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Abstract— A time-resolved Raman spectrometer is demon-
strated based on a 256 × 8 single-photon avalanche diodes
fabricated in CMOS technology (CMOS SPAD) line sensor
and a 573-nm fiber-coupled diamond Raman laser delivering
pulses with duration below 100-ps full-width at half-maximum
(FWHM). The collected backscattered light from the sample is
dispersed on the line sensor using a custom volume holographic
grating having 1800 lines/mm. Efficient fluorescence rejection in
the Raman measurements is achieved due to a combination of
time gating on sub-100-ps time scale and a 573-nm excitation
wavelength. To demonstrate the performance of the spectrometer,
fluorescent oil samples were measured. For organic sesame seed
oil having a continuous wave (CW) mode fluorescence-to-Raman
ratio of 10.5 and a fluorescence lifetime of 2.7 ns, a signal-to-
distortion value of 76.2 was achieved. For roasted sesame seed
oil having a CW mode fluorescence-to-Raman ratio of 82 and
a fluorescence lifetime of 2.2 ns, a signal-to-distortion value of
28.2 was achieved. In both cases, the fluorescence-to-Raman ratio
was reduced by a factor of 24–25 owing to time gating. For
organic oil, spectral distortion was dominated by dark counts,
while for the more fluorescent roasted oil, the main source of
spectral distortion was timing skew of the sensor. With the pre-
sented postprocessing techniques, the level of distortion could be
reduced by 88%–89% for both samples. Compared with common
532-nm excitation, approximately 73% lower fluorescence-to-
Raman ratio was observed for 573-nm excitation when analyzing
the organic sesame seed oil.

Manuscript received November 9, 2020; accepted January 5, 2021. Date of
publication January 26, 2021; date of current version February 12, 2021. The
work at the University of Oulu was supported by the Academy of Finland,
under Contract 314404, Contract 323719, and Contract 314405. The work at
Tampere University was supported in part by the Academy of Finland, under
Contract 281955 and in part by the Co-Innovation Project of Business Finland,
“3DLidar.” The work at Strathclyde was supported in part by the European
Research Council under Grant 278389 and Grant 727738, in part by the UK
EPSRC under Grant EP/P00041X/1 and Grant EP/L015315/1, in part by the
Fraunhofer UK Research Ltd., in part by the Royal Academy of Engineering,
and in part by the Element 6 (UK) Ltd. The Associate Editor coordinating the
review process was Sabrina Grassini. (Corresponding author: Tuomo Talala.)

Tuomo Talala, Pekka Keränen, and Ilkka Nissinen are with the Circuits and
Systems Research Unit, University of Oulu, 90014 Oulu, Finland (e-mail:
tuomo.talala@oulu.fi).

Ville A. Kaikkonen and Anssi J. Mäkynen are with the Optoelectronics and
Measurement Techniques Research Unit, University of Oulu, 90014 Oulu,
Finland.

Jari Nikkinen, Antti Härkönen, and Mircea Guina are with the Optoelec-
tronics Research Centre, Physics Unit, Tampere University, 33720 Tampere,
Finland.

Vasili G. Savitski is with the Fraunhofer Centre for Applied Photonics,
Fraunhofer UK Research Ltd., Glasgow G1 1RD, U.K.

Sean Reilly, Łukasz Dziechciarczyk, and Alan J. Kemp are with the Depart-
ment of Physics, Institute of Photonics, SUPA, University of Strathclyde,
Glasgow G1 1RD, U.K.

Digital Object Identifier 10.1109/TIM.2021.3054679

Index Terms— Fluorescence rejection, Raman laser, Raman
spectrometer, Raman spectroscopy, single-photon avalanche
diode (SPAD) sensor, time-correlated single-photon counting,
time gating, timing skew.

I. INTRODUCTION

R
AMAN spectroscopy is used in a wide range of fields
including food and oil industries, mining industry, med-

ical diagnostics, pharmacy, forensic science, and archaeom-
etry [1]–[9]. In many applications, the largest challenge for
Raman spectroscopy is fluorescence. For a wide range of
samples, the illumination aimed at Raman excitation also
induces strong fluorescence emission which masks weaker
Raman scattering partially or completely. To this end, a
number of methods have been developed to reduce the fluores-
cence problem. Techniques including surface-enhanced Raman
spectroscopy and resonance Raman spectroscopy have been
used to amplify Raman scattering, and, for example, infrared
excitation, photobleaching, and quenching agents have been
used to decrease fluorescence emission [10]–[14].

