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Typical applications of marginal structural time-to-event (e.g., Cox) models have used time on study as the time
scale. Here, the authors illustrate use of time on treatment as an alternative time scale. In addition, a method is
provided for estimating Kaplan-Meier–type survival curves for marginal structural models. For illustration, the
authors estimate the total effect of highly active antiretroviral therapy on time to acquired immunodeficiency
syndrome (AIDS) or death in 1,498 US men and women infected with human immunodeficiency virus and followed
for 6,556 person-years between 1995 and 2002; 323 incident cases of clinical AIDS and 59 deaths occurred. Of
the remaining 1,116 participants, 77% were still under observation at the end of follow-up. By using time on study,
the hazard ratio for AIDS or death comparing always with never using highly active antiretroviral therapy from the
marginal structural model was 0.52 (95% confidence interval: 0.35, 0.76). By using time on treatment, the anal-
ogous hazard ratio was 0.44 (95% confidence interval: 0.32, 0.60). In time-to-event analyses, the choice of time
scale may have a meaningful impact on estimates of association and precision. In the present example, use of
time on treatment yielded a hazard ratio further from the null and more precise than use of time on study as the time
scale.

acquired immunodeficiency syndrome; antiretroviral therapy, highly active; bias (epidemiology); causal inference;
confounding factors (epidemiology); proportional hazards model; survival curve; survival time

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; HAART, highly active antiretroviral therapy;
HIV, human immunodeficiency virus; IPTC, inverse probability of treatment and censoring.

In time-to-event data analysis, the epidemiologist must
articulate the event of interest as well as the time origin
and time scale. The ‘‘time origin’’ is the point at which each
individual starts being at risk for the event of interest, and
the ‘‘time scale’’ is the metric on which the risk sets are
constructed and times to event are measured (1). For exam-
ple, in a study where the event of interest is sexually ac-
quired human immunodeficiency virus (HIV), the origin
might be the age of sexual debut, with the associated time
scale being duration of sexual activity.

Choice of origin and time scale (hereafter, collectively
time scale) will not affect estimates of the rate ratio from
Poisson regression models (unless those estimates are strat-
ified by time); in such models, person-time is considered
exchangeable, and the sum of person-years and number of

events are invariant to the choice of time scale. However, the
choice of time scale may affect estimates of the hazard ratio
from Cox proportional hazards models (2, 3). Although the
sum of person-years and number of events both again re-
main invariant, the composition of the risk sets, and there-
fore who serves as a comparator to whom, may differ with
choice of time scale.

In randomized clinical trials where treatment is assigned
at the beginning of the trial, a natural time origin is random-
ization date, and the associated time scale is time since
randomization. Disregarding any run-in period, the time
since randomization coincides with the time on study. Sim-
ilarly, in this setting, the time on study typically coincides
with time on treatment (for at least 1 study arm). In contrast,
in observational cohort studies, the time on study does not
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typically coincide with the time on treatment, though some
have called for such new-user designs (4).

To date, implementations of marginal structural (5) Cox
proportional hazards (6) models in observational cohort
studies have typically used time on study as the time scale
(7–17); these studies have not considered the role of time
scale on estimates of effect (18, 19). Here, we compare the
use of time on study and time on treatment as competing
time scales in marginal structural Cox proportional hazards
models. We also extend time-fixed inverse probability of
treatment weighted adjusted survival curves (20, 21) to al-
low for 1) time-varying inverse probability of treatment and
censoring (IPTC) weights and 2) time on treatment as the
time scale.

MATERIALS AND METHODS

Study population

This analysis used information from the Multicenter
AIDS Cohort Study (MACS) (22) that, beginning in 1984,
enrolled 6,972 homosexual and bisexual men in Baltimore,
Maryland; Chicago, Illinois; Pittsburgh, Pennsylvania; and
Los Angeles, California, as well as from the Women’s In-
teragency HIV Study (WIHS) (23) that, beginning in 1994,
enrolled 3,772 women in New York, New York; Chicago,
Illinois; Los Angeles and San Francisco, California; and
Washington, DC. Every 6 months, participants in both stud-
ies completed an extensive interviewer-administered ques-
tionnaire regarding antiretroviral therapy use and provided
a blood sample for the determination of CD4 cell count and
HIV viral load. Exposures and covariates were updated at
these 6-month study visits, while outcomes were under con-
tinuous monitoring. Positive enzyme-linked immunosorbent
assays with confirmatory Western blots were used to deter-
mine HIV seropositivity. Institutional review boards ap-
proved all protocols and informed consent forms, which
were completed by study participants in both cohorts.

