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Low-frequency intermolecular dynamics in liquids is studied by ultrafast four- and six-wave mixing.
The theory of these nonlinear optical processes is given for electronically nonresonant optical
interactions up to fifth order in the electric field. The Born—Oppenheimer approximation is used to
separate the motional part of the response functions from coordinate independent electronic
hyperpolarizabilities. A large variety of experiments, involving far-infrared absorption, ordinary
Rayleigh—Raman or hyper Rayleigh—Raman scattering is covered by this theory. The response in
nonresonant six-wave mixing comprises four dynamically different processes. It is shown that one
of the terms contains information on the time s¢sleof intermolecular dynamics, that is not
available from lower-order nonresonant experiments. For instance, homogenous and
inhomogeneous contributions to line broadening can be distinguished. The optical response of
harmonic nuclear motion is calculated for nonlinear coordinate dependence of the polarizabilities.
Results for level-dependent and level-independent damping of the motion are compared. It is shown
that level-dependent damping destroys the interference between different quantum mechanical
pathways, yielding an extra contribution to the fifth-order response that has not been discussed
before. When two or more nuclear modes determine the optical response, their relative contributions
to the four- and six-wave mixing signals are in general different. These contributions are determined
by the coordinate dependence of the electronic polarizability, which is usually not fully known.
Model calculations are presented for the dynamic parameters of liquidT®® theory of this paper

will be employed in Part I, to analyze experimental results on femtosecond four- and six-wave
mixing. © 1996 American Institute of Physids$0021-960606)51439-X

I. INTRODUCTION Traditionally, the dynamics of atomic and molecular lig-
uids are studied by far-infrared(FIR) absorption
A vast range of physical, chemical, and biological phe-spectroscopy* or by Rayleigh—-Raman scatterifg that
nomena occurs preferentially or even exclusively in a liquidmeasure the Fourier transform of the one-time correlation
environment, due to the fact that the motions of the solvenf,nction of the dipole moment and polarizability, respec-
molecules provide a very efficient heat bath for internal de'tively. In the thermal range below 300 cth the fluctuations

grees of freedom of the solute. This heat bath is responsiblﬁ] these bulk properties are associated with the same low-

for fluctuations in the structures and energy levels of mo"frequency intermolecular motions. However, a unified mi-

ecules, and promotes or hinders thermally activated IOrOéroscopic description of the results from these experiments is

cesses in these systems. Understanding the motions of the . . .
. . . .. _rather complicated, since the different nuclear modes change
heat bath is therefore crucial for a comprehensive descriptio

of the underlying microscopic processesThis is a complex ﬂqe dipple moment and the polarizability in _different ways.
problem, since the molecules exhibit strong mutual interacln particular, t_he Pa” of t_he r.esponse that is due to m_any—
tions in rapidly changing configurations. Even on a IocaIbOdy effects, i.e., interaction-induced changes of the dipole

scale, structural order exists only for short times, because gFoment and polarizability, is based on different mecha-
the random thermal motion of the molecules. Despite many!'SMS. . _

years of experimental and theoretical effort, the microscopic  IN the last decade, the conventional techniques have
aspects of low-frequency motions in liquids are still poorly Peen supplemented by a variety of stimulated time- and
understood. The lack of understanding is partly due to thérequency-domain light scattering experiments. Examples in
limited information content of conventional experimental frequency domain are stimulated gain spectroscopy
techniques, as well as to unwarranted simplifying assumptSGS,°*° tunable laser-induced gratingéTLIG),** and
tions for potentials, employed in molecular dynamics simu-stimulated Rayleigh-wing spectroscog@RWS.**** Most
lations. time-domain experiments are based on impulsive stimulated
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scattering, initiated by femtosecond pul$&s,’ but experi- librium position. The long-timglow-frequency part of the
ments using the short correlation time of incoherent lightsubsequent optical response arises from diffusive reorienta-
have also been reporté8 All Raman-active modes within tion of the molecules, which can be described by conven-
the large spectral width of a short pulse, i.e., that have aional Debye theory®*

period longer than the pulse duration, are excited impul-  |n the itinerant oscillator model of liquid dynamics, ini-
sively. Two configurations are used for time-resolved meatjally developed for the explanation of FIR absorption
surements of IOW'frequency dynamiCS: In Optical Kerr effeCtSpeCtrdlyz_‘ls the Sing|e-mo|ecu|e and the cage motion are
(OKE) experiments a strong, polarized pump pulse inducegrojected onto two coupled harmonic modes. Most results of
transient birefrin_gen_ce in the_ originally isotropic liquid, that gtimulated scattering experiments were analyzed by a sim-
causes a polarization rotation of a weak delayed probger model, that neglects this coupling. The ultrafast coherent

19-26 : : . :
pulse-"""In transient grating scattering GS) two interfer- jiyrations are then described by an underdamped harmonic

ing pulses induce a spatially modulated index grating in the,qe \while the slow incoherent diffusion is treated as an
liquid th.at SF?;EG_QS; a variably delayed probe pulse in thqndependent heavily overdamped harmonic mode. In the in-
Braglgtg dfllrectlob. h th ticaly and . stantaneous normal-mode model of liquid dynamics, single-
mentall f?_s% th:tetrr]le SS gxgneo:sozrai:jcstimjgte d ?r)((epirelz-nc molecule and cage motions are not identified as separate pro-
P q Yeesses. Instead, the excitations are considered to be collective

and time-domain light scattering methods, discussed so far, A9 .
rhotions of many moleculeS; ™ similar to phonons in trans-

have in principle an equivalent information content and arﬁationally invariant solids. For some systems it was shown

related by Fourier transformation, independent of any dy- t the f distributi f | d bl
namical model. The basic physics can be expressed equaﬁga € frequency distribution of normal modes resembles
e spectral density of coherent oscillations, as determined

well by time-domain response functions or by frequency-t X . X g
domain susceptibilities. In practice the choice of the particuffom time- or frequency-domain exp.enmeﬁ?sf’. This

lar experimental technique will be determined by technicaS€ems to indicate that the optical coupling constants do not
considerations. Compared to spontaneous scattering, tif€Pend on the frequency of such modes, and that the liquid
stimulated techniques have the advantage that the highs. to & good approximation, static on the time scale of the
frequency components are not underestimated, since the réwerse frequencies of these modes.

sponse is directly proportional to the susceptibility or re-  An aspect that cannot be ignored in a description of lig-
sponse function. The main advantage of time- ovewid state dynamics is the effect of damping processes on the
frequency-domain methods is that the difference between amptical response. Due to the strong, random interactions,
exponential decay and an overdamped oscillation, exhibitinglephasing can be expected to contribute significantly to the
a distinct inertia-limited rise time, shows up more clearly in spectral width. One major motivation of current research is
time domair?’ In frequency domain, this information is con- to elucidate the nature and mechanisms of such processes,
tained in the weak far wings of the spectral response. Opticadince they directly reflect the complex microscopic dynamics
heterodyning, that was incorporated in the optical Kerrin the liquid. Traditionally, dephasing processes are classi-
effect?%! transient grating scatteririg,and stimulated gain  fied as homogeneous or inhomogeneous. The latter is due to
spectroscopy;'® allows one to measure the in- and out-of- 5 static distribution of local environments of molecules, that
phase part of the material response separately, avoiding crogg not change on the time scale of the experiment, while

terms between them. homogeneous broadening is caused by fast fluctuations, that
The general picture that emerged from both frequency-change the local environment on a time scale much faster

gnd tlljne—;iobrlrjar;n c\j/\'lo'|[|r(1 on Tterlrr;plﬁjcular :nohc;ns n I'qu'?sthan the inverse width of the frequency response. Since
IS well-establisned. 1he optical Hield exerts a torque on I, 1aar motions in liquids occur over a wide range of time
molecules via the single-molecule dipole moment or the an- L e s " s . .
. . o . . scales, the separation into “fast” and “slow” fluctuations is
isotropic part of the polarizabilityessentially rotation ab- uestionable, and hence it is not clear whether it is fruitful to
sorption and rotation-Raman scattepinddditionally, all q '

liquids, even those consisting of nonpolar and isotropically_dISCuSS the optical response in terms of homogeneous and

8254
polarizable atoms or molecules, show a collective Opticafnhomogeneous broadenifig.

response of dimers, trimers, and higher aggregates, which is " Order to clarify these open questions concerning the
often referred to as the collision- or interaction-induceg®Ptical response of liquids and its interpretation in terms of

responsé’ 3 The short-time(high-frequency part of the liquid state dynamics, the pre_dictions of different models
response is inertial, i.e., due to their finite moment of inertiah@ve to be compared to experimental results. Unfortunately,
the molecules cannot follow the optical excitation FIR-absorption spectra and time- and frequency-domain
instantaneousl§®?” For highly polarizable anisotropic mol- Rayleigh/Raman experiments provide information only on
ecules like carbon disulfidéCS,) and benzene, the inertial the total spectral response of motional degrees of freedom in
response is attributed mainly to coherent librations. Both thdiquids. They do not allow for an assessment of the dynamics
local equilibrium position and the librational frequency arethat underlies such spectra, although one might hope to gain
determined by the transient local cage structure, formed bgome understanding from a systematic study of spectra as a
the neighboring molecules. Upon excitation of the librationfunction of some external parametgemperature, pressure,
the cage is distorted and the molecule acquires a new equiomposition of the liquid, etg. These experiments contain

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996
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only limited information, because they all depend on acan be made. Originally, Tanimura and Mukamel calculated
single-time correlation function or its Fourier transfotn®®  the nonlinear response for exponential coordinate depen-
To unequivocally establish the time saajeof dynamics that  dence, since this allows one to generate the response for any
give rise to a spectrum, multitime techniques should be emcoordinate dependence, using the appropriate derivatives of
ployed, which implies higher-order nonlinear optical tech-the | jouville space generating functiofsThe exponential

niques. Examples of such type of experiments are resonagy,m, \as also subsequently adopted to simulate the higher-
four-wave mixing in the IR and the Raman echo, a SeventhE)rder nonlinear response of waférand used to fit experi-

order nonlinear effect. They were used to study intramolecuz, .\ yo1¢20.72 However, it is physically unrealistic to
lar vibrations of molecules in liquids, glasses, and .
s0lids57-%4 In these studies the laser pulses were muctassume that all modes obey the same coordinate dependence,

longer than the vibrational periods, so the vibrational motiones‘)ec'alIIy when the modes describe phenomena of a com-

itself could not be resolved. On intermolecular motion, suchPl€tely different nature, such as coherent librations and dif-
experiments have not yet been performed. fusive reorientation.

