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We investigate quantum-statistical correlation properties of a periodically driven mesoscopic scat-
terer on a time-scale shorter than the period of a drive. In this limit the intrinsic quantum fluctu-
ations in the system of fermions are the main source of a noise. Nevertheless the effect of a slow
periodic drive is clearly visible in a two-time current-current correlation function as a specific peri-
odic in time modulation. In the limit of a strong drive such a modulation can change the sign of a
current correlation function.

PACS numbers: 72.10.-d, 73.23.-b, 73.50.Td

I. INTRODUCTION

Experimental detection1 of a dc current generated by the
mesoscopic sample in response to local slow periodic driv-
ing revived interest in the adiabatic quantum pump effect
and stimulated increased experimental and theoretical efforts.
While there are still only a few experiments1,2,3,4,5 the theo-
retical literature is large and we can refer here only to a few
representative works6,7,8,9,10,11.

One of the possible applications of an adiabatic pump con-
sists in using it as a source of correlated particle flows.12,13,14

Adiabatic driving excites particles only a little and thus avoids
strong dephasing due to inelastic relaxation. However for
quantum information processing not only phase coherence but
in addition the correlations between emitted particles are cru-
cial, since only non-classical15,16,17,18 correlations can be used,
see, e.g., Ref. 19.

In mesoscopic systems the zero-frequency noise is usu-
ally used to characterize the correlations between the
particles.20,21,22 In a time-dependent set-up this quantity pro-
vides information averaged over a pump period which charac-
terizes, in particular, how regularly the pump emits particles.
This follows from the observation that the regime of quan-
tized pumping23,24 (when exactly the same number of par-
ticles is emitted for each pumping cycle) is characterized by
a vanishing25,26,27 zero-frequency noise power. Thus a pump
emitting particles regularly does not produce a zero-frequency
noise.

The properties of a pump evolve in time. That in turn
makes the properties of emitted particles dependent on the
time moment when they actually leave the pump. In general
the particles emitted to different leads, leave the pump at
different time moments. Consider, for instance, the processes
taking place in a pump in a quantized pumping regime. Typi-
cally this is a resonant transmission structure subject to large
amplitude driving.28,29,30 In this case the quantization of the
pumped charge is due to well separated quantum levels inside
the structure which are filled and emptied during the pump-
ing cycle. When the quantum level is filled then one particle
(we ignore spin) is transferred from the reservoir to the pump.
Alternatively this process can be view as emission of a hole.
Further, when the level is emptied then one particle is trans-

ferred from the pump to the reservoir. To achieve a directed
transport between the reservoirs, say, α and β it is necessary
to have the pump strongly coupled to the reservoir α (and de-
coupled from other reservoirs) during the former process and
to the reservoir β during the latter one, or vice versa.29 The
coupling conditions change during the pumping cycle. As a
result the current pulses (corresponding to emitted particles)
at different leads occur at different time moments.

Therefore, to get a more detailed description of correlation
properties of emitted particles it is necessary to investigate the
noise properties of a pump on a time-scale shorter than the
pump period. Our aim is to calculate and explore a two-time
current-current correlator for a periodically driven mesoscopic
scatterer. We expect that this quantity will be useful to ac-
cess additional information concerning correlations between
emitted particles.

We use the approach presented in Ref. 31 where, on the
basis of a scattering matrix approach to ac transport in phase
coherent mesoscopic system6,32, the general Floquet scatter-
ing matrix approach, see, e.g., Ref. 33, was adapted to de-
scribe the low frequency limit of a cyclic scatterer.

The paper is organized as follows. In Sec.II we describe the
approach used and the approximations employed. In Sec.III
we calculate the time-dependent current generated by the
pump and investigate the current correlation function in the
time domain. To illustrate the general approach in Sec.IV
we consider a resonant transmission pump. We conclude in
Sec.V.

II. GENERAL EXPRESSIONS

To investigate the basic physical phenomena underlying the
quantum pump effect we omit unnecessary complications and
consider the following model: We suppose (i) the pump to
be connected to Nr macroscopic particle reservoirs via single-
channel ballistic leads. The reservoirs are in equilibrium and
they are not affected by the presence of the pump. (ii) the
electrons to be spinless noninteracting particles which main-
tain phase coherence propagating through the pump from
one reservoir to another reservoir, and (iii) the characteris-
tic energy-scales involved to be considerably smaller than the
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Fermi energy µ of electrons.

A. Floquet scattering matrix approach

The model presented above can be effectively described
within the scattering approach.32 In each lead α =
1, 2, · · · , Nr we introduce two kinds of (second quantization)

operators in energy representation, âα, â†
α and b̂α, b̂†α. They

correspond to incoming to the scatterer and out-going off the
scatterer electrons, respectively. If the properties of a scat-
terer evolve in time periodically (the period is T = 2π/Ω)

then b̂-operators are related to â-operators via the Floquet
scattering matrix SF :31

b̂α(E) =
∑

En>0

Nr
∑

β=1

SF,αβ(E, En)âβ(En);

b̂†α(E) =
∑

En>0

Nr
∑

β=1

S†
F,αβ(En, E)â†

β(En).

(1)

Here En = E +nh̄Ω, where n is the number of energy quanta
which the electron absorbs (n < 0) or emits (n > 0) during
interaction with an oscillating scatterer.

The current conservation forces SF to be a unitary matrix:

∑

En>0

S
†
F (Em, En)SF (En, E) = Iδm,0;

∑

En>0

SF (Em, En)S†
F (En, E) = Iδm,0.

(2)

Here I is a unit Nr × Nr matrix.
In terms of operators for incoming and out-going particles

the current Iα in lead α reads as follows:32

Iα(ω) = e

∞
∫

0

dE〈b̂†α(E)b̂α(E+ h̄ω)− â†
α(E)âα(E+ h̄ω)〉, (3a)

Iα(t) =
e

h

∞
∫

0

∞
∫

0

dEdE′e
i
h̄

(E−E′)t〈b̂†α(E)b̂α(E′)−â†
α(E)âα(E′)〉,

(3b)
where 〈· · · 〉 denotes a quantum-statistical average.