This report focuses on reanalysis (9) of 1,498 participants
who were HIV positive, were free of clinical acquired im-
munodeficiency syndrome (AIDS), and had not initiated
highly active antiretroviral therapy (HAART) at a study visit
by September 1995, just prior to the availability of HAART
in the United States; follow-up began between September
1995 and March 2000. Participants were followed through
April 2002 for primary diagnosis of clinical AIDS or death.
Clinical AIDS was defined by 1993 Centers for Disease
Control and Prevention criteria and required diagnosis of a
clinical AIDS-defining illness; that is, a CD4 count of <200
cells/mm3 or a CD4 percent of <14 by itself was not con-
sidered clinical AIDS (24). Deaths were ascertained by
using death certificate abstractions upon notification and
National Death Index searches, as described previously
(9). Participants who missed 2 consecutive study visits were
classified as dropouts and censored at the date of the last
visit. Participants alive and free of clinical AIDS in April
2002 were administratively censored.

The primary exposure was initiation of treatment with
HAART. The definition of HAART was based on recom-
mendations from the Department of Health and Human

Services and Kaiser Panel guidelines (25) and has been de-
scribed previously (9). Once participants reported HAART
initiation, they were assumed to have remained on HAART
for the duration of follow-up, which correctly classified 94%
of the observed person-time (9).

Statistical methods

We estimated the parameters of a marginal structural Cox
proportional hazards model of the form

kT�xðtÞ ¼ k0ðtÞ3 expða1Xit þ a#pLi0Þ; ð1Þ

where Xit is a time-varying indicator of HAART initiation
prior to week t for individual i ¼ 1 to N and week t ¼ 1 to
Ti from study entry; Ti is the time (in weeks) from
study entry to AIDS or death for participant i;
�x ¼ �xiT ¼ fxi1; xi2; . . . ; xit; . . . xiTg is one of T þ 1 possible
treatment histories under the intent-to-treat assumption,
‘‘once initiated, always treated,’’ namely, never treated
f0; 0; . . . ; 0g to always treated f1; 1; . . . ; 1g; T �x is the po-
tential time from study entry to AIDS or death under treat-
ment history �x, and kT �x

�
t
�

is the potential hazard of AIDS or
death at time t from study entry under treatment history �x,
k0ðtÞ is an unspecified hazard of AIDS or death at time t
from study entry in the reference (i.e., untreated) group, a1

is the log hazard ratio comparing always treated with never
treated, and a#p is the transpose of the column vector of log
hazard ratios for the p components of baseline covariate
vector Li0. This marginal structural model can be estimated
by using IPTC weights Wit (defined in Appendix 1) under
the assumptions of consistency (26, 27), positivity (28, 29),
no unmeasured confounding or selection bias, and correct
model specification as

kWit

T �X ðtÞ ¼ k0ðtÞ3 expðb1Xit þ b#pLi0Þ; ð2Þ

where the superscript Wit indicates that the hazard of AIDS
at time t from study entry for observed treatment history �X,
that is, kT �X ðtÞ, is weighted by Wit, b1 is the log hazard ratio,
and kWit

T �X ðtÞ/kT�xðtÞ, and therefore b1/a1, if the above
stated assumptions are met, as previously described (5, 8).

