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Time-Resolved Optical Gating Based on
Dispersive Propagation: A New Method to

Characterize Optical Pulses
Roger G. M. P. Koumans and Amnon Yariv, Life Fellow, IEEE

Abstract—We introduce the technique of time-resolved optical
gating (TROG) based on dispersive propagation (DP), a new
noninterferometric method for characterizing ultrashort optical
pulses in amplitude and phase without the need for a short optical
gating pulse. TROG is similar to frequency-resolved optical gating
except that the role of time and frequency is interchanged. For the
DP-TROG geometry, we show that measurements of the autocor-
relation trace of the pulse after propagation through a medium
with variable dispersion together with a single measurement of its
intensity spectrum contain sufficient information to reconstruct
the pulse in amplitude and phase. Pulse reconstruction for this
DP-TROG geometry works very well even for the case of a
nonlinearly chirped double pulse. Compared with other methods,
DP-TROG does not introduce an ambiguity in the direction of
time for the pulse. Due to its simplicity and improved sensitivity,
DP-TROG is expected to be useful in characterizing low-energy
pulses.

Index Terms—Optical correlators, optical fiber dispersion, op-
tical propagation in dispersive media, optical pulse compression,
optical pulse measurements, pulse characterization, time-domain
measurements.

I. INTRODUCTION

T
HE NUMBER of methods to characterize optical pulses

has increased extensively over the last decade. The most

popular method is to measure its intensity (or background-free)

autocorrelation trace by mixing the pulse with a delayed version

of itself in a second-harmonic generating (SHG) crystal [1], [2].

Temporal decorrelation of the intensity autocorrelation trace of

a laser pulse has recently been demonstrated theoretically [3],

but the method does not always reconstruct the intensity of the

pulse correctly. An often-used variant to the measurement of

the background-free autocorrelation trace is the measurement

of the interferometric (or fringe-resolved) autocorrelation trace

[4]. However, complete reconstruction of the phase and ampli-

tude of the pulse is complicated: an accurate measurement of

the fringes is needed and a careful deconvolution method has to

be used [5], [6]. Besides these time-domain methods, a number

of frequency-domain methods have been used as well. A fre-

quency-domain interferometric method called spectral phase in-

terferometry for direct electric-field reconstruction (SPIDER)
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has recently been introduced by Iaconis and Walmsley [7] and

allows for pulse reconstruction without an iterative algorithm.

A number of noninterferometric pulse characterization

methods are available as well besides the interferometric

methods. A very powerful method to characterize optical

pulses—frequency-resolved optical gating (FROG)—has been

introduced by Kane and Trebino [8]–[13]. In this method, the

pulse to be characterized is cross-correlated with a delayed

gating pulse in a nonlinear crystal to generate a higher harmonic

light output. The spectrum of this higher harmonic is measured

as a function of the delay of the gating pulse. The gating pulse

can take on many shapes depending on the measurement setup

(also called geometry) that is used [14]. The measured spectra

make up a two-dimensional (2-D) FROG trace. The amplitude

and phase of the pulse can be reconstructed from this measured

FROG trace by an iterative algorithm based on generalized

projections (GP) [15]–[18]. The GP method has recently been

improved and the resulting principal component generalized

projections algorithm (PCGPA) [19] is fast enough to allow

real-time inversion of FROG spectrograms [20].

Another time-domain noninterferometric characterization

method—frequency-domain phase measurement (FDPM)—

was proposed by Chilla and Martinez [21]–[23]. In this method,

a spectral slice of the pulse is selected by a grating and a slit

and this slice is cross-correlated with the original pulse in a

SHG crystal. Cross-correlation traces are then measured for

different spectral slices of the pulse. This method is similar

to the FROG method described above except that the role of

frequency and time are interchanged: the gating takes place in

the frequency domain and cross-correlation traces are measured

instead of spectra. The actual measurements are resolved in

the time domain and it would, therefore, be appropriate to put

this method in a more general category which we will call

time-resolved optical gating (TROG). FDPM can then be seen

as a measurement setup or geometry for TROG. For the FDPM

geometry, the measured traces make up a 2-D TROG trace from

which the phase and amplitude of the pulse can be retrieved

using a similar iterative algorithm as the one that is used for

FROG [24].

