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Abstract. Atomistic simulation methods are known for timescale limitations in resolving slow dynamical
processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and
creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample
the transition state pathways efficiently and follow the dynamical processes on long timescales. We present
a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin
climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-
level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation
behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite
different areas of condensed matter science, we hope to draw attention to other complex problems where
anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in
terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a
class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking
and cement setting as opportunities for atomistic modeling and simulations.

1 Introduction

Computational science, meaning the use of advanced
computational methods to solve complex problems, has
emerged in recent years to be a highly interdisciplinary
field of science and engineering. In the context of
condensed-matter research, computational science encom-
passes computational physics and computational chem-
istry, both well-established, as well as computational ma-
terials science [1] – a relatively new area which is rapidly
gaining attention. Computational science plays a syner-
gistic role in connecting traditionally distinct disciplines.
This is quite evident in materials research where the cou-
pling of conceptual models and simulations across a wide
range of spatial and temporal scales is becoming increas-
ingly pervasive [2–4].

A longstanding goal in multiscale materials model-
ing and simulation is to probe the atomic-level mecha-
nisms that govern system-level behavior on macroscopic
time scales [5,6]. Our aim in the present perspective is
to describe such a challenge in two case studies: viscous
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relaxation in glassy liquids, a problem of temperature-
dependent stress fluctuations, and structural deformation
in solids, a problem of stress relaxation and defect dy-
namics. Both phenomena involve tracking the system evo-
lution over time periods comparable to laboratory ex-
periments and even beyond. It is widely known that for
these problems the standard method of atomistic simu-
lation, namely, molecular dynamics (MD), is unable to
cope with the slow dynamics, a constraint which has to
do with the microscopic time-steps intrinsic to MD, rela-
tive to anthropological or geological-scale time behavior.
By slow dynamics, we have in mind, the dynamical pro-
cesses associated with a system that gets trapped from
time to time in deep local energy minima and which ex-
hibits long relaxation times. On the other hand, one does
not want to give up the detailed molecular configurations
associated with the system evolution, since access to such
information can be essential to gaining insights into the
underlying atomistic mechanisms. The desire for an atom-
istic method capable of reaching macro time scale, there-
fore, has motivated the development of a number of sim-
ulation techniques, among them, hyperdynamics [7] and
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metadynamics [8–10] – methods designed to accelerate the
sampling of rare events. By the use of history-dependent
bias potentials, metadynamics can enable an efficient sam-
pling of the potential energy landscape leading to the de-
termination of the activation barriers and the associated
rate constants through the transition-state theory (TST).
In this perspective we will describe adaptations of this
class of methods to investigate glassy dynamics [11–13],
and deformation and relaxation behavior in solids [14–16],
and diffusion [15,17,18].

In the study of glassy dynamics our main focus is to
provide a theoretical explanation of the temperature vari-
ation of the shear viscosity of supercooled liquids [19–21].
The super-Arrhenius behavior of the so-called “fragile”
liquids has remained an outstanding issue for the under-
standing of the glass transition. We find that the tran-
sition state pathway (TSP) trajectories sampled by the
autonomous basin climbing (ABC) algorithm [11,12] pro-
vide sufficient details on the local energy minima and sad-
dle points to allow a semi-quantitative interpretation of
the experiments [22] as well as providing insights to a few
universal characteristics of “glass fragility” [23,24].

In the study of stress/creep relaxation in deformed
solids we trace out the TSP trajectories and time evolution
of the system to investigate the underlying atomistic
displacement mechanisms. Our simulations reveal dis-
crete, localized atomic displacements such as diffusive mo-
tions [15,17,18] or surface dislocation nucleation [16] which
appear to be unit processes that may or may not be ob-
served in normal molecular dynamics simulations at strain
rates many orders of magnitude higher [25]. As we discuss
in the next section, very disparate physical problems dis-
play generic features on the potential energy landscape.
Landscape sampling, followed by evaluation of transition
states and rate constants, allows extraction of the under-
lying slow dynamical characteristics.

The paper is organized as follows. In Section 2 we
briefly survey the current methods for sampling energy
landscapes and transition state pathway trajectories. In
Section 3 we describe an algorithm, autonomous basin
climbing, that is a version of the biased potential method
known as metadynamics, and show how TSP trajectories
are used to construct an effective or coarse-grained activa-
tion barrier Q(T ). In Section 4 we describe two methods
for estimating the viscosity η(T ) of supercooled liquids – a
heuristic method using Q(T ), and a network model formu-
lation based on linear response theory. Experimental tests
are presented to bring out new insights concerning strong
and fragile glass-forming liquids. In Section 5 we discuss
entropy corrections through the Adam-Gibbs model to get
an improved estimate of the free energy. In Section 6 we
discuss the concepts of activation volume and activation
entropy, measures of the stress and temperature depen-
dence of Q(T ), and their roles in quantifying the rate
sensitivity in the kinetics of defect nucleation and mo-
bility in crystals. We have developed an associated com-
putational method called the strain-boost simulation [16]
that uses the Eshelby transformation strains [26] of em-
bedded atomic clusters of certain size as boost variables,

so one could “dial in” the activation volume. We contrast
other techniques such as the free-end nudged elastic band
(NEB) method [27,28] and hyperdynamics [7], and also
note the similarity between the Meyer-Neldel compensa-
tion rule and the Adam-Gibbs model. In Section 7 we
discuss how ABC sampling method can be used to inves-
tigate the diffusional stress relaxation in stressed solids.
Lastly in Section 8 we present an outlook that considers
several problems of slow dynamics in the area of materials
ageing.

2 Energy landscape concepts and transition
state theory methods

The atomistic processes that underpin the viscous relax-
ation in glassy materials and defect mobility in solids are
often slow relative to the vibrational timescales of the sys-
tems. Thus theoretical and simulation methods that de-
scribe such slow or infrequent events [29,30] take advan-
tage of this separation of timescales. Goldstein in 1969 [31]
visualized the slow evolution of dynamical systems over a
potential energy landscape or surface (PEL/PES) which
for an N -particle system is represented by the potential
energy function U(r) embedded in a (3N +1) dimensional
hyperspace [29,32]. The 3N dimensional PEL is often
rugged and is decorated with an inordinately large number
of minima and saddle points in most systems of scientific
and engineering interest. Stable or metastable systems are
defined by the local minima given by ∇U = 0 with all the
eigenvalues of the Hessian matrix ∇∇U positive.

In the formal treatment of Stillinger and Weber [33,34],
the local minima, known as inherent structures (IS), are
surrounded by potential energy basins that upon local
minimization will map onto the corresponding inherent
structures (see Fig. 1). While the PEL is itself temper-
ature independent, the configurational space mostly ex-
plored is strongly temperature dependent. Under thermal
equilibrium, the system traverses from one basin to an-
other with a rate that is dependent on the energy barrier
between inherent structures as well as the temperature.
Figure 2 shows a schematic of true and inherent structure
trajectories with the former portraying conspicuous vibra-
tional motion at the two prominent basins. Under driven
conditions, the rate of escape from the basins is further
dependent on the external driving forces which we will
discuss more in Section 7.

The formalism of inherent structures, and more gen-
erally the energy landscape, provides a unified framework
for computing thermodynamic and dynamic properties of
a system. Statistical mechanics delineate the relationship
between free energy, and hence, all the thermodynamic
properties, to the corresponding partition function. For
systems that do not have any significant symmetries such
as glasses, the system partition function can be approxi-
mated as the sum of basin partition functions [35]. For a
canonical ensemble (N, V, T ), the system free energy (F )
then can then be written as [35]

F (T, V ) = −TSconf (〈EIS〉) + Fbasin (〈EIS〉 , T, V ) (1)
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Fig. 1. Schematic of a PEL. The crosses denote the inherent
structures (IS) or local energy minima found by energy min-
imization (steepest descent). The solid line denotes a possi-
ble state-to-state trajectory between two minima. Reproduced
from [29].

Fig. 2. Schematic illustration of the distinction between an
actual (true) trajectory as determined by a molecular dynam-
ics simulation (top panel) and the corresponding trajectory in
the inherent structure (IS) description (bottom panel). Repro-
duced from [29].

where Fbasin represents the basin free energy, Sconf – the
configuration entropy and EIS – the inherent structure
potential energy. Thus, the system free energy is com-
posed of an entropic term that arises from the multiplicity
of inherent structures and a free energy which is charac-
teristic of the energy landscape (denoted by the angular

brackets). The idea of a temperature-dependent charac-
teristic energy 〈EIS〉 is exploited in our work on com-
puting viscosity of supercooled liquids (Sects. 4 and 5).
Note that when the system volume changes, the PEL also
changes. Experiments which are usually performed at con-
stant temperature and pressure, therefore, are best ana-
lyzed through the enthalpic landscape which corresponds
to the (N, P, T ) ensemble. When the thermal energy and
pressure-volume work contributions are small, as in many
applications, system free energy becomes dominated by
the potential energy.

Once the free energy of a system is known, all the ther-
modynamic properties of the system can be calculated.
As evident from equation (1), the thermodynamic proper-
ties are functions of the average inherent structure energy.
Monte Carlo [2] with importance sampling are established
methods for sampling the potential energy landscape very
efficiently. In particular, umbrella sampling [36], local el-
evation [37], parallel tempering [38] and adaptive force
bias [39,40] are cleverly designed algorithms to acceler-
ate the barrier crossings in a PEL. In another scheme,
Wang and Landau [41] proposed to generate the multi-
plicity of states for a given energy E, g(E), to determine
the canonical partition function, and hence all the thermo-
dynamic properties. A key step in the Wang and Landau
algorithm is to continuously update g(E) as the simula-
tion progresses. While detailed balance is not satisfied at
all steps, the algorithm is very efficient for sampling g(E)
directly.