A few years ago, Tanimura and Mukamel proposed a The paper is organized as follows: In Sec. Il, the pertur-
new fifth-order nonlinear optical technique to gain furtherbative treatment of nonlinear optics is reviewed, using the
insight into the time scales of intermolecular dynamics inBorn—Oppenheimer approximation and assuming that all op-
liquids ®® The theory for this effect was originally based on tical fields are far below electronic resonances. Subse-
quantum path-integral techniqu¥$’ that allows for a quently, in Sec. Ill the third- and fifth-order response func-
Brownian oscillator description of the heat bath. Later, it wastions of a damped harmonic mode is worked out. Model
extended to classical oscillators and phon®nand evalu-  calculations are presented to show that the information con-
ated in a coherent state representafibWe will describe it tent of six-wave mixing surpasses that of conventional four-
here in a perturbative treatment that makes explicit use of thg,zye mixing experiments. Finally, in Sec. IV the results are
Born—Oppenheimer approximation, following the formalism g, mmarized and conclusions are drawn with respect to ap-

33 ; ;
of HeIIV\_/arth. Dampl_ng will be modeled by State'de_penden_tplication of the theory to the analysis of experimental results.
dephasing in the limit of weak system—bath coupling. This

treatment yields the full description of nonresonant optical

response up to fifth order, and comprises processes involving

instantaneous four- and six-photon scattering, that have not

been discussed before. The different processes carry diﬁj NONLINEAR OPTICS WITHIN THE

tinctly Qifferept dynamical_ informatiqn, which may cause se-pgnpN_OPPENHEIMER APPROXIMATION
rious difficulties for the interpretation of experimental re-

sults. 5(?5329 final re_sults will be compare_d o existing This section contains some aspects of nonlinear optical
theory®>%8%that avoids the weak coupling limit, but does . . .
response theory. One conclusion will be that there are, in

not account for the state dependence of the damping rates, .~ . L .
First results of time-domain fifth-order experiments Wereprmmple, more contributions to the fifth-order response than

recently reported by Tominaga and YoshiHar& and by ~Previously considered in Iiterzatl'J?E".Gf'SJ&77 The different
ourselved* 78 Surprisingly, the results of these two groups Processes carry different dynamical information which may
differ in a number of important aspects, even when the sam@ffect the interpretation of experimental results. The pertur-
sample was investigated. For pure liquid,CSominaga and bation treatment of nonlinear optics is briefly reviewed in
Yoshihara concluded that the theory of Tanimura andSec. Il A. The results are valid under a large number of cir-
Mukamef® explains their data very well for mainly homoge- cumstances, e.g., for resonant and nonresonant radiation, and
neous broadenin@ In contrast to this, we found for Gaind  for coordinate dependent coupling between matter and radia-
for some other liquids, that the theory fails to describe thetion (non-Condon effecjsIn Sec. Il B, the nonlinear optical
full temporally two-dimensional information content of our response for electronically nonresonant radiation is calcu-
data’ Possible reasons for the discrepancies will be dis{ated, following the model of Hellwartff The Born—
cussed in Part Il of this work, where experimental results ofpppenheimer approximatiofBOA) yields a reduced de-
four- and six-wave mixing will be discussed in light of the gcrintion of the nuclear dynamics in the electronic ground
theory presented hef€. state, where the electrons are taken into account implicitly by

. In t'he presence of more thqn one dyn.a'mlcal mode, thergn effective potential among the nuclei. The coupling be-
is no direct way to predict the six-wave mixing result from a L X . .
tween radiation and matter is then given by effective cou-

lower-order response, even when the dephasing mechanismF - the el b larizabiliti
of the modes are known. The reason is that the nuclear cd&'N9 constgnts. the e ect.ron( ypeﬁ polariza ||t|es.. ]
The third-order nonlinear optical response within the

ordinate dependence of the electronic polarizability, which ) ] - i
determines the Raman cross sections in all orders, is in gefBOA is calculated in Sec. Il C. It describes, for instance,
eral unknown. The different modes will therefore have dif-various forms of Rayleigh/Raman scattering, and FIR four-
ferent relative contributions in the various orders of nonlin-wave mixing processes, where the applied fields are resonant
ear response. Only in the case that the coordinate dependenwiéh nuclear degrees of freedom. The fifth-order nonlinear
of the polarizability is known for all modes, clear predictions response function in the BOA is derived in Sec. II D. In its

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996
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most general form it consists of 32 different contributions,
given in Appendix A. When the applied optical frequencies

are far above the nuclear resonances, only 4 of these 32

processes have to be considered.

A. Perturbation theory of nonlinear optical response

In a perturbative treatment of nonlinear optics the polar-

ization created by an applied optical field is usually ex-
panded in powers of that field

P(t)=PO(t)+ P (1) + P2 (1) + P (t) + - (1)

Here,P!" depends on thath power of the electric field. The

spatial dependence of the polarization, that leads to phase
matching conditions, is suppressed. In media with inversion

symmetry, and in particular in isotropic media like liquids,
the polarizations depending on even powers of the electri
field, PO(t), P?(t), and so on, vanish. Therefore we treat
here only linear, third-, and fifth-order polarizations. The po-
larization at timet depends on the electric fields applied at
all earlier times

7367

(a)

(b)

(©)

n | =&
JAN

c time

FIG. 1. Definition of the time variables as used in this papefajrthe five
time variablest; —ts are shown, denoting the times when the figijs-E,,
act on the system to generate a nonlinear polariza®ioat timet. In (b) it
is shown that=t,, t,=t5, andt,=t5 is a necessary condition for nonreso-

nant excitation. The nonlinear response functions will be expressed in terms
of the time differencesy=t;—t, and ,.=t,;—t,. In third-order scattering

® there is only one propagation periag=t;—t,. In (c) the experimental
Pi(l)(t) = f dthi(jl)(t,tl)Ej(tl), (2a) situation for six-wave mixing is depictedl. Two pairs of excitation pulses,
- separated by tim&,, are followed by a probe pulse with deld@y. For finite
pulse durations, a range of time differencgsand 7, occurs.
PE(t)= j, dtlf, dtzf, dts
X R (L1, 1) Ej (L) Ex(t2) (1), (2b) p=2 eurs, @)
Pi(s)(t):J: dtlﬁ dtzJ, dt3J, dt4£ dts andU(t) is the time evolution operator that satisfies
KR (Lt bt te) E (1) in 3V _
ijkimnltt1,02,13,14,15) Ejlly ih E_(HO"—HI(I))U- 5)
X E(t2)E | (t3) Enm(ta) En(ts). (20 H, is the Hamiltonian of the unperturbed system ahdis

the interaction Hamiltonian, that in the electric dipole ap-

Thenth order time-domain response functiBfY is a tensor ~ ProXimation is given by
of rank n+1. We use the convention that repeated space H,(t)=—p-E(t). (6)
indices in a product are to be summed over. The last inter-
action with field E; occurs at timet;, the second to last The polarizatioriEq. (3)] can be evaluated to arbitrary order
interaction with fieldE, at timet,, and so on. This is shown in the applied fieldE(t) by expanding ~*(t) andU(t) in
schematically in Fig. (8 up to fifth order. For first- and Powers ofH,(t), using standard iteration techniqugs®"
third-order response the number of interactions has to b¥/e do not repeat the derivations here, but only quote the
reduced correspondingly. main result for the dipole operator in the Heisenberg picture
The optical field couples with the medium via the time-
dependent microscopic charge distribution. In the Heisen
berg picture, the polarizatid®(t) is given by the expectation
value of the dipole operatqy

U~ Y(tpu(t)

t

i

2 rt ty o~ ~
|'[ ot [* starmio e Fican

=pi(t)+ 7

“

+ ...

A1), Hi(t)]
P(t)=(U ™ (t)pu(t)). 3) _
—I1

Here,p is the total dipole moment associated with the instan- h

taneous positions of all charged partictegnuclei and elec-
trons:

)

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996
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Here [A,B]=AB—BA denotes a commutator anﬁ(t) described by time-independent perturbation theory. This
means that the operatér is transformed to the interaction yields an expansion of the electron ground state enéfgin

picture powers of the electric field:

Ariy—p11-1

A(t)=Uq ()AU(1), (8) Wo=Woo— (uiEi + 30 E{E; + 38i ) EiE  Ex
where Uy(t) =exp(—iHyt/%) is the time evolution operator
of the unperturbed system. Comparing E.and (6) with + 3%k EiEEXE| + 2€ijumEiEjEXE|E
Egs. (2), the time domain(non linear response functions
are obtained + 8LijkimnEiEjEXE | EmEn+-++). (11)

o
R{V(t.ta) =5 ([Bi(t) Byt DH(t—ta), (9a) - o _
Every coefficientWyg, 4 , ajj ,... in this expansion depends

explicitly, but in a generally unknown way, on the nuclear

i\3 coordinatesW, is again the electronic ground state energy
Ri(ﬁ(),(t,tl,tz,ts): %) ([[[Pi(t),pj(t) ], Pk(t2) 1,Pi(t3) T in absence of any electric field, whilg; is the electronic
dipole moment, @;; is the electronic susceptibility, and
XH(t—t)H(t;—ty)H(t,—t3), (9b) Bijk » Yijl »--- are higher-order hyperpolarizabilities.

