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Abstract. Building on the work by Fainekos and Pappas and the one by Donzé

and Maler, we introduce AvSTL, an extension of metric interval temporal logic

by averaged temporal operators. Its expressivity in capturing both space and time

robustness helps solving falsification problems (searching for a critical path in

hybrid system models); it does so by communicating a designer’s intention more

faithfully to the stochastic optimization engine employed in a falsification solver.

We also introduce a sliding window-like algorithm that keeps the cost of comput-

ing truth/robustness values tractable.

1 Introduction

Model-Based Development of Hybrid Systems The demand for quality assurance of

cyber-physical systems (CPS) is ever-rising, now that computer-controlled artifacts—

cars, aircrafts, and so on—serve diverse safety-critical tasks everywhere in our daily

lives. In the industry practice of CPS design, deployment of model-based development

(MBD) has become a norm. In MBD, (physical and costly) testing workbenches are re-

placed by (virtual and cheap) mathematical models; and this reduces by a great deal the

cost of running a development cycle—design, implementation, evaluation, and redesign.

One of the distinctive features of CPS is that they are hybrid systems and combine

discrete and continuous dynamics. For MBD of such systems the software Simulink has

emerged as an industry standard. In Simulink a designer models a system using block

diagrams—a formalism strongly influenced by control theory—and runs simulation,

that is, numerical solution of the system’s dynamics.

Falsification The models of most real-world hybrid systems are believed to be beyond

the reach of formal verification. While this is certainly the case with systems as big as a

whole car, a single component of it (like automatic transmission or an engine controller)

overwhelms the scalability of the state-of-art formal verification techniques, too.

What is worse, hybrid system models tend to have black-box components. An ex-

ample is fuel combustion in an engine. Such chemical reactions are not easy to model

with ODEs, and are therefore commonly represented in a Simulink model by a look-up

table—a big table of values obtained by physical measurements [17, 18]. The lack of

structure in a look-up table poses a challenge to formal verification: each entry of the

table calls for separate treatment; and this easily leads to state-space explosion.

Under such circumstances, falsification by stochastic optimization has proved to be

a viable approach to quality assurance [6,17,18]. The problem is formulated as follows:
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The falsification problem

Given: a model M (a function from an input signal

to an output signal), and

a specification ϕ (a temporal formula),

Answer: a critical path, that is, an input signal σin such

that the output M(σin) does not satisfy ϕ

Unlike testing or monitoring—where input σin is given and we check if M(σin) |= ϕ—

a falsification solver employs stochastic optimization techniques (like the Monte-Carlo

ones) and iteratively searches for a falsifying input signal σin.

Falsification is a versatile tool in MBD of hybrid systems. It is capable of searching

for counterexamples, hence revealing potential faults in the design. One can also take, as

a specificationϕ, the negation ¬ψ of a desirable propertyψ; then successful falsification

amounts to synthesis of an input signal that satisfies ψ. Stochastic optimization used in

falsification typically does not rely on the internal structure of models, therefore the

methodology is suited for models with black-box components. Falsification is fairly

scalable, making it a realistic option in the industrial MBD scenarios; see e.g. [17, 18].

The current work aims at enhancing falsification solvers, notable among which are

S-TaLiRo [6] and BREACH [10]. An obvious way to do so is via improvement of

stochastic optimization; see e.g. [23, 25]. Here we take a different, logical approach.

Robustness in Metric Temporal Logics Let us turn to a formalism in which a specifi-

cation ϕ is expressed. Metric interval temporal logic (MITL) [5], and its adaptation

signal temporal logic (STL) [22], are standard temporal logics for (continuous-time)

signals. However their conventional semantics—where satisfaction is Boolean—is not

suited for falsification by stochastic optimization. This is because a formula ϕ, no mat-

ter if it is robustly satisfied and barely satisfied, yields the same truth value (“true”),

making it not amenable to hill climb-style optimization.

It is the introduction of robust semantics of MITL [15] that set off the idea of falsi-

fication by optimization. In robust semantics, a signal σ and a formula ϕ are assigned a

continuous truth value Jσ, ϕK ∈ R that designates how robustly the formula is satisfied.

Such “robustness values” constitute a sound basis for stochastic optimization.
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The original robust semantics in [15] is concerned

with space robustness: for example, the truth values of

3[0,10](v ≥ 80) (“the velocity reaches 80 km/h within 10

sec.”) are 20 and 0, for the green and red signals on the

right. Therefore space robustness is a “vertical margin” be-

tween a signal and a specification. An efficient algorithm is

proposed in [11] for computing this notion of robustness.

The notion of robustness is extended in [12] to take

time robustness also into account. Consider the same spec-

ification 3[0,10](v ≥ 80) against the green and red signals

on the right. The green one is more robust since it reaches 80 km/h much earlier than

the deadline (10 sec.), while the red one barely makes the deadline.

The current work continues this line of work, with the slogan that expressivity of

temporal logic should help falsification. With more expressivity, a designer’s concerns
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that were previously ignored (much like time robustness was ignored in [15]) come to

be reflected in the continuous truth value. The latter will in turn help stochastic opti-

mization by giving additional “hints.” We however are in a trade-off situation: the more

expressive a logic is, the more expensive computation of truth values is in general.

Contributions We aim at: a good balance in the last trade-off between expressivity and

computational cost; and thereby enhancing falsification solvers by giving more “hints”

to stochastic optimization procedures. Our technical contributions are threefold.

The logic AvSTL. We introduce averaged STL (AvSTL); it is an extension of

STL [22] by so-called averaged temporal operators like UI and 3I . The (continuous)

truth values of the new operators are defined by the average of truth values in a suitable

interval. We show that this simple extension of STL successfully combines space and

time robustness in [12,15]; and that its expressivity covers many common specifications

(expeditiousness, persistence, deadline, etc.) encountered in the context of CPS.

An algorithm for computing AvSTL robustness. It is natural to expect that non-

local temporal operators—like UI , 3I and their averaged variants—incur a big perfor-

mance penalty in computing truth values. For STL (without averaged modalities) an

efficient algorithm is proposed in [11]; it employs the idea of the sliding window min-

imum algorithm [21] and achieves complexity that is linear with respect to the size of

an input signal (measured by the number of timestamps).

We show that, under mild and realistic assumptions, the same idea as in [11] can be

successfully employed to compute AvSTL truth values with linear complexity.

Enhancing S-TaLiRo: implementation and experiments. We use S-TaLiRo and

demonstrate that our logic AvSTL indeed achieves a reasonable balance between ex-

pressivity and computational cost. We present our prototype implementation: it takes

S-TaLiRo and lets the above algorithm (called the AvSTL evaluator) replace TaLiRo,

S-TaLiRo’s original engine for computing STL truth values (see Fig. 7 in §4).

For its evaluation, we pick some benchmark models M and STL specifications ϕ—

they are mostly automotive examples from [17]—and compare performance between:

– our prototype, run for M and the original STL specification ϕ,3 and

– our prototype, run for M and a refinement of ϕ given as an AvSTL formula.

For benchmarks of a certain class we observe substantial performance improvement:

sometimes the latter is several times faster; and in some benchmarks we even see the

latter succeed in falsification while the former fails to do so.

Related Work Besides those which are discussed in the above and the below, a closely

related work is [2] (its abstract appeared in [3]). There a notion of conformance between

two models M1, M2 is defined; and it is much like (an arity-2 variation of) combination

of space and time robustness. Its use in falsification and comparison with the current

approach is future work.

3 This is the control case of our experiments. We do not use S-TaLiRo itself, because we would

like to disregard the potential disadvantage caused by the communication between the AvSTL

evaluator (the additional component) and S-TaLiRo. We note that the AvSTL evaluator is

capable of evaluating STL formulas, too.
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Organization of the Paper In §2 we introduce the logic AvSTL: its syntax, semantics,

some basic properties and examples of temporal specifications expressible in it. In §3,

building on [11], an algorithm for computing AvSTL truth values is introduced and its

complexity is studied. The algorithm is implemented and used to enhance a falsification

solver S-TaLiRo, in §4, where experiment results are presented and discussed.

We used colors in some figures for clarity. Consult the electronic edition in case the

colors are unavailable. Most of the proofs are deferred to the appendix.

