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Abstract

Diffusion is the driver of critical biological processes in cellular and molecular

biology. The diverse temporal scales of cellular function are determined by

vastly diverse spatial scales in most biophysical processes. The latter are due,

among others, to small binding sites inside or on the cell membrane or to

narrow passages between large cellular compartments. The great disparity in

scales is at the root of the difficulty in quantifying cell function from molecular

dynamics and from simulations. The coarse-grained time scale of cellular

function is determined from molecular diffusion by the mean first passage

time of molecular Brownian motion to a small targets or through narrow

passages. The narrow escape theory (NET) concerns this issue. The NET is

ubiquitous in molecular and cellular biology and is manifested, among others,

in chemical reactions, in the calculation of the effective diffusion coefficient

of receptors diffusing on a neuronal cell membrane strewn with obstacles, in

the quantification of the early steps of viral trafficking, in the regulation of

diffusion between the mother and daughter cells during cell division, and many

other cases. Brownian trajectories can represent the motion of a molecule,

a protein, an ion in solution, a receptor in a cell or on its membrane, and

many other biochemical processes. The small target can represent a binding

site or an ionic channel, a hidden active site embedded in a complex protein

structure, a receptor for a neurotransmitter on the membrane of a neuron, and

so on. The mean time to attach to a receptor or activator determines diffusion

fluxes that are key regulators of cell function. This review describes physical

models of various subcellular microdomains, in which the NET coarse-grains

the molecular scale to a higher cellular-level, thus clarifying the role of cell

geometry in determining subcellular function.
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1. Introduction

Diffusion drives critical biological processes in cellular physiology, such as the search for a

binding partner in biochemistry, the neuronal transmission in neurophysiology (Kandel et al

2000, Alberts et al 1994), the splitting of molecules (mRNA or proteins) between mother

and daughter cells during cell division, and many other processes. The very different spatial

and temporal scales in these processes are due to small binding sites inside or on the cell
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boundary, or narrow passages between large compartments. The great disparity in scales in

these examples is manifested as singular perturbation problems in their mathematical models.

The quantification of the function of cellular microdomains from their geometrical structure,

such as of neuronal synapses, falls in the class of multiple-scale problems of narrow escape

theory (NET) (Holcman and Schuss 2014). The narrow escape time NET in diffusion theory

is the mean first passage time (MFPT) of a Brownian trajectory to a small absorbing part of an

otherwise reflecting boundary of a bounded domain. The renewed interest in the NET is due

to its emergence as a key to the determination of biological cell function from its geometrical

structure.

The physics of cell function has to be understood at the molecular level, which determines

the dynamics of much larger cellular structures, such as the dynamics of molecular fluxes in

microdomains and synapses (figure 14). Physical modeling on the cellular scale has serious

pitfalls, because the temporal scale of cellular events is determined on the molecular level

by refined details of cell structure, which cannot be captured in cellular-level models. This

time scale has to be divined from a much lower-level model (see references in section 1.1).

The behavior of molecules is complex not only because of their individual structure, but also

because they form clusters or have specific interactions (see section 2.1).

Brownian dynamics simulations of molecular models often fail to capture the time scale of

rare events, such as the passage of ions through protein channels of cellular membranes or the

passage of molecules through narrow passages between cellular compartments. An analytical

approach to the evaluation of the rate of rare events can lead to rational coarse-graining

of the molecular model. For example, the analytical expression for the NET (Holcman and

Schuss 2014) reduces the dimension of stochastic simulation data of exploration to that of

the parameter space of the dynamics. It leads to an analytical expressions for an effective

diffusion coefficient and for the rate of passage between compartments through necks. The

narrow passage is especially important in quantifying the molecular searches that are not

directed at long distances by a field of force and the only flux-control mechanism is the

geometrical structure.

The development of molecular-level models follows a recent technological development of

live-cell microscopy, which affords access to individual molecular trajectories on the surface of

neuronal cells (Choquet and Borgdorff 2002, Borgdorff and Choquet 2002, Triller and Choquet

2003). Marked molecules provide short-time samples of trajectories that can be traced (Hoze

et al 2010), therefore the reconstruction of their dynamics from the statistics of the samples

is not an obvious task. The Brownian trajectories of the marked molecules cannot penetrate

the cell membrane or other obstacles, but can be absorbed at receptors and other binding sites,

or be terminated by a change of conformation or other chemical reactions, or when they exit

the cell or a subcellular compartment and enter another structure. Different compartments for

Brownian trajectories are often defined by the probability density of the observed trajectories

or by the statistics of the time trajectories spend in a given spatial domain. By its very definition,

the passage of a trajectory from one compartment to another is a rare event, which may be

thermal activation over a potential barrier and/or (Holcman and Schuss 2004) traversing a

narrow passage (Holcman and Schuss 2011), such as a channel, a single-file nano-pore, or a

narrow neck.

Singular perturbation methods for the asymptotic analysis of the NET problem are

reviewed in Holcman and Schuss (2014), where explicit expressions for NET are given.