Molecular dynamics with biased potentials can also be
performed to accelerate the sampling of rare events on the
PEL. Grubmüller [42] devised a conformational flooding
algorithm where multivariate Gaussians are introduced in
the potential functions. The purpose of this flooding po-
tential is to modify the free energy landscape to encourage
the system to hop over the potential energy barriers. The
flooding potentials are short ranged such that the barriers
themselves do not interact with each other. The essential
idea is to construct a coarse grained description that is
assumed to be involved with the conformational motion.
The free energy and the thermodynamic properties thus
become solely based on the coarse-grained description.

Single-point sampling of PEL gives the energy minima
but generally does not include any dynamical informa-
tion from the sequence of sampled configurations. Tran-
sition state theory is a theoretical framework which can
extract dynamical information by accessing the rate of es-
cape from one inherent structure to another. Originally
developed by Eyring [43] for gas-phase reactions and later
formulated by Vineyard [44] for solid-state systems, the
rate of transition from basin A to an adjacent basin B is
approximated by

kA→B =
∑

A→B MEPs

∏

all modes i

νA
i

∏

all modes i except MEP

νsaddle
i

× exp

(

EA − Esaddle

kBT

)

(2a)
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where one sums over all dividing surfaces (saddle points)
directly connecting basin A with adjacent basin B. The
minimum energy path (MEP), r(s), is a continuous path in
3N dimensional space that goes through the saddle point,
where ds ≡ (dr ·dr)1/2 is the differential path length, that
connects A and B by steepest descent via the correspond-
ing saddle point. It can be shown that the MEP line tan-
gent approaches a normal mode near minima A and B (the
inherent structures) and near the saddle point. However,
near minima A and B, the normal mode frequency is real,
while the normal mode frequency is imaginary near the
saddle point. If a single saddle point is dominant in (2a)
sum, a lumped frequency factor

ν ≡

∏

all modes i

νA
i

∏

all modes i except MEP

νsaddle
i

≡ νMEP

∏

all modes i except MEP

νA
i

∏

all modes i except MEP

νsaddle
i

(2b)

is often defined, such that the rate can be expressed in the
more familiar form

kA→B = ν exp

(

−
∆E

kBT

)

, (2c)

where ∆E is the saddle point energy relative to the basin
A. In (2b), νMEP is the normal mode frequency along the
MEP line tangent at A: it is a physical attempt frequency
along the MEP, typically of the order of the Debye fre-
quency (1012/s). However, the lumped product ν in (2b)
and (2c) can take on a great range of values, from some-
where near the Debye frequency (1012/s), to as high as
1036/s [45] that is faster than any physical timescale of
the system, due to a large activation volume (see Sect. 6).
Unlike thermodynamic quantities which depend mostly on
the inherent structure energies, dynamical quantities are
dependent on the potential energy barriers ∆E and vibra-
tional free energy barriers (reflected in ν) that describe the
connectivity of the inherent structures.

Methods that can determine the saddle point(s) and
the MEP(s) between two basins fall into two categories.
In the first one, methods such as NEB [27] converge to an
MEP with two known basins. Methods such as dimer [46]
and activation relaxation technique (ART) [47], on the
other hand, can predict nearby inherent structures as
well as the best estimate for the transition pathway be-
tween them. We briefly describe ART which was proposed
by Barkema and Mousseau [47] for simulating energy-
minimized structures specifically for glasses. In the first
ART step, the configuration is moved (activated) to the
local saddle point, and in the next, it is relaxed to the new
minimum. First a single atom is displaced along a random
direction and then the configuration is forced to climb to

the nearby saddle point through an iterative approach us-
ing Levenberg-Marquardt (LM) extremization [48] which
is a mixture of steepest-descent and second order Hessian
evaluation. A cluster or all atoms can be forced to move
collectively at the beginning, but they generate several
spatially separated events which then become difficult to
disentangle. Hence, a single atom displacement is usually
preferred. A direct LM implementation is expensive for
large systems. Barkema and Mousseau have computed a
local Hessian which contains only the 3×3 blocks along the
diagonal of the full Hessian and have reported fairly good
accuracy. Note that there are no general methods that can
locate all the saddle configurations around a minimum. In
this respect, different methods such as dimer and ART
can potentially give different saddle point configurations
depending on the physical system.

In the hyperdynamics formulation of Voter [7], a non-
negative bias potential ∆U(r) is added to the original po-
tential surface U(r). Assuming TST holds and there are
no correlated events, hyperdynamics preserves the correct
Markovian branching statistics of state-to-state (IS–IS)
evolution with the modified potential. Significant accel-
eration or boost can be obtained which is a function of
the biased potential that is set to zero at the dividing sur-
face (between two basins) to be compliant with TST. In
the original formulation, a Hessian based technique was
employed for constructing the biased potential which was
found to be computationally expensive. Local bias poten-
tials such as the bond-boost method [49] and the strain-
boost method [16] have been shown to be computation-
ally less expensive in subsequent investigations. In recent
years, hyperdynamics have been reformulated to work on
entropic barrier problems where naive TST is not appli-
cable [50].

Metadynamics [8–10,51] is an approach that utilizes
the idea of coarse or collective variables which are func-
tions of the system configuration (r) that have a reduced
dimensionality [52,53], along with the idea of Grubmüller’s
conformational flooding [42], and the algorithm of Wang
and Landau [41]. In this algorithm, the properly identified
collective variables, such as the potential energy of the
system [54–56], evolve in time under a history-dependent
potential which is generally constructed as a sum of
Gaussians along a trajectory [8–10,51]. Gaussians mod-
ify the PEL as the simulation progresses and enable the
system to overcome the energy barriers and sample the
PEL very efficiently. Originally developed to reconstruct
the underlying free-energy landscape of a system, it can be
also used as a transition-state pathway sampling technique
to determine saddles, transition states and rate constants.

The most distinguishing feature of metadynamics is
the way in which the external bias potential is formulated.
This potential is history-dependent in that the bias at any
step in sampling depends on the previous part of the tra-
jectory that is being sampled [57]. For recent reviews of
the theory, formulation of collective variables, and chem-
ical and biomolecular applications of metadynamics, see
references [9,10].
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3 Transition state pathway (TSP) sampling
with ABC algorithm

In this section we discuss an adaptation of metadynam-
ics [8–10,51,57] to calculate the shear viscosity of deeply
cooled liquids [11]. For sampling the potential energy
landscape, the algorithm employs a series of activation-
relaxation steps. Suppose the system initially lies in a local
minimum energy state. An activation step is first applied
by imposing an energy penalty function, chosen to be a
Gaussian [8–10], followed by a relaxation step in which
the entire system is relaxed by energy minimization. The
cycle is repeated until the system finds itself in a new local
minimum as depicted in Figure 3.

The ABC algorithm comprises of the following six
steps [11]. In Step 1, an initial structure corresponding
to a local energy minimum is selected. An energy penalty
function Φk

P is then added to the original potential U in

Step 2, ΦK
P = U +

∑K
k =1

Φk
P (K = 1, initially), followed

by minimization of the modified potential ΦK
P in Step 3.

During the minimization process, the center of mass of
the system is fixed to prevent any drift. In our simula-
tions, a Gaussian Φk

P (r) = W exp
[

−(r − r
k
min)2/2σ2

]

is

chosen as the energy penalty function, with r
k
min as the

relaxed atomic configurations at the kth energy minimiza-
tion step. The parameters W and σ are constants which
determine the strength and the width of the Gaussian, re-
spectively. Steps 1–3 are then repeated, with the penalty
function accumulated, until a new local minimum is de-
tected in Step 4. Note that if the system does not climb
out of the local energy basin, there will be a difference
between original potential U and the modified potential
at r

k
min. Thus a new IS is identified when the difference

vanishes, along with the criterion ∇U = 0. Notice that
the PES which is modified is not a static quantity, but
rather it evolves along the sampling trajectory. So long as
the penalties are not removed during the sampling, the
system is discouraged from returning to any of the local
minima previously visited. Henceforth we dub this algo-
rithm autonomous basin climbing (ABC) for its ability
to sample complex potential energy landscapes and es-
cape steep basins through cumulative addition of energy
penalty function

(
∑

Φk
P

)

.
In Step 5, the saddle-point energy and the correspond-

ing atomic configurations are found by backtracking along
the energy minimization path. Though approximate, this
method gives reasonable saddle configuration and energy.
The ABC algorithm has been tested on a problem of
atomic diffusion on a metal surface [58] for which known
results are available [7,59,60]. This test is instructive for
optimizing the choice of the Gaussian width σ and height
of the penalty function W [11]. The ABC algorithm is
shown to correctly predict the knock-out mechanism of
surface diffusion in a single run which is significantly faster
than comparable methods. And finally in the last step,
Steps 1–5 are repeated until sufficiently large tracts of
potential energy landscape is sampled. Algorithmic im-
provements can be made on the sampling technique by
combining ABC algorithm with methods such as parallel

Fig. 3. Schematic illustration of potential energy landscape
sampling in the metadynamics/ABC algorithm. Original po-
tential and the modified potential with penalty functions are
denoted by U and ΦK

P , respectively. A cumulative penalty func-
tion

∑

Φk
P is imposed at each step in the activation-relaxation

sequence. As depicted, the system is first pushed out of the first
potential energy basin by the cumulative penalty function, into
the second by crossing the lowest saddle barrier. The process is
repeated as the system proceeds to visit the neighboring energy
basins. Reproduced from [14].

tempering [10,38], along with identifying the saddle points
through techniques such as nudged elastic band (NEB)
method [27].

