results from the fact that dephasing due to a static
distribution of frequencies is reversible. In the third-order
response there is no difference between the two cases, be-
cause there are no contributions that are sensitive to the char-
acter of the dynamics. It is then simply the total spectral
response that determines the response function.

C. Multiple modes

When there are several modes that determine the optical
response, and there is no coupling between these modes, the
total response functions are just the sum of all independent
responses

Rtot
~3!~t1!5(

i
Ri

~3!~t1!, ~38a!

Rtot
~5!~t1 ,t2!5(

i
Ri

~5!~t1 ,t2!. ~38b!

Note that in Refs. 70, 73, and 77 the fifth-order response
function was not calculated in this way, as a direct sum of
mutually independent amplitudes. Instead, the modes seemed
to be intrinsically coupled, in a way that we believe to be
incorrect.94

In order to illustrate this, we performed model calcula-
tions for two harmonic modes, one underdamped and one
overdamped. The parameters of the damping and frequency
of the underdamped mode are the same as above, while the

FIG. 7. Thet2 dependence of the fifth-order response of a single-harmonic
mode is calculated in the homogeneous~left! and inhomogeneous~right!
limits. The value oft1 is 100 fs for the bottom traces, and increases in steps
of 100 fs for each subsequent trace. The parameters of the calculations are
given in the text. The curves for the homogeneous case have been rescaled
to the same height.

FIG. 8. Calculated fifth-order response for two independent harmonic
modes as function of the propagation timet2, with t1 fixed at 100, 150, 200,
250, 300, 350, 400, 450, 500, 600, 700, 800 and 1000 fs~top to bottom!.
The underdamped mode, with a subpicosecond relaxation time, dominates
the response at smallt1. The response fort1 larger than 0.5 ps is completely
determined by the overdamped mode, which decays on the much longer
time scale of the diffusive response~;1.6 ps!.
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overdamped mode simulates diffusive behavior with a decay
constanttD51.65 ps and an exponential rise time decay
tR572 fs.76 For a ratio of~a1!UD

2 /~a1!OD
2 57.3, these param-

eters model the third-order response of CS2 in the homoge-
neous limit.75,76When the same ratio is assumed for the fifth-
order contributions, the traces of Fig. 8 are calculated. It is
clear that the fifth-order response for variablet2 changes
shape as function of the delay timet1. For small t1 the
response is dominated by the underdamped mode, while for
big t1 the response is completely due to the overdamped
mode. This change in shape is caused by the difference in the
decay rates of the two modes. When the modes are intrinsi-
cally coupled, this is not correctly taken into account.94

In general, it is not possible to predict the fifth-order
response from third-order measurements when more than
one mode is involved in the coordinate dependent~hyper!
polarizabilities, since the ratio of the various contributions is
not known. The relative amplitude depends on the expansion
coefficients of the polarizability operators in the coordinates
of the modes. For the third-order response the lowest order in
the nuclear response is determined by the coefficientsa1

2 @see
Eqs.~28!, ~30!, or ~35!#, while for the fifth-order response the
lowest order contribution is determined bya1

2a2 @see Eqs.
~29!, ~31!, or ~36!#. It is very unlikely that the same form of
a(q) holds for modes as different as overdamped diffusion
and coherent librations, such as were used in recent literature
to describe higher-order optical response in liquids.70–77The
ratio of the coefficients will therefore in general change with
the order of the expansion of the polarizability. Hence, ex-
perimental results must be used to determine the relative im-
portance of the different modes in different orders of nonlin-
ear optical experiments.

IV. SUMMARY AND CONCLUSIONS

A unified theory of studies on nuclear dynamics by fem-
tosecond electronically nonresonant four- and six-wave mix-
ing was presented. The theoretical approach was based on
the Born–Oppenheimer approximation, which allows one to
eliminate the electrons from the description of the dynamics.
The theory was formulated such that the nonlinear response
functions are independent of the Hamiltonian of the system
and the coordinate dependence of the~hyper! polarizabilities.
The possible role of hyperpolarizabilities in higher-order Ra-
man scattering experiments was stressed. These give rise to
processes that contain the same dynamical information as
lower order response. Serious misinterpretation of experi-
mental data may result from such contributions to the non-
linear signals.