Approximate analytical and numerical solutions of the associated boundary value problems

for the Pontryagin–Andronov–Vitt equation (Schuss 2010b, 2013) are derived for various

geometries representing accessible and hidden single or multiple targets. The asymptotic

methods are based on solving mixed Dirichlet–Neumann problems for elliptic and parabolic
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Figure 1. Brownian trajectory escaping through a small absorbing window of a domain
with otherwise reflecting boundary.

equations using the singularity of the Neumann function (Singer et al 2008). The NET is also

shown to be related to the principal eigenvalue of the mixed Dirichlet–Neumann problem for

the Laplace equation in a domain, when the Dirichlet boundary is only a small patch on the

otherwise Neumann boundary. As mentioned above, the principal eigenvalue is asymptotically

the reciprocal of the NET in the limit of shrinking Dirichlet patch. In this limit the escape of

a Brownian trajectory becomes a rare event and is thus hard to track by Brownian dynamics

simulations due to the high computational complexity and to the high dimension of the

parameter space. The explicit asymptotic approximation for the NET leads to the design of

Brownian simulations of cellular processes, as described below. This review explains how

to use these expressions to coarse-grain biophysical and biological models and to extract

properties from newly available molecular data and from Brownian simulations.

The NET τ̄ , that is, the MFPT of a Brownian trajectory from a compartment to an absorbing

target (figure 1) or through a narrow passage, is a fundamental concept in the description of

rare events. Specifically, in the limit of small target τ̄ increases indefinitely and the probability

density function of the time spent in a compartment prior to termination or escape becomes

exponentially distributed (Schuss et al 2007, Schuss 2010b, section 6.1)

pτ̄ (t) ∼ τ̄−1 exp{−t/τ̄ }. (1.1)

The exponential rate τ̄−1 is therefore the flux into the absorbing target. In the case of crossing

from one compartment to another through a narrow neck the crossing rate is 1/2τ̄ , where τ̄ is

the MFPT to the stochastic separatrix (SS) between the compartments, the latter is the locus

of initial points of a Brownian trajectory from which it ends up in one compartment or the

other with equal probabilities (Schuss 2010a). The rate can represent the molecular flux into

receptors or through intercellular passages, such as channels or necks and therefore determines

cell functions, such as neuronal signaling and other key cell functions. The importance of the

explicit computation of τ̄ in a given model consists in the drastic reduction in the dimension

of Brownian dynamics simulations to that of the dimension of the parameter space of the

analytical expression for the NET. This reduction coarse-grains molecular physical models

into the micrometer scale of cellular or subcellular structure and function.

When the moving particle is initially positioned close to the target (inside the boundary

layer), escape is characterized by the probability distribution of arrival times and not simply by

the exponential tail of the distribution (Mattos et al 2012). In dimension two, the boundary layer
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expansion can be computed explicitly (Singer et al 2006a), whereas short-time asymptotics

are much harder to estimate (see, for example, the short-time asymptotics given in Schuss and

Spivak (2005) for pure diffusion), because they requires the knowledge of all the eigenvalues

of the problem. The full probability distribution of arrival times can be evaluated by heavy

numerical simulations.

There are several examples where an anomalous diffusion model is needed to describe

more refined properties of molecular motion. This is the case for the motion of a single

monomer on a polymer chain (Amitai 2010, Amitai and Holcman 2013). In other cases,

the size of a diffusing particle affects its motion (Barkai et al 2012), (see also experimental

evidences in Tabei et al (2012) and Jeon et al (2011)). We refer to other reviews for specific

discussion of anomalous diffusion (Hoefling and Franosch 2013).

This review presents several molecular and cellular, as well as biophysical models, which

are based on the NET approximation. In this approximation the details of the geometrical

structure are coarse-grained into single parameter, the reciprocal of the NET, which is the

arrival rate at a small absorbing boundary. Recent progress is reported on coarse-graining

molecular-level models to cellular scale and on their resolution. The coarse-grained models

extract cell function from the cell’s geometrical structure. The first section presents a theory of

stochastic chemical reactions in confined microdomains, based on a Markov chain model. In

this theory the mean by which a given number of binding sites are activated can be calculated.

It also presents the search strategy of a Brownian particle that switches at random between

two states, but can find a small target only when in one of the two. Section two presents a

model for computing the effective diffusion coefficient on a membrane crowded with obstacles

and some applications to receptor trafficking on the surface of a neuron. Section 3 presents

several models for the molecular-level study of the successive steps of viral infection inside

a cell. The mathematical model for the study of the mean escape time of a virus from an

endosome uses stochastic dynamics to describe cytoplasmic trafficking and Markov jumps.

The model defines the probability of a virus arrival at the nucleus in terms of the Fokker–

Planck equation. The success of the early steps of viral trafficking determine the capacity for

viral infection (Amoruso et al 2011). Section 4 presents several diffusion problems related to

synaptic transmission that take place at the junction between two neurons (Cowan et al 2003,

Kandel et al 2000). An asymptotic computation is shown of the probability that a receptor

in the synaptic cleft binds a diffusing neurotransmitter (NT) (figure 14). A summary is given

of diffusion laws inside composite domains, such as dendritic spines, which are fundamental

microdomains in synaptic communication (figure 20). The laws are based on flux formulas

that are also used in the context of diffusion between cells. Finally, a discussion is given of

possible extensions of the NET methodology to other molecular and cellular questions.

1.1. References to section 1

The narrow escape problem in diffusion theory was considered first by Lord Rayleigh

in Rayleigh (1945) and elaborated in Fabrikant (1989), 1991); the terminology NET was

introduced in Singer et al (2006c). A recent review of early results on the NET problem

with many biological applications is given in Bressloff and Newby (2013). A basic text on

neuroscience is Kandel et al (2000), where the terminology used in this section is explained.