To accommodate time-varying IPTC weights, we approx-
imate the marginal structural Cox model by a pooled logistic
regression model (30) of the form

logfPrðYit ¼ 1ÞWit=½1 � PrðYit ¼ 1ÞWit �g
¼ d0t þ d1Xit þ d#pLi0; ð3Þ

where Yit is an indicator of AIDS or death in week t for
participant i; d1 is a discrete-time approximation to the
continuous-time hazard ratio; and d1 ffi b1 if the risk of
AIDS or death in any week is less than 10% (31). This
condition is met in our example. Note that if one were to
use the cumulative log-log link function in equation 3, rather
than the logistic link function, the resulting d1 would be
equivalent to the continuous-time hazard ratio, but the dif-
ference due to choice of link function is trivial in our case.
Fitting equation 3 with d0t parameterized by a series of
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indicators for weeks allows the reference group hazard to be
largely unrestricted (only assumed constant within weeks);
we fit equation 3 by parameterzing d0t with a series of in-
dicator variables for 6-month increments in follow-up. Note
that, if one used the cumulative log-log link and parameter-
ized d0t by using an intercept and either the single variable t
or log(t), the resulting model is a discrete-time version of the
Gompertz or Weibull survival model for t, respectively (32).

Under the assumptions of no unmeasured confounding or
selection bias, the IPTC-weighted study population provides
an unbiased representation of the association between expo-
sure and outcome in that population (5). Therefore, 2-
dimensional graphical depictions (e.g., histograms, survival
curves, and so on) contrasting the weighted treatment
groups provide an unbiased illustration of the causal
contrast (20).

Define Qi as time of first exposure (i.e., Qi ¼ t if xit�1 ¼ 0
and xit ¼ 1; otherwise Qi ¼ Ti). Formally, Qi ¼�PTi
t¼1

ð1 � xitÞ
�
þ xiTi . Qi is therefore the time of HAART

initiation for those who are observed to initiate HAART
and is the time to AIDS, death, or censoring for those that
do not initiate HAART. The person-time contributions using
time on study as the time scale are then [0, Qi] among the
untreated and [Qi, Ti] among the treated.

The IPTC-weighted Kaplan-Meier survival curves for the
treated (x ¼ 1) and untreated (x ¼ 0) are then defined as

SxðtÞ ¼
Y
t

1 � dtx
rtx

; ð4Þ

where dtx ¼
PN

i¼1 Wit3Yit31ðXit ¼ xÞ is the weighted
number of events for group x at week t, 1ð�Þ is the
indicator function for the argument d; similarly, rtx ¼PN

i¼1 Wit31ða < t � bÞ31ðXit ¼ xÞ is the weighted risk
set at week t (20, 21), where {a, b} are defined as {0, Qi}
if x ¼ 0 and {Qi, Ti} if x ¼ 1. This is simply an IPTC-
weighted version of the extended (to allow for late entries)
Kaplan-Meier estimator (3) and can be calculated simply as
the extended Kaplan-Meier in the weighted study popula-
tion. The risk sets defined above allow a single individual to

contribute to both untreated and treated risk sets at disjoint
times from study entry.

Now, we redefine the parameter we wish to estimate by
considering time on treatment (i.e., time since initiation of
HAART) V as an alternative to time on study T. Note that V
does not represent baseline covariates. The person-time con-
tributions are then [0, Qi] among the untreated and [Qi � Qi,
Ti � Qi] among the treated. If participant i does not initiate
HAART during follow-up (i.e., XiTi ¼ 0), then Qi ¼ Ti by
definition, and participant i contributes only untreated per-
son-time; otherwise, rewriting the treated time as [0, Ti �
Qi] shows that individual i may contribute to both untreated
and treated risk sets at the same time, in terms of V. For
example, participant i may contribute in the risk set for the
untreated at time 6 months from study entry and in the risk set
for treated at time 6 months from HAART initiation. Under
this alternative time scale, each measured unit of person-time
appears only once in the analysis, although 2 units of person-
time for the same individual may appear in the same risk set.
Furthermore, because each person can contribute only a single
event to the analysis, variance correction for repeated events is
unnecessary. A schematic diagram comparing the 2 time
scales is shown in Figure 1. As shown in Figure 1, this change
in time scale is achieved in practice by ‘‘resetting the clock’’
for participants when they initiate HAART; here, contribu-
tions to untreated person-time are invariant by time scale.

