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The dx 2 _ y2 - wave symmetry of the order parameter leads to various physical phenomena 

of high-temperature superconductors which are not present in standard superconductors. 

A particularly interesting new aspect occurs in connection with the behavior of the order 

parameter in the vicinity of interfaces (Josephson junctions) between superconductors and 

close to surfaces. In this review we discuss the appearance of localized states with broken 

time-reversal symmetry in these regions, using various different schemes of analysis: the 

tunneling formalism, the Bogolyubov-de Gennes equation, and the generalized Ginzburg

Landau theory. We demonstrate that this kind of state is connected with the opening of a 

gap in the quasiparticle density of states which lowers the local free energy density. A direct 

consequence of time-reversal symmetry breaking can be seen in the presence of spontaneous 

supercurrents. Other features, such as the possibility of vortices with fractional flux quanta 

and unusual phase slip effects in Josephson junctions are examined as possible experimental 

indications for a time-reversal symmetry breaking state. Furthermore, quasiparticle tunnel

ing has been recently discussed and applied to probe the surface of such a superconductor 

for the violation of time-reversal symmetry. Concerning the magnetic properties surfaces 

supporting such a state can yield a paramagnetic contribution to the magnetic response of 

the superconductor. Finally, some examples of superconductors which break time-reversal 

symmetry in the bulk are discussed. Clear signals in the zero-field relaxation rate of muons 

leave little doubt that such superconducting states are realized in UPt3, U I-x Thx BeI3 and 

Sr2Ru04. 

§1. Introduction 

The surprising discovery of supereonductivity in Cu02-materials had a dramatic 

impact on the focus of research in condensed matter physics. 1) It was not only the 

high transition temperatures but also various other unusual properties of this new 

class of materials which attracted the interest of many researchers during the last 

decade. Despite of much progress, still there is the unresolved mystery: how does 

the unusual metallic state which yields superconductivity emerge out of a magnetic 

insulator upon relatively moderate doping with carriers? 2) It is a challenging problem 

for theoretical physics to explain the rich structure of the phase diagram which is 

basically common to all high-temperature superconductors. Considerable effort has 

been invested into the search for the mechanism causing superconductivity. There is 

little doubt that the superconducting state is a result of Cooper pairing common to all 

known superconductors. The pairing symmetry, however, could be unconventional 

due to strong correlation effects and mechanisms other than the standard one based 

on the electron-phonon· interaction. 

It has become one of the important issues during the last four years to determine 

the symmetry of the Cooper pairs in the hope that it may provide a hint about the 
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900 M. Sigrist 

underlying mechanism. 3), 4) Today a great deal of experimental data give convinc

ing evidence that the pair wavefunction has dx 2_ y2-wave character, most commonly 

written as 

(1·1) 

where cks denotes the electron creation operator. Nevertheless, the mechanism 

remains a matter hotly debated among various groups. Pairing with dx 2_ y2-wave 

symmetry is a property common to several theories. One such theory is based on 

the idea that the pairing interaction is mediated through the exchange of antifer

romagnetic spin fluctuations among the quasiparticles. 5), 6) Another describes the 

superconducting states as pairing resulting from the doping of a spin liquid state, 

the so-called resonating valence bond (RVB) state. 7) - 9) An alternative view pre

sented recently proposes the existence of a large continuous symmetry 80(5) which 

establishes a connection between the antiferromagnetic and the superconducting or

der parameters. 10) These competing scenarios in addition to others are still a matter 

of controversy. 

It is not the goal of this article to elaborate on these microscopic theories further. 

Rather, we would like to give here a review of some implications of d-wave pairing 

in high-temperature superconductors, in particular, in connection with the internal 

phase structure of the pair wave function (Eq. (1·1)). The phenomena best inves

tigated theoretically, as well as experimentally, in this respect are related with the 

Josephson effect, which provides a very powerful means to study the phase of the su

perconducting order parameters. 11),12) The Josephson effect turned out to be crucial 

in the experimental tests of the pairing symmetry, because it allows for the detec

tion of the sign difference in the pair wave function along the x- and y-coordinate. 

The presence of nodes in the quasiparticle excitation gap seen by number of other 

important experiments are in this respect less decisive for the identification of the 

pairing symmetry, because this feature is shared by various pairing states. 3), 4) 

This article is mainly concerned with the possibility of order parameter con

figurations which break time-reversal symmetry, for example on certain Josephson 

junctions, at surfaces or other inhomogeneities. We show that such states can lead 

to unusual magnetic properties. The possibility of time-reversal symmetry breaking 

superconducting states is not unlikely in view of the strong evidence for such states 

in the heavy Fermion superconductors UPta and U1- x ThxBe13 and the more recently 

discovered compound Sr2Ru04, as we discuss in the last section. 

§2. Order parameter symmetry 

All high-temperature superconductors consist of Cu02-planes stacked on top 

of each other and separated by layers of other elements. . The prevailing view is 

that the physics essential to the superconductivity occurs in these Cu02-planes, 

while the intermediate layers act as charge reservoirs to remove or add electrons 

to the planes. Therefore the discussion of the symmetry of the superconducting 
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Time-Reversal Symmetry Breaking States 901 

state must be based on the lattice struc

ture of the planes, which is basically 

square-like (with a slight orthorhombic 

distortion in some cases). The pairing 

states in this lattice should be classified 

according to the irreducible representa

tions of the square lattice point group 

C4v analogous to the angular momen

tum classification in a rotationally sym

metric system. 13) These representations 

include both even- (spin singlet) and 

odd-parity (spin triplet) pairing states. 

It is possible to distinguish the two 

states by some of their magnetic prop

erties. For spin singlet pairing, the spin 

susceptibility is suppressed in the super-

Fig. 1. Schematic view of the symmetry of the 

four possible pairing states on the square 

lattice. 

conducting state, while it should be only weakly affected for spin triplet states, since 

in the latter the spin degrees of freedom remain active. In measurements of the 

Knight shift Barrett and coworkers demonstrated that spin triplet pairing can be 

ruled out. 14) Thus we restrict the even-parity representations which consist of four 

one-dimensional (A lg , A2g , BIg and B 2g ) and a two-dimensional (Eg) representa

tion. We ignore the last one, because it would imply interlayer pairing and is, for 

this reason, a rather unlikely candidate. The list of the remaining pairing states 

is given in Table I, with their symmetry structures illustrated in Fig. 1. The pair 

wave functions are given in momentum space corresponding to real space pairing of 

particles on nearest or next nearest neighbor sites. A constraint for the form of the 

pair wave function is imposed by the strong Coulomb repulsion among the carriers in 

the Cu02-plane, which forbids them to occupy the same site. Therefore any onsite 

pairing amplitude has to vanish in the pair wave function, leading to the condition 

1 1 
0= (eIreL) = N L (elle~kt) = N L 'IjJ(k) , 

k k 

(2·1) 

where the sum runs over the momenta in the first Brillouin zone of the square 

lattice. The most symmetric state in the A lg representation cannot be a genuine 

(structureless) "s-wave" pairing state, but has the form of a so-called "extended s

wave" state, which has nodes in the first Brillouin zone in order to satisfy Eq. (2·1). 

There are two pair wave functions, usually called the dX L y2-wave and dxy-wave in 

BIg and B 2g , respectively. Finally, the state belonging to A2g has a more complicated 

nodal structure and might be termed "g-wave". 

All four symmetries are equally good candidates for the superconducting states in 

the Cu02-plane from group theoretical point of view. Finally, only the experiments 

or a microscopic theory can decide which among them is realized. A number of 

experiments including the above mentioned Knight shift measurement 14) indicate 

low-lying quasiparticle excitations which require nodes in the gap. 3) This is satisfied 

by all four states. To reduce the number of candidates information regarding the 
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902 M. Sigrist 

position of the nodes in momentum space would be definitely helpful. This has been 

done successfully by angle resolved photo emission spectroscopy (ARPES), which 

locates the nodes exclusively along the [HOJ-direction in Bi2Sr2CaCu20s (BSCCO) 

and YBa2Cu307 (YBCO).15) This rules out A2g and B2g , while BIg is the strongest 

candidate, while A lg is still possible. 

Table 1. Symmetry classification of the even

parity pairing states. 

r 1jJ(k) 

cos kx + cos ky 

sin kx sin ky ( cos kx - cos ky) 

cos kx - cos ky 

sinkx sin ky 

Decisive information on the symme

try of the pair wave function came fi

nally from phase sensitive probes such 

as the Josephson effect which identi

fied the symmetry as the dx 2_y2-wave 

(BIg) for all of the HTSC tested to this 

time. These probes consider the in

ternal phase structure of the pair wave 

function. It is important to know how 

the wave function transforms under all 

point symmetry elements of the crystal lattice (C4v ), as given in Table II. The order 

parameter 'f/ of the superconducting state given by 

lJt(r, T, k) = 'f/(r, T)1jJ(k) (2·2) 

is a complex function of position and temperature, which transforms according to 

Table II ('f/ = 1'f/lei 4». This information enters into the discussion of the Josephson 

effect given in the next section. 