Acknowledgments Thanks are due to Georgios Fainekos, Tomoyuki Kaga, Toshiki

Kataoka, Hisashi Miyashita, Kohei Suenaga and Tomoya Yamaguchi for helpful dis-

cussions. The authors are supported by Grant-in-Aid for Young Scientists (A) No.

24680001, JSPS; and T.A. is supported by Grant-in-Aid for JSPS Fellows.

2 Averaged Signal Temporal Logic AvSTL

We introduce averaged STL (AvSTL). It is essentially an extension of MITL [5] and

STL [22] with so-called averaged temporal operators. We describe its syntax and its

semantics (that is inspired by robust semantics in [12, 15]). We also exemplify the ex-

pressivity of the logic, by encoding common temporal specifications like expeditious-

ness, persistence and deadline. Finally we will discuss the relationship to the previous

robustness notions [12, 15] for STL.

2.1 Syntax

We let ≡ stand for the syntactic equality. We let R denote the set of real numbers, with

R≥0 and R≤0 denoting its obvious subsets. We also fix the set Var of variables, each

of which stands for a physical quantity (velocity, temperature, etc.).

Definition 2.1 (syntax) In AvSTL, the set AP of atomic propositions and the set Fml
of formulas are defined as follows.

AP ∋ l ::= x < r | x ≤ r | x ≥ r | x > r where x ∈ Var, r ∈ R

Fml ∋ ϕ ::= ⊤ | ⊥ | l | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ UI ϕ | ϕ UI ϕ | ϕRI ϕ | ϕRI ϕ

Here I is a closed non-singular interval in R≥0, i.e. I = [a, b] or [a,∞) where a < b.

The overlined operator UI is called the averaged-until operator.

We introduce the following connectives as abbreviations, as usual: ϕ1 → ϕ2 ≡
(¬ϕ1) ∨ ϕ2, 3Iϕ ≡ ⊤ UI ϕ, �Iϕ ≡ ⊥ RI ϕ, 3Iϕ ≡ ⊤ UI ϕ and �Iϕ ≡ ⊥ RI ϕ.

We omit subscripts I for temporal operators if I = [0,∞). The operators RI , 3I

and �I are called the averaged-release, averaged-eventually and averaged-henceforth

operators, respectively. We say a formula ϕ is averaging-free if it does not contain any

averaged temporal operator.

2.2 Robust Semantics

AvSTL formulas, much like STL formulas in [12,15], are interpreted over (real-valued,

continuous-time) signals. The latter stand for trajectories of hybrid systems.
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Jσ, ⊤K+ , ∞

Jσ, ⊥K+ , 0

Jσ, x < rK+ , 0 ⊔ (r − σ(0)(x))

Jσ, x ≤ rK+ , 0 ⊔ (r − σ(0)(x))

Jσ, x ≥ rK+ , 0 ⊔ (σ(0)(x)− r)

Jσ, x > rK+ , 0 ⊔ (σ(0)(x)− r)

Jσ, ¬ϕK+ , −Jσ, ϕK−
Jσ, ϕ1 ∨ ϕ2K+ , Jσ, ϕ1K+ ⊔ Jσ, ϕ2K+
Jσ, ϕ1 ∧ ϕ2K+ , Jσ, ϕ1K+ ⊓ Jσ, ϕ2K+

Jσ, ϕ1 UI ϕ2K+ ,
⊔

t∈I
(Jσt, ϕ2K+ ⊓

d
t′∈[0,t)Jσt′ , ϕ1K

+
)

Jσ, ϕ1 RI ϕ2K+ ,
d

t∈I
(Jσt, ϕ2K+ ⊔

⊔

t′∈[0,t)Jσt′ , ϕ1K
+
)

Jσ, ϕ1 UI ϕ2K+ ,






1

b− a

∫ b

a

Jσ, ϕ1 UI∩[0,τ ] ϕ2K+dτ (I is bounded)

Jσ, ϕ1 UI ϕ2K+ (I is unbounded)

Jσ, ϕ1 RI ϕ2K+ ,






1

b− a

∫ b

a

Jσ, ϕ1 RI∩[0,τ ] ϕ2K+dτ (I is bounded)

Jσ, ϕ1 RI ϕ2K+ (I is unbounded)

Jσ, ⊤K− , 0

Jσ, ⊥K− , −∞

Jσ, x < rK− , 0 ⊓ (r − σ(0)(x))

Jσ, x ≤ rK− , 0 ⊓ (r − σ(0)(x))

Jσ, x ≥ rK− , 0 ⊓ (σ(0)(x)− r)

Jσ, x > rK− , 0 ⊓ (σ(0)(x)− r)

Jσ, ¬ϕK− , −Jσ, ϕK+
Jσ, ϕ1 ∨ ϕ2K− , Jσ, ϕ1K− ⊔ Jσ, ϕ2K−
Jσ, ϕ1 ∧ ϕ2K− , Jσ, ϕ1K− ⊓ Jσ, ϕ2K−

Jσ, ϕ1 UI ϕ2K− ,
⊔

t∈I
(Jσt, ϕ2K− ⊓

d
t′∈[0,t)Jσt′ , ϕ1K

−

)

Jσ, ϕ1 RI ϕ2K− ,
d

t∈I
(Jσt, ϕ2K− ⊔

⊔

t′∈[0,t)Jσt′ , ϕ1K
−

)

Jσ, ϕ1 UI ϕ2K− ,






1

b− a

∫ b

a

Jσ, ϕ1 UI∩[0,τ ] ϕ2K−dτ (I is bounded)

Jσ, ϕ1 UI ϕ2K− (I is unbounded)

Jσ, ϕ1 RI ϕ2K− ,






1

b− a

∫ b

a

Jσ, ϕ1 RI∩[0,τ ] ϕ2K−dτ (I is bounded)

Jσ, ϕ1 RI ϕ2K− (I is unbounded)

Table 1. Definition of positive and negative robustness

Definition 2.2 (signal) A signal over Var is a function σ : R≥0 → (RVar); it is there-

fore a bunch of physical quantities indexed by a continuous notion of time.

For a signal σ and t ∈ R≥0, σt denotes the t-shift of σ, that is, σt(t′) , σ(t+ t′).

The interpretation of a formula ϕ over a signal σ is

given by two different “truth values,” namely positive

and negative robustness. They are denoted by Jσ, ϕK+
and Jσ, ϕK−, respectively.

We will always have Jσ, ϕK+ ≥ 0 and Jσ, ϕK− ≤ 0.

We will also see that, for averaging-free ϕ, it is never the case that Jσ, ϕK+ > 0 and

Jσ, ϕK− < 0 hold at the same time. See the figure on the right for an example, where a

sine-like (black) curve is a signal σ. The blue and red curves stand for the positive and

negative robustness, of the formula x ≥ 0 over the (t-shifted) signal σt, respectively.

Definition 2.3 (positive/negative robustness) Let σ : R≥0 → R
Var be a signal and ϕ

be an AvSTL formula. We define the positive robustness Jσ, ϕK+ ∈ R≥0∪{∞} and the

negative robustness Jσ, ϕK− ∈ R≤0∪{−∞} by mutual induction, as shown in Table 1.

Here ⊓ and ⊔ denote infimums and supremums of real numbers, respectively.

The definition in Table 1 is much like the one for STL [11,12],4 except for the averaged

modalities on which a detailed account follows shortly. Conjunctions and disjunctions

are interpreted by infimums and supremums, in a straightforward manner.

4 There is no distinction between strict inequalities (<) and non-strict ones (≤). This is in-

evitable in the current robustness framework. This is also the case with STL in [11, 12].
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Fig. 1 illustrates the semantics of averaged-temporal operators—the novelty of our

logic AvSTL. Specifically, the black line designates a signal σ whose only variable is

x; and we consider the “averaged-eventually” formula 3[0,1](x ≥ 0). For this formula,

the definition in Table 1 specializes to:

Jσ, 3[0,1](x ≥ 0)K+

=

∫ 1

0

(

⊔

τ ′∈[0,τ ]

0 ⊔ σ(τ ′)(x)
)

dτ , and

Jσ, 3[0,1](x ≥ 0)K−

=

∫ 1

0

(

⊔

τ ′∈[0,τ ]

0 ⊓ σ(τ ′)(x)
)

dτ .