If traditional continuous wave (CW) excitation is used,
both Raman scattering and fluorescence emission are observed
continuously, and they cannot be separated in the time domain.
As Raman scattering occurs nearly instantly but fluorescence
has typically a lifetime in a range of nanoseconds to microsec-
onds, pulsed excitation and time-gated measurement can be
used to decrease the number of detected fluorescence photons.
Time-gated Raman spectrometers have been built based on
optical gates (Kerr, Pockels) [15], [16], time-gated photo-
multiplier tubes [17], streak cameras [18], intensified charge-
coupled devices [15], and time-gated single-photon avalanche
diodes fabricated in CMOS technology (CMOS SPADs) [19].
To achieve effective fluorescence rejection by means of time
gating, the pulsewidth of the excitation laser should be as
short as possible compared with the fluorescence lifetime of
the sample to be measured [17]. The best signal-to-noise
ratio is then reached with a gate width that is 1–2 times
the width [full-width at half-maximum (FWHM)] of Raman
photon distribution [17], [20]. The exact optimal gate width
depends on the properties of the sample (fluorescence level
and lifetime) and the sensor [dark count rate (DCR), timing
skew].

In CMOS technology, the electronics needed for time-gated
measurement or for time-correlated single-photon counting
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can be integrated on the same chip with the SPADs. Because
of that, a CMOS SPAD line sensor offers a compact solu-
tion for time-gated Raman spectroscopy and several such
sensors have been demonstrated [21]–[23]. The timing jitter
of a CMOS SPAD is typically in the range of 50–100 ps
(FWHM) [24]–[27]. Therefore, the temporal resolution of
approximately 50 ps in the latest CMOS SPAD line sensors is
good enough to form relevant gate widths for Raman photon
distributions detected with CMOS SPADs. However, when
highly fluorescent samples are measured with CMOS SPAD
line sensors, the dominant error source distorting the Raman
spectrum is no longer shot noise from fluorescence but the
timing skew of the line sensor [28], [29]. Therefore, when
a CMOS SPAD line sensor is used for time-gated Raman
measurement, good temporal resolution is not only needed to
set proper time gating, but also to characterize and compensate
for the timing skew of the sensor. In fact, the temporal
resolution requirements might be stricter for the latter purpose.

In previous studies, CMOS SPAD line sensors have been
used mostly with 532-nm pulsed lasers having pulsewidths
of 150–400 ps (FWHM) [22], [23], [30], [31]. Compared
with longer infrared wavelengths, 532-nm excitation gives
a stronger Raman signal as the intensity of Raman scatter-
ing is inversely proportional to fourth power of excitation
wavelength. Also, the photon detection efficiency of a SPAD
is typically higher at visible wavelengths compared with
the near infrared region [25]–[27]. One obvious weakness
for 532-nm excitation is its tendency to produce stronger
fluorescence emission than near infrared excitation. Although
this ground rule of fluorescence decreasing as excitation wave-
length increases is usually correct for large changes in wave-
length (comparison between visible light and near infrared
excitation), smaller changes in excitation wavelength can
either decrease or increase fluorescence emission [32], [33].
One important point is that if the excitation wavelength is
changed, wavelengths for Raman scattering also change but
fluorescence emission wavelengths are not shifted. Therefore,
if the excitation wavelength can be chosen, this selection can
be used to set Raman peaks to a wavelength range that has
the least fluorescence. This way, a Raman spectrometer can
be optimized for a certain kind of samples.