Another quantity we investigate is the correlation function
of currents (see, e.g., Ref. 34):

Pαβ(ω, ω′) =
1

2
〈∆Îα(ω)∆Îβ(ω′) + ∆Îβ(ω′)∆Îα(ω)〉, (4a)

Pαβ(t1, t2) =
1

2
〈∆Îα(t1)∆Îβ(t2) + ∆Îβ(t2)∆Îα(t1)〉. (4b)

Here ∆Î = Î − 〈Î〉 is a current fluctuation operator.
The quantities in time and in frequency representation are

related to each other via the Fourier transformation:

X(t) = 1
2π

∞
∫

−∞
dωe−iωtX(ω),

X(ω) =
∞
∫

−∞
dteiωtX(t).

(5)

In the equations for correlation functions such a transforma-
tion is applied to each argument.

Notice that throughout the paper we deal with two kinds
of frequencies which we suppose to be small compared to the
Fermi energy,

h̄Ω, h̄ω ≪ µ. (6)

The first is a fixed pump frequency Ω. The second is a vari-
able measurement frequency ω. The former defines an energy
shift in the Floquet scattering matrix elements and thus re-
lates to the scattering properties of the driven conductor of
interest, while the latter gives us spectral contents of a mea-
sured quantity.

B. Current and current correlation function

Substituting Eq.(1) into Eqs.(3a) we get the current:

Iα(ω) =
∞
∑

l=−∞
2πδ(ω − lΩ)Jα,l,

Jα,l = e
h

∞
∫

0

dE
∑

β

∑

n

{

fβ(En) − fα(E)
}

×S∗
F,αβ(E,En)SF,αβ(El, En),

(7a)

where

fα(E) = 〈a†
α(E)aα(E)〉 =

1

1 + exp E−µα

kBTα

is the Fermi distribution function with Tα and µα being the
temperature and the chemical potential of reservoir α; kB

is the Boltzmann constant. For the correlation function,
Eq.(4a), we find

Pαβ(ω,ω′) =
∞
∑

l=−∞
πδ(ω + ω′ − lΩ)Pαβ,l(ω, ω′),

Pαβ,l(ω,ω′) = e2

h

∞
∫

0

dE

{

δα,βδl,0fαα(E, E + h̄ω)

−∑
n

fαα(E, E + h̄ω)S∗
F,βα(En + h̄ω, E + h̄ω)SF,βα(En+l, E)

−∑
n

fββ(E, E + h̄ω′)S∗
F,αβ(En + h̄ω′, E + h̄ω′)SF,αβ(En+l, E)

+
∑

γ

∑

δ

∑

n

∑

m

∑

q

fγδ(En + h̄ω, El+n−q)

×SF,αγ(E + h̄ω, En + h̄ω)S∗
F,αδ(E,El+n−q)

×SF,βδ(El+n−m, El+n−q)S
∗
F,βγ(En−m + h̄ω,En + h̄ω)

}

.

(7b)
Here we introduced a convenient abbreviation:

fαβ(E, E′) = fα(E)[1 − fβ(E′)] + fβ(E′)[1 − fα(E)].

First of all from Eq.(7a) it follows that the oscillatory scat-
terer generates currents having a discrete frequency spectrum
ω = lΩ, l = 0,±1,±2, . . . . Therefore, the current generated
is periodic in time with a period of T = 2π/Ω. The har-
monic with l = 0 is a dc current being usually the quantity
of interest. In general there are two sources of dc currents.
First, we can have a potential difference between the reser-
voirs, µα − µβ 6= 0, and, second, an oscillatory scatterer
generates its own dc current (a pump effect). The higher har-
monics, l 6= 0, (at stationary reservoirs) are solely due to a
non stationary scatterer.

In contrast to the current, the noise power, P , exists even
if the pump does not work (i.e., in the stationary case) and
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FIG. 1: The correlation function Pαβ(ω,ω′), Eq.(7b), for cur-
rents generated by the pump is non-zero along the straight
lines in the plane (ω,ω′). The lines corresponding to l =
0,±1,±2,±3 are shown. The width of lines shows schemat-
ically a noise intensity decreasing with increasing number
|l|. The area bounded by the dashed circle with radius
τ−1
0 contributes to the two-time current correlation function

Pαβ(t1, t2; τ0), Eq.(20b). Here τ0 is a measurement time pe-
riod. The small solid circle bounds the area contributing to
the zero-frequency noise power, Eq.(29).

the reservoirs are at the same conditions. In such a case only
one term in Eq.(7b) survives,

P
(st)
αβ (ω, ω′) = πδ(ω + ω′)P(st)

αβ,0(ω, ω′).

This term is due to quantum fluctuations present in the sys-
tem with continuous spectrum, see, e.g., Ref. 35. They are
visible in the noise power but they are not visible in the cur-
rent.

A working pump has a twofold effect on the measured noise,
Fig.1. First, it gives rise to side lines with l 6= 0 in the plane
(ω,ω′) [see, Eq.(7b)], and, second, it modifies the noise power
at the main line, l = 0. Therefore, one can not simply divide
the measured noise into a quantum noise and a noise gen-
erated by the pump. They interfere strongly between them-
selves. The existence of a quantum noise makes it difficult
to analyze the current correlations on a time-scale of the or-
der of the pump period T . Nevertheless, as we will show, the
pump has a unique and distinguishable effect on the measured
current fluctuations.

In general it is difficult to analyze Eqs.(7) analytically.
Therefore, to proceed further we make some simplifications.
First, since we are interested in the current generated by the
pump, we consider the case when there are no currents due to
other reasons. In particular we suppose that all the reservoirs
have the same potentials and temperatures:

µα = µ, Tα = T, α = 1, . . . , Nr. (8)

Second, we consider the particular but important case of small
driving frequencies. We suppose Ω to be small enough to
apply an adiabatic approximation to calculate the Floquet
scattering matrix.