In Figure 4, we show the energy minima and energy
barriers of a system of 100 atoms interacting through a
binary Lennard-Jones (BLJ) potential model [61,62] sam-
pled with the ABC algorithm [11]. This system has been
earlier investigated for its slow viscous response [11]. The
binary alloy consists of two types of atoms (A and B)
with the concentration ratio A:B = 4:1. The interac-
tion between atoms α and β is described by uαβ(r) =
4εαβ[(σαβ/r)12 − (σαβ/r)6], where εAA = 1.0, εAB/εAA =
1.5, εBB/εAA = 0.5, σAA = 1.0, σAB/σAA = 0.8, and
σBB/σAA = 0.88. The potential is truncated and shifted
to 0 at 2.5σαβ. The parameters of the penalty function
takes the values, W = 1.0 and σ2 = 0.1. As shown in Fig-
ure 4, the trajectory is an open-ended sequence of alternat-
ing minima and saddle points, each of which is determined
by a series of activation-relaxation steps described ear-
lier. The irregularity of the fluctuations in the trajectory,
and the appearance of well-separated metabasins indicate
a rough energy landscape that is associated with fragile
materials [21]. From such data one can construct other
forms of PES representations. For example, disconnectiv-
ity graphs [63] and tree diagrams [32], have been used to
describe the connectivity of the local minima through the
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Fig. 4. A TSP trajectory for the BLJ supercooled liquid
state [61,62] generated by the ABC algorithm. The inset shows
the definition of the activation barrier ∆Eij as the system
escapes from inherent structure i to inherent structure j, as
∆Eij ≡ Es − Ei where Es is the energy of the characteris-
tic saddle point configuration between i and j, and Ei is the
energy of state i. The ABC algorithm generally evaluates the
lowest saddle between i and j. This is the essential output of
the simulation that is used to estimate the structural relax-
ation time, and hence, the shear viscosity of the system. Also
note that ∆Eij �= ∆Eji. Reproduced from [11].

saddle points. For the trajectory shown in Figure 4, the
corresponding disconnectivity graph and potential profile
are given in Figure 5. The profile is consistent with our
previous observation on the roughness of the underlying
energy landscape.

Relative to the original formulation of metadynam-
ics [8] the ABC algorithm is different in the following
aspects in its initial development and application to su-
percooled liquids [11–13]. In ABC the bias potential acts
on all the atomic degrees of freedom in the system. Clearly
one can also apply the potential only to a subset of de-
grees of freedom (see, for example, the ad-atom diffusion
benchmark study in Ref. [11]). The formulation of collec-
tive variables in metadynamics has been extensively dis-
cussed recently [10]. It is noted that the self-accumulated
boost potential can be applied continuously to collective
variables during an MD simulation through a Lagrangian
formulation or by acting directly on the microscopic coor-
dinates of the system. In the ABC implementations dis-
cussed here, the bias potential is used in energy minimiza-
tion calculations as opposed to dynamic simulations. This
too is not an inherent limitation. In the outlook section
we will comment further on the relations between ABC
and other sampling methods currently in use.

4 Shear viscosity of supercooled liquids:
fragile temperature scaling

Abundant experimental data exist that show a sharp
increase in the shear viscosity of glassy liquids, η(T ),

Fig. 5. Disconnectivity graph [12] of a supercooled liquid de-
scribed by a binary Lennard-Jones potential model [61,62] (up-
per) and corresponding potential energy profile [12] (lower).
The topographical features of the disconnectivity graph indi-
cate a rough potential energy landscape. Reproduced from [12].

over a small range of temperature decrease [19–21]. Ex-
plaining this super-Arrhenius behavior in terms of in-
termolecular interactions, on the other hand, is a long-
standing challenge. A topic which is still of current in-
terest is the origin of “glass fragility”, the onset of
super-Arrhenius temperature dependence in certain glass-
forming liquids [19,21,29,64]. To address this issue we have
applied the ABC sampling technique to obtain TSP tra-
jectories in simple liquids that have been quenched to tem-
peratures in the supercooled region, and calculated η(T )
using the statistical information on local energy minima
and saddles from the trajectories. Two approaches were
developed, both involving TSP trajectories as input. One
is a heuristic approach in the spirit of transition-state the-
ory where η(T ) is governed by a temperature-dependent
activation barrier Q(T ) which is constructed from the TSP
trajectories. The other is a modification of the Green-
Kubo linear response theory where the stress correlation
function is obtained from the solution to a master equa-
tion in which the transition probability is specified by the
TSP trajectories. Using the Q(T ) formulation the temper-
ature variations of η(T ) has been predicted for two models
of intermolecular interaction, one appropriate for fragile
liquids and the other for strong liquids. As we will see
below fragile versus strong temperature scaling character-
istics can be given a unified interpretation. The modified
Green-Kubo formulation gives results for fragile liquids
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Fig. 6. Density of states surface in the plane of the two vari-
ables, the activation energy Q and the well depth of a local
energy minimum, in the statistical analysis of the TSP tra-
jectory shown in Figure 4. The “ridge” on this surface traces
out a Q-EIS correlation (in the sense of high probability) that
goes into making up of the temperature-dependent activation
barrier (the single-path approximation). Reproduced from [11].

that can be benchmarked against direct molecular dynam-
ics simulation in the high temperature range, and results
in the low temperature range that can be compared to
experiments.

The coarse-grained activation barrier Q(T ) is con-
structed by performing a statistical analysis of the TSP
trajectory data shown in Figure 4. We discuss here only
the basic idea of the coarse graining and leave the details
to the original work [11]. The analysis begins with defining
the activation free energy required to go between an arbi-
trary pair of local energy minima, as resembled by ∆Eij in
Figure 4. In an ensemble of sampled trajectories, the value
∆Eij is not unique statistically speaking, because there
can be different pairs of minima connected by essentially
the same value of activation energy. Such degeneracy ap-
plies also to the energy of the initial local minimum; there
can be a number of Em

j having the same value, say Ei.
By considering all possible ways of connecting pairs of lo-
cal minima, we generate from Figure 4, a two-dimensional
surface (density of states) in the variables Q and Ei. This
result is shown in Figure 6.

One sees on this surface a “ridge” of high density of
states, the projection of which onto the Q-E plane gives
a function Q(EIS). Physically Q(EIS) describes the varia-
tion of a coarse-grained (effective) activation energy with
the initial inherent structure potential energy of system
(see Eq. (1)). Qualitatively one can see that if initially
the system is in a relatively shallow local potential en-
ergy minimum, only low activation energy is needed for
the system to escape. On the other hand, if the system is
initially in a deep local minimum, the activation energy
then rises considerably. In effect our analysis amounts to
constructing the probability distribution, ρ(Q; EIS) of the
activation energy Q required by the system to escape from
its initial state with energy EIS. The first moment of the
distribution, Q(EIS), is the most probable value which

Fig. 7. Variation of average inherent structure potential en-
ergy of a quenched liquid with the quench temperature for
the binary Lennard-Jones model [61,62], both expressed in
terms of the glass transition temperature Tg [11]. Note the
sharp decrease in EIS when temperature decreases to the range
T/Tg ∼ 2. This indicates that in a liquid supercooled to tem-
peratures below 2Tg, the system is likely to encounter signif-
icantly deeper energy minima than those encountered at the
higher temperatures. Reproduced from [11].

varies with Ei. For the problem of viscosity of supercooled
liquids, we seek a coarse-grained activation barrier, Q(T )
which depends on the temperature of the supercooled liq-
uid T . We obtain Q(T ) from Q(EIS) by a variable transfor-
mation using a relation from the inherent structure the-
ory of liquids [33]. This relation, shown in Figure 7, is
between the energy minima (inherent structure) obtained
by quenching the system and the temperature T at which
the “quenching” (energy minimization) is initiated. Fig-
ure 7 allows every value of EIS in Q(EIS) to be replaced
by T . The resulting Q(T ) is given in Figure 8.

One should notice the simple behavior of the three re-
lations in this analysis Q(EIS), EIS(T ) and Q(T ). We have
already mentioned the increase of Q(EIS) as the initial lo-
cal minimum reaches certain depth. Figure 7 shows a char-
acteristic temperature below which the average quench
energy becomes sharply lowered. Together these two rela-
tions combine to give an activation barrier which is small
and constant at high temperatures and rises steeply when
temperature is ∼2Tg and below. Thus the behavior Q(T )
has two components, one associated with activated state
kinetics (Fig. 6) of overcoming barriers, and the other from
the temperature distribution of local energy minima which
is thermodynamic in nature (Fig. 7). We now examine the
validity of these calculations and check whether such be-
havior is also seen in other liquid models.

4.1 Green-Kubo theory of linear response: network
model and master equation approach

In linear response theory (Green-Kubo formalism) [65,66]
transport coefficients of fluids are expressed as integrals of



278 The European Physical Journal B

Fig. 8. Temperature-dependent effective activation barrier
Q(T ) for the binary Lennard-Jones model [61,62] obtained by
cross correlation of Figures 6 and 7 [11]. The result shows a
striking behavior, low and constant barrier for temperatures
above ∼2Tg and a steep rise to a high barrier (by a factor of
about 20) over a narrow temperature range, where it appears
to level off. Reproduced from [11].

time correlation functions. The shear viscosity η is given
by the time integral

η(T ) =
Ω

3kBT

∞
∫

0

〈σyz(t)σyz(0) + σxz(t)σxz(0)

+σxy(t)σxy(0)〉 dt (3)

where Ω is the volume of the simulation cell maintained
at temperature T , and the shear stress tensor is

σxy =
1

Ω

⎡
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∑
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j +
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∑
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rx
ijF
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ij

⎤
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where F is the force between two atoms i and j, r is the
position vector and v is the velocity. For simplicity we sup-
press the superscript xy and introduce the time-dependent
shear stress autocorrelation function S(t) = 〈σ(t)σ(0)〉. In
dense gases and normal liquids S(t) decays on the micro-
scopic time scale of molecular collisions, therefore it can
be readily evaluated by molecular dynamics (MD) simu-
lations. In the supercooled regime S(t) no longer decays
on the timescale of intermolecular collisions and MD be-
comes ineffective. To overcome this difficulty we resort to
two formulations of activated-state kinetics, both making
use of the TSP trajectory data generated by the ABC al-
gorithm. The formulations are not unrelated in that one
may be regarded as a limiting case of the other.