The theory was worked out in more detail for harmonic
nuclear motion. Nonlinearity was introduced by expanding
the ~hyper! polarizabilities in the nuclear coordinate. Qua-
dratic dependence is required to yield a fifth-order nonlinear
response. Damping was treated in the weak coupling limit
using level-independent and level-dependent damping pa-
rameters. The results were compared to a Brownian oscilla-
tor model for the bath. For level-dependent damping we

found that all contributions to the third- and fifth-order re-
sponse functions become temperature dependent. The decays
increase with temperature. Also, an additional contribution to
the fifth-order response was found, caused by the fact that
the destructive interference between different quantum me-
chanical pathways is destroyed by the level-dependent damp-
ing.

In contrast to the third-order response, the fifth-order
response is sensitive to dephasing mechanisms of the in-
duced nuclear motion. The reason is that there are two inde-
pendent propagation times in the process, which allows for
rephasing of macroscopic coherence when dephasing is
caused by a static distribution of transition frequencies. This
leads to a motional echo, when the two propagation times are
equal. In the homogeneous limit the fifth-order response as
function of the second propagation time always has approxi-
mately the same shape and position, independent of the first
propagation time. This is due to the fact that the dephasing in
the homogeneous limit is irreversible.

When two or more modes are involved in the nonlinear
optical response of the medium, the situation becomes more
complex. The relative magnitudes of the modes in third- and
fifth-order response are in general not correlated. They have
to be determined from experiment. Model calculations were
used to show that the fifth-order response changes its shape,
when two independent modes have different homogeneous
damping parameters.

Experimental six-wave mixing results will be reported in
a subsequent paper.76 The theory, presented here, will be
employed then to analyze the two-dimensional response,
generated through three subsequent, temporally well sepa-
rated Rayleigh/Raman scattering events. The main problem,
experimentally, is to separate these processes from other
contributions, such as the fifth-order effects due to hyperpo-
larizabilities, depicted in Fig. 4, or fifth-order response that is
due to two subsequent third-order scattering events. It will be
shown that a proper choice of polarization—and phase
matching conditions is crucial to the proper identification of
the two-dimensional signals.
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APPENDIX A: THE FIFTH-ORDER RESPONSE
FUNCTION IN THE BOA

The fifth-order response function within the Born–
Oppenheimer approximation, for electronically nonresonant
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optical fields, is given by 32 independent terms. These origi-
nate from the perturbative expansion Eq.~16!. The number
of nuclear propagation periods varies from zero for the in-
stantaneous electronic polarization~A1!, to five for resonant
FIR six-wave mixing experiments@term ~A32!#. The pro-

cesses with one to four propagation times~A2!–~A31! are
due to combinations of~hyper-! Raman interactions and/or
dipole transitions, governed by the~hyper! polarizability op-
eratorsa i j ,b i jk ,g i jkl ,e i jklm and the dipole moment operator
mi

Ri jklnm
~5! ~ t,t1 ,t2 ,t3 ,t4 ,t5!

5^z i jklmn&d~ t2t1!d~ t12t2!d~ t22t3!d~ t32t4!d~ t42t5! ~A1!

1
i

\
^@m̃i~ t !,

1
5ẽ jklmn~ t1!#&d~ t12t2!d~ t22t3!d~ t32t4!d~ t42t5!H~ t2t1! ~A2!

1
i

\
^@ã i j ~ t !,

1
4g̃klmn~ t2!#&d~ t2t1!d~ t22t3!d~ t32t4!d~ t42t5!H~ t12t2! ~A3!

1
i

\
^@b̃ i jk~ t !,

1
3b̃ lmn~ t3!#&d~ t2t1!d~ t12t2!d~ t32t4!d~ t42t5!H~ t22t3! ~A4!

1
i

\
^@g̃ i jkl ~ t !,

1
2ãmn~ t4!#&d~ t2t1!d~ t12t2!d~ t22t3!d~ t42t5!H~ t32t4! ~A5!

1
i

\
^@ ẽ i jklm~ t !,m̃n~ t5!#&d~ t2t1!d~ t12t2!d~ t22t3!d~ t32t4!H~ t42t5! ~A6!

1S i\ D 2^@@m̃i~ t !,m̃j~ t1!#,
1
4g̃klmn~ t2!#&d~ t22t3!d~ t32t4!d~ t42t5!H~ t2t1!H~ t12t2! ~A7!

1S i\ D 2^@@m̃i~ t !,
1
2ã jk~ t1!#,

1
3b̃ lmn~ t3!#&d~ t12t2!d~ t32t4!d~ t42t5!H~ t2t1!H~ t22t3! ~A8!

1S i\ D 2^@@m̃i~ t !,
1
3b̃ jkl~ t1!#,

1
2ãmn~ t4!#&d~ t12t2!d~ t22t3!d~ t42t5!H~ t2t1!H~ t32t4! ~A9!