The neuronal cleft is discussed in Alberts et al (1994, chapter 19) and Kandel et al (2000).

The description of ionic channels, their selectivity, gating, and function is given in Sakmannn

and Neher (2010) and Hille (2001) (see also the Nobel lecture (MacKinnon 2003)). The

reconstruction of the spatial organization of proteins and ions that define the channel pore
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from recordings of channel current–voltage characteristics is described in Chen et al (1997)

and Burger et al (2007).

2. Theory of stochastic chemical reactions in confined microdomains

The need to simulate several interacting species in a microdomain is particularly useful in

the context of calcium dynamics in neuronal synapses. The number of involved molecules

is of the order of tens to hundreds, which are tracked with fluorescent dyes that drastically

interfere with the reaction and diffusion processes. A similar situation arises in the simulation

of synaptic transmission, starting with the arrival of NT molecules at receptors on the post-

synaptic membrane.

A significant reduction of the simulation complexity is achieved by using the analytically

computed neurotransmitter flux into the receptors, rather than simulating it. Analytical

formulas are also used for quantifying diffusion in dendritic spines. Additional progress

in modeling chemical reactions is achieved by replacing complex Brownian simulations with

coarse-grained Markov chains by taking advantage of the fact that the arrival process of

Brownian particles from a practically infinite continuum to an absorbing target is Poissonian.

It is possible then to coarse-grain the binding and unbinding processes in microdomains into

a Markov process, thus opening the way to full analysis of stochastic chemical reactions.

This simulation circumvents the complex reaction–diffusion partial differential equations that

are much harder to solve. A recent application of this Markovian approximation concerns

some new predictions about the rate of molecular dynamics that underlie the spindle assembly

checkpoint during cell division. Another reduction achieved by using the asymptotic analytical

approximation to the NET is the verification of molecular dynamics simulations in domains

that contain small passages or targets. The convergence of the simulation can be measured by

the convergence of the statistics of rare events to that predicted by the analytical asymptotic

approximation.

Traditional chemical kinetics, based on mass-action laws or reaction–diffusion equations,

give an inappropriate description of the stochastic chemical reactions in microdomains, where

only a small number of substrate and reactant molecules is involved. A reduced Markovian

description of the stochastic dynamics of the binding and unbinding of molecules is given in

Holcman and Schuss (2005) and applied in Dao Duc and Holcman (2010, 2012). Specifically,

consider two finite species, the mobile reactant M that diffuses in a bounded domain � and

the stationary substrate S (e.g., a protein) that binds M. The boundary ∂� of the domain � is

partitioned into an absorbing part ∂�a (e.g., pumps, exchangers, another substrate that forms

permanent bonds with M, and so on) and a reflecting part ∂�r (e.g., a cell membrane). In this

model the volume of M is neglected. In terms of traditional chemical kinetics the binding of

M to S follows the law

M + Sfree

k f

⇋

kb

MS, (2.1)

where k f is the forward binding rate constant, kb is the backward binding rate constant, and

Sfree is the unbound substrate. The model of the reaction assumes that the M molecules diffuse

in � independently and when bound, are released independently of each other at exponential

waiting times with rate k−1.

To calculate the average number of unbound (or bound) sites in the steady state

the following reduced model is used. The number k(t) of unbound receptors at time t

is a Markovian birth–death process with states 0, 1, 2, . . . , min{M, S} and transition rates
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λk→k+1 = λk, λk→k−1 = μ = k−1. The boundary conditions are λS→S+1 = 0 and

λ0→−1 = 0. Setting Pk(t) = Pr{k(t) = k}, the Kolmogorov equations for the transition

probabilities are given by Holcman and Schuss (2005)

Ṗk(t) = −[λk + k−1(S − k)]Pk(t) + λk+1Pk+1(t) + k−1(S − k + 1)Pk−1(t) (2.2)

for k = (S − M)+ + 1, . . . , S − 1

with the boundary equations

Ṗ(S−M)+ (t) = −k−1SP(S−M)+ (t) + λ1P(S−M)++1(t)

ṖS(t) = −λSPS(t) + k−1PS−1(t)

and initial condition Pk,q(0) = δk,Sδq,0. In the limit t → ∞ the model (2.2) gives the average

number

〈k∞〉 =
S

∑

j=(S−M)+

jPj,

where Pj = lim
t→∞

Pj(t). Similarly, the stationary variance of the number of unbound sites is

σ 2(M, S) = 〈k2
∞〉 − 〈k∞〉2, where 〈k2

∞〉 =
∑S

j=(S−M)+ j2Pj.

The rates λk are modeled as follows. For a single diffusing molecule, the time to binding

is the first passage time to reach a small absorbing portion ∂�a of the boundary, which

represents the active surface of the receptor, whereas the remaining part of ∂� is reflecting.

Due to the small target and to the deep binding potential well the binding and unbinding of

M to S are rare events on the time scale of diffusion (Schuss et al 2007). This implies that the

probability distribution of binding times is approximately exponential (Schuss 2010b) with

rate λ1 = 1/Eτ1, where the NET Eτ1 is the MFPT to ∂�a. When there are S binding sites,

k(t) of which are unbound, there are N = [M − S + k]+ free diffusing molecules in �, where

x+ = max{0, x}. The arrival time of a molecule to the next unbound site is well approximated

by an exponential law with state-dependent instantaneous rate (see discussion in Holcman and

Schuss 2005)

λk = Nk

Eτ1

= k(M − S + k)+

Eτ1

.