Accordingly we follow the Green-Kubo formalism but
do not use MD as in previous studies. Instead we ana-
lyze S(t) by treating basin hopping as a random walk on
a Markov network of nodes [13]. We imagine the system

is able to sample a number of deep minima within the
timescale of the calculation, so the average macroscopic
properties such as the viscosity can take on steady state
values. We also assume the activation barriers for hopping
are sufficiently high compared to kBT , and the energy dis-
sipation sufficiently efficient that after each hop the system
loses memory of its previous history. Under these condi-
tions we may take the hopping rate from nodes i to j to
be given by harmonic transition state theory,

aij = ν0 exp (−Qij/kBT ) (5)

where ν0 is a characteristic attempt frequency, and Qij the
activation free energy for hopping from state i to state j.
In the Markov network model the stress correlation func-
tion can be expressed as a sum of contributions, one from
each node [13]

〈σ(t + τ)σ(t)〉 =
∑

i

Piσigi(τ) (6)

where Pi is probability the system is on node i, σi is the
shear stress on node i, and gi(τ) is the expectation value of
the shear stress at time t = τ given that the system was at
node i at t = 0 (therefore the initial system stress would be
σi). One may regard gi(τ) to be the time-dependent stress
propagator for node i. Note that the stress correlation
function is the product of σi and gi(τ) averaged over all i.
The calculation of η(T ) according to equation (3) therefore
becomes a matter of evaluating the summation over all
nodes as given by equation (6).

Under the assumption that node hopping is a Markov
process [67,68] (successive hopping rates are independent
of each other), one can set up a “balance” or conservation
relation for gi(τ) in the form,

gi(τ) =

∫ τ

0

dτ ′si(τ
′)

∑

j

aijgj(τ − τ ′) + si(τ)σi (7)

where si(t) = exp(−ait) is the probability that the sys-
tem will stay at node i during time t, and ai =

∑

j aij is
the rate at which the system will leave node i. The first
term in equation (7) is the contribution to the stress at
time τ from the process where the system stays at node
i from t = 0 to t = τ ′, hops to node j at time τ ′, and
evolve further during the interval τ − τ ′. The second term
is the contribution from the process where the system re-
mains at node i during the interval τ . Equation (7) is
a time integral equation which can be readily solved by
Laplace transform. The solution is particularly straight-
forward because one is interested only in the time integral
of the propagator gi(τ) as indicated in equation (3). The
result is

η(T ) =
Ω

kBT

∑

i

Piσi
(A(ω = 0+)−1

σ)i

ai
(8)

where A(ω) is the matrix Aij ≡ δij −
aij

ω+aj
(by defi-

nition aii ≡ 0), and σ is the vector of inherent stress
(σ)i = σi. One may regard A as a dimensionless
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frequency-dependent resolvent matrix describing the cou-
pling between nodes with appropriate modulation associ-
ated with individual hopping rates. Equation (8), to our
knowledge, is a new way of calculating the viscosity in
terms of the nodal activation energy Qij (which specifies
aij), and the energy of the nodes, Ei. In equation (8), σi

denotes the shear stress at node i and Pi, the canonical
probability distribution is given by

Pi =
exp (−Ei/kBT )

∑

j

exp (−Ej/kBT )
. (9)

Comparing equations (3) and (8) one sees the formulation
of the network model effectively replaces the time integral
of the stress correlation function by a nodal average of the
product of two stresses multiplied by (ai)

−1. Since ai is
the rate of leaving node i, its reciprocal is the residence (or
relaxation) time of node i. Physically, equation (8) shows
the viscosity is essentially the product of a shear modulus
and a shear relaxation time.

Equation (8) also provides a basis for a heuristic cal-
culation where one assumes all the activation energies be-
tween nodes can be lumped into a single effective activa-
tion barrier Q. Consider the special case of a two-state
model, where P1 = P2 = 1/2, σ1 = −σ2 = σ0,

a12 = a21 = ν0 exp (−Q/kBT ) .

Then equation (8) reduces to

η = σ2
0ν−1

0 exp (Q/kBT ) . (10)

This limiting case provides a connection between the net-
work formulation under discussion and a heuristic model
to be introduced next.

4.2 Heuristic model of effective activation barrier

Equation (10) is in the form of an expression that has been
widely used to analyze experimental data on viscosity [11],

η(T ) = η0 exp[Q(T )/kBT ]. (11)

This expression was first used by Andrade as a two-
parameter formula to describe liquid viscosities. The pref-
actor η0 and the activation barrier Q were treated as fit-
ting constants. We will use equation (11) in the opposite
way. Instead of fitting experimental data we will use equa-
tion (11) to calculate the viscosity using the coarse-grained
activation barrier Q(EIS(T )) which we have just derived
earlier in this section (see Fig. 8). We will henceforth re-
fer to this approach the heuristic model of shear viscosity.
Equations (8) and (11) are therefore two complementary
formulations to calculate η(T ), with both depending on
TSP trajectories as the basic input. Both calculations are
predictive in that only a knowledge of the interatomic in-
teraction potential is needed to determine the temperature
variation of η(T ). However, as we will now discuss, for the
purpose of testing the numerical results from equation (8)

or (11) against molecular dynamics simulations or exper-
imental data, a normalization is unavoidable because of
the prefactor in the hopping rate, the attempt frequency
ν0 in equation (5) needs to be specified. This degree of
freedom is rather standard in transition state theory cal-
culations. The normalization amounts to choosing a value
for ν0, or η0 in equation (11) [11]. We will see that so long
as a reasonable value is taken, ν0 ∼ 1011 s −1, the precise
value is of no importance.

The network model and heuristic formulations will be
tested in two ways. The first will be to compare the re-
sults with those obtained independently by Green-Kubo
molecular dynamics, which is feasible only at low viscosity
values (high temperature). Nonetheless, this verification
is significant because all the results are calculated using
the same interatomic interaction model, so the issue of
whether the interaction model is valid therefore does not
arise. The second test will be a comparison with exper-
imental data in the intermediate to high viscosity range
(1–1012 Pa s). In this comparison one needs to keep in
mind that the atomistic calculations are performed using
the binary Lennard-Jones (BLJ) model potential [61,62]
which does not necessarily describe any real liquid. The
first test will bring out the accuracy of the two formula-
tions against what is believed to be the correct method of
calculation, namely, the molecular dynamics (MD) simu-
lation results, so long as the temperature range is in the
region where molecular results are reliable. This is impor-
tant for appreciating the nature of the heuristic formu-
lation, as a limiting case of the network model formula-
tion. The second test will establish the extent to which
the present formulations are able to describe the observed
temperature variation of the viscosity of supercooled liq-
uids in the region most relevant to the understanding of
the nature of the glass transition. This direct validation
has not been previously demonstrated to our knowledge.

4.3 Viscosity at high temperatures: comparison
with molecular dynamics simulations

At temperatures near the normal liquid range the viscosity
values are low enough for conventional MD to be effective
in determining η(T ) from equation (3). We have performed
standard MD simulations using a periodic cubic simula-
tion cell containing 500–2048 atoms. After equilibration
is attained, typically in 100 000 time steps, the simulation
is allowed to proceed for a buffer period of 10 000 steps
without any temperature control. The stress autocorrela-
tion function is then averaged over 2000 sets in the NVE
ensemble and 8–12 independent runs.

Figure 9 shows the MD results with the viscosity and
the temperature expressed in reduced units [11].

In implementing equation (8) we take each local min-
imum given by the TSP trajectory in Figure 4 to be the
energy of a node, and the transition frequency aij in equa-
tion (5) is then specified by the activation barrier ∆Eij

as labeled in Figure 4. In implementing equation (11) we
take the effective activation barrier Q(T ) to be the result
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Fig. 9. Benchmarking viscosity results given by the heuris-
tic formulation (dashed line) and network model (solid line)
against linear response (Green-Kubo) theory with MD simula-
tions (crosses). All three results are normalized at T = 1 (in
reduced unit) [11]. MD and network model results are seen to
be in close agreement. Overestimate of the activation barrier
in the heuristic model can be attributed, at least in part, to
the single path approximation (see the discussion of Fig. 6).
Reproduced from [11].

shown in Figure 8. To put the network model and sin-
gle path approximation results in the form for comparison
with MD we normalize all viscosities at T = 1. Figure 9
shows that the network model matches well with the MD
data. This means our formulation of the Green-Kubo for-
malism to incorporate activated state kinetics correctly
describes the temperature variation of the viscosity as de-
termined by the Newtonian dynamics. In contrast, the
heuristic single path approximation (SPA) formulation is
seen to give a temperature variation indicating Q(T ) is
rising too strongly with decreasing temperature. This is
actually not surprising given what we have noted about
the single path approximation; indeed one should expect
Q(T ) in Figure 8 to be only an upper-bound estimate.
Based on the comparison shown in Figure 9 we attribute
the difference between the network model and SPA to arise
from the different ways of coarse graining the TSP trajec-
tory inherent in the two formulations.

4.4 Viscosity of viscous liquids: calculations
and experiments

In comparing the network model and SPA results with ex-
perimental data we adopt a different normalization from
the preceding comparison with MD. Recall that the nor-
malization amounts to assigning a numerical value to the
frequency ν0 in equation (5), or the prefactor η0 in equa-
tion (11). Given that the experimental data for a number
of fragile liquids all extrapolate at high temperature to a
viscosity of 10−5 Pa s, approximately, (see Fig. 10) it seems

Fig. 10. Comparison of temperature variation of calculated
and measured shear viscosity (in absolute units) of glass-
forming liquids, with T normalized by Tg [11]. Experimental
data are represented by the cross-hatched area, and results of
the heuristic formulation and network model calculation are in-
dicated by the dashed and solid lines respectively, with all three
normalized at a viscosity of 10−5 Pa s in the high-temperature
limit. For the calculations Tg is taken as 0.37 in reduced unit.
Reproduced from [11].

appropriate to use this value as the high-temperature limit
in normalizing the network model and SPA results. In Fig-
ure 10 the two theoretical results for η(T ) are now shown
in absolute units along with a collection of experimental
measurements on fragile liquids [22]. In this figure temper-
ature is scaled against Tg, the glass transition temperature
defined operationally as η(Tg) = 1012 Pa s.