Raman spectra of samples containing human blood have
been measured for various purposes, to detect diseases and
to monitor the glucose level of blood, for example [34].
Fluorescence emission from hemoglobin is high for the
excitation wavelengths in the range of 525–580 nm and it
decreases rapidly, if excitation is shifted to around 600 nm
or above. To minimize the fluorescence emission, a 599-nm
Ba(NO3)2 crystal-based Raman shifting laser has been used
with blood samples [35]. Another example of an organic
sample showing significant fluorescence emission is olive oil,
which Raman spectra have been measured to detect oil adul-
terations [4]. Over the range of 500–750 nm, its fluorescence
emission is lowest at 620–640 nm [33]. In addition, over the
range of 300–680 nm, its fluorescence absorption is lowest at
570–590 nm. Thus, to measure the Raman spectrum of olive
oil, excitation wavelength between 570 and 590 nm could be
better choice than standard 532 nm. More generally, excitation

wavelength between 570 and 590 nm could be good choice
if samples containing other edible oils, biodiesel, or diesel
are measured [36]. For both examples above, a very suitable
excitation wavelength can be produced with a diamond Raman
laser: 573 nm for samples containing oils and 620 nm for
samples including hemoglobin [37], [38].

In this article, the design, the implementation, and the
performance of a new time-resolved Raman spectrometer are
presented. The instrument is built around a 256-channel time-
resolved CMOS SPAD line sensor and a 573-nm pulsed laser.
The main aim is to show the effectiveness of a 573-nm
wavelength and a sub-100-ps pulsewidth together with a
time-resolved CMOS SPAD line sensor on the fluorescence
rejection with oil samples. While the overall fluorescence
level decrease is achieved by the proper excitation wavelength
used, the main rejection of fluorescence is enabled by the
accurate time-correlated single-photon counting of the sensor
with a sub-100-ps laser pulses. The temporal resolution of
the sensor, 20 ps, enables accurate time gating for fluores-
cence rejection in data postprocessing. In addition, due to
high temporal resolution, it is possible to perform precise
timing skew characterization and compensation for the sensor.
With a new improved timing skew characterization method,
the effective timing skew after the compensation is pushed
down to picosecond level revealing Raman spectra of highly
fluorescent samples that would not otherwise be visible. The
structure of the spectrometer is described in Section II, the
calibration procedure and calibration measurement results are
shown in Section III, performance of the spectrometer and
postprocessing methods are demonstrated with measurement
results in Section IV, and Section V concludes this article.

II. STRUCTURE OF THE SPECTROMETER

A flowchart of the spectrometer design is shown in Fig. 1.
Colors of arrows in the flowchart approximately correspond
to light wavelengths at particular sections of the spectrometer.
Electronic signals are drawn in gray. Collimators and focusing
lenses are not included.

The excitation source is a diamond Raman laser that consists
of a 532-nm pump laser and a 0.5-mm-thick synthetic diamond
with integrated mirror coatings to form a plane-plane laser
resonator. The first Stokes emission line from the diamond
at 573 nm is used as the excitation light source to illuminate
the sample in spectrometer. The laser exhibits a maximum
average output power of 175 mW with a pulsewidth of 71 ps
at 573 nm [37]. When used in the spectrometer, the current
to the pump laser was adjusted so that the average output
power at 573 nm was approximately 25 mW. At 25-mW
power level, the measured pulsewidth was in a range of
70–100 ps (FWHM) and the pulse rate was 70 kHz. A detailed
description of the laser can be found in [37].

At first, on the optical path, the output of the laser is filtered
with a 550-nm long-pass filter to remove lower wavelength
anti-Stokes emissions from the diamond. Then, 3% of the opti-
cal power is split to a light detector for synchronization signal
generation and 97% of the power is coupled into a 5-m-long
graded-index multimode optical fiber with 62.5 micron core
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Fig. 1. Flowchart of the spectrometer. Collimators and focusing lenses are ignored.

diameter to generate a long enough optical delay for the
synchronization with the line sensor. Although a graded-index
fiber has larger attenuation for the 573-nm wavelength, it has
smaller modal dispersion than a similar sized step-index fiber
and is, therefore, used in the spectrometer. From the optical
fiber, the excitation light is collimated using a 11-mm focal
length lens (CFC-11X-A, Thorlabs) and directed toward the
sample through a 573-nm short-pass filter, two long-pass
dichroic mirrors, and focused on the sample using a 10×/0.25
microscope objective. The adjustable 573-nm short-pass filter
is used to remove higher order Stokes emissions generated
in the diamond and fiber. The first dichroic (DMLP505R,
Thorlabs) transmits the 573-nm excitation and reflects the
lower wavelength light to the camera, which is used for
imaging purposes. A 580-nm wavelength long-pass dichroic
mirror (FF580-FDi01-25 × 36, Semrock), angled at 45◦ to the
excitation beam, reflects the excitation beam to the microscope
objective and on to the sample. The microscope objective
collects the Raman and the fluorescence light scattered at 180◦