Although various measurement geometries have been ex-

plored for FROG, the number of geometries available for TROG

is limited. The available geometries are based on cross-cor-

relating a spectrally filtered version of the pulse with a short

gating pulse which usually is the original unfiltered pulse or a

known reference pulse. In this paper, we propose a new TROG

geometry based on dispersive propagation (DP-TROG) which
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does not have the short gate requirement. In this technique,

the spectrally filtered pulse is autocorrelated in a SHG crystal

instead of cross-correlated with a short gating pulse. It will be

shown that a single measurement of the intensity spectrum of

the pulse together with measurements of its autocorrelation

trace after propagation through a medium with variable disper-

sion provide enough information to reconstruct the phase and

amplitude of the pulse using an iterative algorithm.

This paper is divided in the following way. Section II deals

with the basics and notational concepts of TROG. Section III

will describe the DP-TROG geometry in detail and prove that

the data provided by a DP-TROG trace is sufficient for a com-

plete determination of the pulse in amplitude and phase. Sec-

tion IV will describe briefly the specifics of the reconstruction

algorithm and show how well the method works for the case

of a nonlinearly chirped double pulse. Section V summarizes

the DP-TROG method and discusses the differences with other

methods.

II. BASICS OF TROG

The electric field representing an ultrashort optical pulse can

be described in the time domain as

(1)

where is the carrier frequency and is the slowly varying

complex envelope of the field representing the amplitude and

phase of the pulse. is normalized in such a way that

represents the intensity of the pulse. One can also represent the

electric field in the frequency domain by Fourier transforming

it as

(2)

where is the Fourier transform of and is the

Fourier transform of . Throughout this paper, the following

Fourier transform pairs are used:

(3a)

(3b)

and all integrals in this paper are assumed to be from to

.

We will now introduce the basics of TROG and show how

FDPM can be considered as a TROG geometry. A schematic di-

agram for the measurement of a TROG trace is shown in Fig. 1.

The spectrum of the pulse is spectrally filtered in the fre-

quency domain with a filter function , giving the

signal field

(3)

The signal field is next filtered in the time domain and detected

by an integrating square-law detector. The signal at the output

of the detector is given by

(4)

Fig. 1. Schematic diagram for the TROG measurement setup consisting of a
frequency gate followed by a temporal filter and an integrating photodetector
(PD).

This quantity is called the TROG trace or sonogram of the input

pulse; it measures the temporal intensity of different spectral

components of the pulse. It is noted that TROG has a time–fre-

quency duality with FROG where the spectral intensity of dif-

ferent temporal components of the pulse is measured.

The FDPM method introduced by Chilla and Martinez can be

considered a TROG geometry. Although its name might imply

that it is a frequency-resolved measurement, the measurement is

resolved in time as a number of cross-correlation traces is mea-

sured instead of spectra. From now on, we will refer to FDPM as

FDPM-TROG. In the experiment of Chilla and Martinez [21],

the spectral filtering is performed by a grating and a slit. An

exact transfer function of this grating/slit pair, taking into ac-

count the spatial variation of the optical beam, is given in [22].

For a slit size larger than the beam size, this transfer function

can be simplified to a rectangle function

for

for

(5)

where is the frequency passband of the slit. The pulse at

the output of the slit is cross-correlated with the original pulse

in a SHG crystal. If the width of the slit is small enough so

that the duration of the resulting pulse is much longer than the

original pulse, the temporal transfer function will approach a

delta-function, , and the

detected signal is given by

(6)

Although Chilla and Martinez state that better spectral res-

olution and phase reconstruction is obtained with a narrower

slit, Wong and Walmsley show that this is not necessary if the

pulse reconstruction algorithm uses the entire detected signal of

(6) instead of just the temporal locations of the centers of the

cross-correlation traces [24].