C. Adiabatic approximation

In general, to calculate the Floquet scattering matrix
SF (E,En) one needs to solve the full time-dependent scatter-
ing problem. Here we are interested in the limit of low driving
frequencies. In this limit we use an adiabatic approximation
and express the Floquet scattering matrix in terms of the sta-
tionary scattering matrix S0 which is assumed to be known.
The adiabatic approximation is valid if the energy-scale h̄Ω
dictated by the modulation frequency is small compared with
the energy-scale δE over which the stationary scattering ma-
trix S0(E) changes significantly:31,36

h̄Ω ≪ δE ≪ µ. (9)

Notice, under the condition given above the side band energy
En = E + nh̄Ω is positive for any reasonable n and E ∼ µ of
interest here. Therefore, in all the relevant equations we can
safely extend summation over the discrete index from −∞ to
+∞.

Let the stationary scattering matrix S0 depends on some
parameters pj ∈ {p}, j = 1, 2, . . . , Np. We suppose that the
external driving results in a variation of these parameters,
pj = pj(t),∀j. The matrix S0(E, t) = S0(E, {p(t)}) with pa-
rameters to be fixed at time moment t we call a frozen scat-
tering matrix. Since the driving is periodic the parameters
and in turn the frozen scattering matrix are periodic in time
as well.

To zero-th order in driving frequency the elements of the
Floquet scattering matrix SF (En, E) can be approximated by
the Fourier coefficients S0,n of the frozen scattering matrix
S0(E, t) as follows:31,36

SF (En, E) = S0,n(E) + O(Ω). (10a)

SF (E, En) = S0,−n(E) + O(Ω). (10b)

Here O(Ω) denotes the rest which is at least of the first order
in Ω and which we neglect.

The Fourier transformation used reads as follows

S0(E, t) =
∞
∑

n=−∞
e−inωt

S0,n(E), (11a)

S0,n(E) =

T
∫

0

dt

T einωt
S0(E, t). (11b)

Notice, since the frozen scattering matrix is periodic in time
we expand it in the Fourier series in contrast to a Fourier
integral expansion used in Eqs.(3) - (5).

D. Low temperature approximation

The next simplifications we make concerns other energy-
scales in the problem of interest.

The effect of the pump is strongly pronounced if the energy
quantum h̄Ω is larger than (or comparable to) the tempera-
ture. Therefore, taking into account Eq.(9), we suppose the
temperature to be less than the energy-scale δE relevant for
the scattering matrix,

kBT ≪ δE. (12)
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The pump generates currents and noise at frequencies of
order Ω. Therefore, we will consider the current and noise at
ω ∼ Ω only. Thus, in addition to Eqs.(9) and (12) we put

h̄ω, h̄ω′ ≪ δE. (13)

In such a low temperature and low frequency limit the scat-
tering matrix can be treated energy independent, S0(E) ≡
S0(µ). Then, taking into account Eq.(8), we perform an en-
ergy integration in Eqs.(7) as follows:

∞
∫

0

dE
{

fβ(En) − fα(E)
}

= −nh̄Ω,

∞
∫

0

dEfαβ(E, E + ∆E) = ∆E coth
(

∆E
2kBT

)

.

(14)

Substituting Eqs.(10) and (14) into Eq.(7), we find the cur-
rent spectral density and the noise power in the adiabatic low
temperature limit as follows:

Jα,l = −i
e

2π

(

S0(µ)
∂S

†
0(µ)

∂t

)

αα,l

, (15a)

Pαβ,l(ω, ω′) = e2

h

{

(

δα,βδl,0 −
∣

∣S0,βα(µ)
∣

∣

2

l

)

h̄ω coth
(

h̄ω
2kBT

)

−
∣

∣S0,αβ(µ)
∣

∣

2

l
h̄ω′ coth

(

h̄ω′

2kBT

)

+
∑

q

∣

∣Σαβ(µ)
∣

∣

2

l−q,q
h̄[(l − q)Ω − ω] coth

(

h̄[(l−q)Ω−ω]
2kBT

)

}

.

(15b)
Here the lower index l denotes a Fourier transformed squared
matrix element [see, Eq.(11b)]. Σαβ is an element of a two-

particle (frozen) scattering matrix

Σ(t1, t2; E) = S0(t1, E)S†
0(E, t2), (16)

introduced in Ref. 37. The Fourier coefficients for this matrix
entering Eq.(15b) can be expressed in terms of the single-
particle scattering matrix:

∣

∣Σαβ

∣

∣

2

l−q,q
=
∑

γ

∑

δ

(

S0,αγS∗
0,αδ

)

l−q

(

S∗
0,βγS0,βδ

)

q
. (17)

Now we use Eqs.(15) to calculate the current correlation
function in the time domain.

III. TWO-TIME CURRENT CORRELATION

FUNCTION

The current correlation function Pαβ(t1, t2) diverges at co-
incident times t1 = t2. That is due to quantum fluctuations
having an unbounded spectrum. To avoid such infinities we
will integrate any time-dependent quantity over some time
interval τ0. The additional advantage of such a procedure is
that we will find a quantity which can be easily interpolated
between a time-averaged quantity (at τ0 → ∞) and a local in
time one (at τ0 → 0). Since we are investigating the correla-
tions on a time-scale of the order of a pump period, we put
τ0 ∼ T . Strictly speaking we will consider τ0 both larger or
smaller than T . However in order for the equation (15b) to
remain valid the interval τ0 must be larger than h̄/δE [see,
Eq.(9)].