Formally, a time v under time scale V relates to a time t
under time scale T as a function of t, xit, and Qi as
v ¼ ½ð1 � xitÞðtÞ� þ ½ðxitÞðt � Qi þ 1Þ�. A marginal struc-
tural Cox model analogous to equation 1 but using this
alternative time scale V in place of T is

kV �xðvÞ ¼ k0ðvÞ3 expð/1Xiv þ /#
pLi0Þ; ð5Þ

where /1 6¼ a1, except in settings where the choice of time
scale is irrelevant (refer to Discussion). Again, as in equation
2, we estimate / under the assumptions of no unmeasured
confounding or selection bias using IPTC weights, and we
approximate / by using a weighted pooled logistic model
analogous to equation 3. We compared the precision of es-
timated hazard ratios using confidence interval ratios (i.e.,
the ratio of the upper to the lower confidence limit).

Figure 1. Schematic diagram comparing time-on-study time scale and time-on-treatment time scale.
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IPTC-weighted Kaplan-Meier curves for this alternate
time scale are created analogously to equation 4 but, among
the treated, {a, b} are defined as {0, Ti � Qi}. SAS, version
9.1, software (SAS Institute, Inc., Cary, North Carolina) was
used to implement the above-described methods, and code
to implement the IPTC-weighted Kaplan-Meier curves is
provided in Appendix 2. We plot the complement of the
IPTC-weighted Kaplan-Meier survival curves as an estimate
of the cumulative incidence.

In addition to the time scales discussed here, we con-
trolled for calendar time and age in adjusted as well as
weight and structural models using restricted cubic splines
(with knots at the 5th, 35th, 65th, and 95th percentiles).
Control for additional confounders and functional forms
of weight models are described in Appendix 1.

RESULTS

Table 1 shows characteristics at study entry by gender/
cohort for the 1,498 participants. The median age at study
entry was 42 years among men and 36 years among women;
79% of men and 16% of women were Caucasian. About
14% of men and 19% of women entered this study with
CD4 cell counts less than 200 cells/mm3, while 61% and
57%, respectively, had CD4 counts greater than 350

cells/mm3. More women than men (35% vs. 14%) entered
this study with plasma RNA levels less than or equal to 400
copies/mL. During follow-up, 323 incident cases of clinical
AIDS and 59 deaths occurred, a rate of approximately 6 per
100 person-years for the combined endpoint. The remaining
1,116 participants were censored; 77% of those 1,116 were
still under observation at study completion in April 2002.

Figure 2 shows the cumulative incidence by treatment
group with the x-axis being time on study, while Figure 3
shows the cumulative incidence by treatment group with the
x-axis being time on treatment. As noted in Materials and
Methods, the untreated curve is identical in Figures 2 and 3,
and both curves are adjusted for confounding and censoring
by using IPTC weights.

Results from unadjusted, adjusted, and weighted (i.e.,
marginal structural) models are provided in Table 2 for both
time scales. Using time on study, we observed no apparent
benefit of treatment for unadjusted and adjusted models and
a strong beneficial effect for the weighted model. Specifi-
cally, the hazard ratio from the marginal structural model
was 0.52 (95% confidence interval (CI): 0.35, 0.76). These
results replicated previously reported results (9). Previously
published results were as follows: unadjusted hazard ratio ¼
0.98 (95% CI: 0.76, 1.26); adjusted hazard ratio ¼ 0.81
(95% CI: 0.61, 1.07); and weighted hazard ratio ¼ 0.54
(95% CI: 0.38, 0.78). The slight differences are due to dif-
ferences in the coarseness of time categorization.

Using time on treatment, we observed essentially equiv-
alent results in unadjusted and adjusted models and a notably
stronger hazard ratio in the marginal structural model.
However, in contrast to using time on study, with time on

Table 1. Characteristics of 1,498 HIV-positive USMen andWomen

at Study Entry, 1995–2000

Men
(n 5 506)

Women
(n 5 992)

No. % No. %

Agea 42 (37, 46) 36 (31, 42)

Caucasian race 398 78.7 163 16.4

Antiretroviral therapy

None 330 65.2 568 57.3

Monotherapy 61 12.1 260 26.2

Combination therapy 115 22.7 164 16.5

HAART 0 0 0 0

CD4 count, cells/mm3

<50 9 1.8 38 3.8

50–199 61 12.1 150 15.1

200–350 129 25.5 244 24.6

>350 307 60.7 560 56.5

CD4 count, cells/mm3,a 410 (275, 568) 389 (247, 553)