§3. The Josephson effect 

If two superconductors (A and B) are brought into contact, so that Cooper pairs 

can tunnel between them, then the two corresponding order parameters, 'f/A and 'f/B 

(in particular their phases) are no longer independent. In standard superconductors, 

Table II. Symmetry properties of the BIg 

state. 

rT' 

-1 +1 -1 

the two phases are equal in the low

est energy configuration of the super

conductors. A finite phase difference 

leads, in general, to supercurrents flow

ing through the interface. This is the 

Josephson effect, and to lowest order in 

the coupling, the current can be expressed by 

(3·1) 

which is the Josephson current-phase relation between the superconductors A and 

B with the order parameters 'f/A and 'f/B at the interface. The critical current Ie 

= 2Iol'f/AII'f/BI depends on the coupling constant 10 as well as the temperature depen

dent order parameters. The junction energy corresponds to the lowest order coupling 

of the two superconductors, 

(3·2) 
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Time-Reversal Symmetry Breaking States 903 

This somewhat simplified expression for the current-phase relation allows us 

to understand rather easily the implication of the internal phase structure of the 

order parameter for the Josephson effect. 17), 18),22) Consider the situation in which 

we couple a standard s-wave to a dx 2_ y2-wave superconductor, as shown in Fig. 2. 

For Josephson tunneling, the orientation of the d-wave superconductor enters as 

an important aspect, because it is a direction sensitive effect. This can be seen 

immediately through the operation of certain elements of C4v on the dx L y 2-wave 

superconductor (Table II). Let us consider the behavior of the current I for a given 

angle 0 under some of these elements, where 0 is the relative angle of one of the 

main axes to the interface normal vector. The d-wave nature of the order parameter 

implies the following three relations concerning I for different, but related angles: 

I( -0) = +I(O), 

I(O ± ~) = -I(O), 

I(O ± 71') = +I(O) (3·3) 

for an arbitrary phase difference i.p = cPB - cPA. 12), 19) - 21) Thus we may consider the 

critical current as a O-dependent function I(O). The most simple form generating 

the above relations is Ie = leO cos(20). This form certainly does not reproduce the 

angular dependence of the coupling strength correctly, but merely gives the proper 

sign structure. The general form would be 

DC 

Ie(O) = L Iem cos((4m + 2)()) (3·4) 
m=O 

which, unfortunately, contains an inconveniently large number of parameters Iem 

and information unnecessary for the following discussions. Thus in the following we 

consider only the simple form of Ie(O). 

The sign of Ie( 0) can also be absorbed into an intrinsic phase shift a of the 

junction, which is a = 0 for Ie > 0 and a = 71' for Ie < O. Obviously, this definition 

is not unique, because 0 = 0 is not uniquely defined for a square lattice - the choice 

of the "x" - and "y" -main axes is arbitrary. Despite this "gauge" freedom for a, the 

notion of a "0-" and "7I'-junction" corre

sponding to the phase shift a is a useful 

concept in many respects. 

The presence of intrinsic phase 

shifts a = 71' can lead to various un

usual properties in multiply connected 

systems. 12) In particular, interference 

phenomena were used to prove the ex

istence of 71'-phase shifts in a number of 

HTSC, identifying the order parameter 
symmetry as dXL y2-wave like. 31), 23) - 28) 

It was also shown that a 71'-phase shift in 

y 

+";" .. ' c.· 
", " . 

x 

Fig. 2. Interface between an 8- and a dx 2_y2-
wave superconductor. 
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904 M. Sigrist 

a superconducting loop made of several connected grains of a d-wave superconductor 

lead to a new type of flux quantization, namely half-integer quantization in units of 

Po = hc/2e. 1l ), 12) Remarkably, this leads to a doubly degenerate lowest energy state 

of the loop with a finite spontaneous current. 12) This property is the basis of one 

of the most beautiful test experiments for the d-wave character of the HTSC. 29),30) 

We do not go into further detail here and refer the reader to a number of reviews on 
this topic. 3), 4), 31) 

§4. The intrinsic phase shifts 

The phase shift 0: determines the minimum of the junction energy 

(4·1) 

which lies at the phase difference 'P = 0:. Let us now assume a specific gauge where 

() is defined and o:(() = 0) = O. Then we may ask how 0: changes if we rotate the 

angle () from 0 to 7r /2. The definition of 0: in the previous section would imply a 

discontinuous change of 0: from 0 to 7r at () = 7r / 4. On the other hand, it might be 

possible that 0: changes continuously between the two limiting values in the vicinity 

of () = 7r / 4, as indicated in Fig. 3. This question cannot be answered within the 

above description based on lowest order coupling. A more careful analysis of the 

physics of the interface is necessary. 

Before going into details on how a continuous variation of 0: might occur, we 

would like to consider the interpretation of 0: f- 0,7r. For this purpose we first 

analyze the energy EJ,a in Eq. (4·1) for the lowest order coupling. Obviously, EJ,a('P) 

= EJ,a('P + 27rn) = E J,a+21rTn('P) for any integers m and n. If we apply the time

reversal operation, then 'r/A,B ---t 'r/'A,B' This results in 

'P ---t -'P and 0: ---t -0: (4·2) 

which is naturally connected with the reversal of the Josephson current. If 0: = 0 

or 7r then EJ,a and EJ,-a describe identical Josephson junctions. In particular, the 

lowest energy state is located at the same value of 'P which is non-degenerate, apart 

a from the addition of integer multiples of 

1t 

°t-~---~--=---~-=:~ ______ ~e 
o 1t/4 1t/2 

Fig. 3. The phase shift 0: versus the angle e. 
The phase shift can change discontinuously 

(solid line) or continuously (dashed line) 

between the two values 0 and 71' close to 

e = 71'/4. 

27r. On the other hand, for 0: f- 0, 7r 

the time-reversed junction has a differ

ent lowest energy state (-0: f- 0:+27rm). 

The degeneracy of this junction is two

fold. The junction breaks time-reversal 

symmetry, because the lowest energy 

state is not unique, but changes under 

time reversal. 

The broken time-reversal symme

try of Josephson junctions definitely ap

pears if at least one of the two con

nected superconductors breaks time-
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Time-Reversal Symmetry Breaking States 905 

reversal symmetry. In order to break time reversal symmetry, at least two order 

parameter components which must be combined with complex coefficients are neces

sary. Thus, we have to add a further component of different symmetry to the dx 2 _y2-

wave order parameter. This order parameter r/ can correspond to the extended 

s-wave (Alg) pairing state or the dxy-wave state (B2g). Time-reversal symmetry is 

broken for a combination of T/ and T/' if 

T/ + T/' --+ rJ* + T/'* 1= (T/ + T/')ei'Y (4·3) 

i.e., T/+T/' and its time-reversed T/*+T/'* are different, but degenerate states. This is the 

case if the relative phase ¢-¢/ 1= 0, rr (T/ = IT/lei'" and T/' = IT/'Ieiq,'). Two time-reversal 

symmetry breaking states were proposed in the context of HTSC, the "8 + id-wave" 

and the "d + id'-wave" state both with ¢ - ¢' = ±rr /2. The corresponding gap 

functions in the quasiparticle spectrum, 

(4·4) 

are nodeless in both cases. The experimentally observed nodes, however, ruled out 

such a time-reversal breaking states in most of the HTSC. 

For the moment we assume, however, that the superconductor B violates time 

reversal symmetry, described by the two-component order parameter (T/B, T/~). The 

intrinsic phase shift can be obtained from the study of the junction energy, 17),22) 

EJ = -Eo[(T/~T/B + T/AT/~) + (TJ~T/'s + TJAT/;)] 

= -Eo [lTJA I ITJB I COS(¢B - ¢A) + ITJAIIT/BI cos(¢'s - ¢A)] 

= - EoIT1AIV(lrIBI + Irl~1 cos x)2 + 1T/~12 sin
2 

xcos(<p - a), (4·5) 

where Eo = Iopo/2rrc, <p = ¢B - ¢A, X = ¢B - ¢~ and 

ITJ~I sin X 
tan a = -,----,~~-,---:-=--

IT/I + IT/'I cos X 
(4·6) 

Note that the phase shift satisfies a 1= 0, rr if the relative phase X 1= 0, rr, i.e. for time

reversal symmetry breaking states. 32),33) In the following sections we examine the 

situation in which time-reversal symmetry is conserved in the bulk, but is violated 

locally at the Josephson junction. 