Now, the interaction Hamiltoniaki °(t) consists of an
electronic part, that is due to the change of the electronic

Rimn(t.ts b2, 3, ts) ground state energy by the applied field and given by the
i\5 term in the brackets in Eq11), and a nuclear part due to
= <%) (LILLIPi (1), B (t) 1, Pr(t2) 1,y (ta) TPm(ta) 1, direct coupling of the optical field with the charged nutlei
Pa(t
Palts)]) HPO(t) = — (MiE; + 3 EiE; + 36ijEEEx
XH(t=t)H(t;—tx)H(t,—tz)H(tz =ty H(t, — ts5).
(90) + 3%k EiEEXE| + 2€ijimEiE;EKE|E

1
HereH(t) represents Heavysides step function. The pertur- + 6CijkimnEi EjEKE EmE+ -+, (12

bative procedure yields a full time ordering of the interac-
tions: the interaction att, always occurs before the interac-

tion att, and so on. Herem=u+3Xe,r , is the electric dipole in absence of the

optical field; it depends only on the nuclear configuration.
The total dipole operatop®° also consists of a nuclear

and an electronic part

B. The Born—Oppenheimer approximation

In transparent media, where all optical frequencies are PBO=(E e,l,— (13

well below any electronic resonances, the electrons follow
the applied field and the moving nuclei adiabatically. Then,
the Born—Oppenheimer approximatitBOA) holds and can
be incorporated in the perturbative calculation of the nonlin
ear polarizatiorf> The electrons can be eliminated from the
general treatment of Sec. Il A, by assuming that they are
always in their ground state, irrespective of the nuclear con-
figuration and the external field strength. In the unperturbed
system, their presence manifests itself as an effective poten- + €jiimE EKEIEm+ CijkimnEjEXEIEmEn+ -+ .
tial for nuclear motion. The unperturbed Hamiltonid§® in

the BOA is given by the sum of the kinetic energy of the

nuclei Ty, the Coulomb interaction among them, and the

ground state energyo, of the electrons The prefactors 1/2, 1/3, 1/4, and so on in the expansion of
. .85 WQ [Eq. (12)] were chosen such thé:tt thgy disappear here.
HEO=Ty+ > m“‘woo- (100 This is due to the fact that the polarizability tensors are to-
«rf Da7h tally symmetric(Kleinman symmetry,’®
Here the sum is to be taken over the nuclei only. Since the Using the reduced Hamiltoniar§° of the unperturbed
electrons follow the applied optical field instantaneously, thesystem [Eq. (10)], the interaction Hamiltonian—if“o [Eq.
change of their ground state energy at any moment can b@?2)], and the dipole operat@®® [Eq. (14)], the nonlinear

dW, dHP®
dE |~ dE -

Using Eq.(12), it becomes clear thgi®© is explicitly field
dependent

pPO=mi+ @ E;j+ BijE; Ex+ ¥iju E ELE

(14)

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996
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response functions can be calculated without explicit considauclear subspace only. The time evolution operatBf(t)
eration of the electronic degrees of freedom. The polarizatioimn the BOA obeys an equation of motion similar to E§),
is now given by but now H, and H,(t) have to be replaced b#§° and
Y /(11BO( 1) — 1,BO| | BO H=(t), respectively. WherlJ®(t) is again solved itera-
Pi(t)=((U=>(1)) " *p;-UPS(1)), (15 tively, the result for the dipole operator in the Heisenberg
where the expectation value is calculated by tracing over theepresentation, up to the fifth iteration step, is

(UBS(1)) " *pPouB(t)

_~=BO i ft dt.[ 5B°(t) HEO i th d ftld 5BO(t) FHBO Heo
=pi (H)+ 7). i pi (1), H (1) ]+ 7). ty . tl[pi (O, H(t) ], H - (to)]

3t 1 tp _ _ _ _
f_mdtl dt, f_wdtg[[[pF‘°<t>,H.B°(t1>],HFO(t2>],HF°<t3>]
—ij\4
T

—j 5 rt
al [

B~

t
ty

J
J
J

ty t . _ _ _ _
dtp f ~dt f AR PO) HEO(t) 1 HP) 1 HEC(1) 1P ]

SN

+
+

ty
+

dt

©
©
©

ty ta ty _ _ _ _ _ _
dtp J _dt f dy f [ [[L[B7O(), HP(t) L HP(t) L HP(t) L HP(t) LHPAts) 1. (16)

Z(t) now means that operatéx is transformed to the inter- gives rise to Rayleigh scattering, where the frequencies of

action picture in the BOA. Its time evolution is governed by the annihilated and created photons are equal. The second

the time evolution operatdd §°(t) =exp(—iHgCt/4). part originates from the second term of H46) and de-
Analogous to Sec. Il A, the response functions can bescribes FIR absorption, which can be neglected when the

calculated by inserting Eq$12) and (14) for HP(t) and  frequency of the applied field is well above the nuclear reso-
pE9(t) in Eq. (16), and comparing the result to EGE).  nances.

Since both operators are power series in the applied field,
several terms of Eq(16) contribute to a given order iE.
For example, the result for linear response is:

C. Third-order nonlinear optical response

1 _ o =
Rl )(t’tl)_<a”>5(t_tl)+%<[mi(t)'mj(tl)]>H(t_t1)' In centrosymmetric media there are no second-order
(17 nonlinear optical effects, so we continue our treatment with
the third-order response. The corresponding response func-
The first part results from the first term of E(.6), and is  tion can be evaluated by collecting all terms in Etg) that
due to linear electronic polarization. It is instantaneous andre of third order irE. The result is

Ri(jak)l(trtlat2!t3):<7ijk|>5(t_tl)5(tl_t2)5(t2_t3) (183
4 ([ (1), Bt ) Sttty — 1) St~ ) (18
4 ([0, B (L) DHE— 1) 8t~ 1) B(t,—ta) (180
+ o (B0, (1)) 51—t St~ ) H (1) (asd
iz o ~
g (LI (1), My(t)], 3 (t) HH(E =t H(t —t5) 8(to—t3) (18¢
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i\ 2

] R0, ) L) DHE-t) St~ )t t) (a8
i\ 2

| ] (00 (0, At ] (1) D St H(t — to) H(te—ta) (189
iv: - _

g (LLOMm; (1), my(t) T, mi(to) 1, my(tg) HH(t—t) H(t, —t) H(to— tg). (18h

|
Here the first four terms of Eq16) yield parts(18a), (18n)—  spectroscopy>° Hence, when the applied frequencies are

(18d), (189—(18g), and (18h), respectively. They describe well above all nuclear resonances, the third-order response
distinct physical processes. In E{.8a the optical interac- function consists of only two termdEqgs. (183 and (18b)].
tion occurs through the instantaneous nonlinear electroni¢hese will be employed in Sec. Ill to derive expressions for
hyperpolarizability, where three photons excite virtual levelsthe femtosecond optical Kerr effect and grating scattering
to generate a fourth one. This process is depicted in an emxperiments.
ergy level diagram in Fig. @). Part (18b describes
Rayleigh/Raman scattering. This is shown schematically i
Fig. 2(b): at timet,=t; a coherent superposition of nuclear
states is created, that after a propagation pefjeet; —t, is The fifth-order response function is obtained by inserting
converted into an optical signal at tinte-t,. Although an  the expansions of the interaction Hamilton{dty. (12)] and
energy level representation can give a raw impression othe dipole operatofEqg. (14)] in Eq. (16), taking the expec-
these processes, the dynamics are better characterized tafion value[Eq. (15)], collecting all terms that are of fifth
looking at the quantum evolution of the nuclear states inorder in the electric field, and comparing the result to Eq.
Liouville space. This can be depicted in the form of double-(2¢). In this way, we find that the first and sixth term of Eq.
sided Feynman diagrams. For the electronic hyperpolariz¢€16) each yield one contribution, the second and the fifth
ability [Eq. (183], this is shown in Fig. &), while the Ra- term both give five, and the third and fourth term each yield
man proces§Eq. 18b)] is described by the sum of two ten. Thus, the full response function consists of 32 indepen-
diagrams, shown as Figs(i831) and 3b.2). dent terms. The complete expression is given in Appendix A.
All remaining terms contain the dipole moment operator  In the remainder of this paper we will concentrate on the
and vanish when all applied frequencies are well above thsituation where all applied optical fields are far above the
nuclear resonances. Palts8c0—(18g may be observed in nuclear resonances. In this case all terms containing the elec-
double-resonance experiments, that have not been reportétit dipole moment operatan are negligible. Tern{A4) of
yet. The last part18h) describes resonant IR four-wave mix- the complete expression describes hyper Rayleigh—Raman
ing experiments like pump—probe, photon—echo, and gratingcattering, where two of the involved photons are at the
scattering, that all have been performed on variousecond-harmonic frequency of the applied radiaffoff.
samples’/®1 A detailed description is analogous to that of When only the fundamental wavelength is detected, this term
resonant four-wave mixing experiments with visible light, can be ignored. Then, the fifth-order response function con-
and is presented in standard textbooks on nonlineasists only of termgAl), (A3), (A5), and(Al12)

rb. Fifth-order nonlinear optical response

R mn={(Zijkimn) (t—11) 8(t1 = t5) 8ty —t3) Stz —t,) 8ty —ts) (193
i
+ 7 <[aij(t),%ymmn(tz)]}5(t—t1)H(t1—t2)5(t2—t3)5(t3—t4) o(ty—ts) (190
i -
2 (Vi (0, 28mn(14) 1) 8(t—t1) 8t~ t2) 8t~ tg) H(ts— ty) Sty — ts) (190
RE _ _
g ([[a;j(t), 3a1(t2) ], 3&mn(ta) 1) S(t—t1) H(ty —t5) S(t—ta) H(tg—t4) S(ts—ts). (199
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. T2 T T T2 %
(a) (b) =
i ¥ ¥
(a) (b) © ()]