HIV RNA, copies/mL

�400 73 14.4 349 35.2

401–10,000 124 24.5 148 14.9

>10,000 309 61.1 495 49.9

Log10 HIV RNA, copies/mLa,b 4.4 (3.9, 4.9) 4.6 (4.1, 5.5)

�1 HIV-related symptomc 105 20.8 291 29.3

Abbreviations: HAART, highly active antiretroviral therapy; HIV,

human immunodeficiency virus.
a Median (quartiles).
b Among persons with detectable levels (i.e., >400 copies/mL).
c Persistent fever, diarrhea, night sweats, and weight loss.

Figure 2. Inverse probability of treatment and censoring weighted
cumulative incidence by treatment with highly active antiretroviral
therapy (HAART) on time to acquired immunodeficiency syndrome
(AIDS) or death for 1,498 human immunodeficiency virus-positive
US men and women, 1995–2002. Time scale is time on study.

694 Westreich et al.

Am J Epidemiol 2010;171:691–700

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/171/6/691/112897 by guest on 21 August 2022



treatment as the time scale there is a benefit of treatment
apparent in the unadjusted and adjusted models. Specifi-
cally, we observed an unadjusted hazard ratio of 0.70
(95% CI: 0.57, 0.86) and an adjusted hazard ratio of 0.67
(95% CI: 0.53, 0.85). The hazard ratio from the marginal
structural model was 0.44 (95% CI: 0.32, 0.60). All 3 results
using the time-on-treatment time scale were more precise

(i.e., had smaller confidence interval ratios) than the analo-
gous results using time on study as the time scale.

The hazard ratios from the marginal structural models
were calculated by using stabilized weights (refer to Appen-
dix 1), which means that they are conditional, rather than
purely marginal estimates of hazard ratio; these results are
therefore not strictly interpretable as what we would expect
to obtain from a randomized controlled trial. In contrast,
Figures 2 and 3 represent unconditional estimates of the
hazard ratio, and they were drawn by using unstabilized
weights; the marginal hazard ratios corresponding directly
to these figures are hazard ratio ¼ 0.59 (95% CI: 0.38, 0.92)
for time on study and hazard ratio ¼ 0.45 (95% CI: 0.33,
0.62) for time on treatment. As expected, these unstabilized
(purely marginal) estimates have wider confidence intervals
than the analogous estimates calculated by using stabilized
IPTC weights.

Last, we investigated the effect of change of time scale on
constancy of the hazard ratios before and after the median
event time in each time scale (87 weeks under time on study
and 58 weeks under time on treatment). The effect of
HAART on the hazard or death of AIDS increased with time
under both time scales, but the coefficient from the product
term and associated P value were both stronger under the
time-on-treatment time scale (Table 3).

DISCUSSION

The choice of time scale may affect both visual and nu-
merical descriptions of effects in settings in which a time-
varying treatment is subject to time-varying confounding
affected by prior treatment. In the example presented, using
time on treatment as the time scale yielded a 1.18-fold
stronger estimate of the hazard ratio (0.44 compared with
0.52) and a 1.16-fold tighter confidence interval than using
time on study as the time scale. Time-on-treatment results
are closer to what we would expect from a randomized trial
of HAART versus non-HAART. For example, Hammer
et al. (33) reported a hazard ratio of 0.50 (95% CI: 0.33,
0.76) for the effect of HAART compared with dual therapy
for the outcome of AIDS or death. We would expect to see
a stronger effect because we are comparing HAART with
a combination of dual, mono, and nontherapy (34) and be-
cause of the noncompliance reported by Hammer et al. (33).
Thus, in the present example, time on treatment appears to
be a more appropriate time scale for addressing the central
research question.