Fig. 1. The positive and negative ro-

bustness of 3[0,1](x ≥ 0) at t = 0.

These values obviously coincide with the sizes

of the blue and red areas in Fig. 1, respectively.

Through this “area” illustration of the averaged-

eventually operator we see that: the sooner ϕ is

true, the more (positively) robust 3Iϕ is. It is also

clear from Fig. 1 that our semantics captures space

robustness too: the bigger a vertical margin is, the

bigger an area is.

Remark 2.4 Presence of averaged temporal operators forces separation of two robust-

ness measures (positive and negative). Assume otherwise, i.e. that we have one robust-

ness measure that can take both positive and negative values; then robustness that floats

between positive and negative values over time can “cancel out” after an average is

taken. This leads to the failure of soundness (see Prop. 2.9 and 2.10; also [12, 15]), and

then a positive robustness value no longer witnesses the Boolean truth of (the qualitative

variant of) the formula. This is not convenient in the application to falsification.

2.3 Basic Properties of AvSTL

Lemma 2.5 (temporal monotonicity) Let 0 ≤ t0 < t ≤ t′. The following hold.

Jσ, ϕ1 U[t0,t] ϕ2K+ ≤ Jσ, ϕ1 U[t0,t′] ϕ2K+ Jσ, ϕ1 U[t0,t] ϕ2K− ≤ Jσ, ϕ1 U[t0,t′] ϕ2K−
Jσ, ϕ1 R[t0,t] ϕ2K+ ≥ Jσ, ϕ1 R[t0,t′] ϕ2K+ Jσ, ϕ1 R[t0,t] ϕ2K− ≥ Jσ, ϕ1 R[t0,t′] ϕ2K−

The inequalities hold also for the averaged temporal operators. ⊓⊔

We can now see well-definedness of Def. 2.3: we need that the integrals are defined; and

the lemma shows that the integrated functions are monotone, hence Riemann integrable.

In Def. 2.3, the definitions for averaged operators with an infinite endpoint (like

U [0,∞)ϕ) are given in terms of non-averaged operators. This is so that their well-

definedness is immediate; the following lemma justifies those definitions.

Lemma 2.6 For any t0 ∈ R≥0, Jσ, ϕ1 U[t0,∞) ϕ2K+ = lim
t→∞

Jσ, ϕ1 U [t0,t] ϕ2K
+

. The

same is true if we replace J K+ with J K−, and if we replace U with R. ⊓⊔
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Fig. 2. Expeditiousness
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Fig. 3. Deadline
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Fig. 4. Persistence

2.4 Common Temporal Specifications Expressed in AvSTL

Here we shall exemplify the expressivity of AvSTL, by encoding typical temporal spec-

ifications encountered in the model-based development of cyber-physical systems.

Remark 2.7 In what follows we sometimes use propositional variables such as airbag

and geari. For example, gear2 is a shorthand for the atomic formula xgear2 ≥ 0 in

AvSTL, where the variable xgear2 is assumed to take a discrete value (1 or −1).

Expeditiousness (3Iϕ) Consider the following informal specification: after heavy

braking, the airbag must operate within 10 ms. Its formalization in STL is straightfor-

ward by the formula �(heavyBraking → 3[0,10]airbag). However, an airbag that

operates after 1 ms. is naturally more desirable than one that operates after 9.99 ms.

The STL formula fails to discriminate between these two airbags.

Such expeditiousness (“as soon as possible”) requirements are more adequately

modeled in AvSTL, using the averaged-eventually modality 3I . See Fig. 2, where the

horizontal axis is for time t. The vertical axis in the figure stands for the positive robust-

ness value Jσt, 3[0,10]airbagK+ of the formula 3[0,10]airbag, where σt is a signal in

which airbag operates (i.e. xairbag becomes from −1 to 1) at time t. We see that the

formula successfully distinguishes an early-bird airbag from a lazy one.

Therefore the AvSTL formula �(heavyBraking → 3[0,10]airbag) formalizes a

(refined) informal specification that: after heavy braking, the airbag must operate within

10 ms; but the sooner the better. It is not hard to expect that the latter is more faithful

to the designer’s intention than the original informal specification.

Deadline (3[0,T ]ϕ∨3[T,T+δ]ϕ) The expeditiousness-type requirement that we have

discussed is sometimes too strict. Let us consider the following scenario: there is a

deadline set at time T and arrival by then is rewarded no matter how late; and then there

is a deadline extension by time δ and arrival between the deadline and the extended one

is rewarded too, but with certain deduction.

Such a deadline specification is expressed in AvSTL by the formula 3[0,T ]ϕ ∨
3[T,T+δ]ϕ, combining non-averaged and averaged eventually modalities. See Fig. 3,

where the positive robustness of the formula (3[0,5]airbag) ∨ (3[5,5+5]airbag) is

plotted, for the same signals σt as before (i.e. in σt the airbag operates at time t).

Persistence (�[0,T ]ϕ∧�[T,T+δ]ϕ) Persistence (“for as long as possible”) specifica-

tions are dual to deadline ones and expressed by a formula �[0,T ]ϕ ∧ �[T,T+δ]ϕ. An
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example is the following informal specification on automatic transmission: when a gear

shifts into first, it never shifts into any other gear for the coming 50 ms. A likely inten-

tion behind it is to prevent mechanical wear of gears that is caused by frequent gear

shifts. In this case the following specification would be more faithful to the intention:

when a gear shifts into first, it never shifts into any other gear for the coming 50 ms.,

and preferably for longer. This is formalized by the formula �(shiftIntoGear1 →
�[0,50]gear1 ∧�[50,50+δ]gear1).

For illustration, Fig. 4 plots the positive robustness of �[0,50]gear1∧�[50,60]gear1
for signals σ′

t, where gear1 is true in σ′
t from time 0 to t, and is false afterwards.

Other Temporal Specifications Expressivity of AvSTL goes beyond the three ex-

amples that we have seen—especially after the extension of the language with time-

reversed averaged temporal operators. The reversal of time here corresponds to the

symmetry between left and right time robustness in [12]. Such an extension of AvSTL

enables us to express specifications like punctuality (“no sooner, no later”) and period-

icity. The details will be reported in another venue.

2.5 Soundness of Refinements from STL to AvSTL

In §2.4 we have seen some scenarios where an STL specification is refined into an

AvSTL one so that it more faithfully reflects the designer’s intention. The following

two are prototypical:

– (3-refinement) the refinement of 3Iϕ (“eventually ϕ, within I”) into 3Iϕ (“even-

tually ϕ within I , but as soon as possible”); and

– (2-refinement) the refinement of �[a,b]ϕ (“alwaysϕ throughout [a, b]”) into �[a,b]ϕ∧

�[b,b+δ]ϕ (“always ϕ throughout [a, b], and desirably also in [b, b+ δ]”).

The following soundness results guarantee validity of the use of these refinements in

falsification problems. Completeness, in a suitable sense, holds too.

Definition 2.8 A positive context is an AvSTL formula with a hole [ ] at a positive

position. Formally, the set of positive contexts is defined as follows:

C ::= [ ] | C ∨ ϕ | ϕ ∨ C | C ∧ ϕ | ϕ ∧ C | C UI ϕ | ϕ UI C | C UI ϕ | ϕ UI C
| C RI ϕ | ϕRI C | C RI ϕ | ϕRI C where ϕ is an AvSTL formula.

For a positive context C and an AvSTL formula ψ, C[ψ] denotes the formula obtained

by substitution of ψ for the hole [ ] in C.

Proposition 2.9 (soundness and completeness of 3-refinement) Let C be a positive

context. Then Jσ, C[3[a,b]ϕ]K+ > 0 implies Jσ, C[3[a,b]ϕ]K+ > 0. Moreover, for any b′

such that b′ < b, Jσ, C[3[a,b′]ϕ]K+ > 0 implies Jσ, C[3[a,b]ϕ]K+ > 0 ⊓⊔
Proposition 2.10 (soundness and completeness of �-refinement) Let C be a positive

context. Then Jσ, C[�[a,b]ϕ ∧�[b,b+δ]ϕ]K
+
> 0 implies Jσ, C[�[a,b]ϕ]K+ > 0. More-

over, for any b′ > b, Jσ, C[�[a,b′]ϕ]K+ > 0 implies Jσ, C[�[a,b]ϕ ∧�[b,b+δ]ϕ]K
+
> 0.