FIG. 2. Energy level diagrams for third-order scattering du@telectronic

hyperpolarizability, andb) Rayleigh/Raman scattering. These processes are

described by Eq4183 and(18b), respectively. The dashed horizontal lines FIG. 4. Energy level diagrams for fifth-order scattering. These processes are

are virtual levels that have an infinitely short lifetime in the BOA. The solid described by Eqg19a—(19d). Interactions and energy levels are defined as

horizontal lines depict real nuclear states in the electronic ground statén Fig. 2. (a) Pure electronic fifth-order polarization gives rise to instanta-

Solid arrows indicate applied photons, while the wavy line symbolizes theneous scatteringb) Hyper-Raman scattering excites a nuclear coherence,

generated photon. that after a propagation time, is converted into an optical signal by an
ordinary Raman proces&) Raman scattering is followed after timgby a
four-photon hyper-Raman interactiorid) Three subsequent scattering

The processes that correspond to these four terms aFgents g@ve r_ise to a two-dimensional Raman process, that contains both
. . R . . propagation timesy and 7.
depicted in an energy level scheme in Fig. 4. The first term i€
due to the instantaneous electronic hyperpolarizability,
where five photons, via virtual electronic levels, generate @xcited by Raman scattering and after a propagation period
sixth one [Fig. 4@]. It contains no information on the 7 =t,—t, it is converted into an optical signal by a four-
nuclear dynamics. The second term describes excitation of ghoton proces§Fig. 4(c)]. Since the second and third term
nuclear coherence by a four-photon process, governed by th&ch depend on only one propagation time, they contain in-
coordinate dependent hyperpolarizability(q). After a  formation on the nuclear dynamics, similar to the usual third-

propagation period,=t, —t, the nuclear coherence is con- order Raman term, discussed in Sec. Il C.
verted into an optical signal by a Raman process, governed

by the coordinate dependent polarizabilitfq), as shown in
Fig. 4(b). Such a sequence of interactions was shown to be

responsible for subharmonic Raman resonances in fifth-order p><A  P><A > <yl > <M > <pl
frequency-domain spectroscopy in ga&&$he third term is
the mirror image of the second one: the nuclear coherence is ”} ‘77}
> >
> <Al A> <Al > <p| P> Py ey P <A

(a) (1) (b2 (c.1) (c2)

v> <v|

P><M (<l (v
- *

v> v>
> & ! .

P> <Al P> <Al > <A > Iw> <M

(a) (b'l) (b'2) |l> :M |)> :M |l> ZM |}‘;- (M

@1 d2) d3) d4)
FIG. 3. Feynman diagrams for the third-order scattering of Fig. 2. The
nuclear dynamics during excitation of virtual states is neglected in the BOAFIG. 5. Feynman diagrams for fifth-order scatterii@—(d) refer to the
The coupling is governed by the polarizabiliywhen two photons meet at  corresponding processes of Fig. 4. The definition of vertices and arrows is as
a vertex, and by the hyperpolarizabilitywhen four photons are involved. in Fig. 3. (a) Scattering due to the purely electronic hyperpolarizabiitg
Multiple arrows at a vertex means that all possible field permutations shouldiepicted by one diagranth) and(c) Both processes involving hyper-Raman
be taken. The wavy line is the generated photon. One dia¢sadescribes  scattering consist of the sum of two diagrartd. The description of two-

instantaneous scattering due to electronic hyperpolarizapiity Fig. 2a)], dimensional Raman scattering requires four diagrams. In the inhomoge-
while two diagramg(b.1) and(b.2)] are required to describe Raman scat- neous limit of nuclear dynamics, these diagrams contain the possibility of
tering[see Fig. 2o)]. rephasing of nuclear coherence, which may yield a motional echo.
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The term(19d) describes three subsequent Raman scatinto a power series of the nuclear coordinate. In Sec. Il B
tering processe$Fig. 4(d)]. It contains two independent damping is treated in the weak coupling limit for level-
propagation periods;=t;—t, and ,=t;—t,, and therefore dependent and level-independent decay rates. The results are
has the capability to provide additional dynamical informa-compared to existing theory of Mukamel and
tion, not available from lower-order experiments. It is this co-workers®>%8%% |nhomogeneity of the nuclear spectrum
term that was first discussed in the work of Tanimura andeads to the generation of motional echoes in the fifth-order
Mukamel®® which was followed by a number of other response. Model calculations are shown for the parameters of
theoreticai®®® and experimental papef$:7274"This pro-  an intermolecular mode of liquid GSIn Sec. Ill C the non-
cess allows one, in principle, to distinguish between homolinear response is considered when two or more nuclear
geneous and inhomogeneous contributions to line broademrodes determine the optical response.
ing of nuclear transitions. Thereby, it provides informationA Th . .

. . Lo . A. The nonlinear response of harmonic nuclear
on the time scale of structural fluctuations in liquids, as W|IImotion
be discussed in Sec. Ill. The Liouville-space double-sided
Feynman diagrams of all fifth-order terms of H49) are For nonresonant radiation fields, the third-order polariza-
depicted in Fig. 5. The first term can be described by a singl&on can be obtained by inserting E¢$83 and(18b) in Eq.
diagram[Fig. 5(a)], the second and third terms by sums of (2b), as discussed in Sec. Il C, while the corresponding fifth-
two diagramgFigs. §b.1) and 5b.2), and Figs. £.1) and  order polarization is found by inserting EQL9) in Eq. (20),
5(c.2), respectively, and the last term with two propagation as discussed in Sec. Il D. For simplicity, the tensorial nota-
times needs four diagrams to capture all possible pathwayiéon of the response function will be suppressed from now
of nuclear propagatiofFigs. 5d.1)—5(d.4)].34 on. It can be incorporated without major difficulties, to

The relative magnitude of the four terms of EJ.9) evaluate the polarization selectivity of the various contribu-
depends in general on the investigated sample and the waviions to the signal8>® The response functions will be ex-
length of the radiation. When the energy of two or threepressed in terms of the positive propagation timgand 7,,
photons becomegpre) resonant with electronic levels, the instead of the absolute timesg,t,,... (see Fig. 1 This is
processes that depend on the corresponding hyperpolarifore convenient, since some of the absolute times were
abilities can be resonantly enhanced. The contribution due tfpund to be identical under all circumstan¢&ec. 1). Thus,
the purely electronic polarization can be easily distinguishedhe third-order polarization can be written as
experimentally, since it is instantaneous. The distinction be- "
tween the second and third processes and the fourth one, P<3)(t):E(t)f drR®(m)E2(t— 1), (20)
however, is less straightforward. For a reliable interpretation 0
of the experimental results, it is essential to assign the Sign%here
unambiguously to one of the processes of ELf), since
they contain entirely different dynamical informati6h. i -

The theoretical approach, sketched in this section, is eas- R (72)=()8(r1)+ o7, (La(7y),a(0)]). (21
ily extended to higher order processes. For instance, the
seventh-order response, using nonresonant optical fields arfde two terms correspond to Figgapand 2b) and 3a) and
excluding second-harmonic detection, contains eight differ3(b), respectively. The corresponding fifth-order polarization
ent terms. Of these, one is instantaneous, three containig
single propagation period, three others contain two propaga- . .
t?on periods, and in one process thr_ee independent propaga- p(5)(t):E(t)f dTlJ dry RO (7y,7)E2(t— 1)
tion times occur. The Raman echo is one of the effects de- 0 0
scribed by this last term. Again, new information on the

2
nuclear dynamics can be expected. Here, we will not discuss XEXt=m =), (22
the seventh-order response any further, since the highesimere
order nonlinear experiments on low frequency modes in lig-
uids, reported so far, are of fifth ordé¥.” RO (71, 72)=(0)8(71) 8(72)

i ~
y— J(0)]) o
IIl. OPTICAL DYNAMICS OF NUCLEAR MOTIONS IN a7, {[a(72). ¥(0)])&(ry)

LIQUIDS

| — -

The nonlinear optical theory of Sec. Il can be employed ton ([v(7), a(0)]) 8(72)
to analyze third- and fifth-order experiments when a model
for the nuclear motion is adopted. In Sec. Il A, the response
functions are first formulated in terms of nuclear eigenstates.
These results are valid for any Hamiltonian and any func-
tional form of the coordinate dependeihtypel polarizabil-
ity operators. Then, the assumption of harmonic nuclear moThese four terms correspond to Figga)4-4(d) and 5a)—
tion is made, and the polarizability operators are expande8(d), respectively. The meaning of these expressions be-

1 ~ ~
2 ([[a(m2t71),a(11)],a(0)]).