§5. Broken time-reversal symmetry on the Josephson junction 

We consider here three ways of describing the occurrence of intermediate values 

for the phase shift a. The first view is based on multiple Cooper pair transfer through 

the Josephson junction. The second addresses the arrangement of Andreev bound 

states in the contact, and the third considers the proximity effect between the two 

superconductors. In essence all three methods express slightly different aspects of 

the same physics. For the sake of transparency we keep the technical discussion at 

a low level, while emphasizing the physical interpretation. 
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906 M. Sigrist 

5.1. Multiple Cooper pair transfer 

The current-phase relation in Eq. (3·1) includes only the lowest order contri

bution to the Josephson effect when only the transfer of single Cooper pairs are 

considered. Higher order corrections can lead to important modifications for d-wave 

superconductors, as was shown by Yip. 21), 34) To illustrate in particular the effect 

on the intrinsic phase shift 0:', we start with a simple extension of the current-phase 

relation which includes second-order contributions (Le., simultaneous tunneling of 

two pairs), 

and for the free energy 

<Po 2 
FJ(!.p) = - -2 [II cOS!.p + 12 cos !.p] + const. 

7fT 

The lowest energy state has to satisfy ~1'P='Po ex: I(!.po) = O. This leads to 

II 
cos !.po = - 212 ' sin !.po = 0 or 

which yields a minimum for 

for II > 0, 

for II < 0 

if I Id212 I > 1 and 

(5·1) 

(5·2) 

(5·3) 

(5·4) 

(5·5) 

for 12 < 0 and I Id2I2 I < 1. The intrinsic phase shift is 0:' = !.po. Obviously, the 

second solution (Eq. (5·5)) corresponds to a two-fold degenerate state which breaks 

time-reversal symmetry according to our previous definition. 

It is important now to show that conditions for the second solution in Eq. (5·5) 

can indeed be satisfied in a Josephson junction. We again look at the junctions 

geometry given in Fig. 2. On a microscopic level, multiple Cooper pair transfers 

between the two superconductors can be described using the Bogolyubov-de Gennes 

equations or doing a quasiclassical approach. 36) - 38) The interface shall be represented 

by a simple potential barrier, 'Hbarr = Z8(x). Then the current density has the form 

j(!.p) _ ~ 17</2 d'!9~ t('!9).dALlB('!9 - 0) sin!.p 

- 7fn -7</2 .B ~ [w; + .dA.dB('!9 - 0) cOS!.p + EnAEnB]t('!9) + ZEnAEnB ' 

(5·6) 

where for simplicity we restrict the angle integral over '!9 on the basal plane of the 

d-wave superconductor (the c-axis is always parallel to the interface). 21), 39) The 

function t( '!9) denotes the tunneling form factor of the junction. With the simple 

choice t('!9) = to cos2 '!9, we favor perpendicular tunneling. Furthermore, LlA denotes 
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Time-Reversal Symmetry Breaking States 907 

the s-wave gap and .1 B CO) the angle-dependent d-wave gap with .1 B CO) = .10 cos 2'!? 
The corresponding quasiparticle energies are En = [w~ + ..12]1/2 where Wn = 7r(2n 

+1)//3 is the Matsubara frequency (/3-1 = kBT). In the limit Z » 1, Eq. (5·6) 

reduces to the Ambegaokar-Baratoff form to lowest order, which is obtained from 

a tunneling Hamiltonian description. 35) In this limit it is also possible to expand 

Eq. (5·6) in LlA..1B: 

e 17r/2 1 
j(tp) = 'Frn d'!?-/3 L 

7r/2 Wn 

x (1 _ ..1A..1B('!? - O)t(iJ) costp ) + ... 
(w; + EnAEnB)t('!?) + ZEnAEnB . 

(5·7) 

The sign of the second term is negative, as is necessary for the non-trivial solution 

Eq. (5·5). This second order term also represents the feedback effect of the <p
dependence of the interface energy on the Josephson current. In other words, a 

finite current enhances the energy, which in turn tends to decrease the current for 

given phase difference r/>. This aspect of the tunneling formulation is common to the 

Josephson effect between superconductors of any symmetry and is not specific to the 

above configuration of an s- and a d-wave superconductor. 

The first term, proportional to ..12 vanishes more slowly than the second, pro

portional to .14 as the temperature approaches Tc from the superconducting side. 

Therefore the condition 1111 < -212 is satisfied for lower temperatures. For the spe

cific case 0 = 7r / 4 the first term disappears for any temperature so that a = ±7r /2 

minimizes the junction energy for all T < Tc - a feature specific to the dX Ly2-

wave superconductor. For general angles, however, there is a critical Tc below which 

the phase shift a deviates continuously from 0 or 'Fr. 21) Thus, we may consider this 

change at t as a second order phase transition of the Josephson junction, break

ing time-reversal symmetry. From this formulation we obtain a phase diagram of 

temperature versus 0, as given in Fig. 4. 

With lowering temperature, the range 

occupied by the new junction state 

around 0 = 7r / 4 grows. The location 

of the transition line depends on vari

ous parameters, such as the magnitude 

of tunneling barrier Z, the tunneling 

form factor t( iJ) and, of course, on the 

specific temperature dependence of the 

gaps LlA,B' The schematic phase dia

gram in Fig. 4 agrees on a qualitative 

level with those of all the following treat

ments. This theory does not attempt to 

describe the detailed structure of the or

der parameter in and close to the inter-

To I------.--------l 

I 
o 1114 

9 

Fig. 4. Schematic phase diagram for temper

ature versus the angle e. In the shaded 

region the phase shift Q takes intermedi

ate values so that the junction breaks time

reversal symmetry. This region grows with 

lowering temperature. 
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908 M. Sigrist 

face. In particular, there is no region where the s- and d-wave order parameters 

coexist and combine to a time-reversal symmetry breaking state, as we will find in 

the next two subsections. These features are included effectively in the interface 

parameters, Z and t(iJ), and would be obtained if we integrated out all degrees of 

freedom, apart from the order parameter phases. Therefore, the only remaining fea

ture is the current-phase relation, which leads to a non-trivial phase shift a common 

to all theories discussed in this section. 

5.2. Andreev bound states in the SNS-interface 

In this section we modify the interface slightly by inserting a normal metal layer 

between the two superconductors. The coupling between the superconductors occurs 

then via quasiparticles traveling through the metal. This problem was considered 

many years ago by Kulik,40) by Ishii 41) and by Bardeen and Johnson 42) for conven

tional superconductors. It was shown that Cooper pairs are transferred between the 

two superconductors via subgap bound states in the metal layer. These states are 

so-called Andreev bound states which are a combination of electron and Andreev

reflected hole states. 43) It is rather straightforward to understand the basic physics 

of this arrangement by analyzing the corresponding Bogolyubov-de Gennes (BdG) 

equations. 

The BdG equations describe the combination of electron- and hole-like degrees of 

freedom in connection with the superconducting state. For a general superconductor 

these equations have the non-local form 

-d*(x, x') 

where 

d(x, x') 

p(x) = ( u(x) ) 

v(x) 

(5·8) 

(5·9) 

is the spinor wave function in Nambu space with the electron-like and the hole-like 

components (for an elementary introduction we refer to Refs. 44) and 45)). The 

discussion of the wave function usually becomes simplified if we assume that only 

the degrees of freedom close to the Fermi level are important. One may then use the 

Andreev approximation, where the fast oscillating part of the wave function, propor

tional to eikw"', is separated from the long-wavelength variations. The corresponding 

local BdG equation is 
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( 

-vF(ikF · \l - kF) 

-L1*(kF' x) 

909 

(5·10) 

where <P(kF , x) is the spinor wave function with the components U kF (x) and VkF (x) 

for the momentum direction kF on the Fermi surface. Furthermore, VF denotes the 

Fermi velocity k F / m along the momentum direction k F. In this formulation we can 

essentially decouple the different momentum directions. 

In the following we consider a situation equivalent to that depicted in Fig. 2 

with a normal metal layer of thickness L between the superconductors. 46) - 48) In 

order to emphasize the essential parts of the physics of this device we consider 

several simplifications. We assume that the band structure is the same in both 

superconductors and the metal and that the Fermi surface is cylindrical allowing us 

to neglect the c-axis in our treatment. We also do not attempt to solve the problem 

self-consistently, but assume the following structure of the gap as given: 

-00 < n· x < -L/2, 

o -L/2 ~ n· x ~ +L/2, 

(5·11 ) 

Here {)kF is the angle corresponding to the momentum direction kF . We solve this 

BdG equation for wave functions which are continuous at the two boundaries between 

metal and superconductor, because we assume that the boundaries are completely 

transparent. Note that this last assumption is compatible with the previous simpli

fication for band structure. 