1S i\ D 2^@@m̃i~ t !,
1
4g̃ jklm~ t1!#,m̃n~ t5!#&d~ t12t2!d~ t22t3!d~ t32t4!H~ t2t1!H~ t42t5! ~A10!

1S i\ D 2^@@ã i j ~ t !,m̃k~ t2!#,b̃ lmn~ t3!#&d~ t2t1!d~ t32t4!d~ t42t5!H~ t12t2!H~ t22t3! ~A11!

1S i\ D 2^@@ã i j ~ t !,
1
2ãkl~ t2!#,

1
2ãmn~ t4!#&d~ t2t1!d~ t22t3!d~ t42t5!H~ t12t2!H~ t32t4! ~A12!

1S i\ D 2^@@ã i j ~ t !,
1
3b̃klm~ t2!#,m̃n~ t5!#&d~ t2t1!d~ t22t3!d~ t32t4!H~ t12t2!H~ t42t5! ~A13!

1S i\ D 2^@@b̃ i jk~ t !,m̃l~ t3!#,
1
2ãmn~ t4!#&d~ t2t1!d~ t12t2!d~ t42t5!H~ t22t3!H~ t32t4! ~A14!

1S i\ D 2^@@b̃ i jk~ t !,
1
2ã lm~ t3!#,m̃n~ t5!#&d~ t2t1!d~ t12t2!d~ t32t4!H~ t22t3!H~ t42t5! ~A15!

1S i\ D 2^@@ g̃ i jkl ~ t !,m̃m~ t4!#,m̃n~ t5!#&d~ t2t1!d~ t12t2!d~ t22t3!H~ t32t4!H~ t42t5! ~A16!

1S i\ D 3^@@@m̃i~ t !,m̃j~ t1!#,m̃k~ t2!#,
1
3b̃ lmn~ t3!#&d~ t32t4!d~ t42t5!H~ t2t1!H~ t12t2!H~ t22t3! ~A17!

1S i\ D 3^@@@m̃i~ t !,m̃j~ t1!#,
1
2ãkl~ t2!#,

1
2ãmn~ t4!#&d~ t22t3!d~ t42t5!H~ t2t1!H~ t12t2!H~ t32t4! ~A18!
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1S i\ D 3^@@@m̃i~ t !,m̃j~ t1!#,
1
3b̃klm~ t2!#,m̃n~ t5!#&d~ t22t3!d~ t32t4!H~ t2t1!H~ t12t2!H~ t42t5! ~A19!

1S i\ D 3^@@@m̃i~ t !,
1
2ã jk~ t1!#,m̃l~ t3!#,

1
2ãmn~ t4!#&d~ t12t2!d~ t42t5!H~ t2t1!H~ t22t3!H~ t32t4! ~A20!

1S i\ D 3^@@@m̃i~ t !,
1
2ã jk~ t1!#,

1
2ã lm~ t3!#,m̃n~ t5!#&d~ t12t2!d~ t42t5!H~ t2t1!H~ t22t3!H~ t42t5! ~A21!

1S i\ D 3^@@@m̃i~ t !,
1
3b̃ jkl~ t1!#,m̃m~ t4!#,m̃n~ t5!#&d~ t12t2!d~ t22t3!H~ t2t1!H~ t32t4!H~ t42t5! ~A22!

1S i\ D 3^@@@ã i j ~ t !,m̃k~ t2!#,m̃l~ t3!#,
1
2ãmn~ t4!#&d~ t2t1!d~ t42t5!H~ t12t2!H~ t22t3!H~ t32t4! ~A23!

1S i\ D 3^@@@ã i j ~ t !,m̃k~ t2!#,
1
2ã lm~ t3!#,m̃n~ t5!#&d~ t2t1!d~ t32t4!H~ t12t2!H~ t22t3!H~ t42t5! ~A24!

1S i\ D 3^@@@ã i j ~ t !,
1
2ãkl~ t2!#,m̃m~ t4!#,m̃n~ t5!#&d~ t2t1!d~ t22t3!H~ t12t2!H~ t32t4!H~ t42t5! ~A25!

1S i\ D 3^@@@b̃ i jk~ t !,m̃l~ t3!#,m̃m~ t4!#,m̃n~ t5!#&d~ t2t1!d~ t12t2!H~ t22t3!H~ t32t4!H~ t42t5! ~A26!