from the sample, as well as the Rayleigh scattered excitation
light. The same dichroic then transmits the Stokes Raman
and fluorescence light and reflects most of the excitation
light. After the dichroic, the collected light is passed through
an additional 573-nm long-pass filter to remove the residual
excitation light remaining after the dichroic. The long-pass
filtered light is focused using a 100-mm focal length lens
on a 50-µm wide slit. The light that passes through the
slit is collimated using an 85-mm f/1.4 camera objective to
a custom volume holographic grating with 1800 lines/mm
(Wasatch Photonics). An identical camera objective focuses
the dispersed light from the grating on the line detector. The
optical magnification from the microscope objective object
plane to the line detector image plane is 5.6×, and the spot
size of the excitation light on the sample is 110 µm in diameter
by geometrical approximation.

The light detector (Thorlabs DET02AFC) creates a short
analog synchronization signal from a laser pulse. This sig-
nal is then converted into a longer logic-level signal on a
custom designed synchronization signal generator card. This
logic-level signal is connected to the detector to synchronize
measurements with the laser pulses.

The detector of the spectrometer is a time-resolved
256-channel SPAD line sensor fabricated in 0.35-µm CMOS
technology. Each channel contains eight SPADs arranged in
vertical direction and a time-to-digital converter (TDC) with
a resolution and range of 20 ps and 640 ns, respectively.
The diameter of SPAD’s active area and the pitch in SPAD
array are 25.6 and 41.6 µm, respectively. The fill factor of
the whole array is about 35%. Although the detector has
been designed primarily for a line profiling laser radar, high
temporal resolution and good uniformity between channels
make it very suitable for time-resolved Raman spectroscopy.
As the range of TDCs is much wider than needed for Raman
spectroscopy, only the first 4096 TDC bins (81.92 ns range)
were used in the Raman measurements. For communication
between the detector and a computer, a field-programmable
gate array (FPGA) integration board (Opal Kelly XEM7310) is
used. Full characterization for the detector is presented in [39]
and [40].

The wavelength range covered by the line sensor was
580.8–639.5 nm, corresponding to a wavenumber range of
247–1826 cm−1. This wavenumber range divided by the 256
channels of the detector gives a theoretical spectral resolution
of 6.2 cm−1. As an example, raw data from sesame seed oil
measurements (for TDC bins 400–800) are shown in Fig. 2.

To make focusing of the excitation easier and more
accurate, the sample was monitored through the micro-
scope objective with a Basler ace monochrome camera.
For this purpose, the sample was illuminated with blue
LEDs (465 nm). The 505-nm dichroic mirror was used
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Fig. 2. Raw data from (a) organic sesame seed oil and (b) roasted sesame oil measurement for TDC bins 400–800.

to create a camera view based only on the blue LED
illumination.

III. CALIBRATION PROCEDURE AND MEASUREMENTS

The purpose of the calibration procedure is to characterize
the timing skew along the line sensor. With the characterization
data, a large share of spectral distortion caused by the timing
skew can be eliminated in postprocessing.

The calibration procedure is based on the simple method
for characterization of a line sensor described in [41]. In the
calibration measurement, 20 million laser pulses were shot
at the reference sample, an aqueous solution of erythrosin
B (Sigma-Aldrich no. 198 269). The fluorescence lifetime
of an aqueous solution of erythrosin B is short (89 ps) and
wavelength range of its fluorescence emission is sufficient
to cover the spectral range of the spectrometer [42]. Thus,
the measurement of erythrosine B is a fast way to produce
approximations of instrument response functions (IRFs) for all
detector channels. For each channel, a polynomial was fitted
to a result histogram and the vertex of the polynomial was
used to determine a channel-specific timestamp. Timestamp
values in TDC bin numbers were multiplied by nominal TDC
resolution (20 ps) to convert the timestamps into picosecond
scale. Timestamps as a function of channel number indicate
the shape of the timing skew of the sensor and they can be
used for skew compensation as described in [41].