The solutions in the different regions are obtained straightforwardly by intro

ducing the ansatz: 

(5·12) 

for the normal metal layer and 

(5·13) 

for the two superconductors, where Sand D denote the s-wave and the d-wave 

side, respectively. Note, that with our assumption we restrict ourselves to k, K, 

« kF such that we can consider the quasiparticles and holes as traveling essen

tially along the direction kF • Therefore the upper component of <PkF (x) in Eq. (5·12) 
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910 M. Sigrist 

describes an electron moving along kF' while the lower component corresponds to 

the Andreev reflected hole in opposite direction. The exponentially decaying solution 

in the superconducting regions (Eq. (5·13) requires that the energy of the state is 

lower than both of the gap values in the two directions. We concentrate here on only 

these types of states, which yield bound states in the normal metal region, and we 

discard all states which are extended as Bogolyubov quasiparticles in either of the 

superconductors. The solutions are matched at the boundaries n . x = ±L /2. This 

yields the eigenvalue equation for the subgap bound states, 

2EL ( E ) ( E ) A ~ - arccos 1.101 - arccos ILlie
F 

1 = 21m + sgn(kF . n)tjS, (5·14) 

where Llie
F 

= Llocos(2(1?ie
F 

-0)) is the direction dependent d-wave gap function and 

tjS is the phase difference between the two superconductors with the definition 

(5·15) 

and Vn = kF · nkF/m. 

We now consider the case of L large compared with the coherence length ~o in 

both superconductors so that the number of subgap bound states is very large. The 

energies of the states close to the Fermi level are then given by the simple form 

(5·16) 

where LieF = L/lkF · nl is the traveling distance of the electron or hole in the normal 

metal. We assume here that the metal is in the clean limit, so that we need not 

concern ourselves with impurity scattering effects. 

First we analyze the lowest energy configuration of the junction. For this purpose 

we consider the free energy density contribution of the Andreev bound states, 

1+71"/2 k +00 [ {n,2V }] 
F = -kBT -71"/2 d1?ie F LL s~ln~oo In 1 + exp -(32L

ie
: {(2n + 1)7r + stjS(1?ie F )} 

(5·17) 

with the approximation that Eq. (5·16) is valid for all n, which gives good results 

for kBT « .10 • This free energy is an even 27r-periodic function of <p. 48) Therefore 

we may expand it in terms of cos( n' <p) as 

(5·18) 

where 
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Time-Reversal Symmetry Breaking States 911 

fn,(fJ. ) = kBTkF [-sgn(cos(2(fJieF - 8)))]n' 

IoF n'LieF sinh(n' LieF/~(T)) 
(5·19) 

with e(T) = liVF/27rkB T corresponding to the coherence length in the normal metal. 

Analogous to the previous section, the terms with n' > 1 are interpreted as repre

senting multiple (n'-fold) Cooper transfer, or, in this case, multiple Andreev scatter
ing. 46) - 48) 

In view of the fact that the coefficients f n' fall off exponentially fast with in

creasing n', we may discard all orders with n' > 2. We then obtain a form for F as in 

Eq. (5·2). We can then discuss the minimizing phase difference 'P which corresponds 

again to the intrinsic phase shift. For the special case () = ±7r / 4 (the nodes of the 

d-wave pair wave function point towards the interface), the coefficients with odd n' 

disappear, and the even-n' coefficients are positive. Thus, the minimal free energy is 

attained at 'P = ±7r /2 for all temperatures. This result is identical to that reached 

in the previous section. For deviating angles (), the phase shift is in general different 

and depends on temperature. It is also possible to draw the corresponding phase 

diagram, as shown in Fig. 4, based on the free energy in Eq. (5·18). 

What is the origin of this instability towards a time-reversal symmetry breaking 

state here? An important property of Eq. (5·16) is the existence of zero-energy 

states, for phase differences of ijJ = ±7r independent of the angle fJicF' These states 

generate a finite density of states at zero energy. The single quasiparticle density of 

states for small energies is defined as 

(5·20) 

For the sake of simplicity, we evaluate this expression only for the case () = 7r / 4, and 

we obtain for w > 0 

p(w) =2kF ~ L 
7rL 

n=-oo 8=±1 

[ 
Iwl 1 Re J 2 2 e({}n,8)' 

{}n,8 {}n,8 - w 

(5·21) 

where {}n,s = 1i~~F (n7r - s'P), and e is 

the step function. The factor 2 is neces

sary to account for the two spin states 

per quasiparticle level. Note that this 

form is only valid for w small compared 

with the gap size. In the form of p(w) we 

recognize the structure of discrete levels 

(Fig. 5( a)) due to the finite width of the 

normal metal layer. In addition to the 

(a) (b) 

'-..1"'-1\ l/l// "'~V/V 
-2 0 -2 0 2 

min", min", 

Fig. 5. Density of states of the Andreev levels 

in the SND interface for the angle () = 7r /4. 

a) The phase difference <p is fixed at 0 or 

7r with a peak at w = O. b) The phase dif

ference <p is 7r /4 with a pseudogap feature 

corresponding to the lowest energy state of 

the device. 
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912 M. Sigrist 

square root singularity of each level, we find a tail extending in the direction of de

creasing w. In the limit of vanishing w (below the lowest discrete level structure), 

this leads to a suppression of p(w) linear in w. For the cases <P = 0 and 71", we find 

in addition a 6-peak at w = 0 which contains the weight of the zero-energy bound 

states, 

lim l c 

dJ...Jp(w) = 2kLF 1= O. 
c---+o 0 71" 

(5·22) 

Thus the driving element for the time-reversal symmetry breaking state is the 

local Fermi surface instability, Le., the removal of the zero-energy bound states from 

the Fermi level. The zero-energy level splits into two as soon as <P 1= 0 and 71", one 

below and one above the Fermi level. This splitting which corresponds to a gap-like 

feature is largest for <p = ±71" / 2 in the case () = 71"/4 (Fig. 5 (b) ). The opening of a gap 

in the quasiparticle spectrum is the essential point in stabilizing the time reversal 

symmetry breaking state. 

We turn now to the Josephson current which can be obtained via the derivative 

of the free energy with respect to <po We can separate the current contribution for 

each k,F: 

(5·23) 

This allows us to easily decompose the current into the perpendicular component, 

J1.., passing through the junction (Josephson current) and the component parallel to 

the metal layer, JII, 48) 

s-wave N d-wave 

Fig. 6. Current structure in the SND junction. 

The Andreev bound states carry quasipar

ticle current between the s-wave and d

wave superconductors. While the current 

component from s- to d-wave superconduc

tors is canceled exactly, there is a finite 

component along the normal metal layer 

N. 

The lowest energy state is obviously 

given by J 1.. (<p = <Po) = O. The vanish

ing of J 1.. implies the overall cancelling 

of all current contributions in different 

k,p-directions projected on the normal 

vector of the normal metal layer. For 

<Po 1= 0, 71", however, the parallel cur

rent component is not zero. This fact 

is not only clear from Eq. (5·23), but it 

is also intuitively easy to understand by 

considering the current components in 

Fig. 6. The presence of a finite parallel 

current component is a clear manifesta

tion of broken time-reversal symmetry, 

since there is a degenerate state with 
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Time-Reversal Symmetry Breaking States 913 

reversed current. In our approach this spontaneous current flows uniformly in the 

metal layer and for the case (J == 7r / 4 and T = 0, we find that the total current is 
given by 48) 

(5·25) 

(Note that this expression is valid for two dimensions only, because we have neglected 

the motion of quasi particles along the c-direction.) The current III is independent of 

the width L (for any angle (J). This result is only correct in the clean limit, where the 

mean free path of the quasiparticles is much longer than L. The number of bound 

states increases proportionally to L. Simultaneously, however, the current carried 

by each bound state decreases with L --1 so that the width does not enter in the total 

current. For finite temperatures the coherence length ~(T) sets an upper bound on 

L for which III is independent of L. 48) 

5.3. Ginzburg-Landau treatment for SNS-interface 

In this section we consider the SNS-interface on the phenomenological level as

suming that the s-wave and d-wave order parameter coexist in the normal metal layer 

due to the proximity effect from the two superconductors. 49) The formulation of this 

problem based on the generalized Ginzburg-Landau theory allows us to also treat the 

spatial dependence of the order parameter simultaneously with the static magnetic 

properties, including the spontaneous currents seen in the previous subsection and 

related screening effects. 