⊓⊔
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2.6 Relationship to Previous Robustness Notions

Our logic AvSTL captures space robustness [15]—the first robustness notion proposed

for MITL/STL, see §1—because the averaging-free fragment of AvSTL coincides with

STL and its space robust semantics, modulo the separation of positive and negative

robustness (Rem. 2.4).

Θ
c1

c1

c2

c3

Θ
c2
Θ
c3

0

The relationship to space-time robustness proposed

in [12] is interesting. In [12] they combine time and

space robustness in the following way: for each time

t and each space robustness value c > 0, (right) time

robustness relative to c, denoted by θ+c (ϕ, σ, t), is de-

fined by “how long after time t the formula ϕmaintains

space robustness c.” See the figure on the right, where

the space-time robustness θ+c (x ≥ 0, σ, 0) is depicted.

After all, space-time robustness in [12] is a function from c to θ+c (ϕ, σ, t); and

one would like some real number as its characteristic. A natural choice of such is the

area surrounded by the graph of the function (the shaded area in the figure), and it is

computed in the same way as Lebesgue integration, as the figure suggests.

What corresponds in our AvSTL framework to this “area” characteristic value is the

robustness of the formula �[0,∞)(x ≥ 0) computed by Riemann integration (here we

have to ignore the normalizing factor 1
b−a in Table 1). Therefore, very roughly speak-

ing: our “averaged” robustness is a real-number characteristic value of the space-time

robustness in [12]; and the correspondence is via the equivalence between Riemann and

Lebesgue integration.

3 A Sliding-Window Algorithm for AvSTL Robustness

We shall present an algorithm for computing AvSTL robustness. It turns out that the

presence of averaged modalities like 3I—with an apparent nonlocal nature—does not

incur severe computational overhead, at least for formulas in which averaged modalities

are not nested. The algorithm is an adaptation of the one in [11] for STL robustness;

the latter in turn relies on the sliding window minimum algorithm [21]. The algorithm’s

time complexity is linear with respect to the number of timestamps in the input signal;

it exhibits a practical speed, too, as we will see later in §4.

Firstly we fix the class of signals to be considered.

Definition 3.1 (finitely piecewise-constant/piecewise-linear signal) A 1-dimensional

signal σ : R≥0 → R is finitely piecewise-constant (FPC) if it arises from a finite se-

quence
[

(t0, r0), (t1, r1), . . . , (tn, rn)
]

of timestamped values, via the correspondence

σ(t) = ri (for t ∈ [ti, ti+1)). Here 0 = t0 < · · · < tn, ri ∈ R, and tn+1 is deemed to

be ∞.

Similarly, a 1-dimensional signal σ : R≥0 → R is finitely piecewise-linear (FPL)

if it is identified with a finite sequence
[

(t0, r0, q0), . . . , (tn, rn, qn)
]

of timestamped

values, via the correspondence σ(t) = ri + qi(t − ti) (for t ∈ [ti, ti+1)). Here qi ∈ R

is the slope of σ in the interval [ti, ti+1).
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The definitions obviously extend to many-dimensional signals σ : R≥0 → R
Var.

We shall follow [11, 12] and measure an algorithm’s complexity in terms of the

number of timestamps (n in the above); the latter is identified with the size of a signal.

Definition 3.2 (robustness signal [ϕ]σ) Let σ : R≥0 → R
Var be a signal, and ϕ be an

AvSTL formula. The positive robustness signal of ϕ over σ is the signal [ϕ]+σ : R≥0 →

R defined by: [ϕ]+σ (t) , Jσt, ϕK+. Recall that σt(t′) = σ(t + t′) is the t-shift of σ

(Def. 2.2). The negative robustness signal [ϕ]−σ is defined in the same way.

An averaged modality turns a piecewise-constant signal into a piecewise-linear one.

Lemma 3.3 1. Let ϕ be an averaging-free AvSTL formula. If a signal σ is finitely

piecewise-constant (or piecewise-linear), then so is [ϕ]+σ .

2. Let ϕ be an AvSTL formula without nested averaged modalities. If a signal σ is

finitely piecewise-constant, then [ϕ]+σ is finitely piecewise-linear.

The above holds for the negative robustness signal [ϕ]−σ , too.

Proof. Straightforward by the induction on the construction of formulas. ⊓⊔

Our algorithm for computing AvSTL robustness Jσ, ϕK will be focused on: 1) a

finitely piecewise-constant input signal σ; and 2) an AvSTL formula ϕ where averaged

modalities are not nested. In what follows, for presentation, we use the (non-averaged

and averaged) eventually modalities 3I ,3I in describing algorithms. Adaptation to

other modalities is not hard; for complex formulas, we compute the robustness signal

[ϕ]σ by induction on ϕ.

3.1 Donzé et al.’s Algorithm for STL Robustness

We start with reviewing the algorithm [11] for STL robustness. Our algorithm for

AvSTL robustness relies on it in two ways: 1) the procedures for averaged modali-

ties like 3I derive from those for non-averaged modalities in [11]; and 2) we use the

algorithm in [11] itself for the non-averaged fragment of AvSTL.

Remark 3.4 The algorithm in [11] computes the STL robustness Jσ, ϕK for a finitely

piecewise-linear signal σ. We need this feature e.g. for computing robustness of the for-

mula �(heavyBraking→ 3[0,10]airbag): note that, by Lem. 3.3, the robustness sig-

nal for 3[0,10]airbag is piecewise-linear even if the input signal is piecewise-constant.

Consider computing the robustness signal [3[a,b]ϕ]σ , assuming that the signal [ϕ]σ
is already given.5 The task calls for finding the supremum of [ϕ]σ(τ) over τ ∈ [t+a, t+
b]; and this must be done for each t. Naively doing so leads to quadratic complexity.

Instead Donzé et al. in [11] employ a sliding window of size b − a and let it scan

the signal [ϕ]σ from right to left. The scan happens once for all, hence achieving linear

complexity. See Fig. 5, where we take [3[0,5](x ≥ 0)]+σ as an example, and the blue

5 In the rest of §3.1, for simplicity of presentation, we assume that [ϕ]σ is piecewise-constant.

We note that the algorithm in [11] nevertheless extends to piecewise-linear [ϕ]σ .
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· · ·
slide
7−→
bwd.

window in [3, 8]

slide
7−→
bwd.

window in [1, 6]

slide
7−→
bwd.

· · ·

Fig. 5. A sliding window for computing [3[0,5](x ≥ 0)]+σ ; the black line is the signal σ

[

(3, 0.2) (4, 0.3) (5, 0.7) (8, 0.9)
]

✤

slide

backward
//

❴

dequeue (8, 0.9)
��

[

(1, 0.6) (5, 0.7)
]

[

(3, 0.2) (4, 0.3) (5, 0.7)
]

✤

pop (3, 0.2)
and (4, 0.3)

//

[

(5, 0.7)
]

❴

push (1, 0.6)
OO

Fig. 6. Use of stackqueues and their operations, in the sliding window algorithm

shaded area designates the position of the sliding window. The window slides from

[3, 8] to the closest position to the left where its left-endpoint hits a new timestamped

value of [ϕ]σ , namely [1, 6].

a stackqueue

It is enough to know the shape of the blue (par-

tial) signal in Fig. 5, at each position of the window.

The blue signal denotes the (black) signal σ’s local

supremum within the window; more precisely, it denotes the value of the signal

Jσt, 3[0,τ ](x ≥ 0)K+ at time t + τ , where τ ∈ [0, 5] and t is the leftmost position

of the window. We can immediately read off the signal [3[0,5](x ≥ 0)]+σ from the blue

signals: the former is the latter’s value at the rightmost position of the window.

The keys in the algorithms in [11, 21] lie in:

– use of the stackqueue data structure (depicted above on the right) for the purpose

of representing the blue (partial) signal in Fig. 5; and

– use of the operations push, pop and dequeue for updating the blue signal.