For the experimental data the Tg of each liquid is
of course known, while for the two theoretical curves we
use the Tg value of 0.37 in reduced unit (temperature at
which the SPA model predicts a viscosity of 1012 Pa s) [11].
Since there are no other viscosity calculations giving re-
sults anywhere near 1012 Pa s for the BLJ model (or any
interatomic potential for that matter), there is no way
to directly validate our value of Tg from a viscosity per-
spective. From thermodynamic considerations, the Kauz-
mann temperature, which can be assumed to be close
to Tg, of BLJ system is evaluated to be 0.32 approx-
imately [69]. This difference can be resolved by noting
that the small size of the system employed with ABC
algorithm (employing few hundreds of atoms), generally
overestimates relaxation times and hence, the correspond-
ing transport coefficients [70]. There is also an estimate
of the mode-coupling theory temperature Tc for the BLJ
model, Tc = 0.435 [62,71]. This would give a value for
the ratio Tc/Tg ∼ 1.2 which is consistent with a general
rule-of-thumb [22]. In comparing the network model and
SPA with experimental data on fragile liquids we are pri-
marily interested in understanding the characteristic non-
Arrhenius behavior of these liquids. Figure 10 shows the
overall comparison, where the range of experimental data
is indicated by a shaded band.
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Fig. 11. Comparison of calculations, heuristic formulation
(dashed line) and network model (solid line), with experimen-
tal data (various symbols), with viscosity and temperature re-
duced using three parameters to obtain a universal curve [13].
Reproduced from [13].

In the high-temperature limit η(T ) starts out to be
rather temperature insensitive, and as temperature de-
creases the viscosity increases gradually until a character-
istic temperature is reached. Below this temperature η(T )
increases in a super-Arrhenius manner. Both the heuris-
tic model and the network model results display this be-
havior qualitatively, while they differ in the quantitative
manner in which the transition from Arrhenius to super-
Arrhenius variation occurs. In the heuristic model results
the super-Arrhenius behavior sets in too early (overesti-
mate of characteristic temperature) and also somewhat
too strongly relative to the experimental band and the
network model results. This feature is consistent with
what we have seen in the previous test against MD sim-
ulations. The extent of the agreement between the net-
work model and experiments may be considered satisfac-
tory given that the interatomic potential model used in
the calculations is not known to correspond with any real
fragile liquid. The dataset shown in Figure 10 contains
7 liquids. A larger dataset, containing 15 liquids, has been
analyzed to extract an effective activation barrier using
three scaling parameters. Figure 11 shows the temperature
variation of the activation barrier thus extracted. In the
limit of high temperature the extracted barrier is scaled
to be zero and remains temperature insensitive until T
approaches T ∗ [11,13], one of the three scaling parame-
ters. Below T ∗ the barrier increases sharply. As a result
of the scaling, most of the data points fall onto a univer-
sal curve. Results of the heuristic and the network model
formulations are also shown in Figure 11, fitted to the

Fig. 12. Comparison of shear viscosity of liquid silica calcu-
lated using the heuristic formulation (solid red curve I) with
experimental data [22] (closed blue circles) [12]. Also shown are
results for fragile liquids, calculation (dashed curve II) and ex-
perimental data (various symbols). Inset shows the correspond-
ing Q(T ) for the two liquid models, same format as Figure 8.
Reproduced from [12].

same mathematical form. In this way of comparison the
network model is seen to be in quite good agreement with
experiments, particularly in the steepness of the activation
barrier increase [13].

We have extended the ABC sampling of TSP trajec-
tory, the statistical analysis to determine Q(T ), and the
calculation of η(T ) to a potential model for liquid SiO2,
which is well-known to be a strong glass former [12].
Figure 12 shows the predicted viscosity compares very
well with experiments, both showing a clearly Arrhenius
temperature variation in the range where measurements
could be made. To contrast this behavior with the super-
Arrhenius variation that characterizes the class of fragile
liquids, the previous results for the binary Lennard-Jones
potential and the experimental data of 7 fragile liquids are
plotted again. To see further the origin of the strong ver-
sus fragile temperature scaling, the corresponding coarse-
grain activation barriers Q(T ) for the two potential models
are shown in the inset in Figure 12.

Assuming for the moment the theoretical curves are
accurate enough, we note that the activation barriers for
strong and fragile liquids share a similar structure which is
sketched schematically in Figure 13. The essential features
of this structure are the limiting values of high and low
activation energies at QH and QL, and a smooth interpo-
lation across an intermediate temperature range bounded
by TL and TH . The structure depicted in Figure 13 sug-
gests the following physical description. When the system
is evolving at temperatures above TH , it encounters only
shallow potential wells and requires only a low activation
energy QL to sample the energy landscape. As the system
is supercooled to below TH , it becomes increasingly likely
to be trapped in deeper potential wells. Correspondingly,
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Fig. 13. Schematic of a generic coarse-grained activation bar-
rier with a bi-level structure and a fragility zone [12]. All sym-
bols are defined in the text. This model of activation barrier is
able to account for the essential, qualitative features of the ex-
perimental data on both fragile and strong liquids in the sense
of the comparisons presented here. Reproduced from [12].

higher activation energy, lying between QL and QH , is
needed to sample the energy landscape. Notice that any
formulation that can calculate Q(T ) will provide values
of the set of four physical parameters (QH , QL, TH , TL).
The transition range, between TL and TH , may be re-
garded as the fragility zone beyond which the barrier is
essentially temperature insensitive. Referring back to Fig-
ure 12 one can appreciate the commonality between a
strong and a fragile liquid, as well as the different behav-
ior of their respective viscosities. In the particular case of
SiO2 and BLJ, we see the high activation barrier magni-
tudes are similar, QH , ∼40–50kBTg, whereas the low ac-
tivation barriers are quite different, QL ∼ 10kBTg (SiO2)
versus 2kBTg (BLJ). Since QH (QL) governs the slope
dη
dT at TH (TL), this effect can be seen in Figure 12. The
large difference in QL also leads to an appreciable differ-
ence in the extent of the fragility zone, smaller for SiO2

than for BLJ, which in turn explains the pronounced frag-
ile behavior of the latter. To explain why QL is so much
larger for SiO2 than BLJ, one can examine the activation
mechanisms that can be deduced from the relevant atomic
configurations [11,12].

A direct consequence of Figure 13 is the existence of
two transitions between strong and fragile behavior. For
a system at temperatures above TH its viscosity behav-
ior should be strong since Q is a constant. As T crosses
below TH , a crossover to fragile behavior should occur.
With further temperature decrease the system maintains
its fragile behavior until T crosses TL, at which point a
second crossover to strong behavior should set in. Thus,
two crossovers can be regarded as a universal feature of
all glass formers. Extensive experimental evidence for the
second crossover has been presented recently [72].

5 Entropy factors and corrections

In our derivation of the network model, equation (11)
emerges as an approximation where viscous relaxation can

be described by a single effective barrier. We have al-
ready remarked that Q(T ) has a thermodynamic compo-
nent in the temperature variation of the average inherent
structure, as well as a kinetic component from the TSP
trajectory analysis. The connection between the network
model and SPA is clearly brought out by equation (10)
which shows the former reduces to the latter when there
is only one activation path. Thus SPA is a simplification of
the network model by ignoring all the correlations (cou-
pling effects) among the different activation paths. One
can think of another way to correct the SAP formula-
tion, namely entropy effects. This may be implemented
by modifying the activation barrier Q(T ) in equation (11)
through the introduction of a degeneracy factor G(T ) as
first suggested by Adam and Gibbs [29],

η(T ) = η0 exp[Q(T )/{kBT ln G(T )}]. (12)

One can estimate G(T ) from the density of states G(Ei)
distribution of the BLJ model following Heuer [29]. Al-
ternatively one can define an energy-dependent entropy
Sc(E) = lnG(E), with E being the inherent structure en-
ergy [73]. We have obtained Sc(E) by calculating G(E)
from the quench probability distribution F (E, T ) [73,74]

G(E) ∝ F (E, T ) exp(E/kBT ) (13)

Physically, F (E, T ) is the probability of the system occu-
pying the inherent structure with energy E at temperature
T ; it can be determined by performing MD simulations.

We therefore rewrite equation (13),

G(E) = G0(T )F (E, T ) exp(E/kBT ), (14)

where G0(T ) is a temperature-dependent scaling param-
eter. To obtain G(E) we follow a two-step scaling proce-
dure. First, in Figure 14a we show the results of two MD
simulations at two temperatures, T1 and T2, with corre-
sponding range of inherent structure energies covered by
each distribution.

Using the two distributions we construct a broader dis-
tribution by an appropriate choice of G0(T ). The scal-
ing from T2 to T1 is indicated by the top arrow in Fig-
ure 14b. The combined distribution is an estimate of G(E)
to within an unknown constant. The second step in our
procedure is to assume there are no inherent structures ly-
ing below the lowest value of E in the scaled distribution.
Operationally we set lnG(E) = 0 at this lowest value, as
indicated in Figure 14c. In this manner we are able to cal-
culate G(E). As a check, we compare our result with that
given by Heuer [73,75] after adjusting for different system
sizes, 65 atoms in the Heuer study compared to 100 atoms
in the present work. One sees agreement between the two
results, especially at lower inherent structure energies. Ad-
ditionally both results follow the Gaussian relation.