(23
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comes clear when the commutators are written out in their  Thus, fifth-order experiments in harmonic systems are
various factors, and théhypep polarizability operators are only possible when eithew is nonlinear ing and/or the

transformed back from the interaction picture hyperpolarizabilityy yields extra contributions. Here, we ex-
pand« up to second order in: a(q)=a,q+ a,q?, andy,
<)\|Z(t)|lu>:<)\|A|M>ei(q—eﬂ>t/hEAMeint_ (24) which is supposed to be smaller than up to first order,

v(q) = y,9. Using these expansions, and writiggn terms
Here, [\),|),... are the eigenstates of nuclear motion in theof the raising and lowering operatoes and a, the matrix

BOA, and the difference of energy eigenvalues is repre€lementsa, ,(q) and y,,(q) of Egs.(25 and(26) are ex-
sented bye, —¢€,=fiw,,. The third- and fifth-order response pressed in terms of the well-known harmonic oscillator ma-
functions in this representation read trix elements
R¥(19)=(y)8(r1) (Ma'|w)=(ulal\y=u+ 18,1
1 .
—7 2 PVa(@an(@sino,,m), (29 (Ma'allwy=(uladh)= (et 1)(p+2) 5,z @7
Iy

(Maa'|u)=(ulaa’\)=(u+1)5, .

1
5 —
R )(7'1,72)—<§>5(7'1)5(7'2)_g g PV an (@) yun(Q) In this way, Eqgs.(25) and (26) are easily evaluated. The
general results, explicitly written in terms of the quantum
X[3 8(71)SiN( ), 72) + 8(72)SIN W), 71)] states of the system, are shown in Appendix B. As discussed

in Sec. lll B, damping is included in the weak coupling limit.
Here, we first treat the situation when damping is negligible,
to show the general structure of the response functions. The
third-order result then is

1
g 2, Pan(@au(@an(a)

X[cog wy, 71+ 0y, T>) )

—COY @), 71+ @,,75)]. (26) R®(r))=(y)8(7y) + 2%0 sin(wry)

2
In Egs.(25) and(26), P(\) denotes the equilibrium distribu- ash .
tion of stateg\). We want to stress that the treatment at this - 2m?w? ; (A +DPN)siN2wry). (28)
point does not depend on the specific forms of the Hamil-

. 11BO b g .
tonianHg™ or the (hypey) polarizability operators(q) and A one-quantum nuclear transition has a probability propor-
(). These general expressions, that we believe have ngpnal to «,, leading to oscillations at frequeney. The sec-
been published before, describe the third- and fifth-ordepnd coefficienta, allows for two-quantum transitions, since
nonlinear response due to nuclear motion under nonresonagt containsa® and (a’)?. This yields temperature dependent

excitation. The Feynman diagrams of Figs. 3 and 5 are picoscillations at #. The corresponding fifth-order response
torial representations of the involved quantum mechanicajynction reads

pathways. To calculate the matrix elements, and ,, a
model has to be adopted for the nuclear motion and thes§(5
polarizability operators.

For harmonic motion, the eigenstatas are known, and

) _ a1%1 .
(11,72)=({) (1) 8(72) + Ime O(r)sin(w)

the Hamiltonian and the harmonic coordinate can be ex- *1n ;

. . . + O(77)siN(wTy)
pressed in terms of the raising and lowering operagdrand 2mo
a: HZ%=rw(a'a+1/2) andq= (#/2mw)Y¥a’+a). The co- o2
ordinate dependence of tkieypen polarizability operatorsy + % E (2N +1)P(N)
and vy is in general not known exactly, and usually expanded 2mw® Y

into a power series aff. When they do not depend apat

X - +
all, the (hypery Raman transition probabilities vanish. When [c0S 207y =08 Do(7o+ 71)]

a is linear in g and the hyperpolarizabilityy can be ne- aiaz

glected, the fifth-order response does not exist because two- + amZe? LCoS (71— T2) —COS (T, + 72)
guantum transitions are forbidden, and hence all diagrams of

Fig. 5d) vanish separatelysee below. For seventh-order +CoSwTi—COSw(T1+275)]. (29

response, each diagram vyields a finite contribution, but for

level-independent damping the total response still does ndtlote that the term proportional to cag2r;+7,) in the ex-
exist. The reason is that the contributions from the variougpression forR(5)(rl,7-2) in Appendix B has disappeared here,
diagrams interfere destructively. When the decay rates aréue to perfect destructive interference of the involved quan-
level dependent, this interference is not perfect, and henceim mechanical pathways. As will be discussed in Sec. 1l B,
the seventh-order response no longer vani§hes. the interference is destroyed when the damping of the motion
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is explicitly level dependent. Then, the fifth-order optical that of the leading term of the third-order nuclear response
response will indeed contain a part that oscillates with(~w 2).
COSw(271+ 7).

The first term of Eq(29) is due to the hyperpolarizabil-
ity £ [Figs. 4a) and a)], and contains no information on the
nuclear dynamics. The secoffdgs. 4b) and %b)] and third So far, the treatment of the nonlinear optical response is
terms[Figs. 4c) and Fc)] are similar to the third-order re- incomplete, in the sense that damping of the induced nuclear
sponse Eq(28). They contain the same dynamical informa- motion is not included, yet. In condensed matter it is gener-
tion but one of the two temporally separated interactions islly impossible to describe all degrees of freedom exactly.
an instantaneous four photon interaction governed by the hydsually, a few degrees of freedom that dominate the optical
perpolarizability y. The last two terms describe the tempo- response are described explicitly and called “the system.” In
rally two-dimensional Raman process of Fig&d)4dand 5d). our case this is the harmonic oscillation of Sec. Il A. All
The first of these, consisting of two parts, involves threeother variables are accounted for by an implicit description
transitions that all depend og?. The part proportional to of their influence on the dynamics of the system. They form
cod2w(m+7)] is generated by a two-quantum transition, the “heat bath,” which is responsible for dephasing and re-
followed by a zero-quantum transition and another two-laxation phenomena of the system. The separation of system
guantum transition after propagationsand 7, respectively. and bath variables is not unique and depends on the desired
The zero-quantum transition, which does not change the statevel of sophisticatiod?-®
of the system, is possible becaugecomprises a term pro- The effect of the bath can be easily incorporated phe-
portional to (2a'a+1). The system is in a coherent two- nomenologically, when the coupling between the system and
quantum superposition stat\A\=2| or [\=2)\|, during  the heat-bath is weak and fluctuates very fadarkovian
both propagation periods. The part proportional td2es,]  dynamicg. Then, exponential decay rates can be introduced
is caused by two subsequent two-quantum transitions, folto describe the damping of the density matrix elements
lowed by a zero-quantum transition. Durimgthe system is  |[\)u/|. This is analogous to adding an imaginary part to the
in a coherent two-quantum superposition state, while duringystem transition frequencies, according to:
7, it is in a population statg\)(\| or A=2)(A*2). oy, — oy, il , wherel'y , =T\ = (v, + y)2+ T3,

The last term of Eq(29), which consists of four parts, Herel'}, is the pure dephasing rate andylis the lifetime
always comprises two one-quantum transitions and one twaaf stateX. Note that the real part of the frequency remains
guantum transition, in different time order. The states of theunchanged. When the decay is assumed to be independent of
system during the two propagation periods can be easily corthe quantum numbers of the involved states, the damping is
structed from the corresponding Feynman diagrdffig.  fully characterized by a single population decay ratand
5(d)] or the expression foR®(r,,) in Appendix B, in the dephasing rate8, andT,, which describe the decay of
which the states are explicitly shown. This term is propor-the one- and two-quantum coherencéls+1)\| and
tional to the inverse of the oscillation frequency squared|\=2)(\|, respectively. The third- and fifth-order responses
while the pure two-quantum one is inversely proportional toare then easily calculated from the general expressions in
«°. Note that these are stronger frequency dependencies thappendix B. The results are

B. Relaxation phenomena

2 2

(3) it S agh —Tyry o
R (Tl):<’}/>5(7’l)+ me e 11 Slr(le)'i‘ m ; (2)\+1)P()\)e 271 Sln(2w7'1), (30)

RO)( 11,70 =({)8(71) 8(75) + “rlnyl

“Tary o a1Y1 “Tarr
Imo o(r)e I17 Sln(an'z)-l—m o(ry)e Iim Sin(wTq)

3
ash
+ 2—mz$ > (2A+1)P(N)e "21{e 772 cos 2oy — e 272 cos 2o( 1y + 71)]
A

2
a0y _ _ _ _
+ amZa? © Timfe T172 cosw(ry—7,) —€ 1172 cosw(7i+ 7p) + e ¥2 coswr;—e 1272 cosw(7+275)].