See Fig. 6, where each entry of a stackqueue is a timestamped value (t, r). We see that

the slide of the window, from top-left to top-right in Fig. 6, is expressed by dequeue, pop

and then push operations to stackqueues (in Fig. 6: from top-left to bottom-left, bottom-

right and then top-right). Pseudocode for the algorithm is deferred to Appendix A.1 due

to lack of space.
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Algorithm 1 An algorithm for computing [3[a,b]ϕ]σ

Require: An FPC signal [ϕ]σ given as a sequence (t0, r0), . . . , (tn, rn)
Ensure: The FPL signal [3[a,b]ϕ]σ
ttemp := tn − a;

F :=
[

(ttemp + a, [ϕ]σ(ttemp + a))
]

; ⊲ F is the FPC signal τ 7→ Jσt, 3[a,τ ]ϕK
s := (b− a) · [ϕ]σ(ttemp + a); ⊲ The area of F
G :=

[

(ttemp, s/(b− a), 0)
]

; ⊲ The FPC signal [3[a,b]ϕ]σ
while ttemp ≥ 0 do

told := ttemp;

ttemp := the greatest t such that t < told ∧
(

∃ti. t+ a = ti ∨ ∃(t′, r′) ∈ F. t+ b = t′)
)

;

Deq := {(t, r) ∈ F | t > ttemp + b}; F := F \ Deq; ⊲ Dequeue old elements in F
Pop := {(t, r) ∈ F | r ≤ [ϕ]σ(ttemp + a)}; F := F \ Pop; ⊲ Pop small elements in F
tPop := min{t | (t, r) ∈ F or t = ttemp + b};

F :=
[

(ttemp + a, [ϕ]σ(ttemp + a))
]

∪ F ⊲ Push the left endpoint of the window to F
rleft := min{r | (t, r) ∈ F};

rright := max{r | (t, r) ∈ F};

s := s− (told − ttemp) · rright − area(Pop) + (tPop − (ttemp + a)) · rleft
G := {(ttemp, s/(b− a), rright − rleft)} ∪G

end while

3.2 An Algorithm for AvSTL Robustness

It turns out that the last algorithm is readily applicable to computing AvSTL robust-

ness. Consider an averaged-eventually formula 3[a,b]ϕ as an example. What we have

to compute is the size of the shaded areas in Fig. 5 (see also Fig. 1); and the shape of

the blue signals in Fig. 5 carry just enough information to do so.

Pseudocode for the adaptation of the previous algorithm (in §3.1) to 3[a,b]ϕ is found

in Algorithm 1. Its complexity is linear with respect to the number n of the timestamp

values that represent the signal [ϕ]σ .

An algorithm for the averaged-henceforth formula [�[a,b]ϕ]σ is similar. Extensions

to averaged-until and averaged-release operators are possible, too; they use doubly-

linked lists in place of stackqueues (see Appendix A.2). Combining with the algorithm

in §3.1 to deal with non-averaged temporal operators, we have the following complexity

result. The complexity is the same as for STL [11].

Theorem 3.5 Let ϕ be an AvSTL formula in which averaged modalities are not nested.

Let σ be a finitely piecewise-constant signal. Then there exists an algorithm to compute

Jσ, ϕK+ with time-complexity in O(d|ϕ||ϕ||σ|) for some constant d.

The same is true for the negative robustness Jσ, ϕK−. ⊓⊔

Remark 3.6 The reason for our restriction to finitely piecewise-constant input signals

is hinted in Rem. 3.4; let us further elaborate on it. There the averaged modality 3[0,10]

turns a piecewise-constant signal into a piecewise-linear one (Lem. 3.3); and then the

additional Boolean connectives and non-averaged modalities (outside 3[0,10]) are taken

care of by the algorithm in [11], one that is restricted to piecewise-linear input.



13

It is not methodologically hard to extend this workflow to piecewise-polynomial

input signals (hence to nested averaged modalities as well). Such an extension however

calls for computing local suprema of polynomials, as well as their intersections—tasks

that are drastically easier with affine functions. We therefore expect the extension to

piecewise-polynomial signals to be computationally much more expensive.

4 Enhanced Falsification: Implementation and Experiments
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Fig. 7. An overview of S-TaLiRo

(from [1]), with our modification

We claim that our logic AvSTL achieves a good balance

between expressivity—that communicates a designer’s

intention more faithfully to a falsification solver—and

computational cost, thus contributing to the model-

based development of cyber-physical systems. In this

section we present our implementation that combines: 1)

S-TaLiRo [6], one of the state-of-art falsification solvers

that relies on robust MTL semantics and stochastic opti-

mization; and 2) the AvSTL evaluator, an implementa-

tion of the algorithm in §3.2. Our experiments are on au-

tomotive examples of falsification problems; the results

indicate that (refinement of specifications by) AvSTL

brings considerable performance improvement.

Implementation S-TaLiRo [6] is “a Matlab toolbox that searches for trajectories of

minimal robustness in Simulink/Stateflow” [1]. Recall the formalization of a falsifi-

cation problem (§1). S-TaLiRo’s input is: 1) a model M that is a Simulink/Stateflow

model; and 2) a specification ϕ that is an STL formula.

S-TaLiRo employs stochastic simulation in the following S-TaLiRo loop:

1. Choose an input signal σin randomly.

2. Compute the output signal M(σin) with Simulink.

3. Compute the robustness JM(σin), ϕK.

4. If the robustness is ≤ 0 then return σin as a critical path. Otherwise choose a new

σin (hopefully with a smaller robustness) and go back to Step 2.

Our modification of S-TaLiRo consists of: 1) changing the specification formalism from

STL to AvSTL (with the hope that the robustness JM(σin), ϕK+ carries more informa-

tion to be exploited in stochastic optimization); and 2) using, in Step 3 of the above

loop, the AvSTL evaluator based on the sliding-window algorithm in §3. See Fig. 7.

Experiments As a model M we used the automatic transmission model from [17],

where it is offered “as benchmarks for testing-based falsification” [17]. The same model

has been used in several works [14, 19, 24]. The model has two input ports (throttle

and brake) and six output ports (the engine speed ω, the vehicle speed v, and four

mutually-exclusive Boolean ports gear1, . . . , gear4 for the current gear). Further illus-

tration is in Appendix C. As a specification ϕ to falsify, we took six examples from [17],

sometimes with minor modifications. They constitute Problems 1–6 in Table 2.
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Problem 1. Falsification means finding an input signal that keeps the engine speed ω below 2000 rpm, for T seconds. The

bigger T is, the harder the problem is. We applied 3-refinement.

Problem 1 T = 20 T = 30 T = 40
Specification Succ. Iter. Time Succ. Iter. Time Succ. Iter. Time

to be falsified /100 (Succ.) (Succ.) /100 (Succ.) (Succ.) /100 (Succ.) (Succ.)

3[0,T ](ω ≥ 2000) 100 128.8 20.2 81 440.9 82.5 32 834.3 162.9

128.8 20.2 309.7 59.0 482.2 94.4

3[0,T ](ω ≥ 2000) 100 123.9 22.9 98 249.8 46.1 81 539.6 110.9

123.9 22.9 234.5 43.4 431.6 89.2

Problem 2. Falsification means finding an input signal that keeps ω within a range of 3500–4500 rpm for T consecutive

seconds, at a certain stage. We applied 3-refinement.

Problem 2 T = 10
Specification Succ. Iter. Time

to be falsified /100 (Succ.) (Succ.)

�3[0,T ](ω ≤ 3500 ∨ ω ≥ 4500) 45 625.4 209.1

167.7 56.1

�3[0,T ](ω ≤ 3500 ∨ ω ≥ 4500) 74 442.0 154.3

245.9 86.6

Problem 3. Falsification means finding an input signal that shifts the gear into the fourth within T seconds. The smaller T
is, the harder the problem is. Here gear4 is a propositional variable. We applied 2-refinement.

Problem 3 T = 4 T = 4.5 T = 5
Specification Succ. Iter. Time Succ. Iter. Time Succ. Iter. Time

to be falsified /20 (Succ.) (Succ.) /20 (Succ.) (Succ.) /20 (Succ.) (Succ.)