Thus, for any time-dependent measurable X(t) we intro-
duce a corresponding quantity X(t; τ0) calculated in the fol-
lowing way:

X(t; τ0) =
1√

2πτ0

∞
∫

−∞

dτe
− (τ−t)2

2τ2
0 X(τ ). (18)

For the sake of computational simplicity we use the Gaussian
kernel. Using the inverse Fourier transformation, Eq.(5), we
express X(t; τ0) in terms of a spectral density X(ω) as follows:

X(t; τ0) =
1

2π

∞
∫

−∞

dωe−iωtX(ω)e−
1
2
(ωτ0)2 . (19)

Notice, in dealing with the current correlation function
Pαβ(t1, t2), Eq.(4b), we use for the first and second time ar-
guments the Gaussian kernels centered at different time mo-
ments t1 and t2, respectively.

Using Eqs.(7) and Eq.(19) we find the current Iα(t; τ0) and
the two-time current correlation function Pαβ(t1, t2; τ0):

Iα(t; τ0) =
∞
∑

l=−∞
e−ilΩtJα,le

− 1
2
(lΩτ0)2 , (20a)

Pαβ(t1, t2; τ0) = 1
4π

∞
∫

−∞
dωe−(ωτ0)2

∞
∑

l=−∞
e
−
(

lΩτ0
2

)2

×e−i(l Ω
2

+ω)t1e−i(l Ω
2
−ω)t2Pαβ,l

(

lΩ
2

+ ω, lΩ
2
− ω

)

,

(20b)

with Jα,l and Pαβ,l given by Eqs.(15). Note the shift ω →
ω + lΩ/2 we made in Eq.(20b).

To illustrate the application of these expressions we con-
sider some limiting cases.

A. Time-resolved noise of currents through the

stationary conductor

In the stationary case the scattering matrix is independent
of time and the current spectral density, Eq.(15a), is identi-
cally zero: Jα,l = 0. Therefore, the current, Eq.(20a), is zero,
Iα = 0. In contrast, the noise due to quantum and/or thermal
fluctuations is present. Substituting Eq.(15b) into Eq.(20b)
and taking into account that the time-independent scattering
matrix has only a Fourier coefficient with l = 0, we get:

P
(st)
αβ (t1, t2; τ0) = e2

h
Eαβη

(

t1−t2
τ0

)

,

Eαβ = 2δα,β − |Sαβ |2 − |Sβα|2,

η(ξ) = h̄
2πτ2

0

∞
∫

0

dxe−iξxe−x2

x coth
(

x h̄/τ0
2kBT

)

.

(21)

This correlation function satisfies the conservation law
∑

α

P
(st)
αβ (t1, t2; τ0) =

∑

β

P
(st)
αβ (t1, t2; τ0) = 0, (22)

and it depends only on the time difference as it should be in
the stationary case

The current correlation function P
(st)
αβ is factorized into the

product of two factors. One of them, Eαβ, responsible for the
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conservation law, Eq.(22), depends on quantum mechanical
exchange amplitudes. This factor encodes information about
the properties of a scatterer.

The second factor, η(ξ), describes the temporal evolution
of current fluctuations due to intrinsic (quantum statistical)
correlations in the system of Fermi particles.35 Only electrons
originating from the same reservoir are correlated in such a
way. The electrons which originated from different reservoirs
are not correlated. Note that due to the unitarity of scattering
the out-going electrons do not contain any additional corre-
lations compared with incoming ones (see, e.g., Refs. 39,40).
This is why the temporal evolution of current correlations is
described only by the function η(ξ).

The function η(ξ) depends crucially on the ratio of the
measurement time interval τ0 and the temperature T . We
evaluate η(ξ) in two limiting cases which we conventionally
term ”classical” and ”quantum”. In the classical limit,

h

τ0
≪ kBT, (23)

the correlation of currents is exponentially suppressed away
from a measurement time interval,

η(cl)(ξ) = kBT 1
2
√

πτ0
e−( ξ

2 )
2

,

ξ = t1−t2
τ0

.

(24)

The reason is that in this limit the relevant current fluctua-
tions are thermal in nature. In the limit of τ0 → 0 the function
η(cl)(ξ) approaches a delta-function that is characteristic for
a thermal (white) noise,

lim
τ0→0

η(cl)

(

t1 − t2
τ0

)

= kBTδ(t1 − t2).

In contrast, in the quantum limit,

h

τ0
≫ kBT, (25)

the function η(ξ) is different:

η(q)(ξ) = h̄
2πτ2

0
χ(ξ),

χ(ξ) =
∞
∫

0

dx cos(ξx)e−x2

x =







1
2
, ξ = 0,

− 1
ξ2 , ξ ≫ 1.

(26)

It has a long-time tail and changes sign at the crossover from a
short to a long time difference region. Such a behavior results
form a quantum nature of fluctuations (with a characteristic
energy ∼ h/τ0) mainly contributing in this regime.

In Fig.2 we give the function η(ξ) (normalized by its value

at ξ = 0) for several values of the parameter θ = kBT
h/τ0

. The

crossover from the quantum to classical regime occurs approx-
imately at θ ∼ 0.05.

Note, if the time kernel is sharper than described by the
Gaussian, for instance, if the currents are measured during
a time interval of duration τ0, the function η(ξ) has qualita-
tively the same behavior.

Next we go to the time-dependent set-up and, first, consider
the limit of a long measurement time.

0 1 2 3 4 5 6 7 8 9 10
|t1-t2|/τ0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

η/
η(

0)

FIG. 2: The normalized function η(ξ)/η(0) [see, Eq.(21)] at
kBT
h/τ0

= 0 (a solid line); 0.05 (a dot-dashed line); ∞ (a dashed

line). τ0 is a measurement time interval.