The accuracy of this simple characterization method can be
improved without any additional measurements. The principal
idea behind the improvement is that the spectrum of the
reference sample erythrosin B consists of fluorescence and
should not include sharp peaks. The fluorescence emission
spectrum of erythrosin B can be found in [43]. Thus, all sharp
peaks in the spectrum of the reference sample are assumed to
be related to distortion caused by timing skew, and timing skew
characterization data can be adjusted to minimize distortion
peaks. In practice, this idea was applied as follows. First,
the spectrum of the reference sample was calculated using

timing skew compensation based on timestamps from the
calibration measurement. Photon counts from bins 432–440
with the addition of channel-specific compensation terms
were used. As an example, sensor channel number 218 is
studied. The timestamp value was 50.7 ps for channel num-
ber 218. When compared with the nominal temporal res-
olution of the TDC, 20, 50.7 ps corresponds to two full
bins and about one half. Now the channel-specific compen-
sation term for channel number 218 is N441,218 + N442,218 +

(10.7 ps)/(20 ps)N443,218, where Na,b is photon count for TDC
bin a in sensor channel b. This compensation term is added
to sum N432,218 + N433,218 + · · · + N440,218 to calculate the
skew-compensated photon count for channel number 218.
When the skew-compensated photon counts for all channels
were calculated, the spectrum of the reference sample was
formed, as shown in Fig. 3(a) (black line). Next, a smooth
undistorted version of the spectrum of reference sample was
created using moving average filtering. Then, a comparison
was made between the filtered and unfiltered spectrum to
detect residual distortion caused by timing skew. Based on
the comparison, the original timestamps were adjusted to
minimize differences between filtered and unfiltered spectrum.
Finally, all steps needed to adjust the timestamps were repeated
two times to iteratively make timestamps as accurate as
possible. For channel number 218, timestamp was adjusted
approximately −0.1 ps after iterations and, therefore, final
adjusted timestamp was 50.7 ps − 0.1 ps = 50.6 ps, as shown
in Fig. 3(b).

The final adjusted timestamps shown in Fig. 3(b) (black
line) describe the timing skew of the sensor. The differences
between the adjacent channels are in the range of 0–24 ps
and the maximum difference is observed between channels
number 1 and 256, amounting for 86 ps in total. The sum of
adjustments made to the timestamps during iterations is also
shown in Fig. 3(b) as blue line. The adjustments are small,
in the range of ±3 ps, but their effect on the spectrum of the
reference sample is clear in Fig. 3(a) (blue line).
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Fig. 3. (a) Spectrum of the reference sample calculated using skew compensation with original timestamps (black line) and using skew compensation with
adjusted more accurate timestamps (blue line). (b) Shape of the timing skew of the sensor based on the improved characterization method (black line) and
adjustments made to original timestamps based on the spectrum of the reference sample (blue line).

IV. MEASUREMENTS AND DATA POSTPROCESSING

A. Measured Samples

Two oil samples were measured to assess the performance
of the spectrometer. The first sample was organic sesame seed
oil having a CW fluorescence-to-Raman ratio of 10.5 and a
fluorescence lifetime of 2.7 ns. The second, significantly more
challenging, sample was roasted sesame seed oil having a CW
fluorescence-to-Raman ratio of 82 and a fluorescence lifetime
of 2.2 ns. These values were determined from the same data
that were used to calculate the spectra of oils (shown in Fig. 2).
The Raman spectra of edible oils including sesame seed oil
can be found in [44]. For CW fluorescence-to-Raman ratios,
fluorescence levels were calculated as a sum of fluorescence
photons detected in a 15-ns period after the laser pulse at
1500 cm−1 (no Raman peak) and Raman levels were taken
from the largest Raman peak at 1440 cm−1 using 600-ps time
gating. Due to the weak Raman signal level, CW fluorescence-
to-Raman ratios for small Raman peak at 1750 cm−1 are diffi-
cult to calculate accurately but approximated values are 90 for
organic sesame seed oil and 560 for roasted sesame seed
oil (the Raman peak at 1750 cm−1 was compared with the
fluorescence level at 1700 cm−1 (no Raman peak) instead
of 1500 cm−1). A gate width of 600 ps was chosen to
include all Raman photons while still rejecting most of the
fluorescence. The fluorescence lifetimes were determined by
fitting a single exponential model to the fluorescence decay
using data from sensor channel 200 (∼1500 cm−1). Two
million laser pulses were shot at the organic sesame seed oil
(duration ∼29 s) and ten million laser pulses were shot at the
roasted sesame seed oil (∼143 s).