To date, marginal structural models have typically used
time on study as the time scale. However, there are advan-
tages of using time on treatment as the time scale. Given the
stated assumptions, a marginal structural model estimates
the same parameter one would recover from a fully compli-
ant randomized trial free from dropout. However, using time
on study as the time scale, the marginal structural model
recovers the average hazard ratio across a series of random-
ized trials, with randomization at each sequential timepoint.
In contrast, using time on treatment as the time scale, the
average hazard ratio more closely mimics what one would
obtain in a standard randomized trial with the average
taken over time since treatment initiation, albeit with the

Figure 3. Inverse probability of treatment and censoring weighted
Kaplan-Meier curves for the effect of highly active antiretroviral ther-
apy (HAART) on time to acquired immunodeficiency syndrome
(AIDS) or death for 1,498 human immunodeficiency virus-positive
US men and women, 1995–2002. Time scale is time on treatment
(i.e., time since HAART initiation).

Table 2. Estimated Effect of Highly Active Antiretroviral Therapy on

Time to Acquired Immunodeficiency Syndrome or Death for 1,498

HIV-positive US Men and Women, 1995–2002

Hazard
Ratio

95%
Confidence
Interval

Unadjusted

Time on study 0.97 0.76, 1.24

Time on treatment 0.70 0.57, 0.86

Adjusteda

Time on study 0.81 0.61, 1.06

Time on treatment 0.67 0.53, 0.85

Weighteda

Time on study 0.52 0.35, 0.76

Time on treatment 0.44 0.32, 0.60

Abbreviations: HAART, highly active antiretroviral therapy; HIV,

human immunodeficiency virus.
a Accounting for age, race, sex, baseline and current CD4 count,

baseline and current HIV RNA, follow-up time, calendar time, prophy-

laxis for Pneumocystis carinii, and non-HAART antiretroviral therapy.
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above-stated caveat that the inclusion of baseline covariates
in the final structural model renders the estimate conditional
rather than fully marginal. Moreover, departures from the
proportional hazards assumption may be more scientifically
compelling, or apparent, using time on treatment rather than
time on study as the time scale, as illustrated above.

However, there are many cases when time on study is
biologically meaningful, such as when study time begins
with an acute event of interest, such as a diagnosis of HIV
or an acute myocardial infarction. There are also settings in
which results will be (nearly) invariant to choice of time
scale. Outside the context of marginal structural models,
prior work suggests that, in time-to-event analyses, one
chooses the origin and time scale that are most strongly
associated with the event (2) or that one adequately (i.e.,
flexibly) models such important time scales when using an
alternate time scale (19). In the setting in which the time to
event follows an exponential distribution (i.e., a constant
hazard), the choice of time scale will matter little. When
the origin of the chosen time scale is a strong risk factor for
the event of interest, but unrelated to treatment, differences
in the obtained hazard ratio may be largely due to the non-
collapsibility of the hazard ratio (35, 36) rather than due to
confounding by time.

The present work is subject to limitations. First, defining
time on treatment is complicated if participants move on and
off treatment during follow-up. This complication is similar
to the choice of time scale with repeated events within the
same participant (37). Here, we made an ‘‘intent-to-treat’’
assumption, namely, that participants remained on treatment
after initiation regardless of time scale. This intent-to-treat
assumption renders the complication of participants moving
on and off treatment moot, at the cost of misclassifying 6%
of person-time. Second, typical implementations of mar-
ginal structural models stabilize the IPTC weights using
a subset of measured baseline covariates. Stabilization im-
proves the variance of the final estimates of association, as
was demonstrated here. However, if baseline factors are
used to stabilize the weights, these baseline factors must
then be included in the final structural model to ensure
control of confounding; this inclusion means that the final
model estimates are both conditional on these baseline co-
variates (rather than fully marginal) and imposes the addi-
tional assumption that the inclusion of such covariates is

properly specified in the structural model. Because IPTC-
weighted Kaplan-Meier survival curves are calculated from
the simple weighted study population, one must stratify the
weighted study population curves to take advantage of sta-
bilization by baseline factors. To obtain unstratified Kaplan-
Meier curves that control for confounding due to baseline
and time-varying factors, the epidemiologist may exclude
baseline covariates from stabilization of the IPTC weights.
We took this latter approach to constructing the Kaplan-
Meier curves. Last, there are subtly different specifications
for the effect of calendar time in the structural models under
the 2 time scales; care must be taken when (as in this case)
calendar time is a strong confounder. When fitting a mar-
ginal structural model using pooled logistic regression
(where the time scale is an explicit component of the
model), if one models all time scales simultaneously, then
one can build survival curves based on any time metric
present in the model (38). However, inclusion of multiple
time scales when unnecessary may adversely affect
precision.