A diagram of the pulse reconstruction algorithm for TROG is

shown in Fig. 2. The algorithm is started from an initial random

guess for the complex spectrum of the pulse . On the th

iteration, the signal field is calculated according

to (3) from . It is next inverse Fourier transformed with

respect to to give . At this point, the time-do-

main constraint is applied, giving a new signal field

(7)
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Fig. 2. Diagram of the pulse reconstruction algorithm for TROG.

by replacing the magnitude of the signal field

by the square root of the measured TROG trace .

This signal field is then Fourier transformed with respect to to

give the signal function . The frequency-domain

constraint is next applied to give a new guess for the pulse enve-

lope by minimizing the signal field error defined by

(8)

with respect to , where the rms error is defined by

(9)

It is noted that can depend on im-

plicitly. This process is iterated until convergence is reached.

We have assumed here that the measured TROG trace is given

on a grid, where the frequency separation between two

frequency points equals .

A good criterion for the convergence of the algorithm is given

by the error between the measured and reconstructed TROG

trace

(10)

where is a scaling parameter that minimizes the error on

each iteration [13]. We note that the frequency separation be-

tween two time points is related to by

(11)

An error on the order of 10 or smaller usually indi-

cates good pulse reconstruction.

III. DISPERSIVE PROPAGATION (DP): A NEW TROG GEOMETRY

We propose a new measurement setup for TROG that makes

use of DP. A schematic diagram of the DP-TROG geometry is

pictured in Fig. 3. The setup consists of a phase stationary filter

(the disperser) followed by an amplitude nonstationary filter

(the autocorrelator) and a square-law integrating detector. Vari-

able DP can, for example, be accomplished by a grating pair dis-

perser [25], a set of prisms [26], or a number of normal/anoma-

lous dispersive fibers each with a different length.

Fig. 3. Schematic measurement setup for DP-TROG consisting of a disperser
followed by an autocorrelator and an integrating photodetector (PD).

Without loss of generality, we will consider the case where the

DP takes place in a set of fibers, each with a different amount

of dispersion. The spectral transfer function for a piece of dis-

persive fiber is given by [1]

(12)

where is the total dispersion of the fiber with

length and with a dispersion parameter that is negative

for regular fiber and positive for dispersion-compensating fiber.

The detected signal at the output of the intensity autocorrelator

is given by [1], [2]

(13)

where is the pulse envelope after DP through a fiber

with total dispersion . The Fourier transform of with

respect to can be written as

(14)

Using the convolution theorem for Fourier transforms, this can

be rewritten as

(15)

where we have used

(16)

Comparing (15) with (6), we see that the Fourier transform

of the measured trace is a scaled version of the

DP-TROG trace defined by

(17)

For

(18)

and , the scaling is given by

(19)
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The DP-TROG trace can thus be constructed from the measured

set of autocorrelation traces by Fourier transforming

them with respect to to give and next interpolating

this trace at points such that and are re-

lated by (11).

It is noted that interpolation of the trace with

(20)

is not possible. From (20), however, it can easily be seen that this

trace is obtained by measuring the intensity spectrum of

the original pulse, inverse Fourier transforming it with respect

to , and finally squaring it in magnitude.

The pulse shape can next be retrieved from the TROG trace

of (19) by the iterative TROG algorithm depicted in Fig. 2. It

can thus be concluded that measurement of the autocorrelation

traces of dispersed versions of the original pulse together with

the spectrum of the original pulse provide enough information

to reconstruct the pulse in amplitude and phase.

IV. DP-TROG PULSE RECONSTRUCTION

To demonstrate how well the pulse reconstruction works for

this new DP-TROG method, we will use a nonlinearly chirped

double pulse in our simulations. The pulse can be represented

mathematically by

(21)

where

(22)

and

(23)

The pulse parameters are chosen to be

(24)

The amplitude parameters have been chosen to obtain a double

pulse in the time domain and the chirp parameters are taken

from [8], except for the fact that has been adapted to obtain a

double-peaked intensity spectrum.