(31)
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There are more sophisticated ways to account for dissi30) and (31), whenI';=3I',=3vy is assumed to hold. Then,
pation in quantum systems that do not rely on the wealgpart from the renormalization of the oscillator frequency,
coupling or Markovian limits® Grabert et al® treated Eq. (32) is identical to the lowest order tenf-q) of Eq.
dephasing and relaxation in a fully quantum mechanical cON(30), and Eq.(33) is identical to the lowest order terfi-g°)
text, by linear coupling of the system with a bath, consisting ¢ i1« two-dimensional part of E431). The equality of the

of an ensemble of quantum oscillators. It is then possible t% . . .
L ; : amping parameters suggest that the dephasing rate in Refs.
eliminate the bath coordinates and to derive reduced expres, ping p 99 P 9

sions for the system dynamics. This theory was applied to 5 and 67 is lifetime limited',=3y), and increases linearly
nonlinear optical experiments by Tanimura andWith the number of quanta involved in the transition

Mukamel®>%7 Here, we do not repeat the details of this (I';=3I",). The combination of these two requirements, how-
theory but only quote the main result. The third- and fifth-€ver, is incompatible with the assumption of state indepen-
order response was calculated in lowest ordegofn the  dent damping parameters that was made by us here and also
limit of the frequency-independent damping rateand pro- by Tanimura and Mukamé&F:®7 In fact, it can be showti—%3
vided that there is no inhomogeneous distribution of oscillathat a harmonic system, linearly coupled to a bath, has a
tor eigenfrequencies, their expressions for the response fungfetime that is inversely proportional to the quantum number
tions can be rewritten to resemble parts of our B86) and o the state, while quadratic coupling gives rise to a pure

(31) dephasing rate that is proportional to the square of the dif-
ference between the quantum numbers of two states
r
R<3>(Tl)~exp( - %) sinQry, (32)
Ty= sl N+ p)(1+7)+27]y+ (N —p)T*. (39
(5) PASE ) Here n=exp(—hw/kT) is the Bolt factor that result
RO)( 7, 7)) ~exp — ————|[cosQ(7,— 75 ere n=exp(—fw/kT) is the Boltzmann factor that results
2 from detailed balancing of the upward and downward tran-
—cosQ(7+7)] sition probabilities, as is briefly explained in Appendix B.
Note that the damping ratds,, have now acquired an ex-
+exy{ _M) plicit temperature and frequency dependence. When such
2 quantum number dependence is introduced, the third-order
X[cosQ 7 —cosQ(7,+27,)]. (33  response function of Appendix B can be written as
Here, Q= (w’—%4)"? is the reduced eigenfrequency of the ) 12
underdamped oscillator whea>1/2 holds. For an over- R®3)(,)=()s(r) 4+ — -t )
) (t)=(y)é(7y) 2 1— pe Y1t m)2
damped oscillatofw<v/2), Egs.(32) and (33) have to be Mo (1-7e )

continued analytically: the reduced eigenfrequency is then
Q=(y/4—?Y? and the sin and cos have to be replaced by
sinh and cosh. In contrast to the phenomenological weak 202k Y
coupling model, the Brownian oscillator treatment accounts @2 (=771t 7)
for the frequency shift of a damped oscillator and for a con- (2mw)? (1—pe~ 711 m)3
tinuous change from underdamped to overdamped motion,
when the damping rate is increased.

Equationg30) and(31) can also be compared to expres-
sions derived by Leegwater and Mukamel for the nonlinear
optical response in the limit of classical nuclear mofidn. In the limit of low temperatur¢T—0), this reduces to
Unfortunately, a number of mathematical errors were mad@q_ (30) with T;=T*+ 1y andT,=4T* + y. This is consistent

in that paper, as was later realized by Khidekel anq/vith the definition of the damping according to E@4),

Mukamel®® Those authors derived expressions very similar._. : .

. : . since forT—0 the sinwr, term is solely due to the superpo-
to ours, except for a few sign errors in the various terms.”. . . .
Also, rather unrealistic decay functions were calculated:s"tIonslo><1| and|1)(0|, while the sin 27, term results from

since Lorentzian inhomogeneity was taken as the only dampghe superposition0)(2| and [2)(0|. As the temperature is
ing mechanism. As a consequence the fifth-order respond@ised, the decay rates become fa$ten. (34)] and states
contains terms that do not decay at all, due to perfect rephadith shorter lifetimes become populated. This leads to in-
ing of macroscopic coherenée. creased damping of the third-order response function.

Equationg32) and(33) can be directly compared to Egs. The corresponding fifth-order response function reads

xexp—{[T*+3y(1+37)]r}sin o,

Xexp{—[4T* + y(1+2x)]7}sin 2w, . (35
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exp{—[[* +37(1+37)]ry) 1 s exp(—[T* + 37(1+37)]71}
=7 exd— (It pr))? 2 XS et e A )

RO (ry,7,)=(0)8(r1) (9 + % (1- 77)2( S(7,)sin le)

3

" 8 ex —[AT* + y(1+27)](r1+ 1)
+ﬁ(1—n)2(l+m _ gt yorenin Tz}coszu(TﬁTZ)

(1-nexp{—y(1+ ) (r+7)})°

2{5exf —2y(1+7) 7]~ 1+ (exd —2y(1+ 7) 2] —5) 7 exd — y(1+ 7) (71 + m) Jlexp{ —[41" + y(1+27)] 7, — y 775} )
T T COS w7y
(I—n exd—y(1+7) (11t 7)])

B, 2( 2(exf] — y(1+ 7) 7] = 7 ex — Y(1+ M m]exi ~[T* + 3y(1+37)](ry+ )}

" 2zmay 7 (1= 7 exd— 1+ n(m+ )])° cose(n=r)

2 exg—[[*+ 3 ¥(1+3p)](1+ 1)}
(I 7 exd— y(L+ n)(r+ 1)

cosw(7yt7)

{3 exg — y(1+ n) 7] — 1+ (exd — y(1+ 5) 7] —3) n exd — y(1+ 77)(7-1+7-2)]}exp[*[l"*+%y(1+37;)]71777772}
+ 3
(1=7nexd—y(1+ ) (11 +72)])

COSwTy

21— pexd—y(1+ pm]exp— [+ 3Y(1+37)]7—[4T* + y(1+27)] 7}
(1- 7 exd — ¥(1+ 7)(r+7)])°

cosw(7,+27,)

. 2(1+ 7)(1—exif — y(1+ p) o] exp{ ~[4T* + y(1+27) 17~ [[* + 39(1+37)] 72}
(1- 7 exd — ¥(1+ 7)(m+7)])°

cosw(21t 1) |. (36)

This expression does not reduce to E8f) in the low  order terms increases, due to the fact that a distribution of sin
temperature limit, since there the ground state populatiomnd cos functions beat against each other. The only excep-
also decays with rate, while the ground state is stable here. tion is the cosw(m—7,) term of the fifth-order response,
Furthermore, the one-quantum coheren(@®él| and |1)(2|,  which is insensitive to any distributiog(w) for 7,=r,. This
that occur in Eq(36), now decay in different waylsee Eq. fifth-order effect, which is based on macroscopic rephasing
(34)]. The term oscillating as cas(27,+r,) vanishes when of coherent motion, therefore enables the experimental sepa-
the decay rates do not depend on the quantum states, as aation of homogeneous and inhomogeneous contributions to
be seen from the general expression in Appendix B. Hencehe nuclear spectrum. This is not possible in third-order re-
it is not present in Egs(29), (31, and (33). With state- sponse.
dependent decay rates, the perfect destructive interference Whether rephasing is possible in a nonlinear experiment
between different quantum mechanical pathways is partlgepends on the quantum mechanical pathway of propagation
destroyed, which yields this additional term to the responsand the dynamics of the nuclear motion. The physics of the
function that has not been reported before. This situation isephasing process can be illustrated by the Liouville space
analogous to that discussed by Fourkasl,”® who showed pathways of the system, that give rise to this special part of
that a harmonic oscillator, linearly coupled to a resonant op-
tical field, can behave nonlinearly due to damping processes.

In addition to the homogeneous damping, discussed so

far, inhomogeneity can be taken into account by considering [A> <A Al><Axl] (AE2><At2| [AF1> <AF]|
a distribution of environments for the oscillator. This leads to
a distributiong(w) of oscillator frequencies, yielding the fol- ‘L’} ‘77} ‘% ‘L’}
lowing nonlinear response functions
[AF1> [A+2>
+ o0
Ri(m1)= f dog(w)R®(w,7y), (379 2 2 Pi1> < Sm,
0 [A1>
. .. 5 < 2 <
Righ(71,72) = Jl) dwg(w)R( )(w,Tl,Tz), (37b > <A > <A| P> <A [A> <\|

whereR®(w,7;) andR®(w,;,7,) are given by Eqs28) and
(29), Egs.(30) and(31), or Egs.(35) and(36), whatever the  FIG. 6. The four Feynman diagrams that allow for rephasing in the inho-

PRI ; ; : ogeneous limit of nuclear dynamics. Due to the fact that in a harmonic
homogeneous dynamlcs is that applles to the situation. Thgdder system the inhomogeneous distribution is correlated for the different

general effect of inthOQGHEOUS_ broadening is Clea't frongansitions, dephasing on one transition can be compensated by rephasing on
Egs. (37). The damping of all third-order and most fifth- another one. For details consult the text.
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FIG. 7. Ther, dependence of the fifth-order response of a single-harmonic

mode is calculated in the homogenedieft) and inhomogeneougight)

limits. The value ofry is 100 fs for the bottom traces, and increases in steps

of 100 fs for each subsequent trace. The parameters of the calculations are R R A TR
given in the text. The curves for the homogeneous case have been rescaled 0 0.5 1 1.5 2 2.5

to the same height. dela S
ya@)

the total Th di = di F|G. 8. Calculated fifth-order response for two independent harmonic
€ total response. € corresponding Feynman alagrams affsqes as function of the propagation time with 7, fixed at 100, 150, 200,

shown in Fig. 6. They are special cases of the general diaso, 300, 350, 400, 450, 500, 600, 700, 800 and 100@ofs to bottom.
grams, shown as Figs(c&1)—5(d.4). Initially a one-quantum  The underdamped mode, with a subpicosecond relaxation time, dominates
ransition creates a coherent superposiion, dQEL, U e ST e aporee o et b Do oty
and the system acquires a phase(exim ;) during the first ;¢ scale of the diffusive responge1.6 ps.
propagation period. For a large inhomogeneous distribution
of frequencies, the macroscopic phase coherence rapidly de-
cays. The second interaction induces a two-quantum transjgq. (29)]. The amplitudes of these traces have not been
tion, which converts the system into the coherenceescaled. After an initial rapid decay, the signal amplitude
IN=2)(\=1] or [\)F1|. During the second propagation pe- remains constant, irrespective of the value of the propagation
riod, the system acquires the phase (@ ,). Whenr,is  time ;. The maximum occurs whemn, is equal tor;. This
equal tor;, the phases of the two propagation periods combehavior results from the fact that dephasing due to a static
pensate for each other, independent of the particular fredistribution of frequencies is reversible. In the third-order
quency of the oscillator, and the macroscopic phase cohefesponse there is no difference between the two cases, be-
ence is recovered, leading to a motional echo. When theause there are no contributions that are sensitive to the char-
inhomogeneous broadening is very small compared to thacter of the dynamics. It is then simply the total spectral
homogeneous broadening, the decay during the peripds response that determines the response function.
and 7, is irreversible, and there is no motional echo. This
demonstrates the unique information content of the fifth- .
- . . . C. Multiple modes
order experiment compared with the third-order experiment.