Knowing G(E) one can readily evaluate the configura-
tional entropy Sc(E) = lnG(E), and therefore the entropy
correction to the heuristic treatment of the viscosity. The
results are shown in Figure 15 [13]. It is clear that the en-
tropy correction effects have an appreciable effect. Judging
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(a)

(c)

(b)

Fig. 14. Schematic illustration showing the scaling procedure described in the text, (a)–(c). The calculated inherent structure
distribution G(E) for the potential model BLJ obtained from quench probability at temperature 0.5 and 1.0 are represented by
thick red and green lines respectively. Solid (thin) red curve is a Gaussian fit to extend the data. Dotted blue line is the result
adapted from [75].

from the present results the effect of configurational en-
tropy is to reduce temperation variation of the activation
barrier, a slower increase of the barrier with decreasing
temperature, effectively weakening the fragility behavior.
With entropy correction estimated in this way the pre-
vious heuristic model, equation (11), moves significantly
closer to the experimental data (not shown in Fig. 15 but
see Fig. 10), as well as the network model calculations. On
the basis of Figure 15 it is reaonable to conclude our two
formulations are capable of providing a generally satisfac-
tory estimate η(T ) over the temperatures of interest.

6 Kinetics of defect mobility in solids:
activation entropy and Meyer-Neldel
compensation

The calculation of η(T ) is basically a problem of
temperature-dependent stress fluctuations where correla-
tions and relaxations in the system are driven by the
state variable of temperature. One may consider analo-
gous scenarios of system response to fluctuations driven
by an external stress. Atomistic reaction pathway mod-
eling of the kinetics of defect in solids subjected to a
stress field is a problem that could be analyzed using

Fig. 15. Effect of entropy correction on the viscosity calcu-
lation, heuristic model w/o entropy (blue, dashed), heuristic
w/entropy (red, dashed) and the network model (red, solid).
The red dots and crosses are results from network model while
the other symbols denote MD results of simulations at higher
temperatures.

equilibrium TSP sampling. In recent years, extended de-
fects such as dislocations which involve complex collec-
tive motion of many atoms [3,76–78] have been studied
by combining a solid-state formulation of transition-state
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theory [44] with a particular variant of reaction pathway
calculations, the free-end nudged elastic band (fe-NEB)
method [27,28]. This is another strategy for bridging the
laboratory measurements and atomistic modeling of de-
formation kinetics. The rate-controlling atomic processes
can be determined by linking the experimentally measured
strain rates with atomistically computed activation en-
ergy and volume [28,79]. Examples of application of such
a modeling approach to the ultra-strength nanostructured
materials have been recently reviewed [3]. In this section,
we discuss a critical aspect related to the effect of activa-
tion entropy on the kinetic rate estimate, i.e., the pre-
exponential factor in the Arrhenius relation. The well-
established Meyer-Neldel compensation law [80–82] will
be also linked to direct atomistic modeling.

The rate of thermally activated, stress-driven processes
can be expressed in a form similar to equation (5),

r = NνMEP exp

(

−
∆Q(σ, T )

kBT

)

, (15)

where νMEP is the physical attempt frequency along the
MEP (typically about 1011/s), N is the number of equiv-
alent sites of activation, kBT is the thermal energy, and
Q is the activation free energy whose magnitude is con-
trolled by the local stress σ along with the temperature.
In the athermal limit we have a critical stress which gives
zero activation energy.

The activation free energy ∆Q(σ, T ) can be decom-
posed into

∆Q(σ, T ) = ∆E(σ) − T∆S(σ), (16)

where ∆E(σ) is the activation enthalpy that corresponds
to the energy difference between the saddle point and ini-
tial equilibrium state on the zero-K potential energy sur-
face. Substitution of equation (16) into equation (15) leads
to

r = ν exp

(

−
∆E(σ)

kBT

)

, (17)

where

ν = NνMEP exp

(

∆S(σ)

kB

)

. (18)

It should be emphasized that the pre-exponential factor
νMEP in the Arrhenius relation of equation (17) generally
varies for different rate processes, and it changes for the
same kind of processes under different applied stresses as
well. As seen from equation (18), the variation arises due
to the change of activation entropy ∆S(σ). There is a well-
known empirical Meyer-Neldel (MN) compensation law or
iso-kinetic rule [80], which suggests that ∆S(σ) is likely
to be correlated with the activation energy,

∆S(σ) =
∆E(σ)

TMN
, (19)

where TMN denotes the Meyer-Neldel temperature. One
may notice the similarity between the present activation
entropy and the Adam-Gibbs entropy correction discussed
in Section 5.

The role of compensation can be understood as fol-
lows: when the applied stress decreases at a constant tem-
perature, the activation energy ∆E(σ) typically increases,
causing a decrease of the exponential exp (−∆E(σ)/kBT ).
However, according to equation (19), the activation en-
tropy will increase with increasing ∆E(σ), along with ν0

in equation (18), such that the rate of successful activa-
tion ν in equation (17) does not decrease as rapidly as one
would expect from only considering the exponential. Ac-
cording to Yelon et al. [83], the MN compensation law has
been obeyed in a wide range of kinetic processes, including
annealing phenomena, electronic processes in amorphous
semi-conductors, trapping in crystalline semi-conductors,
conductivity in ionic conductors, aging of insulating poly-
mers, biological death rates, and chemical reactions.

The empirical linear relation between the activation
energy and activation entropy in equation (19) is sur-
prisingly simple and effective. Such a remarkable connec-
tion has been explained earlier in the context of solid
state diffusion, and more generally through the role of
multi-excitation entropy [81,82]. Intuitively, the activation
process with large activation energy involves the collec-
tive motion of a number of atoms. This gives rise to a
large number of ways in which the activation can be done
through multi-phonon processes, namely a large entropy
change between the saddle-point and initial equilibrium
state. On the other hand, the increasing number of ac-
tivated atoms is also manifested through the increase of
activation volume, which is defined as

Ω = −
∂∆Q(σ, T )

∂σ
. (20)

Ω can be considered to be a kinetic signature of deforma-
tion mechanism because it is related to the experimen-
tally measurable strain rate sensitivity m according to
m ∼ kBT

σΩ [3,77]. Substitution of equation (19) into equa-
tion (16) gives

∆Q(σ, T ) = ∆E(σ)

(

1 −
T

TMN

)

. (21)

This relation furnishes a simple estimate, and interpreta-
tion, of the MN temperature TMN. Mott assumed TMN to
be the melting temperature of the crystal by noting that
the activation free energy ∆Q(σ, T ) should approach zero
at the melting temperature [84]. This provides an explana-
tion of the large pre-factor of the temperature exponential
in the measured rate of grain-boundary slip in pure poly-
crystalline aluminum. Generally, TMN can be treated as
the local melting or disordering temperature.

The above activation entropy effect and the compensa-
tion (Meyer-Neldel) law have been investigated by study-
ing the different processes of atomic diffusion on metal
surfaces via MD simulations, in particular the importance
of activation entropy in a quantitative evaluation of the
stress-driven rate processes [16]. Figure 16 shows, as an
example, surface dislocation nucleation in a compressed
Cu nano-pillar.

In this work, the adaptive strain-boost hyperdynam-
ics [16] was developed to accelerate molecular dynamics
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Fig. 16. Atomistic reaction pathway modeling of dislocation nucleation [16]. (a) Atomic configuration of a Cu nano-pillar
(left) and typical snapshots of dislocation nucleation from the corner (right). (b) Temperature dependence of the dislocation
nucleation rate at different applied stresses from molecular dynamics simulations. (c) Strain-boost hyperdynamics results of
stress-dependent activation free energy for dislocation nucleation of (a). For T = 0 K case, the comparison with the free-end
nudged elastic band results [79] are shown. (d) Activation entropy as a function of stress. The prediction using empirical
Meyer-Neldel compensation rule is also presented. Reproduced from [16].

(MD) simulations [7,30]. Figure 16a shows the simulation
setup and dislocation nucleation at one of the corners. In
Figure 16b, we plot the stress and temperature depen-
dence of the nucleation rate determined from MD. From
equations (17) and (18), ∆E(σ) and ∆S(σ) can be deter-
mined by the slope and intercept of each curve, respec-
tively. We find that the activation entropy increases as
the stress decreases in the stress range of 1.75–2.50 GPa,
with typical values between 4–14kB. This means that the
saddle-point state is vibrationally more disordered than
the initial equilibrium state, due to the presumably softer
modes with lower frequency. The result in Figure 16c indi-
cates that, at room temperature, the entropic contribution
to the activation free energy is non-negligible and corre-
sponds to about 40% of ∆Q(σ, T ) at 0 K. In a previous
study of surface dislocation nucleation [79], we conjectured
without substantial proof that TMN should be close to the
surface disordering temperature, since the local shear re-
sistance should decay to zero when the surface becomes

disordered (pre-melted). Now Figure 16d shows that the
classic MN rule gives an excellent prediction of S(σ) for
the stress range studied with a best fitting parameter of
TMN = 625 K. The fitted TMN corresponds to nearly half
of the bulk melting temperature (∼1350 K) [85], which
would be a reasonable guess of surface disordering tem-
perature, and is close to the value of 700 K taken in [79].

Finally, we briefly discuss the nudged elastic band
(NEB) method [27] and its novel enhancement [28] for de-
termining the energy barrier of ∆E(σ) in equation (21).
The NEB method is a chain-of-states approach for find-
ing the minimum energy path (MEP) and saddle point on
the zero-K potential energy landscape. In a NEB calcu-
lation, the initial and final states are first determined by
local energy minimization. Then a discrete elastic band,
consisting of a finite number of replicas of the system, is
constructed to connect the two end states. With appro-
priate relaxation, the band converges to the MEP. The
traditional NEB method is effective in searching for the
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MEP of localized reactions such as lattice diffusion. How-
ever, it is inefficient for studying extended defects in large
systems, where the reaction path is typically long and can
be highly tilted by stresses. Specifically, in a NEB calcu-
lation, the two end-points of the elastic band need to be
fixed at two local minima. If the path is long, many in-
termediate replicas are needed to ensure an appropriate
density of nodes on the path; this significantly increases
the computational cost when the system is large. On the
other hand, if only the initial state (node 0) is a local min-
imum, but the final state (node N) is not, the band might
be shortened without compromising the NEB nodal den-
sity. However, the algorithm can behave very badly. This
is because if the fixed node N is not chosen to lie exactly
on the MEP, node N − 1 will droop down and end up
having much lower energy than node N . In the process,
it will drag all the path nodes along due to the spring
force, which means that the quality of the NEB mesh de-
grades with time. An effective way to resolve this issue is
to let the final node move, but instead of seeking energy
minimization, we require the energy of the final node to
stay constant. Thus, node N can only move on the energy
iso-surface of, say, −0.5 eV, and the band can swing to im-
prove nodal density around the saddle point, so the saddle
point can be efficiently determined. This algorithm, called
the free-end NEB method, has been applied to determine
the saddle point of dislocation nucleation and migration
involving the collective motion of many atoms [28].