The amplitude and phase of the pulse in the time and fre-

quency domains are shown in Figs. 4 and 5, respectively (solid

lines). The pulse contains a nonlinear down-chirp, i.e., the blue

components are present in the leading edge of the pulse and the

red components in the trailing edge.

Fig. 4. Amplitude and phase of the nonlinearly chirped double pulse
represented in the time domain: actual pulse (solid lines), reconstructed pulse
using the TROG trace of Fig. 9 (triangles), and reconstructed pulse using the
TROG trace of Fig. 10 (dots).

Fig. 5. Amplitude and phase of the nonlinearly chirped double pulse
represented in the frequency domain: actual pulse (solid lines), reconstructed
pulse using the TROG trace of Fig. 9 (triangles), and reconstructed pulse using
the TROG trace of Fig. 10 (dots).

As a first step, the DP-TROG trace is calculated theoretically

according to (17) and (18) on a grid with . The

time step taken is and the frequency step is

given by (11). The number of points and the time step

need to be taken such that the total frequency range covered is

large enough to contain the spectrum of the pulse and the total

time range covered is large enough to contain the pulse shape

for . The calculated DP-TROG trace is shown in Fig. 6.

In order to show the low amplitude features of the trace, we have

plotted its square root. Although the DP-TROG trace has certain

ambiguities (see Appendix), it does not have an ambiguity in the

direction of time in contrast to SHG-FROG where the direction

of time for the pulse can not be distinguished [8]. The sign of

the chirp is therefore directly revealed by the orientation of the

trace in Fig. 6: the frequency decreases for increasing time, i.e.,

the pulse contains a down-chirp. The algorithm used to recon-

struct the pulse from the DP-TROG trace is the basic method

based on GP. On each iteration, the algorithm finds a new guess

for the next iteration by minimizing (8) with respect to the real

and imaginary parts of . The minimization method used is

a -dimensional conjugate gradient method. We applied the

standard Fletcher–Reeves minimization method [27], which in-

volves a number of one-dimensional (1-D) minimizations along
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Fig. 6. DP-TROG trace generated from (17) and (18) forN = 128 and�T =
0:2t .

directions that are selected with help of the gradient of .

Although the gradient with respect to the real and imaginary

parts of can be calculated numerically, the algorithm is

sped up considerably by calculating an analytical expression for

this gradient in a manner similar to that presented in [10]. One it-

eration takes approximately 1 s on a 200-MHz Pentium Pro. For

the theoretically calculated TROG trace of Fig. 6, the algorithm

converges to the exact pulse shape with a very small residual

error on the order of 10 . For the initial guess, a random

amplitude uniformly distributed on [0, 1] and a random phase

uniformly distributed on are chosen in the frequency

domain.

As a next step, we have constructed the TROG trace from

the autocorrelation measurements and the intensity spectrum

of the dispersed pulse. The autocorrelation trace is calculated

from (13) for different lengths of fiber. The dispersion param-

eter for regular fiber is taken as ps km while the

step size in fiber length equals m. The total disper-

sion is calculated according to . Negative total

dispersion ( ) can be experimentally obtained by using

dispersion compensating fiber ( ). A 2-D view of the re-

sulting set of autocorrelation traces is shown in Fig. 7. As ex-

pected, the pulse can be compressed with dispersion-compen-

sating fiber due to its down-chirp. A minimum pulsewidth is

achieved after propagation through m of fiber. The

spectrum of the autocorrelation trace is obtained by

Fourier transformation of the trace of Fig. 7 with respect to .

Its result is shown in Fig. 8.