B. Time averaged current and noise generated by a

working pump

In the limit of
τ0 ≫ T , (27)

again only the terms with l = 0 contribute in Eqs.(20), since
Ωτ0 ≫ 1. But, in contrast to the stationary case, now the
scattering matrix depends on time and, as a consequence, ac
currents are generated by the pump. At a long measurement
time, Eq.(27), only the dc component of the generated current
is measured, Iα(t; τ0 ≫ T ) ≡ Iα,dc. Substituting Eq.(15a)
into Eq.(20a) and keeping only the term with l = 0, we find
the well known result for the pumped dc current:7

Iα,dc = −i
e

2π

T
∫

0

dt

T

(

S0(µ, t)
∂S

†
0(µ, t)

∂t

)

αα

, (28)

Next, calculating the current correlation function, Eq.(20b),
with the noise power given by Eq.(15b) we take into account
the following. First, only the term with l = 0 contributes
to Eq.(20b). Second, the relevant frequencies ω contributing
to the integral in Eq.(20b) are of order τ−1

0 , see Fig.1. In
the long measurement time limit they are smaller than the
pumping frequency, ω ≪ Ω. Therefore, in the sum over q
in Eq.(15b), one can drop ω in all the terms except the one
with q = 0. In addition we suppose that the temperature
is not ultra low and the classical limit [see, Eq.(23)] holds.
Then the current correlation function is proportional to the
zero-frequency noise power Pαβ and reads:

Pαβ(t1, t2; τ0 ≫ T ) = Pαβ
1

kBT
η(cl)

(

t1−t2
τ0

)

,

Pαβ = e2

h

{

kBT
(

δα,β +
∣

∣Σαβ

∣

∣

2

0,0
−
∣

∣Sαβ

∣

∣

2

0
−
∣

∣Sβα

∣

∣

2

0

)

+
∞
∑

q=1

qh̄Ω
2

coth
(

qh̄Ω
2kBT

)(

∣

∣Σαβ

∣

∣

2

−q,q
+
∣

∣Σαβ

∣

∣

2

q,−q

)

}

.

(29)

The zero-frequency noise power Pαβ generated by the pump
was calculated in Ref. 37. We emphasize that here we are
interested in the leading order contribution only. Therefore,
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Eq.(29) does not contain the linear in Ω corrections to thermal
noise investigated in Ref. 37.

We note two consequences due to a working pump. First, a
noise survives even in the zero temperature limit (a shot-like
noise). Second, we find a modification of the thermal noise
power compared with what we have in the stationary case.
The nontrivial modification consists in replacing one δα,β by
the average value of a squared element of a two-particle scat-

tering matrix
∣

∣Σαβ

∣

∣

2

0,0
< 1. The latter can change the sign

of a linear in temperature contribution to the zero frequency
noise power in the limit kBT ≪ h̄Ω, i.e., when this contribu-
tion is only a small part of the entire noise power.

The modification of the zero frequency noise power is only
a part of the effect of an oscillating scatterer on the current
correlation function [since only the term with l = 0 was taken
into account]. To assess the whole effect [i.e., to take into
account all the terms in Eq.(20b)] we consider the full two-
time correlation function.

C. Time-resolved current and noise generated by

the pump

If the measurement time interval is shorter than the pump
period then one can investigate the full time-dependent (ac)
currents generated by the pump and their fluctuations. In
such a case, according to Eqs.(20), a number of harmonics
l contribute to the quantities of interest. However in each
particular case it is enough to keep only a finite number nmax

of them depending on how many of the Floquet scattering
matrix elements SF (En, E), n = 0,±1, . . . ,±nmax we need to
correctly describe the scattering of electrons by the working
pump. In particular, if the driving amplitude is small only
the lowest side-bands matter: nmax = 1.

Therefore, to resolve all the harmonics of a current gener-
ated, the measurement time interval τ0 must be small enough
(but finite):

τ0 ≪ T
nmax

. (30)

This condition allows us to put exp
(

− 1
4
l2Ω2τ 2

0

)

≈ 1 in all
the terms in Eqs.(20). Substituting Eq.(15a) into Eq.(20a)
and performing summation over l we obtain a time-dependent
current Iα(t; τ0 ≪ T ) ≡ Iα(t) generated by the pump:6,36,38

Iα(t) = −i
e

2π

(

S0(µ, t)
∂S

†
0(µ, t)

∂t

)

αα

, (31)

We see that at enough small τ0 the current measured Iα(t)
is independent of the measurement time interval. The situ-
ation is different for the current correlation functions. This
is because with decreasing τ0 the quantum noise contribution
increases, see Fig.1.

To calculate the current correlation function
Pαβ(t1, t2; τ0 ≪ T ) ≡ Pαβ(t1, t2) we substitute Eq.(15b) into
Eq.(20b). Taking into account that the relevant frequencies
ω ∼ τ−1

0 are much larger than the pump frequency Ω we can
decouple the integration over ω from the summation over l
and q. To this end we make the shift ω → ω − Ωl/2 in the
first line of Eq.(15b), the shift ω → ω + Ωl/2 in the second
line, and the shift ω → ω + Ω(l/2 − q) in the third line of

that equation. Then to leading order in Ωτ0 we find:

Pαβ(t1, t2) = e2

h
Eαβ(t1, t2)η

(

t1−t2
τ0

)

,

Eαβ(t1, t2) = δα,β +
∣

∣Σαβ(t1, t2)
∣

∣

2 − |Sαβ(t1)|2 − |Sβα(t2)|2.
(32)

Equation (32) resembles the result for the noise of a stationary
scatterer, Eq.(21): The correlation function Pαβ(t1, t2) satis-
fies the conservation law, Eq.(22), and it contains the same
factor η(ξ) which originates from the correlations in a Fermi
gas. Nevertheless the time-dependent scatterer modifies the
current correlation function considerably. This modification
concerns the factor Eαβ which depends on quantum mechan-
ical exchange amplitudes.

To comment upon the origin of different terms in Eαβ we
note that for noninteracting electrons the current correlation
function can be divided into four statistically independent
contributions originating from the correlation between (i) the
incoming particles, (ii) the out-going particles, (iii) the par-
ticles incoming to lead β and the ones out-going to lead α,
and (iv) the particles incoming to lead α and the particles
out-going to lead β. All of them exhibit the same suppression
– described by the function η(ξ) – with increasing time differ-
ence. However, the weight of these processes (the four terms
in Eαβ) differ from one another. That is due to the difference
in the relevant exchange amplitudes.