�[0,T ]¬gear4 0 1000 166.9 11 742.8 122.9 18 449.0 71.8

– – 532.3 87.5 387.7 61.9

�[0,T ]¬gear4 17 570.1 94.0 20 250.5 40.3 20 107.5 17.6

∧�[T,10]¬gear4 494.2 81.8 250.5 40.3 107.5 17.6

Problem 4. Falsification means finding input with which the gear never stays in the third consecutively for T seconds. The

smaller T is, the harder the problem is. Here gear3 is a propositional variable. We applied 2-refinement.

Problem 4 T = 1 T = 2
Specification Succ. Iter. Time Succ. Iter. Time

to be falsified /20 (Succ.) (Succ.) /20 (Succ.) (Succ.)

3
(

�[0,T ]gear3

)

14 556.1 132.0 20 82.8 20.6

365.8 87.1 82.8 20.6

3
(

�[0,T ]gear3 ∧ �[T,10]gear3

)

20 105.1 36.3 20 29.7 10.2

105.1 36.3 20 29.7 10.2

Problem 5. Falsification means finding input that violates the following requirement: after the gear is shifted, it stays the

same for T seconds. (the smaller T , the harder). gear1, . . . , gear4 are propositional variables. We applied 2-refinement.

Problem 5 (ε = 0.04) T = 0.8 T = 1 T = 2
Specification Succ. Iter. Time Succ. Iter. Time Succ. Iter. Time

to be falsified /20 (Succ.) (Succ.) /20 (Succ.) (Succ.) /20 (Succ.) (Succ.)
∧

i=1,...,4 �

(

(

¬geari ∧ 3[0,ε]geari

)

2 972.5 402.5 19 356.8 155.6 20 27.4 11.8

→
(

�[ε,T+ε]geari

)

)

724.5 297.8 322.9 140.9 27.4 11.8
∧

i=1,...,4 �

(

(

¬geari ∧ 3[0,ε]geari

)

12 561.1 349.1 20 93.1 57.8 20 42.7 26.9

→
(

�[ε,T+ε]geari ∧ �[T+ε,5]geari

)

)

268.5 167.3 93.1 57.8 42.7 26.9

Problem 6. Falsification means finding an input signal that steers the vehicle speed v over 85 kph within T seconds, while

keeping the engine speed ω below 4500 rpm. The smaller T is, the harder the problem is. We applied 2-refinement.

Problem 6 T = 10 T = 12
Specification Succ. Iter. Time Succ. Iter. Time

to be falsified /20 (Succ.) (Succ.) /20 (Succ.) (Succ.)

�[0,T ](v ≤ 85) ∨ 3(ω ≥ 4500) 12 714.9 141.4 17 374.5 72.2

524.9 108.1 264.1 51.2
(

�[0,T ](v ≤ 85) ∧ �[T,20](v ≤ 85)
)

12 766.7 149.0 20 423.6 85.7

∨3(ω ≥ 4500) 611.2 118.9 423.6 85.7

Table 2. Experiment results. Time is in seconds. The “Succ.” columns show how many trials

succeeded among the designated number of trials; the “Iter.” columns show the average number of

iterations of the S-TaLiRo loop, executed in each trial (max. 1000); and the “Time” columns show

the average time that each trial took. For the last two we also show the average over successful

trials.



15

Our goal is to examine the effect of our modification to S-TaLiRo. For the model

M (that is fixed) and each of the six specifications ϕ, experiments are done with:

– M and the original STL formula ϕ, as a control experiment; and

– M and the AvSTL formula ϕ′ that is obtained from ϕ as a refinement. The latter

specifically involves 3-refinement and 2-refinement described in §2.5.

Faster, or more frequent, falsification in the latter setting witnesses effectiveness of our

AvSTL approach. We note that falsifying ϕ′ indeed means falsifying ϕ, because of the

soundness of the refinement (Prop. 2.9 and 2.10).

A single falsification trial consists of at most 1000 iterations of the S-TaLiRo loop.

For each specification ϕ (i.e. for each problem in Table 2) we made 20–100 falsification

trials, sometimes with different parameter values T . We made multiple trials because of

the stochastic nature of S-TaLiRo.

Experiment Results and Discussion The experiment results are in Table 2. We used

Matlab R2014b and S-TaLiRo ver.1.6 beta on ThinkPad T530 with Intel Core i7-3520M

2.90GHz CPU with 3.7GB memory. The OS is Ubuntu14.04 LTS (64-bit).

Notable performance improvement is observed in Problems 3–5, especially in their

harder instances. For example, our AvSTL enrichment made 17 out of 20 trials succeed

in Problem 3 (T = 4), while no trials succeeded with the original STL specification. A

similar extreme performance gap is observed also in Problem 5 (T = 0.8).

Such performance improvement in Problems 3–5 is not surprising. The specifica-

tions for these problems are concerned solely with the propositional variables geari
(cf. Rem. 2.7); and the space robustness semantics for STL assigns to these specifica-

tions only 0 or 1 (but no values in-between) as their truth values. We can imagine such

“discrete” robustness values give few clues to stochastic optimization algorithms.

Both of 3- and 2-refinement in §2.5 turn out to be helpful. The latter’s effectiveness

is observed in Problems 3–5; the former improves a success rate from 32/100 to 81/100

in Problem 1 (T = 40).

Overall, the experiment results seem to support our claim that the complexity of

(computing robustness values in) AvSTL is tractable. There is no big difference in the

time each iteration takes, between the STL case and the AvSTL case.

5 Conclusions and Future Work

We introduced AvSTL, an extension of STL with averaged temporal operators. It ad-

equately captures both space and time robustness; and we presented an algorithm for

computing robustness that is linear-time with respect to the “size” of an input signal. Its

use in falsification of CPS is demonstrated by our prototype that modifies S-TaLiRo.

As future work, we wish to compare our averaged temporal operators with other

quantitative temporal operators, among which are the discounting ones [4,5]. The latter

are closely related to mean-payoff conditions [9,13] as well as to energy constraints [7,

8], all of which are studied principally in the context of automata theory.

Application of AvSTL to problems other than falsification is another important di-

rection. Among them is parameter synthesis, another task that S-TaLiRo is capable of.
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We are now looking at application to sequence classification (see e.g. [20]), too, whose

significant role in model-based development of CPS is widely acknowledged.

References

1. TaLiRo-tools. https://sites.google.com/a/asu.edu/s-taliro/

s-taliro. Accessed: 2015-01-26.

2. Houssam Abbas, Bardh Hoxha, Georgios E. Fainekos, Jyotirmoy V. Deshmukh, James Kap-

inski, and Koichi Ueda. Conformance testing as falsification for cyber-physical systems.

CoRR, abs/1401.5200, 2014.

3. Houssam Abbas, Bardh Hoxha, Georgios E. Fainekos, Jyotirmoy V. Deshmukh, James

Kapinski, and Koichi Ueda. Wip abstract: Conformance testing as falsification for cyber-

physical systems. In ACM/IEEE International Conference on Cyber-Physical Systems, IC-

CPS, Berlin, Germany, April 14-17, 2014, page 211. IEEE Computer Society, 2014.

4. Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in LTL. In Erika Ábrahám
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A Algorithms

A.1 An STL Algorithm for Computing [3[a,b]ϕ]σ , from [11]

In Algorithm 2 is pseudocode for computing the signal [3[a,b]ϕ]σ , given the signal [ϕ]σ .

Its intuitions are found in §3.1.