This report makes 2 contributions. First, we illustrate
differences in causal effects that may be observed when
using competing time scales in the context of marginal
structural models. Second, we provide a method for dis-
playing IPTC-weighted Kaplan-Meier survival curves ad-
justed for both time-fixed and time-varying confounding
and emigrative selection bias. Both contributions have the
potential to increase understanding of marginal structural
models—the first because time on treatment may be a more
appropriate time scale in many scientific applications,
and the second because prior applications of marginal
structural models have rarely included confounding and
censoring-adjusted survival curves, which help to visually
depict associations.
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APPENDIX 1

Inverse Probability of Treatment and Censoring Weights

We account for measured confounding and emigrative
selection bias in the marginal structural model using stabi-
lized inverse probability of treatment and censoring (IPTC)
weights (5). In general, IPTC weights are defined as
Wit ¼ WX

it3WC
it , where

WX
it ¼

Yt
k¼0

f ½Xikj �Xik�1; �Cik�1 ¼ 0; Li0�=

f ½Xikj �Xik�1; �Cik�1 ¼ 0; �Lik�1�

and

WC
it ¼

Ytþ1

k¼1

Pr½Cik ¼ 0j �Cik�1 ¼ 0; �Xik; Li0�=

Pr½Cik ¼ 0j �Cik�1 ¼ 0; �Xik; �Lik�1� ;

where f ½ � j � � is the conditional density function evaluated
at the observed covariate values for a given participant,
which was assumed to be logistic (9), and �Lik�1 is the
vector of time-varying covariate histories measured up to
week k – 1 including baseline covariates Li0, and Cik is 1 if
participant i is censored because of dropout by week k and
0 otherwise. In our case, the intent-to-treat assumption leads
to a simplification of the treatment history, and the treatment
weights are as follows: if Xit�1 ¼ 1, then WX

it ¼ WX
it�1; else

WX
it ¼

Yt
k¼0

f ½Xikj �Xik�1 ¼ 0; �Cik�1 ¼ 0; Li0�=

f ½Xikj �Xik�1 ¼ 0; �Cik�1 ¼ 0; �Lik�1� :

The covariates included in the weights were as follows:
age and calendar time (both modeled as restricted cubic
splines with knots at the 5th, 35th, 65th, and 95th percen-
tiles), race, sex, CD4 count (baseline and updated), viral
RNA (baseline and updated), use of non-HAART antire-
troviral therapy, use of cotrimoxazole prophylaxis, and
presence of HIV symptoms (reported persistent fever, di-
arrhea, night sweats, or weight loss). All time-varying
variables were lagged 1 visit. For more detail on covariate
selection, refer to reference 9, and for further details on
the estimation of IPTC weights in general, refer to refer-
ence 28. The distribution of the weights was as follows:
mean, 1.03; median, 0.91; first percentile, 0.21; 99th per-
centile, 4.41; minimum, 0.12; and maximum, 28.5. The
mean (minimum/maximum) weights for treated and
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untreated person-time were 1.03 (0.15/28.5) and 1.03
(0.12/10.3), respectively. These data exhibit adequate
positivity, and when weights were truncated at first and
99th percentiles, the hazard ratio changed by 0.01 under
both time scales.

Note that IPTC-weighted Kaplan-Meier curves were
estimated by using alternate weights in which Li0 was
removed from the numerator (but not the denominator)
of both WX

it and WC
it . As a result, and in contrast to

prior analyses (9, 39, 40), models that use these alternate
weights need not include Li0 in the final structural
model. This allows the weights to control for time-fixed
and time-varying confounding, and therefore the
Kaplan-Meier curves drawn from such weighted data
account for both time-fixed and time-varying confound-
ing. A cost of using such weights is a loss in efficiency
because the weights are less stable than those defined
above.