The results of the Markovian model (2.2) are

PS = 1

1 +
∑S−(S−M)+

k=1

∏S
i=S−k+1 i(M−S+i)+

k!(Eτ1k−1)k

〈k∞〉 = PS

(S−M)+
∑

k=S−1

(S − k)+
∏S

i=S−k+1 i(M − S + i)+

k!(Eτ1k−1)k

〈k2
∞〉 = PS

(S−M)+
∑

k=S−1

[(S − k)+]2

∏S
i=S−k+1 i(M − S + i)+

k!(Eτ1k−1)k

σ 2
S (M) = 〈k2

∞〉 − 〈k∞〉2 (2.3)

(see Holcman and Schuss (2005) for further details).

These formulas are used to estimate the fraction of bound receptors in photo-receptor

outer segments and also to interpret the channel noise measurements variance in Holcman and

Schuss (2005). In Holcman and Triller (2006) this analysis was used to estimate the number of

bound AMPA receptors in the post-synaptic density (PSD). A similar gated Markovian model

was proposed in Bressloff and Earnshaw (2009). The reduced Markovian model is used for the
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calculation of the mean time of the number of bound molecules to reach a given threshold T

(MFTT). In a cellular context, the MFTT can be used to characterize the stability of chemical

processes, especially when they underlie a biological function. Using the above Markov chain

description, the MFTT can be expressed in terms of fundamental parameters, such as the

number of molecules, of ligands, and the forward and backward binding rates. It turns out

that the MFTT depends nonlinearly on the threshold T . Specifically, consider M Brownian

molecules that can bind to immobile targets S inside a microdomain, modeled generically

by equation (2.1). The first time the number [MS](t) of MS molecules at time t reaches the

threshold is defined as

τT = inf{t > 0 : [MS](t) = T } (2.4)

and its expected value is τ̄T . Consider the case of an ensemble of the targets initially free

and distributed on the surface of a closed microdomain and assume that the backward rate

vanishes (k−1 = 0) and k f > 0. The dynamical system for the transition probabilities of

the Markov process MS(t) is similar to that above, but for the absorbing boundary condition

at the threshold T , which gives (2.2) (Dao Duc and Holcman 2010). When the binding is

irreversible (k−1 = 0), τ̄T is the sum of the forward rates

τ irrev
T = 1

λ0

+ 1

λ1

+ · · · + 1

λT−1

= 1

λ

T−1
∑

k=0

1

(M0 − k)(S0 − k)
. (2.5)

In particular, when M0 = S0 and M0 ≫ 1, (2.5) becomes asymptotically τ irrev
T ≈

T/λM0(M0 − T ). In addition, when the number of diffusing molecules largely exceed the

number of targets (M0 ≫ S0, T ), (2.5) gives the asymptotic formulas

τ irrev
T ≈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

λM0

log
S0

S0 − T
for M0 ≫ S0, T

1

λS0

log
M0

M0 − T
for S0 ≫ M0, T

T

λM0S0

for M0, S0 ≫ T.

(2.6)

Figure 2 shows the plot of τ irrev
T for several values of the threshold T , compared to Brownian

simulations in a circular disk � = D(R) with reflecting boundary, except at the targets.

2.1. Flux regulation by receptor clustering in cellular biology

There are several studied examples, where changing the arrangement of absorbing windows

affects the cell function. In bacteria, receptors re-cluster, depending on the external

concentration of a chemotactic attractant, thus improving the sensitivity. In the context of

neuroscience, receptors are known to re-cluster before the tip of a growing neuron (growth

cone) turns toward a chemoattractant. Changing the arrangement of AMPA receptors in

neuronal synapses affects the synaptic transmission. The variations in the shape of dendritic

spines of neurons as a result of learning and other physiological activities changes both

the density and distribution of receptors, transporters and other regulatory proteins, thereby

changing the ionic flux through the membrane. Thus calcium dynamics in dendritic spines can

be controlled at the cellular level by rearrangement of channels and exchangers.
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Figure 2. The MFTT. Left: trajectories of diffusing molecules in a microdomain
containing five binding sites on the boundary. Right: the time τ irrev

T is plotted as a
function of the threshold T . Brownian simulations (dotted blue line, variance in black),
the theoretical formula (2.5) (dotted red line) and its approximation (2.6) (continuous
blue line) for a circular disk in the irreversible case (k−1 = 0). The other parameters are
S0 = 15, M0 = 10 , ε = 0.05 , D = 0.1 μm2s−1 and the radius of the disk R = 1 μm
(200 runs).

Ω

∂Ωa

∂Ωr

x

Figure 3. Example of a trajectory of a diffusing Brownian ligand in a confined domain
� and randomly switching between two states 1 (continuous line) and 2 (dashed line).
In state 2, the ligand is reflected all over the boundary, while in state 1 it is absorbed at
∂�a.

2.2. Random search with switching between different states

Consider Brownian motion in a bounded domain �, whose diffusion coefficient is a random

telegraph signal that switches between two values, D1 and D2, at exponential waiting times

with rates k12 and k21, respectively (see figure 3). When the diffusion coefficient is D1, the

Brownian trajectory is reflected in the boundary ∂�, except for a small absorbing part ∂�a.

When the diffusion coefficient is D2, the entire boundary reflects the Brownian trajectory.