We use the most general free energy expansion in the two order parameters TJs 

and TJd: 

(5·26) 

where fa is a free energy density, and Tcs and Tcd are the transition temperatures of TJs 

and TJd, respectively, and f's,d, /'1,2, ~s,d and t are real coefficients (~s,d corresponds to 

the zero-temperature coherence length in the superconductors). For the gradients we 

write II = V" - (27ri/Po)A, with vector potential A and flux quantum Po = hc/2e. 

The coordinates used in the free energy are those of the d-wave superconductor. This 

fact is important for the mixed gradient term. 

The free energy has in general a different form in the three regions. For simplicity 

we assume that the electronic properties are the same in all three regions apart from 

the pairing interaction which leads to s-wave and d-wave superconductivity and 

normal metal behavior, respectively. Therefore, all coefficients in F are constant, 

and only the critical temperatures depend on position. We take Tcs(d) > 0 in the 
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914 M. Sigrist 

s(d)-wave superconductor and zero otherwise. We also ignore the spatial dependence 

along the c-direction so that we can restrict our discussion to the xy-plane. By 

considering an infinite SNS-interface, the problem reduces to one dimension, and all 

spatial dependence of the order parameters and the vector potential is only along the 

interface normal vector n. These simplifications do not affect the essential physical 

properties we discuss below. 

The properties of the SNS-interface are now obtained by the variation of the 

free energy with respect to 'rJs, 'rJd and A. In analogy to the previous study we 

assume the complete transparency of the NS-interfaces, so that the order parameter 

is continuous there. In the normal metal layer and in its immediate vicinity the s

and d-wave order parameters coexist due to the proximity effect, and they have to be 

combined in some way. Most interesting for us is the relative phase between them, 

because it is again related with the Josephson effect through the interface. 

There are two terms in the free energy which determine the relative phase 'Po 

= CPs - CPd. The first one is the fourth-order term, 

"(2 ( *2 2 2 *2) 1 121 12 (2 ) 2 'rJs 'rJd + 'rJs'rJd = "(2 'rJs 'rJd cos 'Po (5·27) 

which favors 'Po = 0, 7r for "(2 < 0 and 'Po = ±7r /2 for "(2 > O. If the free energy 

is derived from a generic microscopic model allowing the coexistence of s- and d

wave order parameters, then "(2 > 0 is found in the weak coupling approach. The 

reason for this is that the state with 'Po = 0 or 7r has, in general, nodes in the gap 

(they are shifted with respect to the [llOl-direction), while for 'Po = ±7r /2 the nodes 

are removed, as mentioned above. The nodeless state is energetically favored as it 

gains more condensation energy by moving quasiparticle states away from the Fermi 

energy. Therefore we continue assuming that "(2 is positive. 

The other term involved in determining the relative phase is the second-order 

mixing gradient term, 

where we have neglected the vector potential (an is the derivative along the normal 

vector n). Obviously, this term is effective only if the order parameter varies in space, 

i.e. mainly in the region of the normal metal layer. The relative phase preferred here 

is 'Po = 0 if nx > ny and 'Po = 7r if ny > nx. It is this term which mediates the 

(lowest order) Josephson coupling between the two superconductors. This becomes 

clear if we write it in the following form neglecting any spatial variation of the order 

parameter phases: t2 cos(29)(anl'rJsl)(anl'rJdl) cos 'P (note that cos(29) = n;, - n~). 
The relative phase obtained from minimization of :F corresponds to the intrinsic 

phase shift in the Josephson effect. Thus the second-order term in Eq. (5·28) creates 

the distinction between a 0- and a 7r-junction. If the orientation angle, 9, is 7r/4 this 

term is ineffective, so that the fourth-order term in Eq. (5·27) fixes 'Po to be ±7r /2 

which is a time-reversal symmetry breaking state, as found above. Here now we have 

indeed a region around the normal metal where the superconducting state forms a 

time-reversal symmetry breaking state of the form s ± id. This aspect was not ob

vious in the previous two descriptions, since there we neglected the overlap of the 
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Time-Reversal Symmetry Breaking States 915 

order parameters due to simplifications. 

We realize here that the state with bro

ken time-reversal symmetry is stabilized 

by the removal of the nodes in the d

wave gap in the region of the overlap. 

Thus this mechanism is consistent with 

interpretation we gave in the description 

using Andreev bound states. In both 

cases a gap has opened for the quasipar

ticles in the normal metal region. 

In Fig. 7 we show the numerical re

sult of the variation of F for the case 

e = 7r / 4 for a given set of parameters. 

In the overlapping region we indeed find 

a constant relative phase 'Po. As we de

viate from e = 7r / 4, the second order 

term gains importance, and the relative 

phase is shifted away from 7r /2 until it 

S 
e 0.8 

o 
Q) 

(5 0.6 1'1." 
E 
e 0.4 ca 
c. ... 

0.2 Q) 

'E 
0 0.0 

-0.2 
-8 -4 0 4 8 

x' 

Fig. 7. Spatial dependence of the order pa

rameter for the parameters /3. = /3d = 1/2, 

e. = ed = 1, /'1 = 2/'2 = 4/5, 1, = 1, 

Ted = Te. and T = Te./2. The spatial 

axis x' = n . x is given in units of e. and 

TIl' = TI~ + iTl~' 

finally reaches 'Po = 0 or 7r for sufficiently large angle. The second-order term tends 

to dominate over the fourth-order term at higher temperature, where 'r/s and 'r/d are 

small. Thus also here the phase diagram, e versus temperature, has qualitatively 

the same form as in Fig. 4. Also here we find a second order transition line between 

the time-reversal invariant and the time-reversal breaking interface state. 

We turn now to the magnetic properties of the time-reversal symmetry breaking 

interface state. As in the previous subsection, the lowest energy state is also char

acterized by the condition that no supercurrent flows through the interface. The 

current is obtained from the free energy via the London (Maxwell) equation. The 

variation with respeCt to the vector potential leads to 

1 8F 1 
-V X (V X A) = -- = -J. 
47r 8A C 

(5·29) 

This leads to the current passing through the interface, 

(5·30) 

and the current parallel to the metal layer (within the xy-plane), 
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916 M. Sigrist 

(5·31) 

In this case the vanishing of J 1. occurs as the cancelling of the paramagnetic and 

diamagnetic parts and is, in general, not easy to analyze using Eq. (5·30).33),49),51) 

For J
11

, the paramagnetic part originating exclusively from the mixing gradient term 

creates a finite current if time-reversal symmetry is broken in the region where the 

order parameter varies in space. The mixing gradient term with its x 2 
- y2-form 

yields a similar angular structure for the currents as the Andreev bound states did 

in the previous subsection. In the case that () = 7r / 4, the currents flow in opposite 

directions for {} > 0 and < O. 

A current flowing in the metal layer generates a field with opposite sign on the 

two sides. This field is screened by diamagnetic counter currents in the supercon

ductor on a length scale }.L ~ po/J327r3C~ILI7]ILI, the London penetration depth. 

Numerical data regarding the current and field distribution are displayed in Fig. 8. 

The description in terms of Ginzburg

Landau theory has been given in var

ious ways. The idea of a proximity 

effect leading to an overlap of s-wave 

and d-wave order parameters can also 

be applied even in the absence of a nor

mal metal layer and leads essentially to 

the same results. 49) Furthermore, lat

tice defects such as dislocations can also 

generate locally time-reversal symmetry 

breaking states in a d-wave supercon

ductor. 50) In this case an additional or

der parameter component is introduced 

in the vicinity of the defect. This ef-

fect occurs also if one assumes a whole 

line of dislocations, which then behaves 

in many respects very similarly to the 

SNS-interface, as shown in Ref. 51). 

The three ways of describing the in

terface between an s-wave and ad-wave 

superconductor close to the critical an

gle () = 7r / 4 create a consistent and 

complementary picture. The presence of 

several order parameters makes it possi-

0.01 0 r-""--........ -..,-.,.......,r--~...-----. 

0.005 

0.000 r-----

-0.005 

-0.010 L...-__ .&....-_..I-........,. __ ",-,_--.J 

-8 -4 o 
X' 

4 8 

Fig. 8. Current and magnetic field distribu

tion at the SND interface. The parameters 

are the same as in Fig. 7. In addition we 

fix tPo/2.j27rHc~; = 4, which corresponds 

to the London penetration depth in units 

of ~s. 
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Time-Reversal Symmetry Breaking States 917 

ble to generate a time-reversal symmetry breaking state. In the second and third 

model we have seen that the driving mechanism for such a state is the opening of 

a gap in the quasiparticle spectrum. For this purpose it is necessary that there are 

low lying quasiparticle excitations. The d-wave provides such states because of its 

phase structure which leads to nodes in the gap. Therefore we do not expect that a 

conventional s-wave superconductor would generate a similar effect. 