To illustrate the sensitivity of the fifth-order response to ~ When there are several modes that determine the optical
the character of the nuclear dynamics, the response of mesponse, and there is no coupling between these modes, the
single-harmonic mode was calculated in the limits of purelytotal response functions are just the sum of all independent
homogeneous and inhomogeneous dephasing. This is show@sponses
in Fig. 7. For simplicity we assumed the homogeneous
damping to be level independent. The central frequency and  R\¥)(ry)=>, R®(7y), (38a
width of the third-order spectral respondell width at half- :
maximum) were taken to be 40 and 50 ¢t respectively,
which are typical values for many molecular liquids, and in R{§3(71,72)=2 RO (711,75). (38b)
particular for C$.”>"®In the homogeneous limit the ampli- !
tudes of the different curves have been rescaled to the saniMote that in Refs. 70, 73, and 77 the fifth-order response
value in order to compare the position and the shape of th&unction was not calculated in this way, as a direct sum of
traces. The loss of macroscopic coherence is irreversible andutually independent amplitudes. Instead, the modes seemed
hence the amplitude reaches its maximum always at the sane be intrinsically coupled, in a way that we believe to be
propagation timer,, independent of the delay. incorrect?

The situation is completely different when pure inhomo- In order to illustrate this, we performed model calcula-
geneous broadening causes the same spectral width. Thiens for two harmonic modes, one underdamped and one
fifth-order response function in the static limit is given by overdamped. The parameters of the damping and frequency
Eq. (37b with all homogeneous damping rates equal to zercof the underdamped mode are the same as above, while the
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overdamped mode simulates diffusive behavior with a decafound that all contributions to the third- and fifth-order re-
constant7, =1.65 ps and an exponential rise time decaysponse functions become temperature dependent. The decays
1r=72 fs/° For a ratio of(a;)jp/(ay)5p=7.3, these param- increase with temperature. Also, an additional contribution to
eters model the third-order response of,@8the homoge- the fifth-order response was found, caused by the fact that
neous limit”>"®When the same ratio is assumed for the fifth-the destructive interference between different quantum me-
order contributions, the traces of Fig. 8 are calculated. It i<hanical pathways is destroyed by the level-dependent damp-
clear that the fifth-order response for variabe changes ing.
shape as function of the delay timg. For small r; the In contrast to the third-order response, the fifth-order
response is dominated by the underdamped mode, while foesponse is sensitive to dephasing mechanisms of the in-
big = the response is completely due to the overdampeduced nuclear motion. The reason is that there are two inde-
mode. This change in shape is caused by the difference in thEendent propagation times in the process, which allows for
decay rates of the two modes. When the modes are intrinsiephasing of macroscopic coherence when dephasing is
cally coupled, this is not correctly taken into accotfht. caused by a static distribution of transition frequencies. This
In general, it is not possible to predict the fifth-order leads to a motional echo, when the two propagation times are
response from third-order measurements when more thaggual. In the homogeneous limit the fifth-order response as
one mode is involved in the coordinate dependémytpen  function of the second propagation time always has approxi-
polarizabilities, since the ratio of the various contributions ismately the same shape and position, independent of the first
not known. The relative amplitude depends on the expansiopropagation time. This is due to the fact that the dephasing in
coefficients of the polarizability operators in the coordinateshe homogeneous limit is irreversible.
of the modes. For the third-order response the lowest order in  When two or more modes are involved in the nonlinear
the nuclear response is determined by the coefficiehfsee  optical response of the medium, the situation becomes more
Egs.(28), (30), or (35)], while for the fifth-order response the complex. The relative magnitudes of the modes in third- and
lowest order contribution is determined lafa, [see Eqgs. fifth-order response are in general not correlated. They have
(29), (312), or (36)]. It is very unlikely that the same form of to be determined from experiment. Model calculations were
a(q) holds for modes as different as overdamped diffusionused to show that the fifth-order response changes its shape,
and coherent librations, such as were used in recent literatukghen two independent modes have different homogeneous
to describe higher-order optical response in liqifi$’ The  damping parameters.
ratio of the coefficients will therefore in general change with  Experimental six-wave mixing results will be reported in
the order of the expansion of the polarizability. Hence, ex-a subsequent papét.The theory, presented here, will be
perimental results must be used to determine the relative imemployed then to analyze the two-dimensional response,
portance of the different modes in different orders of nonlin-generated through three subsequent, temporally well sepa-
ear optical experiments. rated Rayleigh/Raman scattering events. The main problem,
experimentally, is to separate these processes from other
contributions, such as the fifth-order effects due to hyperpo-
IV. SUMMARY AND CONCLUSIONS larizabilities, depicted in Fig. 4, or fifth-order response that is
due to two subsequent third-order scattering events. It will be
A unified theory of studies on nuclear dynamics by fem-shown that a proper choice of polarization—and phase
tosecond electronically nonresonant four- and six-wave mixmatching conditions is crucial to the proper identification of
ing was presented. The theoretical approach was based &€ two-dimensional signals.
the Born—Oppenheimer approximation, which allows one to
eliminate the electrons from the description of the dynamics.
The theory was formulated such that the nonlinear respons&CKNOWLEDGMENTS
functions are independent of the Hamiltonian of the system
and the coordinate dependence of thygpe) polarizabilities. T.S. and K.D. thank M. Besnard, J. Knoester, and C.
The possible role of hyperpolarizabilities in higher-order Ra-Sourisseau for discussions, and are grateful to A. Tokmakoff
man scattering experiments was stressed. These give rise and K. Tominaga for discussions and sending preprints prior
processes that contain the same dynamical information &® publication. The investigations were supported by the
lower order response. Serious misinterpretation of experiNetherlands Foundation for Physical Reseaffe®M) with
mental data may result from such contributions to the nonfinancial aid from the Netherlands Organization for the Ad-
linear signals. vancement of Sciena®WO). J.T.F. thanks the Camille and
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nuclear motion. Nonlinearity was introduced by expandingthe NSF for Grant No. CHE-9501598.
the (hypen polarizabilities in the nuclear coordinate. Qua-
dratic dependence is required to yield a fifth-order nonlinear
response. Damping was treated in the weak coupling limi
using level-independent and level-dependent damping pa-
rameters. The results were compared to a Brownian oscilla- The fifth-order response function within the Born-
tor model for the bath. For level-dependent damping weOppenheimer approximation, for electronically nonresonant

PPENDIX A: THE FIFTH-ORDER RESPONSE
UNCTION IN THE BOA
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optical fields, is given by 32 independent terms. These origicesses with one to four propagation tim@®)—(A31) are
nate from the perturbative expansion E#j6). The number due to combinations ofhyper) Raman interactions and/or
of nuclear propagation periods varies from zero for the in-dipole transitions, governed by tlisypen polarizability op-
stantaneous electronic polarizatiohl), to five for resonant  eratorse;; , Bijx » Viji » €ijxim @nd the dipole moment operator
FIR six-wave mixing experimentfterm (A32)]. The pro- m;

Rinm(t,t1 t2,t3,t,ts)
:<§ijk|mn>5(t—t1)5(t1—tz)5(tz—t3)5(t3—t4)5(t4—t5) (A1)
+ ¥ <[m(t) Leiamn(t1)]1) 8(t3—t5) 8(to—ts) S(tg—tg) (ts—ts) H(t—1ty) (A2)
t <[a|, (1), Piamn(t2) 1) 8(t—t1) 8(to— t) Atz —ts) A(ts—ts) H(ty—tp) (A3)
+ ;7 ([Bije(1), $Bimn(ta) 1) 8(t—11) (t1— 1) S(ts—a) S(ta— ts) H(t,~ ts) (A4)

h ([¥ijwa (1), 20mn(ta) 1) St —11) 8ty — 1) 8t~ t5) S(ta—ts) H(tz—ty) (A5)
+ ;L— ([€ijiam(t),Mn(ts)]) S(t—1t1) 8(t;—t) S(t,—t3) 8(tz—t) H(t,—ts) (AB)