The gated narrow escape time (GNET) is the time to absorption of the switching Brownian

trajectory and the mean time to absorption is the GNET. More generally, a class of diffusions

is considered that switch between different diffusion coefficients D1, . . . , Dn at exponential

waiting times with given rates ki j and are absorbed at a small part ∂�a of ∂� while in states

D1, . . . , Dk and are otherwise reflected in ∂�. The GNET is related to certain intermittent
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search processes, where switching strategies between different states lead to minimal search

time of a target (Bénichou et al 2005). Other switching searches have been investigated where

a stochastic particle moves close to the surface membrane (Tsaneva et al 2009, Oshanin et al

2010, Berezhkovskii and Barzykin 2012).

The gated narrow escape model is used to calculate the GNET, which requires the solution

of a coupled system of mixed Dirichlet–Neumann boundary value problems for Poisson’s

equations. The system was recently solved in Reingruber and Holcman (2009, 2010).

2.2.1. Random switching between two modes of diffusion. Consider stochastic dynamics

x(t, i) that switches between two states, i = 1 and i = 2 (e.g., due to change of conformation),

at exponential waiting times with rates k12 and k21, respectively, and diffuses in state i with

diffusion constant Di. Its Euler simulation for t > s is given by

x(t + 	t, i) =

⎧

⎨

⎩

x(t, i) +
√

2Di	wi(t) w.p. 1 − ki j	t + o(	t)

x(t, j) w.p. k ji	t + o(	t), i 
= j

(2.7)

for i, j = 1, 2, with an initial condition x(s, i) = x, in which the states i = 1 and i = 2 can be

randomly distributed. Here wi(t) (i = 1, 2) are independent standard Brownian motions and

	wi(t) = wi(t + 	t) − wi(t).

The transition probability density function p(y, i, t | x, s, j) of the trajectory x(t, i) in a

given domain �, given the initial condition x(s, j) = x with probability 1, is the limit as

	t → 0 of the solution to the system of integral equations (Schuss 2010b)

p(y, i, t + 	t | x, s, j) = 1 − ki j	t√
2πDi	t

∫

�

p(z, i, t | x, s, j) exp

{

−|y − z|2
2Di	t

}

dz

+ k ji	t p(y, ℓ, t | s, j) + o(	t) for i, j, ℓ = 1, 2, i 
= ℓ.

In the limit 	t → 0, the system of Kolmogorov (master) equations is obtained

pt (y, 1, t | x, s) = D1	y p(y, 1, t | x, s) − k12 p(y, 1, t | x, s) + k12 p(y, 2, t | x, s)

pt (y, 2, t | x, s) = D2	y p(y, 2, t | x, s) + k21 p(y, 1, t | x, s) − k21 p(y, 2, t | x, s), (2.8)

which can be easily generalized to any number of states (Reingruber and Holcman 2010).

Setting

p =
(

p(y, 1, t | x, s)

p(y, 2, t | x, s)

)

, K =
(

k12 −k12

−k21 k21

)

, Dy =
(

D1 0

0 D2

)

	y,

the forward master equations (2.8) can be written as

pt (y, t | x, s) = Dy p(y, t | x, s) − Kp(y, t | x, s). (2.9)

The transition probability density function p (y, t | x, s) satisfies the backward system of master

equations (with respect to (x, s)), which is the formal adjoint to (2.9). Upon setting t − s = τ ,

as we may, we obtain

pτ (y, τ | x, 0) = Dx p(y, τ | x, 0) − KT p(y, τ | x, 0). (2.10)

The mean sojourn time in state i prior to absorption, u(i |x, 1), of a trajectory of (2.7) that

starts at τ = 0 in state 1 at position x with probability 1, is given by Schuss (2010b)

u(i | x, 1) =
∫

�

dy

∫ ∞

0

dτ p(y, i, τ | x, 1). (2.11)

To find the differential equations that the times u(i |x, j) satisfy, the backward equation (2.10)

is integrated with respect to y and τ to obtain

D1	u(i | x, 1) − k12[u(i | x, 1) − u(i | x, 2)] = −1

D2	u(i | x, 2) − k21[u(i | x, 2) − u(i | x, 1)] = 0.

10
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The mean sojourn times u(2 | x, 1) and u(2 | x, 2) satisfy equations that are obtained by

interchanging 1 ↔ 2 in (2.12). It suffices to solve the equations only for i = 1, because the

solutions u(2 | x, j) can be obtained from u(1 | x, j) by linear transformations. Specifically,

averaging u(i | x, j) over a uniform initial spatial distribution of x, we define the mean sojourn

times prior to absorption as

u(i | j) = 1

|�|

∫

�

u(i | x, j) dx. (2.13)

When the trajectory x(t, i) is absorbed at ∂�a with i = 1 while it is reflected everywhere on

the ∂� with i = 2, the boundary conditions for the system (2.12) are

u(1 | x, 1) = 0 for x ∈ ∂�a,
∂u(1 | x, 1)

∂n
= 0 for x ∈ ∂�r,

∂u(1 | x, 2)

∂n
= 0 for x ∈ ∂�.