§6. Consequences of broken time-reversal symmetry 

on a Josephson junction 

Various physical phenomena appear in connection with the time-reversal break

ing state on the Josephson junction or SNS-interface. The presence of spontaneous 

currents and magnetic fields is one of the most direct manifestations of such a state. 

From our previous discussion, however, it is clear that the resulting magnetization 

does not lead to a net magnetic moment of the system, and the field distribution 

actually extends only over about the London penetration depth. Hence, only a very 

sensitive probe with high spatial resolution would be able to detect these fields. Fur

thermore, it occupies only a small fraction of the whole sample. Other consequences 

of broken time-reversal symmetry could, therefore, also be more easily accessible 

for experimental verification. We discuss here two effects which seem to be most 

promising. The first is the possibility of fractional flux quanta, 32),33),49),52),53) and 

the second is connected with phase slips 51) between the two degenerate junction 

states. 

6.1. Fractional flux quanta 

We consider a long homogeneous Josephson junction. The phase difference tp 

is, in general, not uniform, but can vary over a certain length scale )"J (Josephson 

penetration depth), the screening length for external magnetic fields in the junction. 

A Josephson junction can also support flux lines (vortices) which contain fluxes 

tP = ntPo like standard vortices. These vortices are most conveniently described 

through the spatial variation of tp along the junction. For the following we consider 

a junction which lies in the x-z-plane with the direction of the magnetic field along 

the z-axis and the variation of tp exclusively along x. A varying phase difference tp 

corresponds to the presence of a local magnetic field bz , 

(6·1) 

with d as the width of the junction. 16) Note that bz is the field averaged in the 

direction perpendicular to the junction such that (2)..L + d)bz is the local magnetic 

flux density. Using Maxwell's equations and the Josephson current-phase relation, 

8bz /8x = 47rJ/c = (47r/c)Jc sinlj>, we obtain the sine-Gordon equation, 

(6·2) 
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918 M. Sigrist 

where AJ = ..jrffio/8rr2Jc(2AL + d). This equation gives a proper description of 

the junction properties in the limit AL « AJ. 16) Obviously, the constant solutions 

'P = 2rrn are stable. 

A vortex corresponds to a kink (width '" AJ) of 'P which changes between two 

constants 'P(xd = 2rrn1 and 'P(X2) = 2rrn2, where X1,2 are points far from the kink 

position. The enclosed flux can be calculated immediately by 

(6·3) 

The quantization is a consequence of the existence of a discrete set of stable constant

'P solutions and the magnitude of their separation. A modification of the quantiza

tion is expect€d as soon as other stable constant values for 'P appear, such as 'P 

= rr(2n + 1), i.e., a 7I"-junction, or 'P = X + 271"n with X arbitrary. We consider first 

an infinite junction which is a O-junction for x < 0 and a 7I"-junction for x > O. In 

this case the behavior of'P is obtained from Eq. (6·2) if we replace the right-hand 

side by A:J2 sin('P - 'Po) with 'Po(x) = rr8(x). Under this condition the phase 'P is 

forced to change around x = 0 to connect the stable solutions of'P (= 0 and 71"). The 

resulting kink of 'P yields a flux 

Po ( 1) P = 271" ['P(+oo) - 'P(-oo)] = Po n + 2 ' (6·4) 

i.e., half-integer quantization, as mentioned above. 11), 12) 

In the case of a time-reversal symmetry breaking state at the Josephson junction 

we can consider the following case of domain formation due to the two-fold degen

eracy: 'Po = xsign(x). As in the case discussed above, the phase 'P must form a kink 

near x = 0 in order to match the conditions on both sides. Obviously, there appears 

a new flux quantization 

(6·5) 

which is shifted by a junction-specific value and is neither integer nor half-inte

ger. 32), 33), 54) This type of "fractional" quantization occurs also at locations where 

the properties of the junctions are modified abruptly, for example, if the orientation 

of the interface changes (Le., at a corner of an interface). Then also the intrinsic 

phase shift should assume a different value, and a fractional vortex should occur as 

well. 

In the following we give a simple argument for the fact that the observation 

of anomalous flux quantization (Eq. (6·5)) is uniquely connected with the (at least 

local) violation of time-reversal symmetry of the superconducting state. 53) Let us 

assume that a vortex with flux P is located somewhere on the junction. If we apply 

the time-reversal operation to this system, then the flux of the vortex changes sign: 

P --+ -Po These two flux values can only differ by an integer multiple of Po if 
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Time-Reversal Symmetry Breaking States 919 

the underlying superconducting state is not altered by this operation (apart from 

inverting the phase winding): i.e., 

<P = -<P + <Pon. (6·6) 

This leads to cP = <pon/2, and only integer and half-integer flux values are allowed· 

to appear. On the other hand, if the superconducting state changes under the time

reversal operation (Le., it violates time-reversal symmetry), then no constraint is 

imposed on the difference between cP and -<P, and any value of <P is possible. 

The measurement of flux quantization of this kind requires a long homogeneous 

junction, exceeding AJ by many times, to confine the flux completely or to separate 

different flux lines sufficiently. If different flux lines overlap, then no clear evalua

tion of fluxes associated with each of them is possible. The observation of flux lines 

with fractional flux was reported some time ago on grain boundaries of a YBCO 

film. The sample was a c-axis textured film and had a triangular inclusion with 

a 45° misalignment of the crystal axes relative to the surrounding. Some edges of 

the triangle provided nearly optimal conditions for the occurrence of locally broken 

time-reversal symmetry according to the above discussion. The appearance of frac

tional fluxes on the corners and occasionally on the edges, observed by a scanning 

SQUID microscope, was indeed entirely consistent with the ideas presented above. 55) 

Nevertheless, these data have to be considered with caution, since the grain bound

aries are by no means ideally homogeneous. Indeed, other experiments on so-called 

asymmetric 45° grain boundaries show considerable inhomogeneity which leads to 

remarkable fluctuations of cp along the interface and, consequently, to an observable 

random flux pattern. 56) Therefore it is unclear at present whether the interpretation 

of the above experiment in terms of broken time-reversal symmetry is appropriate. 

6.2. Modified phase slip behavior 

An effect which does not require long inhomogeneous junctions is related to 

a kink of cp in time. This effect, known as phase slip, implies that for standard 

Josephson junctions the phase difference cp "jumps" by a value 271" from one stable 

state to another. This corresponds to the passage of one standard vortex through 

the junction. Note, that a "7I"-junction" behaves in this respect in the same way. 

The situation can be altered, however, when the junction violates time-reversal 

symmetry, because the number of stable states is doubled (additional two-fold de

generacy). Therefore a transition between stable junction states now includes also 

differences smaller than 271". The transferred flux correspondingly has a fractional 

value in the previously defined sense. Let us assume again the simplified energy form 

given in Eq. (5·2), which shows a doubling of the minima in case that I Id2I2 I < 1 

and 12 < O. A sufficiently large current applied in the proper direction can lead to 

a transition between two neighboring minima. During this process, cp varies in time 

and yields a voltage V(t) = (<po/271")acp/at. The voltage signal integrated over time 

is related to the magnitude of the transferred flux and the total change of cp, 

dtV(t) = ~ dt- = ~X 
/

+00 <P /+00 acp cP 

-00 271" -00 at 71" 
(6·7) 
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920 M. Sigrist 

and is essentially the fractional flux introduced in Eq. (6·5).51) 

Another related aspect, more easily probed experimentally, is the fact that en

ergy is absorbed by this process, since the flow of the current is accompanied by 

the creation of a voltage. The barrier between two degenerate minima in the time

reversal symmetry breaking state is particularly low, close to the transition to this 

state. Therefore near this transition it is possible to induce oscillating phase slips 

between two minima by microwave radiation. The transition would be accompanied 

by the enhancement of the microwave absorption in the junction. 57) 

Beyond these two effects, also the arrangement of energy levels of the quasiparti

cle bound states could indicate the violation of time-reversal symmetry. We address 

this issue briefly in connection with surface states, where actual experimental results 

seem to indicate the presence of a surface state with broken time-reversal symmetry. 