( ) (LIMi(1),M;(t2) ], iamn(t2) 1) 8(t2—ta) 8(ts—ts) (ts— ts) H(t—t) H(t1 — t2) (A7)
+(i)2<[[m(t) 33t 3Bimn(ta) 1) 8t — 1) 8(ta—t2) 8ty — ts) H(t—t) H(t,— t3) (A8)
+ i)2<[[m(t) $Bik (1)1, Fmn(t4) 1) 8t — o) 8t — 1) 8(ts— t) H(t—t H(t3— 1) (A9)
+ i)2<[[m(t) Yikm(t1)],My(ts) 1) 8(t1— t2) (2 — ) Atz — ta) H(t—ty)H(ts—ts) (A10)
+ i)2<[[a”(t) Mi(t2) 1, Bimn(ta) 1) 81— t1) 8(ta—t2) Sty — ts) H(t1— 1) H(t,— t3) (A11)
+ |)2<[[af”(t) 300(t2) ], 5mn(ta) 1) S(t—t1) S(to—t3) S(ts—ts)H(t —to) H(ts—ty) (A12)
+ i)2<[[a”(t) Buam(t2) 1, Mn(ts) 1) 8(t—t1) 8ty — t3) A(ts—ta) H(t —to) H(ts—ts) (A13)
N ([[B.Jk(t) Mi(ta)], 30mn(ta) 1) 8(t—11) 8(t1—t5) 8(ta—ts) H(to— ta) H(tz—ts) (A14)
+ I) <[[:8|Jk(t) Fam(t3)],Mn(ts) 1) S(t—t1) 8t —t5) S(ts—ty) H(to— ta) H(ts—ts) (A15)
- ')2<[[y.,k| £), Fin(t) ] n(ts) 1) 8(t ) (1~ t) 8t~ ty)H(te— to) H(ty —to) (A1)
+ ;_)3<[[[Fﬁi(t)vmj(tl)]xmk(tz)]a%Elmn(ts)b5(t3_t4)5(t4_tS)H(t_tl)H(tl_tz)H(tz_ts) (A17)
+ ;—)3<[[[ﬁ3( 0),Mj(t)], 2a1(t2) ], 3amn(ta) 1) 8(t,— t3) (1~ ts) H(t— ty) H(t1 — to) H(ts— 1) (A18)
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+ ,ii—)3<[[['rﬁi<t>,'r”n,-(tl>],%Emm(tz)],'an(ts)]>6(t2—t3)6(t3—t4)H(t—tl)H(tl—t2>H(t4—t5> (A19)
+ ,ii—)3<[[[’rﬁi(t>,%E;k(tl)m(ts)],%Emn(t4)]>5(t1—tz)6<t4—ts)H(t—tl)H(tz—t3>H(t3—t4) (A20)
+ ,;—)3<[[[m(t>,%ajk(t1)],%E|m(t3>],mn(ts)bé(tl—tz)5(t4—t5)H(t—tl)H<t2—t3>H(t4—t5) (A21)
+ ;L—)3<[[[ﬁi(t>,%Ejkl(tm,ﬁﬁm(u)],fﬁn(t5)]>6(t1—tz)5(t2—tg)H(t—tl)H(ts—t4>H(t4—t5) (A22)
+ I)3<[[[a.1(t) Mi(t2) ],y (t3) ], mn(ta) 1) 8(t 1) S(ta— ts) H(ts — t2) H(t,— ta) H(t3— ty) (A23)
+ i)3<[[[oz.1(t) Mi(t2)], 201m(t3) 1. Ma(t5)]) St —t1) (ts — L) H(t1— to) H(t— tg) H(ty — ts) (A24)
+ ,il—)3<[[[Eij(t),%Ek.(tzﬂ,ﬁm(u)],mn(ts)]>5<t—tl)5(t2—te,)H(tl—tz)H(tg—u)H<t4—t5) (A25)
+ ')3<[[[/3.Jk £, (t5) ], Min(ta) 1, Mn(ts) 1) 8t —t2) (t — o) H(ta— ta) H(ts — ty) H(ts — ts) (A26)
+( | )4<[[[[m(t) My (t2) ], Mi(t2) 1M (t3)], 2amn(ta)]) (ta— te) H(t =ty H(t1 — to) H(tz~ ta) H(ts — ta) (A27)
+ i)4<[[[[m(t) My (t2)],Mi(t2)], 201m(ts) 1, Mn(t6) 1) (t3— ta) H(t =ty H(t1— to) H(tz~ ta) H(ts — ts) (A28)
+ i)4<[[[[m(t) Mj(t) ], 2a1(t2) ], Min(t4) 1M (t5) 1) Stz — ta) H(t =t H (11— to) H(tg— tg) H(ts— ts) (A29)
+ I) (LLOOM (1), Zatji(1) 1, (1) 1, Min(£4) ], M (1) 1) St — L) H(t =ty H(t, — ta) H (13— tg) H(ty— ts) (A30)
+ I) (LLLCei; (1), Mi(t2) ], My (t3) ], Mim(ta) ], Mn(ts) 1) St~ t) H(ty — to) H(tp — tg) H(ts — t) H(ts— ts) (A31)
+(i)5<{[[[[m<t> My (t2) ], Mi(t2) 1, My (£3) ], Min(£2) ], W (ts) )Y H(t =t H(t — t2) H(tz ~ ta) H(ts — ta) H(ta = o).

(A32)

APPENDIX B: HARMONIC THIRD- AND FIFTH-ORDER NONLINEAR RESPONSE FUNCTIONS

The nuclear part of the nonlinear response functions can be written explicitly in terms of the harmonic oscillatprstates
by expanding the electronitiypen polarizabilities in the nuclear coordinage and using the matrix elements E@7) on the
general response functions E¢25) and(26). The third-and fifth-order nonlinear response functions in this representation are:

2

R¥(71)=(y)8(11) = 5 sin a)ﬁE POVM[Ae Taa-1m1— (A +1)e Tra+1m]

ash
WZS'” 2‘”12 POMIMNA—1)e haa-2— (N +1)(N+2)e” aa+2n],
RO(7y,m2)=()8(11) 8(72) — 5(7'1)S|n w)\lu7'22 POV[Ne Ta-12— (A + 1)e Maa+172]

+8(1)8iN Wy, 71 > POV[Ae 11— (N4 1)e M)
A
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3

— | €0S (11 + 7)) D>, POM[(AN2+ 12\ +8)e~Mnwalmtm2) 4 (—4\2+ 4\ )e~ Ma-2(nt72)]
2(2mw) N

+cos 21)7-12 POV[(2N3=N2=N)e 2Dz (—2\3+502—3\)e 2717 Ih-2a-272
)

+(2N3+ N2+ 7N+ 2)e D D24 (=20 3— 1IN 2— 19\ — 10)e~ M2t Divans2n2)

aiaz

n ANA— 2 —
[ T T E P \ =+ 0N A—1724 AA—1T r i

+(=N2+n)e a2 (= \2- 30— 2)e i Dhanzz)

+cosw( 7+ 7-2); POM[(2A2=N)e -1t 72 4 (— 2\ 2— \)e Ma-1(nt72)
+(207+ BN +3)e” a4 (—2)2— 3\ —1)e” it )]

teoswr 3 POV[(A7+N)e a-trim Dz (=207 a e i h-daare
+(2N2 3N+ 1) e I ham 4 (=282 -5\ = 3)e I i)
+cosw(rl+272); POV[(NP=N)emMa-am T2 (\24 3\ +2)e” Manra=Taavem
+(_)\2_)\)e—r)\')\JrlTl—r)\Jrl,)\flTZ-}-(—)\2—}\)e_r)\,)\flTl_F)Hrl,)\flTZ]

+cosw(271+ 7'2)2 P()\)[()\Z— )\)efrxvx‘zrlfr?\v%—l’?-i— (— N2—3\— 2)e*F>\,>\+27'1*F>\+1,>\+27'2
A

+ N2+ 3N +2)e e D4 (= N2+ N\ )e -2 Di-1a-2m2] |

The Feynman diagrams Figs. 3 and 5 are pictorial represerstate|1). Quadratic coupling leads to a quantum number de-
tations of the system propagation, that give rise to these expendence of the dephasing rdte®**which can be written as
pressions.P(\) is the initial thermal distribution over F;‘M = (A — w)°T'*, wherel™* is the one-quantum dephasing
the harmonic quantum statés). Both upward and down- rate.
ward transitions are induced by the optical fields. Damping  For a thermally activated systertk T=Aw), next to
was introduced in this picture in the weak coupling limit, by downward transitions also upward transitions have to be con-
writing complex transition frequencies according to the subsidered. In steady state, all populatiam@.) are time inde-
stitution w,,—w,,+il',,. The damping parametdr,, in  pendent, which leads to relations among the transition rates.
principle contains contributions from the lifetimeg , of  For instance, for the ground state populatid0) it is found
states\) and|u), and of pure dephasing procesdgs, that  thatdn(0)/dt=—k,_,1n(0)+k;_on(1)=0. It follows that
modulate the transition frequency between both statek,_,=Kk;_on=7yn, where % is the Boltzmann factor
F)\MZ%(’)/)\-F yﬂ)+1“§#. n=exp(—hw/kT). Iterative application of this detailed bal-
The nonlinear response functions can be further evaluance argument gives for the upward transitions the quantum
ated in different limits of the system dynamics. For un-number dependende_,, . ;=(A+1)yz. The total population
damped oscillatorél’, ,=0), Egs.(28) and(29) result, while  decay rate out of statf\) is the sum of the upward and
for state independent damping [y=w»=v,, downward rates:y,=Ay+(A+1)yn. When this quantum
I=I,,6\u*l), I';=I,,8\u*+2)] the relaxation func- number dependence of the population decay and that of the
tions are given by Eq¢30) and(31). In a more microscopic dephasing rate are used for the damping paramgfgrsEq.
approach, the harmonic oscillator is explicitly coupled to a(34) results. The third- and fifth-order response functions
heat bath. For linear coupling with a harmonic heat bath, th@above can then be evaluated by writing the initial thermal
transition rate from statf\) to state]\—1) acquires a quan- distribution as P(\)=e "MKy3, (e heMKT) = 0 (1 — 5).
tum number dependend®;®® which can be written as The sums oveh, that occur in the expressions f&3(r)
k,_.,_1=\7y. Herey is the rate down out of the first excited andR"®(7;,7,), can be evaluated in terms ¢ihe derivatives
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