The DP-TROG trace is now obtained by scaling the trace in

Fig. 8 according to (19). As stated before, the trace with

cannot be acquired in this way but is replaced with the trace ob-

tained by calculating (20). The result of this scaling is shown

in Fig. 9. Looking at Fig. 9, there appears to be data missing

in the TROG trace around . This is due to the limited

range of dispersion over which the autocorrelation trace is

calculated. The area of missing data c+an be decreased by in-

creasing the dispersion range over which the autocorrelation

trace is calculated. This TROG trace is next used as input to

the reconstruction algorithm. The time-domain constraint (7) is

Fig. 7. Two-dimensional view of the set of autocorrelation traces R(D; T )
theoretically calculated from (13).

Fig. 8. Autocorrelation spectrum ~R(D; F ) obtained by Fourier
transformation of the autocorrelation traces of Fig. 7 with respect to T .

applied only on the areas of the TROG trace where data are

present. The pulse reconstruction results after about 40 itera-

tions are shown in Figs. 4 and 5 by the triangles. The final error

is about . It can be seen from Fig. 5 that, al-

though there is a slight deviation in the intensity spectrum of the

pulse, the algorithm reconstructs the spectral phase accurately.

The mismatch in the intensity spectrum is caused by the lim-

ited dispersion range over which the autocorrelation traces are

calculated. Running the algorithm on various pulse shapes and

dispersion ranges, it is found that the spectral phase is always

retrieved correctly while the mismatch in the intensity spectrum

decreases if the dispersion range is increased. The dispersion

range over which measurements should be made depends on

the characteristics of the pulse that is being measured, but a

good rule of thumb is as follows: find the amount of dispersion

that compresses the pulse to its minimum autocorrelation width,

then keep increasing the dispersion range around this dispersion

amount until the measured autocorrelation trace has dropped its

peak value to about one tenth of the peak value that would occur

when the pulse is at its minimum autocorrelation width.
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Fig. 9. Reconstructed DP-TROG trace obtained by scaling the autocorrelation
spectrum of Fig. 8 in the T -direction according to (19) for F 6= 0. The trace
for F = 0 is obtained from (20).

Fig. 10. Interpolated DP-TROG trace obtained by interpolating the trace of
Fig. 9 in the F direction.

It is noted that a TROG trace contains redundant informa-

tion: it is made up of data points while the pulse shape

is only determined by points. One might thus try and ex-

ploit the two dimensions and of the trace to try to obtain

TROG data around : we fill in the gaps of the TROG

trace of Fig. 9 by doing 1-D interpolations in the direction.

The resulting interpolated TROG trace is shown in Fig. 10. In

order to find out the effects of this interpolation on the pulse re-

construction, we have again examined various pulse shapes and

dispersion ranges. It is found that the algorithm convergence

is approximately sped up by a factor of two, while the ability

of the algorithm to retrieve the spectral phase is not affected.

The ability to retrieve the correct spectral intensity is, however,

strongly improved. To demonstrate this, we have run the algo-

rithm on the final interpolated TROG trace of Fig. 10. Conver-

gence occurs within 20 iterations and the final error is approx-

imately . The amplitude and phase of the

retrieved pulse in the time and frequency domains are shown in

Figs. 4 and 5, respectively, by the dots. Excellent pulse retrieval

is accomplished.

As a final step, we have further tested the algorithm for the

addition of multiplicative and additive noise to the autocorre-

lation trace. As TROG is similar to FROG except for the fact

that the role of time and frequency is interchanged, noise re-

duction techniques that are available for FROG [12] can also be

used for TROG. We have applied the techniques of mean back-

ground subtraction and median filtering to our noisy autocor-

relation trace before running the reconstruction algorithm. For

more details on these and other noise reduction procedures, the

reader is referred to [12]. The algorithm retrieves the spectral

phase very well for our test cases while the retrieved spectral

intensity again slightly deviates from the actual one. It is noted

that an accurate time-domain representation of the pulse can be

obtained by using the spectral phase retrieved by the algorithm

together with the measured intensity spectrum instead of the in-

tensity spectrum retrieved by the algorithm. As an alternative,

one can also add an intensity spectrum constraint to the algo-

rithm. More details on noise reduction and other guidelines for

experimentally obtained DP-TROG traces will be discussed in

a separate paper [28].