Algorithm 2 An algorithm for computing [3[a,b]ϕ]σ

Require: A FPC signal [ϕ]σ given as a sequence (t0, r0), . . . , (tn, rn)
Ensure: The FPC signal [3[a,b]ϕ]σ
ttemp := tn − a;

F :=
[

(ttemp + a, [ϕ]σ(ttemp + a))
]

; ⊲ F is the FPC signal τ 7→ Jσttemp , 3[a,τ ]ϕK
G :=

[

(ttemp, [ϕ]σ(ttemp + a))
]

; ⊲ G is the FPC signal [3[a,b]ϕ]σ
while ttemp ≥ 0 do

ttemp := the greatest t such that t < ttemp ∧
(

∃ti. t+ a = ti ∨ ∃(t′, r′) ∈ F. t+ b = t′)
)

;

F := F \ {(t, r) | t > ttemp + b}; ⊲ Dequeue old elements in F
F := F \ {(t, r) | r ≤ [ϕ]σ(ttemp + a)}; ⊲ Pop elements in F that are too small

F :=
[

(ttemp + a, [ϕ]σ(ttemp + a))
]

∪ F ; ⊲ Push the left endpoint of the window to F
rright := max{r | (t, r) ∈ F};

G := {(ttemp, rright)} ∪G; ⊲ Add a timestamped value

end while

A.2 An Algorithm for Computing [ϕ1 U [a,b] ϕ2]σ

Algorithm 1 is an algorithm for computing [3[a,b]ϕ]σ that is linear-time with respect to

the “size” of [ϕ]σ . We can compute [ϕ1 U [a,b] ϕ2]σ in linear-time, similarly, by employ-

ing a sliding-window that stands for a piecewise constant function

F : [a, b] −→ R

τ 7−→ Jσt, ϕ1 U[a,τ ] ϕ2K .

The sliding of the window corresponds to the change of the value of t. For efficient

implementation of such sliding we rely on the following proposition. It is derived es-

sentially from the equivalence ϕ1 U[a,τ ] ϕ2
∼= 3[a,τ ]ϕ2 ∧�[0,a]ϕ1 U ϕ2, an equivalence

also used in [11].

Proposition A.1 Assume that the signal [�[0,a]ϕ1 U ϕ2]σ is constant in the interval

[0, δ). Then we have

Jσ, ϕ1 U[a,τ+δ] ϕ2K =
(

Jσδ, ϕ1 U[a,τ ] ϕ2K⊔ Jσ, 3[a,a+δ]ϕ2K
)

⊓ Jσ, �[0,a]ϕ1 U ϕ2K .

(1)
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Proof.

(RHS)

=
(

Jσδ, ϕ1 U[a,τ ] ϕ2K ⊓ Jσ, �[0,a]ϕ1 U ϕ2K
)

⊔
(

Jσ, 3[a,a+δ]ϕ2K ⊓ Jσ, �[0,a]ϕ1 U ϕ2K
)

by distributing ⊓ over ⊔

=
(

Jσδ, ϕ1 U[a,τ ] ϕ2K ⊓ Jσ, �[0,a]ϕ1 U ϕ2K
)

⊔ Jσ, ϕ1 U[a,a+δ] ϕ2K
by the above equivalence ϕ1 U[a,τ ] ϕ2

∼= 3[a,τ ]ϕ2 ∧�[0,a]ϕ1 U ϕ2

=
(

(Jσδ, 3[a,τ ]ϕ2K ⊓ Jσδ, �[0,a]ϕ1 U ϕ2K) ⊓ Jσ, �[0,a]ϕ1 U ϕ2K
)

⊔ Jσ, ϕ1 U[a,a+δ] ϕ2K
by the same equivalence

=
(

(Jσ, 3[a+δ,τ+δ]ϕ2K ⊓ Jσ, �[0+δ,a+δ]ϕ1 U ϕ2K) ⊓ Jσ, �[0,a]ϕ1 U ϕ2K
)

⊔ Jσ, ϕ1 U[a,a+δ] ϕ2K
= (Jσ, 3[a+δ,τ+δ]ϕ2K ⊓ Jσ, �[0,a+δ]ϕ1 U ϕ2K) ⊔ Jσ, ϕ1 U[a,a+δ] ϕ2K

by the assumption that [�[0,a]ϕ1 U ϕ2]σ is constant in [0, δ)

= Jσ, ϕ1 U[a+δ,τ+δ] ϕ2K ⊔ Jσ, ϕ1 U[a,a+δ] ϕ2K again by the same equivalence

= (LHS) . ⊓⊔

Roughly speaking, the equality (1) shows how the signal after sliding (Jσ, ϕ1 U[a,τ+δ] ϕ2K
on the left-hand side) can be computed from the signal before sliding (the first term

Jσδ, ϕ1 U[a,τ ] ϕ2K on the right-hand side).

In Algorithm 3 pseudocode is found for computing [ϕ1 U [a,b] ϕ2]σ . Compared to

Algorithm 1 a principal addition is truncation of big elements (Trunc in Algorithm 3;

it corresponds to taking ⊓ in (1)). To realize such a truncation operation efficiently, we

use a doubly-linked list as a data structure—in place of a stackqueue—so that it allows

push and pop from each side.

It is not hard to see that the time-complexity of Algorithm 3 is linear in n+m. Note

also that the signal [�[0,a]ϕ1 Uϕ2]σ (input to Algorithm 3) can be computed efficiently,

from the signals [ϕ1]σ and [ϕ2]σ , thanks to the algorithm presented in [11].

B Omitted Proofs

B.1 Proof of Lem. 2.5

Proof. We only prove the first inequality; the others are similar.

Jσ, ϕ1 U[t0,t′] ϕ2K =
⊔

τ∈[t0,t′]
(Jστ , ϕ1K ⊓

d
τ ′∈[0,τ ]Jστ

′

, ϕ2K)
≥

⊔

τ∈[t0,t]
(Jστ , ϕ1K ⊓

d
τ ′∈[0,τ ]Jστ

′

, ϕ2K)
= Jσ, ϕ1 U[t0,t] ϕ2K

⊓⊔

B.2 Proof of Lem. 2.6

Proof. We only show the proof of the first equality; the others are similar.
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Algorithm 3 An algorithm for computing [ϕ1 U [a,b] ϕ2]σ

Require: An FPC signal [ϕ2]σ given as a sequence (t0, r0), . . . , (tn, rn) and a signal g :=
[�[0,a]ϕ1 U ϕ2]σ as (u0, v0), . . . , (um, vm)

Ensure: The FPL signal [ϕ1 U [a,b] ϕ2]σ
ttemp := max{tn − a, um};

rleft := [ϕ2]σ(ttemp + a) ⊓ g(ttemp);
F :=

[

(ttemp + a, rleft)
]

; ⊲ F is the FPC signal τ 7→ Jσt, ϕ1 U[a,τ ] ϕ2K
s := (b− a)rleft; ⊲ The area of F
G :=

[

(ttemp, s/(b− a), 0)
]

; ⊲ G is the FPC signal [ϕ1 U [a,b] ϕ2]σ
while ttemp ≥ 0 do

told := ttemp;

ttemp := the greatest t such that

t < told ∧
(

∃ti. t+ a = ti ∨ ∃(t′, r′) ∈ F. t+ b = t′ ∨ ∃ui. t = ui

)

;

Deq := {(t, r) ∈ F | t > ttemp + b}; ⊲ Dequeue old elements in F
F := F \ Deq;

Pop := {(t, r) ∈ F | r ≤ [ϕ2]σ(ttemp + a)}; ⊲ Pop small elements in F
F := F \ Pop;

tPop := min{t | (t, r) ∈ F or t = ttemp + b};

F :=
[

(ttemp + a, rleft)
]

∪ F ; ⊲ Push the left endpoint of the window to F
rDeq := max{r | (t, r) ∈ F};

rPush := min{r | (t, r) ∈ F};

s := s− (told − ttemp)rDeq − area(Pop) + (tPop − ttemp)rPush;

Trunc := {(t, r) ∈ F | r > g(ttemp)}; ⊲ Truncate big elements in F
F := F \ Trunc;

tTrunc := min{t | (t, r) ∈ Trunc or t = ttemp + b};

F := F ∪
[

(tTrunc, g(ttemp))
]

;

rleft := min{r | (t, r) ∈ F};

rright := max{r | (t, r) ∈ F};

s := s− area(Trunc) + ((ttemp + b)− tTrunc)rright;
G := {(ttemp, s/(b− a), rright − rleft)} ∪G

end while
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We first show (LHS) ≥ (RHS).