APPENDIX 2

SAS Code for Adjusted Survival Curves

/******************************************************************/
/* Code written by Daniel Westreich and Stephen R. Cole */
/* Released under GNU Public License */
/******************************************************************/
/******************************************************************/
/* Notes: */
/* A. Outcomes occur AFTER time point listed, before next time */
/* point */
/* B. timeunit is the interval by which subsequent DTHM data */
/* elements are organized. Thus, if the timeunit is month, */
/* we assume that for a given pid, the data structure goes */
/* month¼1, month¼2, etc. */
/* C. timeunit count starts at 1, not 0 */
/******************************************************************/

%macro
WeightedCurvesData (data, pid, timeunit, outcome, treatment, weight, type);

* if this is an ’treatment’ KM curve, first reset visit numbers;
%if &type ¼ "treatment" %then %do;

proc sort data¼&data; by &pid;
data __foo; set &data; by &pid;

__lagexp ¼ lag(&treatment);
if first.&pid then __lagexp ¼ &treatment;

data __foo2; set __foo;
__resetflag¼0;if &treatment ne __lagexp then

__resetflag¼1;
data __foo3; set __foo2;by &pid;

retain __reset; if first.&pid then __reset¼0;
if __resetflag¼1 then __reset¼&timeunit-1;

data __foo4; set __foo3;by &pid; &timeunit ¼ &timeunit-__reset;
drop __lagexp __resetflag __reset;

* for calculation of Treatment HRs;
data FinalTreatmentData; set __foo4;run;

* Remove nonessential data from dataset to improve performance;
data __main0; set __foo4;keep &timeunit &outcome &weight &treatment;

where &weight ne .;run;
%end;

* otherwise, keep visit numbers as they are;
%if &type ¼ "study" %then %do;
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* Remove nonessential data from dataset to improve performance;
data __main0; set &data; keep &timeunit &outcome &weight &treatment;

where &weight ne .;run;
%end;

* weight the outcome;
data __main1; set __main0;__wgtoutcome ¼&weight*&outcome;
proc sort data¼__main1; by &treatment &timeunit;
proc univariate data¼__main1 noprint; var &weight &outcome __wgtoutcome;

by &treatment &timeunit;
output out¼__main2 n¼atRisk n¼nTemp1 n¼nTemp2

sum¼sumWgts sum¼totalDead sum¼wgtDead;
data __main3; set __main2;drop nTemp1 nTemp2;

* calculate final KM parameters;
proc sort data¼__main3; by &treatment &timeunit;
data FinalKMData; set __main3; by &treatment &timeunit;

retain km0 kmw;
if first.&treatment and first.&timeunit then

do; km0¼1; kmw¼1; end;
else do;

if km0 ne 0 then km0 ¼ km0*(1-totalDead/atRisk);
if kmw ne 0 then kmw ¼ kmw*(1-wgtDead/sumWgts);

end;
run;
%mend;

/******************************************************************/
/* Additional sample code to invoke macro and display curves */
/* Note that ‘‘treatment’’ can be replaced with ‘‘study’’ in the */
/* invocation below to draw study time scale output curves */
/******************************************************************/

%WeightedCurvesData (temp,pid,visit,event,treatment,weight,"treatment");
goptions reset¼all;
axis1 label¼(angle¼90) order¼(0 to 1 by .2) offset¼(0,0);
symbol1 v¼none i¼steplj c¼black line¼1 width¼2;
symbol2 v¼none i¼steplj c¼black line¼2 width¼2;
proc gplot data¼FinalKMData;

label kmw¼’Weighted AIDS-free survival’;
label visit¼’Years of treatment’;
plot kmw*visit¼treatment / vaxis¼axis1;
run; quit;

/******************************************************************/
/* Additional sample code to calculate treatment hazard ratio */
/* Note that FinalTreatmentData will only be defined if the macro */
/* has been invoked with the ‘‘treatment’’ option */
/******************************************************************/

proc genmod descending data¼FinalTreatmentData;
class pid visit;
title "Treatment time scale";
model event ¼ treatment visit / dist¼bin link¼logit;
weight weight;
repeated subject¼pid / type¼ind;
estimate "Effect" treatment 1 / exp;

run;
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