§7. Surface states with broken time-reversal symmetry 

This section is devoted to the discussion of the region close to the surface of a 

dX 2_ y2-wave superconductor where states with broken time-reversal symmetry can 

also appear. We will find obvious parallels to the situation at the interface, but 

also several distinguishing aspects. While at an interface between two superconduc

tors there naturally exist two order parameters (one of each side) which can form 

together the time-reversal symmetry breaking state,49) only one order parameter 

component is a priori available close to the surface. Pair breaking effects can destroy 

the d
X
2_y2-wave order parameter at the surface, however, and open the way for an or

der parameter of different symmetry which is suppressed in the bulk, e.g., an s-wave 

or dxy-wave. Then this new pairing component can form a complex combination 

together with the dominant dx 2 _y2-WaVe component. 32), 33), 58) - 60) Analogous to the 

interface, such a state is accompanied by spontaneous currents at the surface. In 

the following we discuss this state phenomenologically, based on a GL-theory, and 

microscopically, using BdG equations. 

7.1. The Ginzburg-Landau formulation 

The conditions for the appearance of a time reversal symmetry breaking state 

at the surface can be examined most easily using the generalized GL-theory for 

a dX2_y2-wave and an s-wave order parameter, as introduced earlier (Eq. (5·26)). 

The superconductor is assumed to fill a half-space with a surface facing the [110j
direction. This is the direction where maximal pair breaking effects occur for a 

dxL y2-wave superconductor with a specularly reflecting surface. We assume that 

Ted> Tes > O. Otherwise, all conditions presented in §5 apply here as well. 

The pair breaking effects can be included in the boundary conditions which take 

the form 

(7·1) 

with n = (1,1,0). Using rJl' = IrJl'leicj>" we can separate the real and imaginary part 
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Time-Reversal Symmetry Breaking States 921 

(7·2) 

The first equation describes the effect of surface scattering on the order parameter, 

while the second one represents the natural condition that no current flows perpen

dicular through the surface in or out of the superconductor. The parameter bJ-t is 

the extrapolation length of the order parameter (see in Ref. 22)). For simplicity we 

assume bd = 0 and bs = 00, which implies that l17dl = 0 at the surface and 17s is not 

unaffected. Ignoring the s-wave component for the moment and solving the problem 

for 17d we find, 

(x.n) 
l17dl(x, n) = 170tanh T ' (7·3) 

with 175(T) = (1- T/Tcd )/2(3d and ~J-t(T) = ~J-t/J1- T/Tcd . 

This solution can be unstable against the admixture of the s-wave order param

eter. In order to examine this possibility we consider the GL-equation linearized in 

17s (17s « 170): 

This equation has the form of a Schrc)dinger equation with a potential well defined 

by l17d( n . x) 12 and the boundary conditions. The eigenfunctions corresponding to 

the eigenvalue of highest temperature T describes the instability. It is easy to see 

that for "12 > 0 (as previously) we have to fix ¢s - ¢d = ±1r /2 . This solution is given 

by 17s ex: cosh -( (n . x / ~d)' with the exponent ( = ~dds. The instability temperature 

T* is given by 

T* Tcs 1 + S 

Tcd - TCd1+STcs' 

Tcd 

(7·5) 

where S = ~ [1 - 1 + 2Cr~:12) tl]. Note that T* is smaller than Tcs because 

S < O. It is, however, larger than the bulk transition temperature T; (defined in the 

same way by Eq. (7·5), but with S = -("(1 - 'Y2)/2(3d) to the s + id-wave state. 

The result of this discussion is that for temperatures below T*, an s-wave com

ponent appears close to the surface. This component decays towards the bulk and 

forms a time-reversal symmetry breaking state with an s + id-wave form close to the 

surface. There are two basic conditions that this kind of state can appear: (1) the 

bare s-wave transition temperature must be positive, Tcs > 0; (2) the coefficients "11 

and "12 satisfy "11 > "12 > O. The meaning of the latter condition is that the presence 
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922 M. Sigrist 

of the d-wave state suppresses the s-wave state (T; < Tes). The suppression of the 

d-wave component at the surface allows the s-wave component to appear. The con

ditions to generate a time-reversal symmetry breaking state are considerably more 

restrictive here than in the case of the interface. 

Using Eqs. (5·31) and (5·30) we find also here a spontaneous supercurrent flow

ing parallel to the surface. The decay of the s-wave component and screening effects 

lead to the vanishing of this current in the bulk region. 33
) Unlike in the case of the 

interface, the net magnetization need not vanish here, and we may expect macro

scopically observable magnetic phenomena in principle. 52) 

7.2. The role of Andreev bound states at the surface 

In the region of the width rv ~d close to the surface where the d-wave order 

parameter (gap) is reduced, quasiparticle states different from those in the bulk 

occur. For subgap states these consist of Andreev bound states similar to those 

analyzed in §5. We consider a specularly reflecting surface with [llOj-orientation. 

An Andreev bound state is created when the electron (hole) follows a trajectory 

which for it is reflected once at the surface (Fig. 9). Due to the symmetry, the 

Andreev reflections connect superconducting gaps with a phase difference 71", since 

at one end of the trajectory the positive and on the other the negative lobe of the 

dX2_y2-wave function is involved in the reflection process. The energies of these states 

are calculated practically in the same way as shown in §5. We have 

- - ( 1) aEsin()-arccos(E)= n+"2 71", (7·6) 

where a is of order 1, jj; = E/I.1d (())1 = E/I.1o sin 2()1, .1d (()) is the angle-dependent 

d-wave gap, and () is the angle with respect to the normal vector in the x-y-plane. 

It is easy to see that irrespective of the parameters we always find a solution with 

E = 0, i.e., we have the zero-energy bound state. This was first noticed by Hu 61),62) 

and later discussed in detail by several groups. 63) - 70) Since essentially any angle () 

yields such a zero-energy state, the local quasiparticle density of states at the surface 

has a peak at E = 0, similar to the situation for the SNS-interface (Fig. 5).71) 

The admixture of an s-wave order parameter in the surface region with a relative 

phase <Ps - <Pd = ±71" /2 leads to a new phase structure encountered for the Andreev

reflected quasiparticles. This enters Eq. (7·6) basically through an additional phase 

shift term on the right-hand side ±cp((), E) =I- 0 and is given by the spatial dependence 

of l17sl and l17dl. As a result, the degenerate zero-energy states split into two separate 

states, one above and one below the Fermi level. In this way the quasiparticle 

contribution to the free energy can be lowered, as seen in §5.2. Thus the removal 

of the large density of states is also here an important factor in the creation of a 

time-reversal symmetry breaking state. 

The splitting of the zero-energy peak also leads to observable effects in quasi

particle tunneling. The surface density of states is observable in normal metal

superconductor (NS)-quasiparticle tunneling spectra provided that the interface be

tween the metal and superconductor is sufficiently non-transparent. 72
) Then the 

bound states appear as resonances in the current-voltage (IV) characteristics. Thus 
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Time-Reversal Symmetry Breaking States 923 

it was suggested that the zero-energy 

bound state leads to a so-called zero

bias anomaly in the tunneling spectrum. 

However, it was recently discussed by 

Matsumoto and Shiba 58) - 60) and later 

by Fogelstrom and coworkers 73) that 

the occurrence of time-reversal symme

try breaking including the splitting of 

the zero-energy level should also lead to 

an observable modification in the spec

trum. 74
) Indeed experiments on [110J

oriented NS devices with YBCO by Cov

ington and coworkers showed that the 

zero-bias anomaly splits into a double 

peak below 4 K. 75) This is a strong in

dication for the existence of a state with 

broken time-reversal symmetry at the 

surface. 

It is also easy to recognize that the 

spontaneous currents are also carried by 

d-wave SC 

Fig. 9. Schematic view of Andreev reflection 

in the surface region. The drawn trajecto

ries connect gap regions of opposite sign 

which lead to a phase shift 7r and zero

energy bound states. 

the quasiparticles, similar to the SNS case. The splitting of the zero-energy level 

leads to an imbalance in the occupation between electron states with momentum 

component parallel and antiparallel to (1, -1 ,0). Thus, there is a finite current along 

the surface whose direction depends on which of the two degenerate time reversal 

symmetry breaking states is realized. 52),60) 

7.3. Magnetic response of the surface state 

Let us now consider the magnetic properties of the surface. The fact that there 

is a net magnetization due to spontaneous currents gives rise to the possibility of 

coupling to it via an external magnetic field. This leads to an enhancement of the 

paramagnetic contribution above T*, as we will show in the following. This type of 

effect was recently studied by Higashitani using a quasiclassical formulation. 76) We 

briefly introduce the basic idea here. 