The quantum exchange involving only incoming particles
results in the term δα,β reflecting the fact that electrons at
different reservoirs are quantum-statistically independent of
each other. This term is the same for stationary, Eq.(21), as
well as for dynamical, Eq.(32), scattering because the incom-
ing particles are assumed to be independent of the oscillatory
scatterer. In contrast, the out-going particles are strongly
affected by the pump. As a result, the quantum exchange
amplitudes involving the out-going particles are different for
stationary and for dynamical scattering. The correlations be-
tween incoming and out-going particles are proportional to
the squared matrix elements of a stationary/frozen scattering
matrix taken at the time moments when the current fluctu-
ations are measured at the lead with the out-going particles.
We stress that in the dynamical case, these matrix elements
are taken at different time moments t1 [in the case (iii)] and
t2 [in the case (iv)], while in the stationary case they are
time-independent. The correlations involving only out-going
particles changes more dramatically when the pump starts to
work. While in the stationary case these correlations are the
same as the ones between incoming particles [the second δα,β

in Eq.(21)], in the dynamical case they result in a squared ma-

trix element of a two-particle scattering matrix
∣

∣Σαβ(t1, t2)
∣

∣

2
.

For small amplitude driving, the matrix Σ deviates from the
unit matrix only a little, Σαβ(t1, t2) ≈ δα,β , while for a large
amplitude driving such a deviation can be significant and it
can reverse the sign of the entire current correlation function
[compare Eq.(21) and Eq.(32)].

To observe such a sign reversal it is necessary to measure
the current correlation function at a long time difference, |t1−
t2| ∼ T ≫ τ0, when the two-particle scattering matrix can
differ from the unit matrix. On the other hand if ξ ≡ |t1 −
t2|/τ0 ≫ 1 then the function η(ξ) – and hence the current
correlation function Pαβ(t1, t2) – is small. How small η(ξ)
depends on the ratio of the temperature and τ0. At sufficiently
low temperatures, kBT ≪ h/τ0, the function η(ξ) has a long-
time power law tail [see, Eq.(26)] while in the opposite limit,
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kBT ≫ h/τ0, it is exponentially suppressed [see, Eq.(24)] at
large ξ. One can consider the ratio of the dynamical and
the stationary correlation functions and thus eliminate the
common small factor η(ξ).

In the next section we illustrate these considerations with
a simple but generic example.

IV. TWO TERMINAL SINGLE CHANNEL

SCATTERER

The most general expression for the stationary scattering
matrix S0 for a single-channel two-terminal conductor is (see,
e.g., Ref.41):

S0 = eiγ

( √
Re−iθ i

√
Te−iφ

i
√

Teiφ
√

Reiθ

)

. (33)

Here R and T are the reflection and the transmission proba-
bility, respectively (R + T = 1). We assume that the quanti-
ties entering the above equation are functions of the external
parameters pj(t) and hence of time. We evaluate these quan-
tities at the Fermi energy µ.

To provide a measure of the effect of an oscillatory scatterer
more sensitive than the current correlation function itself, we
next introduce the current correlation coefficient ραβ(t1, t2).

A. Current correlation coefficient

The correlation coefficient (which is usual for the standard
statistical analysis) calculated for currents is:

ραβ(t1, t2) =
Pαβ(t1, t2)

√

〈∆Î2
α(t1)〉〈∆Î2

β(t2)〉
. (34)

This quantity is bounded, |ραβ| ≤ 1, and it characterizes the
degree of correlation between the fluctuating currents mea-
sured at lead α at time moment t1 and at lead β at time
moment t2: The currents are fully correlated, anti-correlated,
or non-correlated if ραβ = +1,−1, 0, respectively. Note that
this quantity can not differentiate local (i.e., classical) and
non-local (i.e., quantum-mechanical) correlations.

Substituting Eq.(32) into Eq.(34) we obtain:

ραβ(t1, t2) = Rαβ(t1, t2)
η
(

t1−t2
τ0

)

η(0)
,

Rαβ(t1, t2) =
Eαβ(t1,t2)√

Eαα(t1,t1)Eββ(t2,t2)
.

(35)

For the two terminal stationary scatterer [see, Eq.(33)] the
matrix of current correlation coefficients ρ̂ (whose elements
are ραβ) becomes independent of properties of the scatterer:

ρ̂(st)(t1, t2) =
η
(

t1−t2
τ0

)

η(0)

(

1 −1
−1 1

)

.

While for the oscillatory scatterer we get:

ρ̂(t1, t2) = R(t1, t2)
η
(

t1−t2
τ0

)

η(0)

(

1 −1
−1 1

)

,

R(t1, t2) =
√

T (t1)T (t2) +
√

R(t1)R(t2) cos
(

∆Θ
)

,

∆Θ = θ(t1) − θ(t2) + φ(t2) − φ(t1).

(36)

The correlation coefficient R(t1, t2) is sensitive to the phases
of reflection and transmission coefficients. Therefore, its be-
havior is nontrivial, for instance, in the case of a resonance-like
structure which we will consider in the next section.

Note that at coincident times t1 = t2 = t the coefficient
R(t, t) = 1. This means that the instant-time current corre-
lations in the driven system are exactly the same as in the
stationary case. The adiabatic pump has no effect (within
the accuracy employed) on the instantaneous correlations. In
contrast, the oscillatory scatterer has a strong effect on cur-
rent correlations at different times. In particular, as we will
see, such correlations can be suppressed or even their sign can
be inverted compared with that of a stationary conductor.