(RHS) = lim
t→∞

1

t− t0

∫ t

t0

Jσ, ϕ1 U[t0,τ ] ϕ2K+dτ

≤ lim
t→∞

1

t− t0

∫ t

t0

Jσ, ϕ1 U[t0,t] ϕ2K+dτ by Lem. 2.5

= lim
t→∞

Jσ, ϕ1 U[t0,t] ϕ2K+

≤ Jσ, ϕ1 U[t0,∞] ϕ2K+
= (LHS)

Now we show the equality (LHS) = (RHS). Let

f(t) =
1

t− t0

∫ t

t0

Jσ, ϕ1 U[t0,τ ] ϕ2K+dτ .

By Lem. 2.5 Jσ, ϕ1 U[t0,τ ] ϕ2K+ is monotonically increasing with respect to τ , hence

f(t) is also monotonically increasing with respect to t because f(t) is an average of

Jσ, ϕ1 U[t0,τ ] ϕ2K+ over t0 ≤ τ ≤ t. If f(t) is not bounded, then obviously (LHS) ≤
(RHS). Otherwise, if f(t) is bounded, the increasing function f(t) converges to some

α ∈ R≥0 as t→ ∞. By (LHS) ≥ (RHS) (that we have already shown), α+ ε = (LHS)

for some ε ∈ R≥0. Here the following statement holds.

∀α′ < α+ ε. ∃t′ ∈ [t0,∞). Jσt′ , ϕ2K ⊓
l

τ∈[0,t′]

Jστ , ϕ1K > α′ (2)

Hence, for such α′ and t′,

(RHS) = lim
t→∞

1

t− t0

∫ t

t0

Jσ, ϕ1 U[t0,τ ] ϕ2K+dτ

= lim
t→∞

1

t− t0

(

∫ t′

t0

Jσ, ϕ1 U[t0,τ ] ϕ2K+dτ +
∫ t

t′
Jσ, ϕ1 U[t0,τ ] ϕ2K+dτ

)

≥ lim
t→∞

1

t− t0

∫ t

t′
Jσ, ϕ1 U[t0,τ ] ϕ2K+dτ

≥ lim
t→∞

t− t′

t− t0
α′ by (2)

= α′ .

Therefore we have

∀α′ < α+ ε. (RHS) = α ∧ (RHS) ≥ α′

and hence ε = 0. Consequently (LHS) = (RHS). ⊓⊔

B.3 Proof of Prop. 2.9 and 2.10

We start with the following lemmas.
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Lemma B.1 (logical monotonicity) Let C be a positive context (Def. 2.8). We have

∀σ. Jσ, ϕK+ ≤ Jσ, ϕ′K+ implies ∀σ. Jσ, C[ϕ]K+ ≤ Jσ, C[ϕ′]K+ ; and

∀σ. Jσ, ϕK− ≤ Jσ, ϕ′K− implies ∀σ. Jσ, C[ϕ]K− ≤ Jσ, C[ϕ′]K− .

Proof. By induction on the construction of the positive context C. ⊓⊔

Lemma B.2 Let ϕ,ϕ′ be AvSTL formulas and C be a positive context. Then

∀σ.Jσ, ϕK+ > 0 =⇒ ∀σ.Jσ, ϕ′K+ > 0

implies

∀σ.Jσ, C[ϕ]K+ > 0 =⇒ ∀σ.Jσ, C[ϕ′]K+ > 0

Proof. Straightforward by induction on the construction of C. ⊓⊔

Now we prove Prop. 2.9, soundness and completeness of 3-refinement.

Proof. (Of Prop. 2.9) Obviously we have Jσ, 3[a,b]ϕK+ < Jσ, 3[a,b]ϕK+; therefore by

Lem. B.1, we have

Jσ, C[3[a,b]ϕ]K+ > 0 =⇒ Jσ, C[3[a,b]ϕ]K+ > 0 .

To prove the opposite direction, by Lem. B.2, it suffices to show the following.

Jσ, 3[a,b′]ϕK+ > 0 =⇒ Jσ, 3[a,b]ϕK+ > 0 for any b′ < b .

Assume Jσ, 3[a,b′]ϕK+ > 0. Then

Jσ, 3[a,b]ϕK+

=
1

b− a

∫ b

a

Jσ, 3[a,τ ]ϕK+ dτ by the definition of 3

=
1

b− a

(
∫ b′

a

Jσ, 3[a,τ ]ϕK+ dτ +

∫ b

b′
Jσ, 3[a,τ ]ϕK+ dτ

)

≥
1

b− a

(
∫ b′

a

0 dτ +

∫ b

b′
Jσ, 3[a,b′]ϕK+ dτ

)

by Prop. 2.5 and b′ < b

=
b− b′

b− a
Jσ, 3[a,b′]ϕK+ > 0 . ⊓⊔

Then we prove Prop. 2.10, soundness and completeness of 2-refinement.

Proof. (Of Prop. 2.10) From Lem. B.1,

Jσ, C[�[a,b]ϕ ∧�[b,b+δ]ϕ]K
+
> 0 =⇒ Jσ, C[�[a,b]ϕ]K+ > 0

is obvious. We want to show the other direction. From Lem. B.2, it suffices to show

Jσ, �[a,b′]ϕK+ > 0 =⇒ Jσ, �[a,b]ϕ ∧�[b,b+δ]ϕK+ > 0
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for any b′ > b. Here �[a,b′]ϕ ∼= �[a,b]ϕ ∧ �[b,b′]ϕ, hence the above implication holds

if so does the following.

Jσ, �[b,b′]ϕK+ > 0 =⇒ Jσ, �[b,b+δ]ϕK+ > 0 .

In the case of b′ ≥ b + δ, it obviously holds. Otherwise, in the case of b < b′ < b + δ,

we proceed as follows. Assume Jσ, �[b,b′]ϕK+ > 0. Then

Jσ, �[b,b+δ]ϕK+

=
1

δ

∫ b+δ

b

Jσ, �[b,τ ]ϕK+ dτ by the definition of �

=
1

δ

(
∫ b′

b

Jσ, �[b,τ ]ϕK+ dτ +

∫ b+δ

b′
Jσ, �[b,τ ]ϕK+ dτ

)

≥
1

δ

(
∫ b′

b

Jσ, �[b,b′]ϕK+ dτ +

∫ b+δ

b′
0 dτ

)

by Prop. 2.5 and b < b′ < b+ δ

=
b′ − b

δ
Jσ, �[b,b′]ϕK+ > 0 . ⊓⊔

B.4 Proof of Thm. 3.5

Proof. We obtain the robustness value Jσ, ϕK+ via the robustness signals [ψ]+σ for sub-

formulas ψ of ϕ. This is done by induction on ψ.

Before we hit an averaged modality we use the algorithm from [11] (described

in §3.1). Note that all the signals that we deal with are finitely piecewise-constant;

by analyzing [11, Thm. 3], it is easy to see that the computation of [ψ]+σ has time-

complexity in O(|ψ||σ|). Furthermore, the size of [ψ]+σ (in the sense of Def. 2.2) is in

O(|σ|).
Once we hit an averaged modality (like 3I or UI ), it is taken care of by Algo-

rithm 1 (for 3I ), Algorithm 3 (for UI ) and their adaptations (for �I and RI ). The

time-complexity of the computation is O(|ψ||σ|), and the resulting signal [ψ]+σ has the

size in O(|σ|). The difference, however, is that the robustness signal [ψ]+σ is no longer

finitely piecewise-constant but is piecewise-linear.

After that we again apply the algorithm from [11] (see §3.1), but now to the input

signal that is finitely piecewise-linear. In this case, the time-complexity as well as the

size of [ψ]+σ is shown to be in O(d|ψ||ψ||σ|) [11, Thm. 3]. The extra factor d|ψ| is due to

the extra timestamped values that arise from two sloped lines crossing each other. ⊓⊔

C The Automatic Transmission Model [17]

The model is given by a Simulink diagram in Fig. 10; therein the block for the digital

controller of the gear is realized as a Stateflow diagram in Fig. 8. An example of the

model’s trajectories is in Fig. 9.
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Fig. 8. The automatic transmission model

from [17]: the Stateflow diagram for the dig-

ital controller of the gear
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Fig. 9. The automatic transmission model

from [17]: a trajectory example

Fig. 10. The automatic transmission model from [17]: the Simulink diagram
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