To compare 573-nm excitation with more common 532-nm
excitation, organic sesame seed oil sample was also measured
using another pulsed laser, Teem Photonics ANG-500P-CHS.
With 532-nm excitation, the CW fluorescence-to-Raman ratio
of the Raman peak at 1440 cm−1 was 39.4 which is signifi-
cantly higher than 10.5 observed with 573-nm excitation.

B. IRF Measurement

To estimate the IRF of the spectrometer, a paracetamol sam-
ple was measured. The widths of photon distributions on chan-
nels 86, 166, and 219 were 149, 155, and 152 ps (FWHM),
respectively. The photon distribution of channel 219 is shown
in Fig. 4. The selected channels correspond to largest Raman
peaks of paracetamol at 857, 1322, and 1609 cm−1. Based
on channels 86, 166, and 219, the FWHM of IRF of the
spectrometer averages to 152 ps. Even though the fluorescence
emission from paracetamol is weak, it may cause a small
overestimation in the IRF FWHM value. This effect was
neglected. The dominant factors for the IRF FWHM value
are the laser pulsewidth and the jitter of SPADs which have
maximum values of approximately 100 ps (FWHM).

C. Raman Measurements and Postprocessing

Before creating any spectra, a simple correction for pile-up
distortion defined in (1) was applied to the data. The corrected
photon count for TDC bin a in sensor channel b, Na,b, is

Na,b = na,b

m

m −
∑a−1

i=1 ni,b

(1)

where na,b is detected photon count for TDC bin a in sensor
channel b and m is the total number of laser pulses shot.

The width of the chosen time gate affects the spectrum in
multiple ways. In many cases, the best signal-to-noise ratio
in terms of shot noise is achieved when almost all Raman
photons are included. Unfortunately, the time gate endpoint
is then set to a level having approximately maximum overall
signal intensity meaning maximum distortion caused by timing
skew. This tradeoff is illustrated in Fig. 5. The effect of timing
skew can be reduced if the endpoint of time gate is shifted to
a level having a lower overall signal but then some Raman
photons are lost (for shorter gate) or the number of included
fluorescence photons is increased (for wider gate). If spectral
distortion is mainly caused by timing skew, it may be best to
set the time gate endpoint to most accurately characterized
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Fig. 4. Photon distribution of IRF measurement (paracetamol) at 1609 cm−1

(sensor channel 219).

Fig. 5. Gate width examples to maximize included Raman photons (300 ps)
or to minimize distortion caused by timing skew (180 ps).

level of the TDC’s range to maximize the efficiency of
timing skew compensation. So, the optimal gate width is a
compromise, with both sensor and sample have an effect on
it. Gate width used to calculate spectra in Figs. 6 and 7
is approximately 200 ps. Such gating resembles the 180-ps
example shown in Fig. 5 and 40%–45% of Raman photons
are included with it. This gate width is chosen primarily to
maximize the efficiency of timing skew compensation because
timing skew is the dominant error source if highly fluorescent
samples are measured with this sensor.