B. Resonant transmission pump

As a model of a resonant transmission pump we choose
a one-dimensional scatterer consisting of two delta function
barriers Vj(x, t), j = 1, 2 oscillating with frequency Ω and
located at x = −L/2 and x = L/2:

V1(x, t) =
(

V01 + 2V11 cos(ωt + ϕ1)
)

δ
(

x + L
2

)

,

V2(x, t) =
(

V02 + 2V12 cos(ωt + ϕ2)
)

δ
(

x − L
2

)

,

(37)

The quantities V1 and V2 are the pumping parameters.
The stationary scattering matrix is:

S0 =
eikL

∆





ξ + 2 p2
k

sin(kL) 1

1 ξ + 2 p1
k

sin(kL)



 . (38)

Here k =
√

2m
h̄2 E; pj = Vjm/h̄2 (j = 1,2); ξ = (1 − ∆)e−ikL;

∆ = 1 + p1p2
k2 (e2ikL − 1) + i p1+p2

k
. In numerical calculations

we use the units 2m = h̄ = e = 1. We take L = 100π;
V01 = V02 = 20; V11 = V12 = 10 and choose the Fermi energy
µ close to the transmission resonance where the charge δQ
pumped for a period at ϕ2 − ϕ1 = π/2 is close to 1e. We use
µ = 1.0186 for which δQ ≈ 0.94e.

We calculate the time dependent currents I1(t), I2(t) and
the correlation coefficient R(t1, t2) for several representative
values of the phase difference ∆ϕ ≡ ϕ2−ϕ1 = 0, π/2, and π,
and consider how the peculiarities of R(t1, t2) relate to the
peaks in I1(t) and I2(t).

For large amplitude pumps37 in the quantized pumping
regime the time-averaged current and noise have the follow-
ing properties: At ∆ϕ = π/2 the dc pumped current is max-
imum and the zero-frequency noise power is minimum. At
both ∆ϕ = 0 and ∆ϕ = π the dc current is zero. However
the zero-frequency noise power is different. At ∆ϕ = π it is
close to the noise at ∆ϕ = π/2 while at ∆ϕ = 0 the noise is
much larger.

1. ϕ2 − ϕ1 = π
2

First we consider the time-dependent currents, Eq.(31),
generated by an oscillating double-barrier pump. In Fig.3
we give the currents I1(t) and I2(t) flowing in different leads.
In the quantized pumping regime the pump generates pulsed
currents. These pulses can be viewed as produced by the
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0.0 0.2 0.4 0.6 0.8 1.0
t, 2π/Ω

-30

-20

-10
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20

30
I

I2

1

FIG. 3: The currents I1 (in the left lead) and I2 (in the right
lead) generated by the pump are given in units of eΩ/(2π) as
a function of time. The parameters are: ϕ2 = π/2; ϕ1 = 0;
L = 100π; V01 = V02 = 20; V11 = V12 = 10; µ = 1.018624.

particles emitted by the pump. Since at different leads the
currents peak at different time moments we conclude that the
particles (an electron and a hole) leave the pump at different
time moments.

Next we consider R(t1, t2). To get a plane graph we fix, say,
the first argument and consider this coefficient as a function
of the second argument. We fix the first argument at that

time moment t
(max)
1 when the current I1 peaks. From Fig.3

we get t
(max)
1 = 0.615T .

In Fig.4 we give the correlation coefficient R(t
(max)
1 , t). At

t = t
(max)
1 = 0.615T the coefficient R(t

(max)
1 , t

(max)
1 ) = 1 as

it should be. While at the time moment t = t
(max)
2 = 0.135T

when the current I2 peaks the coefficient R(t
(max)
1 , t

(max)
2 ) has

a negative peak.

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
t, 2π/Ω

R(t1
(max),t)

FIG. 4: The correlation coefficient R(t
(max)
1 , t) as a function

of time for ϕ2 = π/2 and ϕ1 = 0. t
(max)
1 = 0.615T is a time

moment when the current I1(t) peaks. Other parameters are
the same as in Fig.3.

0.0 0.2 0.4 0.6 0.8 1.0
t, 2π/Ω

T(t)

0.00

0.05

0.10

0.15

0.20

0.25

FIG. 5: The transmission coefficient through the pump as a
function of time for ϕ2 = π/2 and ϕ1 = 0. Other parameters
are the same as in Fig.3.

Note that the correlation coefficient R can be obtained from
the measurements carried out only at lead 1. One needs to
measure the current and its auto-correlation function. Nev-
ertheless the negative peak of R(t

(max)
1 , t) indicates clearly

when the current pulse occurs at another lead, the lead 2.

It is instructive to compare R with the time-dependent
transmission coefficient T (t) = |S0,12(t)|2. The latter is given
in Fig.5. The transmission coefficient shows small peaks at

those time moments t
(max)
1 and t

(max)
2 when the current pulses

occur. However it does not provide information in which lead
the current pulse occurs. Moreover T (t) shows a large peak
when both currents I1(t) and I2(t) are small. Therefore, con-
cerning the generated currents the current correlation coef-
ficient R provides more relevant information then the trans-
mission probability.

To characterize fully the behavior of R we choose a fixed

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
t, 2π/Ω

R(0.8T,t)

FIG. 6: The correlation coefficient R(t1, t) as a function of
time for ϕ2 = π/2 and ϕ1 = 0. The time moment t1 = 0.8T
is taken away from the time interval during which the current
I1(t) peaks. Other parameters are the same as in Fig.3.
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0.0 0.2 0.4 0.6 0.8 1.0
t, 2π/Ω

-30

-20

-10

0

10

20

30
I2 I1

FIG. 7: The currents [in units of eΩ/(2π)] generated by the
pump as a function of time for ϕ2 = π and ϕ1 = 0. Two
electron-hole pairs are generated in each cycle. Each lead
receives an electron and a hole and the net pumped current
is zero. Other parameters are the same as in Fig.3.

time moment t1 away from a current pulse interval. Such
case is illustrated in Fig.6. The abrupt jumps of different
sign correspond to current pulses occurring at different leads.

2. ϕ2 − ϕ1 = π

In this case the time-dependent currents (see, Fig.7), are
similar to those we considered in the previous section. The
only difference is that for each period the pump produces two
electron-hole pairs and pushes one electron (a positive current
pulse) and one hole (a negative current pulse) to each lead.
As a result the dc current is zero.