1S i\ D 4^@@@@m̃i~ t !,m̃j~ t1!#,m̃k~ t2!#,m̃l~ t3!#,
1
2ãmn~ t4!#&d~ t42t5!H~ t2t1!H~ t12t2!H~ t22t3!H~ t32t4! ~A27!

1S i\ D 4^@@@@m̃i~ t !,m̃j~ t1!#,m̃k~ t2!#,
1
2ã lm~ t3!#,m̃n~ t5!#&d~ t32t4!H~ t2t1!H~ t12t2!H~ t22t3!H~ t42t5! ~A28!

1S i\ D 4^@@@@m̃i~ t !,m̃j~ t1!#,
1
2ãkl~ t2!#,m̃m~ t4!#,m̃n~ t5!#&d~ t22t3!H~ t2t1!H~ t12t2!H~ t32t4!H~ t42t5! ~A29!

1S i\ D 4^@@@@m̃i~ t !,
1
2ã jk~ t1!#,m̃l~ t3!#,m̃m~ t4!#,m̃n~ t5!#&d~ t12t2!H~ t2t1!H~ t22t3!H~ t32t4!H~ t42t5! ~A30!

1S i\ D 4^@@@@ã i j ~ t !,m̃k~ t2!#,m̃l~ t3!#,m̃m~ t4!#,m̃n~ t5!#&d~ t2t1!H~ t12t2!H~ t22t3!H~ t32t4!H~ t42t5! ~A31!

1S i\ D 5^$@@@@m̃i~ t !,m̃j~ t1!#,m̃k~ t2!#,m̃l~ t3!#,m̃m~ t4!#,m̃n~ t5!%&H~ t2t1!H~ t12t2!H~ t22t3!H~ t32t4!H~ t42t5!.

~A32!

APPENDIX B: HARMONIC THIRD- AND FIFTH-ORDER NONLINEAR RESPONSE FUNCTIONS

The nuclear part of the nonlinear response functions can be written explicitly in terms of the harmonic oscillator statesul.
by expanding the electronic~hyper! polarizabilities in the nuclear coordinateq, and using the matrix elements Eq.~27! on the
general response functions Eqs.~25! and~26!. The third-and fifth-order nonlinear response functions in this representation are:

R~3!~t1!5^g&d~t1!2
a1
2

2mv
sin vt1(

l
P~l!@le2Gl,l21t12~l11!e2Gl,l11t1#

2
a2
2\

~2mv!2
sin 2vt1(

l
P~l!@l~l21!e2Gl,l22t12~l11!~l12!e2Gl,l12t1#,

R~5!~t1 ,t2!5^z&d~t1!d~t2!2
a1g1

2mv S 12 d~t1!sin vlmt2(
l

P~l!@le2Gl,l21t22~l11!e2Gl,l11t2#

1d~t2!sin vlmt1(
l

P~l!@le2Gl,l21t12~l11!e2Gl,l11t1# D
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2
a2
3\

2~2mv!3 S cos 2v~t11t2!(
l

P~l!@~4l2112l18!e2Gl,l12~t11t2!1~24l214l!e2Gl,l22~t11t2!#

1cos 2vt1(
l

P~l!@~2l32l22l!e2Gl,l22t12Gl,lt21~22l315l223l!e2Gl,l22t12Gl22,l22t2

1~2l317l217l12!e2Gl,l12t12Gl,lt21~22l3211l2219l210!e2Gl,l12t12Gl12,l12t2# D
2

a1
2a2

2~2mv!2 S cosv~t12t2!(
l

P~l!@~l21l!e2Gl,l11t12Gl,l21t21~l21l!e2Gl,l21t12Gl,l11t2

1~2l21l!e2Gl,l21t12Gl21,l22t21~2l223l22!e2Gl,l11t12Gl11,l12t2#

1cosv~t11t2!(
l

P~l!@~2l22l!e2Gl,l21~t11t2!1~22l22l!e2Gl,l21~t11t2!

1~2l215l13!e2Gl,l11~t11t2!1~22l223l21!e2Gl,l11~t11t2!]

1cosvt1(
l

P~l!@~2l21l!e2Gl,l21t12Gl,lt21~22l21l!e2Gl,l21t12Gl21,l21t2

1~2l213l11!e2Gl,l11t12Gl,lt21~22l225l23!e2Gl,l11t12Gl11,l11t2#

1cosv~t112t2!(
l

P~l!@~l22l!e2Gl,l21t12Gl,l22t21~l213l12!e2Gl,l11t12Gl,l12t2

1~2l22l!e2Gl,l11t12Gl11,l21t21~2l22l!e2Gl,l21t12Gl11,l21t2#

1cosv~2t11t2!(
l

P~l!@~l22l!e2Gl,l22t12Gl,l21t21~2l223l22!e2Gl,l12t12Gl11,l12t2

1~l213l12!e2Gl,l12t12Gl11,lt21~2l21l!e2Gl,l22t12Gl21,l22t2# D .