Multiple postprocessing steps are needed to minimize spec-
tral distortion caused by dark counts and timing skew of
the sensor. As the dominant source of spectral distortion
depends on the measured sample, the importance of each
postprocessing step varies when different kinds of samples are
measured. To illustrate the effect of each postprocessing step,
five spectra are shown for both oil samples. Spectra related to
organic sesame seed oil are shown in Fig. 6 and spectra related
to roasted sesame seed oil are shown in Fig. 7. The spectral
range covered in the measurements was 247–1826 cm−1, but
the range shown in Figs. 6 and 7 is 600–1800 cm−1, because
it is the most relevant part for the oil samples. Raw spectra in
Figs. 6(a) and 7(a) are calculated simply by summing photon
counts of TDC bins 432–441 in all channels. In practice, this
means time gating with a gate width of 200 ps. In the raw
spectrum of organic sesame seed oil in Fig. 6(a), distortion is
visible but large Raman peaks can still be seen clearly. In the
raw spectrum of roasted sesame oil in Fig. 7(a), Raman peaks
can hardly be seen because of overwhelming distortion.

For dark count compensation, the DCR of each channel was
estimated using hit counts from TDC bins 2200–2800. This
period is located more than 30 ns after the excitation pulse
and, therefore, only dark counts are assumed to be detected
there. When dark counts were compensated, the spectral

quality of organic sesame seed oil [Fig. 6(a)] improved
noticeably, while distortion in the spectrum of roasted sesame
seed oil [Fig. 7(a)] decreased only marginally. However, this
difference is not related to different DCRs but results from
different levels of distortion caused by timing skew due to
different fluorescence levels.

Timing skew compensation was implemented as described
in Section III for the calibration sample. Again, photon counts
from bins 432–440 with the addition of channel-specific
compensation terms were used. Blue lines in Figs. 6(b)
and 7(b) are spectra calculated with the skew compensation
using unadjusted timestamps, like described in [41]. Black
lines in Figs. 6(b) and 7(b) are spectra calculated with
the improved skew compensation using adjusted timestamps
shown in Fig. 3. Timing skew compensation reduces spectral
distortion for both oil samples, and especially for roasted
sesame seed oil, its importance is notable. For organic sesame
seed oil, there are no large differences in the two spectra
in Fig. 6(b) but for roasted sesame seed oil, improved skew
compensation eliminates spectral distortion more effectively,
as shown in Fig. 7(b). Small adjustments (±3, ±2 ps for most
channels) in the characterization of the sensor make visible
difference to the spectrum of roasted sesame oil showing
how sensitive time-gated measurement is to timing skew when
highly fluorescent samples having short fluorescence lifetime
are measured. It should be noted that the improved iterative
skew compensation should be used only when timing skew of
the sensor really is the dominant source of distortion.

Finally, for spectra shown in Figs. 6(c) and 7(c), baseline
correction and computational filtering were applied. The base-
line was created by fitting a curve through points known not
to have Raman peaks and filtering was implemented using
the smoothdata function in MATLAB (smoothing method
“sgolay,” window length 5, and degree of the polynomial 2).
After all postprocessing steps, the Raman peaks at 1080, 1265,
1300, 1440, 1660, and 1750 cm−1 are clearly visible for both
oil samples.

D. Evaluation of Measurement Results

Hit counts and fluorescence-to-Raman ratios for the time-
gated measurements are shown in Table I. These ratios were
calculated using the largest Raman peak at 1440 cm−1 and the
fluorescence level at 1500 cm−1 as per the ratios calculated for
the CW-mode in Section IV-A. Table I shows that if time-gated
measurements are compared with CW-mode measurements
presented in Section IV-A, the number of detected Raman
photons is decreased approximately 60%, while the number
of detected fluorescence photons decreases more than 98%.
Therefore, the fluorescence-to-Raman ratio of time-gated mea-
surement is only about 4% of the fluorescence-to-Raman ratio
of CW-mode measurement.

To estimate the significance of the postprocessing steps,
spectral distortion values for each step were collected to
Table II. The distortion levels were calculated as a stan-
dard deviation of the baseline-corrected hit counts over the
range of 1500–1621 cm−1 [sensor channels 198–220, shown
in Fig. 7(c)], which does not include Raman peaks. Dis-
tortion levels in Table II are normalized so that the level
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Fig. 6. Spectra of organic sesame seed oil after different postprocessing steps. (a) No postprocessing with the exception of pile-up distortion correction (blue
line) and dark count compensation applied (black line). (b) Dark count compensation and skew compensation applied, and blue line shifted down for clarity.
(c) Dark count compensation, skew compensation, baseline correction, and filtering applied.