7 Atomistic method for slow stress
relaxation: thermal creep

In a 2002 paper on creep at very low rates [86], Nabarro
wrote in the abstract, “The creep rate in a land-based
power station must be less than 10−11 s−1”, and con-
cluded at the end, “The present state of knowledge re-
veals specific questions that call for experimental investi-
gation. Theory will contribute, but atomic computation,
with a time scale of 10−11 s, will not handle processes
that take 1011 s”. One can readily sympathize with this
assessment given that molecular dynamics simulation is
typically constrained to a time-step size of 10−14 s. On
the other hand, such a point of view seems to preclude
the possibility that methods can be developed to simulate
slow dynamical processes without explicitly following all
the atomic motions all the time, which is in fact the spirit
of multiscale modeling. As described in Section 2, the lim-
itation of MD and related atomistic simulations to prob-
ing dynamical processes only on microscopic time scales
is long recognized [30]. On the other hand, MD studies of
creep deformation have been reported in which one had
to resort to high temperature [87], high stress [88], and
high strain rate [89]. The underlying problem of extreme
strain rates, of the order of 107 s−1, remains to date. To
reach time scales relevant to creep phenomena one needs
to deal with microstructural evolution in the time range
from seconds to years. The study of viscosity of deeply su-
percooled liquids, which we have discussed here, shows this

range of time scales can be reached through TSP sampling
techniques. Also, a variation of the ABC and metadynam-
ics algorithms called adaptive boost molecular dynamics
simulation [18], where one uses a histogram approach to
adaptively construct temperature-dependent boost poten-
tial, instead of summation of fixed Gaussians, was shown
to be able to model carbon diffusivity in iron, to temper-
atures that are even lower than in typical experimets.

We now consider whether the activated kinetics of
solid-state deformation under stress also can be investi-
gated using the ABC algorithm. That a correspondence
should exist between viscous flow and creep is motivated
by the notion that all slowly relaxing systems can be de-
scribed by the elementary processes of activation and re-
laxation on potential energy landscape. The main differ-
ence between applying the ABC algorithm to the problem
of viscosity and the problem of solid-state deformation
is that the former is concerned with thermal equilibrium
under the linear response assumption while the latter per-
tains to a driven system response under the action of ex-
ternal stresses.

We first consider the process of strain production in
two BCC models of nano-grain structures, a 2-D model
of columnar grains and a 3-D model of spherical grains.
The former is constructed by creating 4 grains of random
orientation arranged in a 2 dimensional close packed lat-
tice. The overall periodic box at zero stress has dimensions
39.0 × 39.0 × 19.1 Å and contains 2408 atoms, with the
columns oriented along the short axis. The 3-D simulation
cell contains 2 grains of random orientation, each 29.8 Å
in diameter, and a total of 3456 atoms. A Finnis-Sinclair
type empirical potential for Fe is used [15] in the simu-
lations. Both structures are studied at room temperature
under uniaxial tension, the 2-D model at 0.1 GPa, and the
3-D model at 0.2 and 0.7 GPa, respectively. A prescribed
strain in the z direction is imposed on the initially relaxed
system after which energy minimization is performed that
involves all the atomic coordinates along the x and y di-
rections. Transition state pathway sampling runs are then
conducted with the new cell dimensions held constant.

Figure 17 shows the system set up and trajectory re-
sults for the 2-D model. One sees in Figure 17a the system
energy evolving toward a lower-energy region during the
sampling, while Figure 17c gives the corresponding evolu-
tion in the system strain (defined by the deformation of
the simulation cell). From the activation energy required
by the system to go from one energy minimum to the next,
we estimate the time interval associated with each activa-
tion process through transition-state theory [44] (also see
Eq. (2))

tA→B =

(

ν exp

(

−
∆EA→B

kBT

))−1

(22)

where ∆E is the saddle point energy relative to the pre-
vious local minimum, ν is a frequency factor (taken to be
10 THz), and T is the temperature. This relation allows
us to correlate the strain at any point on the trajectory
with a total elapsed time, which is the sum of the individ-
ual elapsed times for each preceding activation-relaxation
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Fig. 17. Determining the strain rate of the columnar grains (2D model) at 0.2 GPa and 300 K. (a) The TSP trajectory. (b)
Time needed to move from one minimum to another using equation 21 and ν0 = 10 THz. (c) System strain along the sampled
trajectory. (d) Time evolution of system strain in which the fitted line gives a strain rate of 0.5 × 10−11 s−1. Reproduced
from [14].

Fig. 18. TSP trajectories of the 3D model at 300K obtained at 0.2 GPa and 0.7 GPa (a), and time evolution of the system
strain (b). One may compare these results with those of the 2D model shown in Figure 17. Reproduced from [14].

event along the trajectory. In this way we obtain a strain
evolution curve. Implicit in this mapping is the assump-
tion that the individual events are not correlated, which
is an often-taken hypothesis in the theory of anelastic de-
formation [90].

Figure 17d indicates the sampled deformations un-
dergo “fast” transitions (too rapid to resolve on the scale
of this figure), except for two slower events, both on the

scale of years. Within any short time interval the data
are too scattered to reveal any trend. However, on the
long time scale (years) an overall positive trend leads to a
strain rate of the order of 10−11 s−1, the magnitude pre-
viously mentioned by Nabarro as characteristic of macro-
scopic creep phenomena.

Figure 18 shows the corresponding results obtained
for spherical grains (3-D model). A distinctive feature of
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Fig. 19. Atomic displacements in the 3D model, local response
within the grain boundary associated with an energy “saw-
tooth” (a), and injection of an interstitial atom into the grain
boundary, associated with a series of “saw-tooth” and one en-
ergy drop (b). Atoms that have displaced more than 0.1 Å or
more are marked in red/dark shade. The arrows mark the di-
rection and relative magnitude of displacement. Reproduced
from [15].

Figure 18a is the TSP trajectory, with more minima and
saddles sampled, showing a series of oscillations, “saw-
teeth”, punctuated by sudden energy relaxations, partic-
ularly pronounced at the higher stress. Figure 18b shows
the time evolution of the tensile strain at 300 K from which
a strain rate of 1× 104 s−1 at 0.2 GPa and 7× 104 s−1 at
0.7 GPa are estimated.

By analyzing the atomic configurations at selected
points along the sampled trajectory one can deduce the
characteristic atomic motions associated with a particu-
lar system transition. Inspection of the configurations on
the two sides of a “saw-tooth” reveals relatively minor lo-
cal rearrangements within the grain. An example of this
type of displacements is shown in Figure 19a. In contrast,
inspection of the atomic configurations immediately after
an energy drop indicates coordinated displacements that
could be regarded as an extended interstitalcy mechanism,
eventually leading to a form of grain growth (see Fig. 19b).

We now use transition state theory to estimate the
elapsed time for an activation event, and determine a
stress relaxation response from the TSP trajectory. In Fig-
ure 20 the results are displayed in a log-linear plot. At
each applied strain we find the classical behavior of relax-
ation [91], the transition from an initial state of stress to a
final relaxed state over a temporal range that is character-
ized by a relaxation time. In our results the relaxation ex-
tends out to a range of order 1015 s. Such a range exceeds
typical MD capability by some 20 orders of magnitude;
it is also 12 orders of magnitude beyond the 1000-second
scale of mechanical spectroscopy measurements [90]. Ad-
ditionally the simulations show the relaxation process,
roughly characterized by the position of the “knee” in the
relaxation curve, slows down significantly with increasing
strain. An effective relaxation time τ can be extracted by
fitting the simulations to a traditional empirical expres-
sion [92]

σ(t)

ε0

= MR + (MU − MR) exp

(

−
t

τ

)

, (23)

Fig. 20. Temporal evolution of von Mises stresses at 400 K and
various applied strains [15]. Each data represents a weighted
average of the calculated stress within a 0.01 interval of log
(time/s). Solid curves are results of fitting. Inset shows compar-
ison of experimental data at strains of 0.0002 for two samples,
“as prepared” (triangles) and “annealed” (squares) at 313 K
and 408 K respectively, with simulation results of the pristine
nanocrystal (solid line) and the distributed-vacancy (dashed
line) models at 400 K. Reproduced from [15].

where ε0 is the constant applied strain, MR and MU are
the relaxed and unrelaxed stresses respectively.

A more contemporary description of relaxation in com-
plex systems would be to replace the simple exponential in
equation (23) by a stretched exponential, exp

[

−(t/τ)β
]

,
also known as the Kohlrausch function. For example, the
decay of density fluctuations in the dynamics of glassy liq-
uids, the so-called alpha relaxation, is well represented by
such an expression [20,61,93], with the Kohlrausch expo-
nent β ranging from 1 to 0.7. Fitting the simulation data
at 0.020 strain in this manner gives β ∼ 0.4 for stress
relaxation in our particular nanocrystalline model. The
implication is that this is a concerted relaxation process
involving a broad distribution of strain-activated events.