The Feynman diagrams Figs. 3 and 5 are pictorial represen-
tations of the system propagation, that give rise to these ex-
pressions.P~l! is the initial thermal distribution over
the harmonic quantum statesul&. Both upward and down-
ward transitions are induced by the optical fields. Damping
was introduced in this picture in the weak coupling limit, by
writing complex transition frequencies according to the sub-
stitution vlm→vlm1iGlm . The damping parameterGlm in
principle contains contributions from the lifetimesgl,m of
statesul& and um&, and of pure dephasing processesGlm* that
modulate the transition frequency between both states:
Glm51

2(gl1gm)1Glm* .
The nonlinear response functions can be further evalu-

ated in different limits of the system dynamics. For un-
damped oscillators~Glm50!, Eqs.~28! and~29! result, while
for state independent damping @g[gl5gm ,
G1[Glmd~l,m61!, G2[Glmd~l,m62!# the relaxation func-
tions are given by Eqs.~30! and~31!. In a more microscopic
approach, the harmonic oscillator is explicitly coupled to a
heat bath. For linear coupling with a harmonic heat bath, the
transition rate from stateul& to stateul21& acquires a quan-
tum number dependence,90–93 which can be written as
kl→l215lg. Hereg is the rate down out of the first excited

stateu1&. Quadratic coupling leads to a quantum number de-
pendence of the dephasing rate,90–93which can be written as
Glm* 5 (l 2 m)2G* , whereG* is the one-quantum dephasing
rate.

For a thermally activated system~kT>\v!, next to
downward transitions also upward transitions have to be con-
sidered. In steady state, all populationsn~l! are time inde-
pendent, which leads to relations among the transition rates.
For instance, for the ground state populationn~0! it is found
that dn(0)/dt52k0→1n(0)1k1→0n(1)50. It follows that
k0→15k1→0h5gh, where h is the Boltzmann factor
h[exp~2\v/kT!. Iterative application of this detailed bal-
ance argument gives for the upward transitions the quantum
number dependencekl→l115~l11!gh. The total population
decay rate out of stateul& is the sum of the upward and
downward rates:gl5lg1~l11!gh. When this quantum
number dependence of the population decay and that of the
dephasing rate are used for the damping parametersGlm , Eq.
~34! results. The third- and fifth-order response functions
above can then be evaluated by writing the initial thermal
distribution as P(l)5e2\vl/kt/Sl(e

2\vl/kT)5hl(12h).
The sums overl, that occur in the expressions forR~3!~t1!
andR~5!~t1,t2!, can be evaluated in terms of~the derivatives
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of! geometric sums, which then gives the nonlinear response
functions Eqs.~35! and ~36!.
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83D. Débarre, M. Lefebvre, and M. Pe´alat, Opt. Commun.69, 362 ~1989!.
84R. Trebino and L. A. Rahn, Opt. Lett.15, 354 ~1990!.
85A. Tokmakoff, J. Chem. Phys.105, 1 ~1996!.
86A. Tokmakoff, J. Chem. Phys.105, 13 ~1996!.
87J. T. Fourkas~unpublished!.
88E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, Chem. Phys.183, 167

~1994!.
89H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep.168, 115 ~1988!.
90J. T. Fourkas, H. Kawashima, and K. A. Nelson, J. Chem. Phys.103, 4393

~1995!.
91D. W. Oxtoby and S. A. Rice, Chem. Phys. Lett.42, 1 ~1976!.
92W. T. Pollard and R. A. Friesner, J. Chem. Phys.100, 5054~1994!.
93J. S. Bader and B. J. Berne, J. Chem. Phys.100, 8359~1994!.
94In Ref. 65 it was shown that for a single harmonic mode the fifth-order
response can be written asR(5)(t1 ,t2);R(3)(t2)[R

(3)(t1)
1R(3)(t11t2)]. However, for multiple modes it is incorrect to write
Rtot

~5!~t1,t2!;Rtot
~3!~t2!@Rtot

~3!~t1!1Rtot
~3!~t11t2!#.

7382 Steffen, Fourkas, and Duppen: Time resolved four- and six-wave mixing

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996