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
t, 2π/Ω

R(t1
(max),t)

T(t)

FIG. 8: The correlation coefficient R(t
(max)
1 , t) (solid line) and

the transmission coefficient T (t) (dashed line) as functions of

time for ϕ2 = π and ϕ1 = 0. t
(max)
1 = 0.615T is a time

moment when the current I1(t) peaks. Other parameters are
the same as in Fig.3.

0.0 0.2 0.4 0.6 0.8 1.0
t, 2π/Ω

-20

-15

-10

-5

0

5

10

15

20

I1 = I2

FIG. 9: The currents [in units of eΩ/(2π)] generated by the
pump as a function of time for ϕ2 = 0 and ϕ1 = 0. Other
parameters are the same as in Fig.3.

In Fig.8 we give the correlation coefficient R together with
the time-dependent transmission coefficient T (t). Though
both R and T (t) peak at those time moments when the cur-
rent I1(t) or I2(t) peaks, only the correlation coefficient R
provides information concerning the lead through which the

current pulse occurs. If we fix the first argument t1 = t
(max)
1

at that time moment when the current I1 peaks and consider

R(t
(max)
1 , t) as a function of the second argument t then we

get the following: At those time moments when the current
I1 peaks the coefficient R has positive peaks, while at those
time moments when the current I2 peaks the coefficient R
has negative peaks. However we should note that the corre-
lation coefficient R does not distinguish between the negative
and positive current pulses occurring at the same lead. It
differentiates only the lead at which the current pulse occurs.

3. ϕ2 − ϕ1 = 0

In this regime the pump still generates approximately one
electron-hole pair per each cycle. The electron and hole leave
the scatterer at different time moments. However, since the
potential barriers are the same, V1(t) = V2(t), the pump can
push a particle into any of the leads with the same probability.
Therefore, the pump generates exactly the same currents at
both leads, see, Fig.9. Note that such an uncertainty in the
lead to which the pump pushes a particle results in the large
zero-frequency noise mentioned already.

Unlike the previously considered cases now both the corre-
lation coefficient R and the transmission coefficient T (t) show
similar behavior, see, Fig.10. Since at both leads the current
pulses occur at the same time moments, the current correla-
tion coefficient does not show negative peaks. However R still
shows a strong effect of an oscillatory pump on current fluctu-
ations. Notice the strong suppression of correlations between
the fluctuating currents at a plateau and near a peak.
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FIG. 10: The correlation coefficient R(t
(max)
1 , t) (solid line)

and the transmission coefficient T (t) (dashed line) as func-
tions of time for ϕ2 = 0 and ϕ1 = 0. The current I1(t) peaks

at t
(max)
1 = 0.655T . Other parameters are the same as in

Fig.3.

V. CONCLUSION

We explored the current and the noise generated by an adi-
abatic quantum pump in a system of noninteracting spinless
electrons on a time-scale shorter than the pump period T .
We used the Floquet scattering matrix approach which takes
naturally into account the energy absorption and emission
of electrons traversing the oscillating scatterer. Such many-
photon processes generate ac currents Iα(ω), Eq.(7a), at fre-
quencies ω = lΩ (l = 0,±1, . . . ) which are multiples of a
pump frequency. The many-photon processes also correlate
the fluctuating currents at frequencies ω and ω′ shifted by lΩ:
ω = −ω′ + lΩ [see, Eq.(7b)].

We calculated the current and the current correlation func-
tion averaged over a measurement time interval τ0. In the

limit of τ0 ≫ T we get the dc current, Eq.(28), and the zero
frequency noise power, Eq.(29). While in the opposite limit,
τ0 ≪ T , we find the time-dependent current Iα(t), Eq.(31),
and the two-time current correlation function Pαβ(t1, t2),
Eq.(32). In both limits the time-dependent current and two-
time correlations reveal interesting signatures of a dynamical
scatterer. The pump is the only source of currents. However,
in general, it is only one of the sources of noise. Other sources
treated in the present paper are the thermal and equilibrium
quantum fluctuations of a Fermi electron gas. For a long
measurement time, τ0 ≫ T , and at relatively low temper-
ature only the noise produced by the pump is detectable.37

While in a short measurement time limit, τ0 ≪ T , mainly
the quantum fluctuations contribute to the noise measured.
Unexpectedly, in the latter regime the slow periodic pump
dynamics modifies considerably the two-time current-current
correlator in a long time difference limit. The corresponding
factor Eαβ(t1, t2) is due to photon assisted quantum exchange
playing a role in current fluctuations in many terminal oscilla-
tory conductors. The experimental investigation of Eαβ(t1, t2)
is useful for several reasons: First, it can reveal the presence
of physical processes underlying the quantum pump effect.
Second, this quantity [or, alternatively, the correlation coef-
ficient Rαβ , Eq.(35)] indicates clearly the time moments at
which the current pulses generated by the pump occur.

We hope that the investigation of current-current corre-
lations in a dynamically driven scatterer on a time-scale
shorter than the period of a pump helps to understand deeper
the nature of correlations in particle flows produced by the
pump.12,13,14
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2 E.M. Höhberger and A. Lorke, W. Wegscheider and M.
Bichler, Appl. Phys. Lett. 78, 2905 (2001).

3 L. DiCarlo, C.M. Marcus, and J.S. Harris, Phys. Rev. Lett.
91, 246804 (2003).

4 S. K. Watson, R. M. Potok, C. M. Marcus, and V. Uman-
sky, Phys. Rev. Lett. 91, 258301 (2003).

5 M.G. Vavilov, L. DiCarlo, and C.M. Marcus, Phys. Rev.
B 71, 241309 (2005).
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12 P. Samuelsson and M. Büttiker, Phys. Rev. B 71, 245317

(2005).
13 C.W.J. Beenakker, M. Titov, and B. Trauzettel, Phys.

Rev. Lett. 94, 186804 (2005).
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