The significant effect of the applied strain on the stress
relaxations is quite visible in Figure 21a, with larger en-
ergy drops occurring at higher strains. This is understand-
able from the fact that the energy penalty for “backwards”
microstructural evolution during stress-relaxation should
be higher at higher strains. Secondly, the number of saw-
tooth oscillations in between the relaxations is seen to
be reduced. In terms of the corresponding atomic dis-
placements, we find the applied strain does not affect the
general character of the individual transitions, whereas it
does have an overall effect on how extended are the cor-
responding atomic displacements throughout the system,
see Figures 21b and 21c. At the higher strain the number
of participating sites is more widely distributed. A more
efficient probing of the “weak spots” is consistent with
the observed decrease in the number of saw-tooth oscilla-
tions between energy-drop events. Such behavior clearly
illustrates the difficulty of dealing with deformation at
extreme strain rates in conventional MD simulations. If



A. Kushima et al.: Atomistic simulation of slow dynamics: viscosity and creep 289

Fig. 21. TSP trajectories sampled at applied strains of 0.005
and 0.02 by ABC (a), and atomic configurations associated
with the energy drop event at 0.005 strain (indicated by the
arrow in (a)) showing cluster of atoms that have undergone
displacements greater than 0.1 A during the event (b). (c) Same
as (b) except for strain 0.02. Reproduced from [15].

the applied driving force is unphysically large, one cannot
hope to resolve the individual processes of interest because
many transitions are simultaneously activated.

8 Discussion and outlook

We have seen transition state pathways can be sampled
to gain atomic-level insights into the dynamics of slow
relaxation in supercooled liquids. As a result the temper-
ature variation of the shear viscosity over several decades
can be explained using basic interatomic interaction mod-
els. That this approach can describe the strong and frag-
ile scaling of a variety of glass forming liquids should be
noteworthy in the current discussions on the nature of the
glass transition. In this active area of statistical mechan-
ics research there is no shortage of novel algorithms and
atomistic simulation techniques that have been suggested
in the literature. While we have found the ABC algorithm
to be sufficiently robust for inherent structure sampling,
the transition state pathway sampled may not be as accu-
rate as other methods such as NEB. This is a topic suit-
able for further study. One can imagine devising a hybrid
scheme using ABC to map out an extended trajectory
segment and NEB to determine the saddles more accu-
rately. Such an approach has been used recently to study
void nucleation in an irradiated metal brought about by
vacancy clustering and cluster coalescence [17]. By com-
bining ABC with NEB and kinetic Monte Carlo to inves-

tigate the evolution of small vacancy clusters in bcc Fe,
an accelerated growth mechanism was obtained at a tran-
sition temperature in agreement with the value observed
by positron annihilation spectroscopy measurements. In
the ABC algorithm implemented here the system evolves
on a time-independent energy surface, that is, the sys-
tem is not driven by a time-dependent external field. One
could imagine formulating a dynamic version of ABC for
system evolutions occurring on time scales comparable to
the time scales of external perturbations [94]. An example
of this situation could be the problem of radiation damage
accumulation during the operation of a nuclear reactor.

We have found in both the viscosity and creep stud-
ies the analysis of atomic configurations associated with a
specific (isolated) event on the TSP trajectory can give in-
sights on cooperative displacements of a few particles and
atomic-level mechanisms of activation and relaxation. In
the viscosity problem, we have looked for changes in the
atomic displacements associated with three characteristic
barrier-climbing events, and found that low-Q activation
involves only a few atoms, while at higher Q, chain-like
collective displacements can be seen, and at even higher
Q the rearrangements return to a more extended but
isotropic distribution [11]. Although these are limited re-
sults, they appear to be consistent with recent notions
of hopping between PES metabasins [75,95]. Information
of this kind, when combined with topographical features
of the TSP trajectory, could lead to broader understand-
ing of the kinetics of slow system evolution. Further work
along this direction would be worthwhile.

Using the ABC method to study stress (creep) relax-
ation in a model nanocrystal, we demonstrate an atomistic
approach to probing macroscopic time scales, while also
providing access to atomic configuration details. We un-
cover an underlying mechanism involving discrete, local-
ized irreversible atomic displacements. These appear to be
the unit process previously observed in molecular dynam-
ics simulations at strain rates many orders of magnitude
higher. We also find experimental test of creep simulations
requires the availability of specimens with microstructure
imperfections effectively matching those of the simulation.
With the recent advances in high-resolution measurement
techniques, such as field ion beam fabrication of nano-
pillars and nano-indentation measurement of small-scale
yielding, a new class of experiments is thus suggested.
One can look forward to experiments coupling nanoscale
plastic deformation measurements with predictive atom-
istic simulations [96,97] extended to include TSP sampling
methods such as ABC.

We return to the theme of this work which is slow dy-
namics from the standpoint of atomistic simulation. Now
that we have seen using atomistic reaction path sampling
to gain understanding of glassy kinetics and slow stress
relaxation, we might consider other materials phenomena
which may be similarly studied. But first one may ask
what qualifies as slow dynamics. We have implicitly taken
glass viscosity and creep to be phenomena of slow dynam-
ics. The connection between viscosity and time evolution
can be seen from the visco-elastic form of defining η(T ),
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Fig. 22. A collection of materials behavior illustrating the defining character of slow dynamics. (a) Temperature variation of
shear viscosity of supercooled liquids [22], (b) stress variation of strain rate in P-91 steel [104], (c) stress loading variation of
crack speed in soda-lime (NaOH) glass at various humidity [105], (d) time variation of shear modulus in hardening of Portland
cement paste (water/cement ratio of 0.8) measured by ultrasound propagation [106].

η(T ) = Gτ(T ), where G is the shear modulus and τ the
shear relaxation time (recall discussion of Eq. (8)). Since
supercooled liquids or glasses have very large viscosities
(Sect. 4), it means these systems exhibit very long relax-
ation times. If we take η ∼ 1012 Pa s and G ∼ 1010 Pa,
then we get a typical relaxation time τ of 100 s. In the
case of creep we have seen (Sect. 8) that deforming crys-
talline solids with limited defect content can undergo very
slow stress or strain relaxations. However, not all systems
with long relaxation times are necessarily good candidates
for atomistic simulation studies. More experience with the
use of algorithms like ABC in problems like viscosity and
creep is needed to expand our insights into how complex
microstructures evolve over long times.

We show in Figure 22 three selected functional behav-
ior of materials, creep in a metal, stress corrosion cracking
in a glass, and the hardening of cement paste. Each is a
characteristic of a complex materials phenomenon of con-

siderable technological importance. Yet it is seldom that
they are discussed from a common point of view. Our mo-
tivation in displaying them along side of the shear viscosity
of supercooled liquids is to suggest that slow dynamics is
ubiquitous in the evolution of complex systems.

The variation of strain-rate with stress and tempera-
ture, seen in Figure 22b, is a conventional way to charac-
terize structural deformation [91]. Notice the similar ap-
pearance between Figures 22a and 22b, where the data
are plotted against inverse temperature and stress, respec-
tively. The presence of two distinct stages of variation may
be taken to indicate two competing atomic-level responses.
In the viscosity case we know the high-T regime of small η
and the low-T stage of large η are governed by continuous
collision dynamics, well described by the mode coupling
theory [93] and barrier hopping (see Sect. 4), respectively.
One may expect analogous interplay between dynamical
processes occurring at different spatial and temporal scales
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in the case of stress-driven creep. The two correspond-
ing stages are a low-stress strain rate, usually analyzed
through a power law exponent, and a high-stress high
strain rate regime. Attempts to explain creep on the ba-
sis of atomic-level mechanism of dislocation climb are in
its infancy [98]; TSP methods such as ABC could prove
useful as suggested by a recent study of self-interstitial
clusters [99]

Viscosity and creep are phenomena where the sys-
tem microstructure evolves through cooperative rear-
rangements or lattice defect interactions without chemi-
cal (compositional or stoichiometric) changes. In contrast
the stress variation of the crack velocity, Figure 22c, shows
the classic three-stage behavior of stress corrosion cracking
(SCC) [100]. One can distinguish in the data a corrosion-
dominated regime at low stress (stage I), followed by a
plateau (stage II) where the crack maintains its velocity
with increasing stress, and the onset of a rapid rise at high
stress (stage III) where stress effects now have a domi-
nant role. Relative to Figures 22a and 22b, the implication
here is that a complete understanding of SCC requires an
approach where chemistry (corrosion) and stress effects
are treated on equal footing. Atomistic studies of water
reaction with silica, the problem of hydrolytic weaken-
ing well known in geo-science, have been attempted using
NEB [101]. The extension of ABC to reactions involving
bond breaking and formation, which have been previously
studied by molecular dynamics simulation is another area
for further work.

A further reason for showing the different behavior to-
gether in Figure 22 is to draw attention to a progression
of microstructure evolution complexity, from viscosity to
creep, to SCC, and to cement setting. In Figure 22d one
sees another classic 3-stage behavior in the hardening of
cement paste. The hydration or setting curve is known to
everyone in the cement science community, on the other
hand a satisfactory explanation in terms of molecular
mechanisms is lacking [102]. A microstructure model of
calcium-silicate-hydrate, the binder phase of cement, has
been recently established [103] which could serve as start-
ing point for the study of viscosity, creep deformation, and
even the setting characteristics of cement [94]. If viscos-
ity or glassy dynamics is the beginning of this progression
where the challenge lies in the area of statistical mechan-
ics, followed by creep in the area of solid mechanics (me-
chanics of materials), then SCC and cement setting may
be regarded as future challenges in the emerging area of
chemo-mechanics [101,107]. The understanding of the role
of stage II in the latter phenomena could be an interesting
topic by itself.

The present discussion of viscous relaxation and creep
deformation may be considered an extension of the ap-
plications of metadynamics-based reaction pathway sam-
pling to flow and deformation of matter driven by thermal
and stress fluctuations, in addition to the existing chem-
ical and biomolecule applications. It seems clear that the
issues of materials ageing and degradation in extreme en-
vironments have a great deal of fundamental common-
ality across physical and biological systems. Because of

this, simulation-based concepts and algorithms that allow
one to understand temporal evolution at the systems level
in terms of molecular interactions and cooperativity are
likely to be of enduring interest.
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