Fig. 7. Spectra of roasted sesame seed oil after different postprocessing steps. (a) No postprocessing with the exception of pile-up distortion correction (blue
line) and dark count compensation applied (black line). (b) Dark count compensation and skew compensation applied, and blue line shifted down for clarity.
(c) Dark count compensation, skew compensation, baseline correction, and filtering applied.

of the raw spectrum equals one. For organic sesame seed
oil, dark counts cause most of the distortion and DCR
compensation alone reduces the distortion level by 79%.
For this sample, the importance of timing skew compen-
sation is minimal and computational filtering can be used
for some additional reduction in distortion level. For highly
fluorescent roasted sesame seed oil, DCR compensation

reduces the distortion level only by 17%, while timing skew
compensation together with DCR compensation is able to
reduce distortion level by 87%. A small additional reduction
can be achieved with computational filtering. For roasted
sesame seed oil, the combination of DCR compensation
and filtering was not very effective without timing skew
compensation.



6004110 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

TABLE I

HIT COUNTS AND F/R RATIOS FOR CW-MODE AND TIME-GATED MEASUREMENT

TABLE II

NORMALIZED SPECTRAL DISTORTION LEVELS AFTER DIFFERENT

POSTPROCESSING STEPS

The spectral quality of the fully postprocessed spectra
was also quantitatively measured using the signal-to-distortion
ratio (SDR) described in [29]. The distortion level was again
calculated as a standard deviation of hit counts over the range
of 1500–1621 cm−1, and the highest hit count of the Raman
peak was used as a signal level. SDR values for the largest
Raman peak at 1440 cm−1 are 28.2 and 76.2 for roasted and
organic sesame seed oil, respectively. For significantly smaller
Raman peak at 1750 cm−1, SDR values are 3.1 (roasted oil)
and 10.8 (organic oil).

V. CONCLUSION

A time-resolved Raman spectrometer was designed based on
a 256-channel CMOS SPAD line sensor and a 573-nm high-
energy pulsed laser. A high fluorescence rejection was mainly
achieved by means of time gating due to short (sub-100-ps
FWHM) laser pulse excitation and good temporal resolution
(20 ps) of the sensor. Time gating improved the fluorescence-
to-Raman ratio of both the measured sesame seed oils by
a factor of 24–25. Excitation at 573 nm proved to be a
good choice at least for oil samples; for organic sesame seed
oil, fluorescence-to-Raman ratio was 73% lower at 573-nm
excitation than with typical 532-nm excitation. The presented
calibration and postprocessing steps removed almost 90% of
spectral distortion caused by dark counts and timing skew
of the sensor. If DCR and timing skew of the sensor could
be further reduced in future sensor designs, less complicated
postprocessing procedure might be effective. Regarding the
laser used in this spectrometer, the most obvious feature to
be improved is the 70-kHz pulse rate. Recent CMOS SPAD
line sensors can usually handle pulse rates significantly higher
than 70 kHz and, therefore, the pulse rate of the laser limits
the measurement speed and increases the measurement times.

CMOS SPAD-based time-resolved Raman spectrometers
have already been successfully applied to mineral identifi-
cation and chemical imaging of human teeth, for example.
In both cases, fluorescence suppression due to time gating has
been appropriate, but the timing skew of the line sensor has
been one of the main factors limiting the performance of the
spectrometer [28], [45]. The obtained results are important,
because they show that with a well-designed line sensor and
suitable postprocessing steps, the effective timing skew can

be pushed from tens of picoseconds to picosecond level.
In addition, with the available pulsed diamond Raman lasers,
the excitation wavelength can be chosen to optimize the
fluorescence rejection of the spectrometer for a certain kind
of samples, as demonstrated with the oil samples. In addition,
the time-resolved Raman spectrometer technology developed
here could pave the way for the development of a practical
device for medicine, where the high fluorescence background
of blood cells could be effectively rejected by utilizing a proper
available 620-nm wavelength of a pulsed diamond Raman
laser with the accurate time-resolved CMOS SPAD line sensor.
Overall, the achieved good spectral quality for challenging
fluorescent samples encourages to apply CMOS SPAD-based
time-resolved Raman spectroscopy to more and more wide
range of applications.
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