The supercurrent includes two components: 

(7·7) 

Here, n denotes the electron density, Vs the superfluid velocity, and J QP the quasi

particle contribution to the current. An external field parallel to the c-axis induces 

screening currents v s = 2!n ('\7 cPd - !: A) which flow parallel to the surface (paral

lel or antiparallel to nil = (1, -1,0)) and depends on the normal coordinate n . x, 

Vs = nllvs(n· x). The current J QP is now given by 

(7·8) 
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924 M. Sigrist 

where N(w, rJicF, n· x) is the angle-resolved local density of states. The argument of 

the Fermi distribution function f contains the shift of kinetic energy u( iJ;.F' n . x) 

= vs(n . x)1ikF . nil due to screening currents. In analogy to Eq. (5·21) the local 

density of states is given by 

N(w, rJ icF , n· x) = IkF . nl L 8(w - En(rJicF))Rn(n· x), (7·9) 
n 

where Rn is the square of the quasiparticle wave function and is normalized as 

fooo dxRn(x) = 1. Note that this argument applies only if the spatial dependences 

occur on much longer length scales than the inverse Fermi wave vector. 

For conventional superconductors, the lowest quasiparticle level is close to the 

gap, so that the quasiparticle current is very small compared to the screening cur

rents. In our case, however, we have a zero-energy state, 

N(w, rJicF, n· x) = IkF . nI8(w)Ro(n· x). 

Inserting this into Eq. (7·8), we find immediately that 

2e vFkF 
J QP = r; 6k

B
T(v s Ro )(n. x) 

(7·10) 

(7·11) 

is finite and contributes in a paramagnetic way, leading to an effective enhancement 

of the penetrating field. 

For temperatures below T*, however, the local angle resolved density of states 

may be approximated by 

Iwl -
N(w, rJic ,n' x) = IkF . nl.j O(IQ('!9ic )1- w)Ro('!9ic ,n· x), 

F Q('!9ic
F

) Q(rJic
F

)2 _ w2 F F 

(7·12) 

where Q is the energy level of the Andreev bound state with momentum direc

tion '!9icF' and flo is the square of the corresponding wave function (analogous to 

Eq. (5·21)). It is easy to see that even in the absence of screening currents there 

is a finite (spontaneous) quasiparticle current, as discussed above. Furthermore, a 

divergent linear response occurs at the transition point to the time-reversal symme

try breaking state, indicating the appearance of spontaneous surface magnetization. 

(For a GL-formulation of this type of effect see also Ref. 77).) 

Various other structures have been studied where spontaneously broken time

reversal symmetry can occur. One example is the twin boundary in an orthorhom

bically distorted originally tetragonal system. 7S) - SO) Another is in the vicinity of 

crystal lattice dislocations. 50), 51) In both cases a state with spontaneously broken 

time-reversal can occur locally, giving rise to various types of phenomena discussed 

above. We do not go into further detail on these types of structure, and, instead 

refer the reader to the literature. 

§8. Globally broken time-reversal symmetry 

While in high-temperature superconductors time-reversal symmetry breaking is 

probably restricted to specific regions in the samples, there are other unconventional 
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Time-Reversal Symmetry Breaking States 925 

superconductors where time reversal symmetry is very likely violated throughout 

the whole material. The two best known examples are the heavy fermion supercon

ductors UPt3 and U1-xThxBe13 (0.017 < x < 0.045).81) In these compounds the 

specific heat indicates two consecutive phase transitions which are both attributed 

to superconductivity involving pairing states of different symmetry. Most theories 

of this double transition are based on multi-dimensional order parameters (771, TJ2' ... ) 
whose components have different transition temperatures. 82), 83) At the onset of su

perconductivity, the component (say 'lJd with the highest Tc becomes finite, and at 

the second transition one or more other components (say TJ2) are admixed to form a 

complex order parameter combination, e.g. TJ = (ITJ11, ±i1TJ21) (reviews on this prob

lem are given for example in Refs. 22) and 84)). A further example is the recently 

discovered superconductor Sr2Ru0485) which has a single superconducting phase 

transition leading to an apparently time-reversal symmetry breaking state. 86) 

Let us now briefly discuss the main effect that allows us to detect broken time

reversal symmetry in these compounds, the magnetic properties. 22),83) We have seen 

previously that locally time-reversal symmetry breaking states can generate sponta

neous currents and field distributions. In order to generate spontaneous currents in a 

bulk time-reversal symmetry breaking superconductor inhomogeneities of the order 

parameter are necessary. Inhomogeneities occur, for example, close to impurities, 

lattice defects due to pair breaking or around domain walls, Usually, the gener

ated fields do not lead to net magnetic moments, and only high resolution probes 

are sufficient for their observation. 52),87),88) A suitable tool of this kind is provided 

by spin polarized muons. 89), 90) When they are injected into a material, they are 

trapped quickly at crystallographically symmetric locations in the lattice, and their 

spins precess in the local static magnetic field. This field has various origins and 

has, in general, random values and directions if there is no magnetic order. The field 

distribution can then have Gaussian form, 

V(H) = __ l_exp (_ H2) , 
v21fa 2a 

(8·1) 

where a is the width. This distribution leads to the time dependence of the muon 

spin polarization along the initial direction 

(8·2) 

where "(p, is gyromagnetic ratio of the muon. 91) The width of the distribution is the 

measure of the internal field. In the time-reversal symmetry breaking superconduct

ing state, an additional contribution comes from the field distribution around each 

inhomogeneity. The contribution from the superconductor for a state of the form TJ 

= (ITJ11,iITJ21) is oaKT <X ITJ1(T)IITJ2(T)I. We find different characteristic temperature 

dependences in the above discussed examples. For UPt3
92) and U I-x ThxBe13 93) we 

find below the second transition at T~ the approximate form 

(8·3) 
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926 M. Sigrist 

which is dominated by the second order parameter "12, while 'f/i is already finite and 

has a weaker temperature dependence. 22), 83) On the other hand, if the violation 

of time-reversal symmetry occurs at the onset of superconductivity, as is probably 

the case in Sr2Ru04, both order parameter components have the same temperature 

dependence and lead to 

(8·4) 

close to Te. 86) These types of behavior are roughly consistent with the experimental 

data. In particular, it is an apparent fact that the internal magnetization is enhanced 

in connection with superconducting phase transitions in all of these materials. 

Other probes similar to the previously discussed ones may be also useful here. 

The low temperatures required here (T < 1 K) represent one drawback for these 

experiments as well as material problems in some cases. There is, in principle, no 

obstacle to perform more direct test experiments for bulk superconductivity with 

broken time-reversal symmetry. 

§9. Conclusion 

The last few years have brought various exciting developments in the field of un

conventional superconductivity. The fact that unconventional superconductors can 

violate time-reversal symmetry (like magnets) is one of the most intriguing aspects. 

At first sight such states appear artificial in the symmetry classification of possible 

phases. It turns out, however, that such states are favorable in order to gain conden

sation energy. Thus, every superconducting state with nodes in the excitation gap is 

in some way susceptible to a phase change which breaks time-reversal symmetry in 

order to remove at least some of the nodes. Most weak coupling theories including 

multi-dimensional order parameters predict actually broken time-reversal symme

try. In high-temperature superconductors time reversal symmetry is preserved in 

the bulk. The main reason for this is that the order parameter is non-degenerate 

and would need an additional order parameter component of different symmetry, 

like an s-wave or dxy-wave. Therefore time-reversal symmetry can only be broken 

if by accident one of these other components can also be stabilized. However, it 

looks as if these d-wave superconductors take every chance to violate time-reversal 

symmetry, for example at Josephson junctions, interfaces, surfaces, twin boundaries 

and so on, where the d-wave order parameter is vulnerable. It is clear that an s-wave 

superconductors which does not have nodes in the gap and is largely unaffected by 

disorder should not yield any sign of broken time reversal symmetry. An interest

ing phenomenon occurs in connection with the quasiparticle states at the interface 

or surface where they generate an enhanced density of states at the Fermi surface. 

Here, the occurrence of the time reversal symmetry breaking appears as a local Fermi 

surface instability. A priori there is no reason that the system should not be able 

to introduce alternative surface states such as inhomogeneous spin or charge density 

waves in order to remove the large number of states at zero energy.94) This is cer

tainly a problem which has to be studied more carefully. The examples examined in 

the last section, UPt3 , U i-x ThxBe13 and Sr2Ru04, show also that bulk time-reversal 
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symmetry breaking is rather common in unconventional superconductors. Thus we 

may expect that further unconventional superconductors very likely exhibit some 

of the above-mentioned phenomena, in addition to various other effects which are 

possible in systems displaying bulk time-reversal symmetry violation. 
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