The sojourn times u(2 | x, 1) and u(2 | x, 2) are obtained from u(1 | x, 1) and u(1 | x, 2) through

the linear transformation

(

u(2 | x, 1)

u(2 | x, 2)

)

= k12

k21

(

1 0

0 1

)(

u(1 | x, 1)

u(1 | x, 2)

)

+
(

0

1/k21

)

. (2.14)

Equations (2.12) and (2.14) show that the spatially averaged sojourn times (2.13) satisfy the

relations

u(1 | 2) = u(1 | 1), u(2 | 1) = u(1 | 1)
k12

k21

, u(2 | 2) = u(2 | 1) + 1

k21

. (2.15)

It follows that the mean sojourn times u(1), u(2), and u, conditioned on a uniform initial

distribution in states 1, 2, or in 1 and 2 with the equilibrium distribution (p1, p2) =
(k21, k12)/(k12 + k21), respectively, are

u(1) = u(1 | 1) + u(2 | 1) = u(1 | 1)

(

1 + k12

k21

)

u(2) = u(2 | 2) + u(2) = u(1) + 1

k21

(2.16)

u = p1u(1) + p2u(1 | 2) = u(1) + p2

k21

.

2.2.2. GNET in one dimension. The GNET for one-dimensional diffusion, though not

directly relevant to biological applications, can be calculated explicitly (Reingruber and

Holcman 2009, 2010) and is quite instructive about the dependence of the NET on switching.

Specifically, the system (2.12) in the interval � = (0, L) with absorption at x = 0 in state 1

and reflection at x = L is given in the scaled variables

x̂ = x

L
, l1 = k12L2

D1

, l2 = k21L2

D2

(2.17)

κ = D1

D2

, v1(x̂) = D1

L2
u1(x, 1), v2(x̂) = D1

L2
u1(x, 2)

by

v′′
1 (x̂) − l1[v1(x̂) − v2(x̂)] = −1, v′′

2 (x̂) + l2[v1(x̂) − v2(x̂)] = 0, (2.18)

11
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Figure 4. Graph of the sojourn time u(1 | 1) obtained from the explicit solution as a
function of l1 (left) and l2 (right), scaled by the NET τ1 with no switching. The continuous
curve in the left panel is the asymptotic approximation 3/

√
l1 for l1 ≫ 1 and

√
l1 ≫ l2.

with boundary conditions v1(0) = v′
1(1) = v′

2(0) = v′
2(1) = 0, which can be solved

explicitly. The nonlinear effect of switching can be seen from the explicit expressions

u(1 | 1) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L2

D1

[

coth
√

l1√
l1

− 1

l1

]

+ O

(

l2

l1

)

, for l2 ≪ l1

L2

3D1

+ O

(

l1

l2

)

, for l2 ≫ l1,

(2.19)

while for l1 ≫ 1 and l2 ≪
√

l1

u(1 | 1) ≈ L2

D1

1√
l1

= L√
k12D1

, l1 ≫ 1,
√

l1 ≫ l2. (2.20)

Figure 4 shows the plots of u(1 | 1) versus l1 (left) and versus l2 (right). The counterintuitive

result, that the sojourn time u(1 | 1) is always smaller than the mean exit time in state 1 without

switching, is remarkable. In addition, when the parameters D1, D2, and k21 are fixed, (2.20)

shows that u(1 | 1) becomes arbitrarily small as k12 increases. This counter intuitive behavior

can be understood as follows (see also Doering (2000)). For a trajectory starting uniformly

distributed in state 1, the probability to be in the neighborhood of the absorbing boundary

at x = 0 decreases quickly as a function of time. However, after switching to state 2, the

distribution is re-homogenized and later on, after switching back to state 1, the probability

density around x = 0 is higher than that in the non-switching case. After switching back to

state 1, the ligand starts closer to x = 0 with high probability and thus exits in state 1 faster

than in the non-switching case. Figure 5 (left) shows the plot of u(1) versus l1 for various fixed

values of l2. This situation describes a chemical reaction, where the diffusion constants and

the backward rate k21 are fixed, but the forward binding rate k12 can be adjusted by changing

the concentration of a reactant partner. Figure 5 (right) shows the plot of u(1) versus l2 for

fixed l1, which demonstrates that also u(1) has a minimum u(1)m in this case. The minimum

u(1)m decreases as switching becomes faster. A lower bound for u(1)m can also be found

explicitly. The analysis of the one-dimensional case shows that the lower limit of the GNET

u(1) corresponds to diffusion with the maximal diffusion constant and for κ = D1/D2 � 1,

the fastest exit is achieved by diffusing most of the time in state 2, with no exits possible. The

exit time u(1) has no global or even local minima for κ < 1 and the best strategy to minimize

the GNET needs to be adapted to the given constraints. For example, when k21 k12 are the

unbinding and the binding rates, respectively, k21 usually depends on the local interaction

12
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Figure 5. Graph of the exit time u(1) as a function of l1 (left) and l2 (right) for
D1/D2 = 0.1, scaled by NET τ1 in the absence of switching.

potential while k12 can be modulated by changing the concentration of the binding partner.

Furthermore, as shown in figure 5, the graph of u(1) around and past the minimum is quite

flat, and thus increasing switching to attain the minimum may not be necessary, because a

similar effect can already by achieved at much slower rates. Moreover, because the graph of

u(1) decays steeply for small values l1 and l2, this behavior provides an efficient mechanism

to modulate the activation time, and thus modulate cellular signaling.