V. CONCLUSION

We have introduced the TROG technique and shown its

time–frequency duality with FROG. A new TROG geometry

has been introduced based on DP. It has been shown that mea-

surements of the autocorrelation traces of dispersed versions

of the pulse together with a measurement of its spectrum are

sufficient to recover phase and amplitude information. One of

the advantages of the DP-TROG geometry is that it is simple to

realize: it makes use of a dispersive medium and an autocor-

relator. This equipment is usually already present in an optics

laboratory. Although we use a set of fibers as the dispersive

medium in our analysis, this might not be very practical in

experiments as a large number of fibers is needed and their

length will vary from experiment to experiment depending on

the temporal width and chirp of the pulse. A grating or prism

pulse stretcher/compressor is more appropriate as long as its

dispersion can be adjusted below and above the value for which

minimum autocorrelation width occurs and as long its optical

loss is acceptable.

The DP-TROG geometry is a sensitive technique as it uses a

second-order nonlinearity instead of a higher order one. It will

work for any low-energy pulse that contains enough energy for

the autocorrelation trace to be measured. We have also shown

that this technique does not require a short gate pulse as is the

case with FDPM-TROG. Compared with its frequency counter-

part SHG-FROG, DP-TROG has two advantages. First, more

sensitivity is obtained as there is no need to spectrally resolve

the SHG signal. Second, the ambiguity in the direction of time,

which is inherent in SHG-FROG, is not present in DP-TROG.

SHG-FROG can, however, accurately retrieve the spectral inten-

sity of the pulse without actually measuring it. In DP-TROG, a

measurement of the intensity spectrum of the pulse is needed.

We have shown that the DP-TROG pulse reconstruction

procedure works very well even for the case of a nonlinearly

chirped double pulse and in the presence of multiplicative

and additive noise: correct spectral phase reconstruction is



KOUMANS AND YARIV: TIME-RESOLVED OPTICAL GATING BASED ON DISPERSIVE PROPAGATION 143

accomplished for all our test cases and algorithm convergence

is sped up if the two-dimensionality of the TROG trace is

exploited by means of interpolation. This also improves the

retrieval of the correct spectral intensity.

It is expected that the DP-TROG method will be very useful,

especially for characterizing pulses with low energy in the

1.3–1.5- m wavelength range.

APPENDIX

The DP-TROG geometry has a number ambiguities. By an

ambiguity, we mean that a certain change of the envelope

has no effect on the DP-TROG trace and the algorithm could

thus converge to this solution. The following ambiguities are

present and can be easily verified upon substitution together

with (18) into (17):

1. A phase offset by

(A1)

2. A shift in frequency by

(A2)

3. A mirror image of

(A3)

The first two ambiguities are trivial and of no concern in ul-

trashort pulse measurements as they represent a constant phase

offset and an effective shift of the carrier frequency . The

third ambiguity would reverse the direction of time for the pulse

upon inverse Fourier transformation. This ambiguity can easily

be identified by comparing the reconstructed intensity spectrum

with the measured one. If one is the mirror image of the other,

the algorithm retrieved and and the pulse would

have to be flipped in the time and frequency domains to obtain

the correct one.

To find out whether there is an ambiguity in the direction

of time, we calculate the TROG trace that

results from the transformations

(A4)

and

(A5)

The TROG trace for both transformation can be shown as

(A6)

where is the TROG trace that would be ob-

tained for . In the last equality, we have used the fact that

the DP-TROG trace is centro-symmetric in and

(A7)

which can be easily verified.

The transformations of (A4) and (A5) thus lead to a TROG

trace that is a flipped version in either the or direction of

the TROG trace for . Due to the fact that these transforma-

tions lead to a different TROG trace, the algorithm will never

converge to either nor and the DP-TROG ge-

ometry has, therefore, no ambiguity in the direction of time for

the pulse. It is noted that the SHG-FROG method contains this

direction-of-time ambiguity due to the fact that the FROG trace

is symmetric in the direction and not in the direction, i.e.,
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