2.2.3. GNET in three dimensions. Consider the GNET problem for a three-dimensional

domain � when the trajectory is absorbed upon hitting ∂�a in state 1 only. In the absence

of switching, the time reduces to the NET τ1 (Kolokolnikov et al 2005, Singer et al 2006b,

Grigoriev et al 2002), which shows that outside a small boundary layer around the absorbing

hole of radius a, where a characterizes the extent of ∂�a, the positional NET is almost

independent of the initial ligand position (Singer et al 2006b). Using the scaling (Reingruber

et al 2009)

x̂ = x

a
, l1 = k12a2

D1

, l2 = k21a2

D2

, v1(x̂) = aD1

|�| u1(x, 1), v2(x̂) = aD1

|�| u1(x, 2),

the equations (2.12) become the dimensionless system

	v(i|x̂, 1) − l1[v(i | x̂, 1) − v(i | x̂, 2)] = −|�̂|−1

	v(i | x̂, 2) + l2[v(i | x̂, 1) − v(i | x̂, 2)] = 0,
(2.21)

where |�̂| = |�|/a3 ≫ 1. The boundary conditions are absorbing on ∂�̂a for v1(x̂), and

otherwise reflecting. Asymptotic approximations to the solution of (2.21) in the limit of

small window and extreme values of the parameters clarify the effect of switching. For

l1 ≪ 1 or l2 ≫ l1, at leading orders, v(1 | x̂, 1) is the solution of the NET problem

	v(1 | x̂, 1) = −|�̂|−1. When l2 ≪
√

l1, the leading order approximation for v(1 | x̂, 1)

is found by solving 	v(1 | x̂, 1) − l1[v(1 | x̂, 1) − v1] = −|�̂|−1, where v1 is the spatial

average of v(1 | x̂, 1). The leading order asymptotic approximation to the mean sojourn time

is

u(1) =
(

1 + k12

k21

) |�|
aD1

v1 (2.22)

∼
(

1 + k12

k21

)

⎧

⎨

⎩

τ1 for l1 ≪ 1 or l2 ≫ l1
|�|

|∂�a|
√

D1k12

for l1 ≫ 1,
√

l1 ≫ l2,
(2.23)

13



J. Phys. A: Math. Theor. 47 (2014) 173001 Topical Review

0 20 40 60
0

0.2

0.4

0.6

1

l1

u1(1)
τ1

l2 = 1

l2 = 5

l2 = 10

0 20 40 60
0

0.5

1

1.5

l1

u(1)
τ1

l2 = 1

l2 = 5

l2 = 10

Figure 6. Simulation results for the mean sojourn time u(1 | 1) and the mean exit time
u(1) as a function of l1 for different values of l2 (marked by various symbols). The
results are scaled by the NET τ1. The continuous line in the left panel is the asymptotic
value 4/π

√
l1, obtained from (2.23) (see text). The results for u(1) in the right panel

are obtained for κ = 0.1.

where τ1 is the NET in state 1 without switching. The asymptotic behavior (2.23) of u(1)

and u(1 | 1) as functions of l1 and l2 is confirmed by Brownian simulations together with the

Gillespie-algorithm (Gillespie 1976) to model switching in a sphere of radius r = 30 with a

circular hole of radius a = 1. In the left panel of figure 6 simulation results are shown for

u(1 | 1) as a function of l1 for various values of l2. Clearly, u(1 | 1) � τ1, which confirms

the asymptotic behavior u(1 | 1)/τ1 ≈ 4/(π
√

l1). The latter follows from (2.23) with the

asymptotic approximation τ1 ≈ |�|/(4aD1) (Schuss et al 2007) and |∂�a| = πa2. Simulations

results for u(1) as a function of l1 for various values of l2 and κ = 0.1 (D1 = 1, D2 = 10) are

displayed in the left panel of figure 6. The plot shows that u(1) has a minimum u(1)m smaller

than τ1, which is attained at some value l1,min > 0.

In the range of parameters such that u1(1) ≈ τ1 the switching dynamics can be

approximated by an effective non-switching diffusion process with diffusion constant

Deff = D1/(1 + k12/k12). However, because Deff < D1, the effective diffusion approximation

cannot give an exit time u(1) smaller than τ1. Interestingly, (2.23) shows that u(1) in the

range
√

l1 ≫ l2, l1 ≫ 1 is smaller than τ1 and inversely proportional to the surface area of

the absorbing window, similarly to the NET to a partially absorbing hole (Reingruber et al

2009). In this range, the switching dynamics cannot be approximated by the classical diffusion

process. If D2 > D1, then switching can significantly decrease the GNET relative to the non-

switching NET. For small values of l1 and l2, the GNET is very sensitive to changes in these

parameters (see figures 5 and 6).

2.2.4. Application to the transcription factor search. The above computations of the GNET

are relevant to a transcription factor (TF) search time for a DNA-promoter site (figure 7). The

search can alternate between three-dimensional diffusion in the nucleus and one-dimensional

diffusion along the DNA (figure 8) (Elf et al 2007, Wang et al 2006, Von Hippel and Berg 1989).

While diffusing along the DNA, the TF can switch at random between two conformational

states: in state 1 the diffusion is slow due to a high affinity of the TF for the DNA and therefore

it scans accurately the DNA base pairs. In state 2, diffusion is much faster, but the TF does

not scan the DNA molecule accurately. It was shown recently that the search time of such

a TF can be significantly reduced relative to that of a TF, which accurately examines all the

14
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Figure 7. Motion of a TF along the DNA molecule. A TF located at position i moves
by one base pair to the right with a probability pi and to the left with a probability qi

as represented in the lower half of the figure (Malherbe and Holcman 2010). Figure
adapted from Furini et al (2010). With permission from Furini et al 2010 J. Phys. Chem.
B 114 2238–45. Copyright (2010) American Chemical Society.

DNA base pairs. Several recent computations show that the mean time to find the DNA site

is several minutes long (Malherbe and Holcman 2010, Reingruber and Holcman 2011b). The

following opens fundamental question that remains to be addressed: what is the role of DNA

conformation, accessibility, and chromatin organization in the search process?

2.3. References to section 2

Simulations of several interacting species in a microdomain were reported in Holcman et al

(2004). Synaptic transmission, starting with the arrival of NT molecules at receptors on the

post-synaptic membrane were reported in Freche et al (2011), Taflia and Holcman (2011),

Holcman and Triller (2006), and Reingruber and Holcman (2011a). Quantification of diffusion

in dendritic spines was reported in Biess et al (2007). A simplified model of chemical reaction

simulations was achieved in Holcman and Schuss (2005) and Dao Duc and Holcman (2010)

by replacing Brownian simulations with coarse-grained Markov chains. A key feature here is

the fact that the arrival process of Brownian particles from a practically infinite continuum to

an absorbing target is Poissonian (Nadler et al 2002, Schuss et al 2007). A reduced Markovian

description of the stochastic dynamics of the binding and unbinding of molecules is given

in Holcman and Schuss (2005) and applied in Dao Duc and Holcman (2010, 2012). Spindle

assembly checkpoint during cell division was studied in Dao Duc and Holcman (2012).

Verification of molecular dynamics simulations in domains that contain small passages or

targets was done in Biess et al (2007).
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Figure 8. Search scenario for a DNA target by a TF. The TF can attach to the DNA
molecule and scan a number of potential binding sites or diffuse freely in the nucleus.
The TF alternates periods of one-dimensional random walks along the DNA molecule
and free diffusions in the nucleus.

3. Diffusion on a crowded membrane and intracellular trafficking

The organization of a cellular membrane is the determinant of the efficiency of trafficking

molecules (e.g., receptors) to their destination. After decades of intense research on membrane

organization, it was demonstrated recently by single-particle imaging that the effective

diffusion constant can span a large spectrum of values, from 0.001 to 0.2 μm2 s−1 (Choquet

2010), yet it is still unclear how the heterogeneity of the membrane controls diffusion (see

figure 9). There are several studied examples, where changing the arrangement of absorbing

windows affects the cell function. In bacteria, receptors re-cluster, depending on the external

concentration of a chemotactic attractant, thus improving the sensitivity. In the context of

neuroscience, receptors are known to re-cluster before the tip of a growing neuron (growth

cone) turns toward a chemoattractant. Changing the arrangement of AMPA receptors in

neuronal synapses affects the synaptic transmission. The variations in the shape of dendritic

spines of neurons (Segal and Andersen 2000) as a result of learning and other physiological

activities changes both the density and distribution of receptors, transporters and other

regulatory proteins and thereby change the ionic flux through the membrane (Bourne and

Harris 2008). Recently, using single molecule tracking, the diffusion coefficient of a molecule

freely diffusing on intact and treated neuronal membranes, cleared of almost all obstacles, was

calculated in (Renner et al 2009). The degree of crowding of a membrane with obstacles can

be estimated from diffusion data and from an appropriate model and its analysis, as explained

below. The key to assessing the crowding is to estimate the local diffusion coefficient from

the measured molecular trajectories and from the analytical formula for the MFPT through a

narrow passage between obstacles.
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Figure 9. Organization of a neuronal membrane (www.nanobio.frontier.
kyoto-u.ac.jp/lab/slides/4/e.html, reproduced with permission from A Kusumi,
Copyright 2005) containing microdomains made of overlapping filaments.

3.1. Diffusion on a membrane crowded with obstacles

In a simplified model of crowding, the circular obstacles are as shown in figure 10(a). It is a

square lattice of circular obstacles of radius a centered at the corners of lattice squares of side

L. The mean exit time from a lattice box (see figure 10(a)) is to leading order

τ̄4 = τ̄

4
, (3.1)

where τ̄ is the MFPT to a single absorbing window in narrow straits with the other windows

closed (reflecting instead of absorbing) (see figure 20 (left); τ̄ is the MFPT from the head to

the segment AB, or figure 24 (left)). It follows that the waiting time in the cell enclosed by the

obstacles is approximately exponentially distributed (1.1) with rate

λ = 2

τ̄4

, (3.2)
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(b)(a)

(d )(c)

Figure 10. Model of diffusion on a crowded membrane. (a) Schematic representation of
a Brownian particle diffusing in a crowded microdomain. (b) Mean square displacement
(MSD) of the particle in a domain paved with microdomains. The MSD is linear, showing
that crowding does not affect the nature of diffusion. The effective diffusion coefficient
is computed from 〈MSD(t)/4t〉. (c) Effective diffusion coefficient computed from the
MSD for different radiuses of the obstacles. Brownian simulations (continuous curve):
there are three regions (separated by the dashed lines). While there is no crowding for
a < 0.2, the decreasing of the effective diffusion coefficient for 0.2 < a < 0.4 is
logarithmic, and like square root for a > 0.4. (d) Effective diffusion coefficient of a
particle diffusing in a domain as a function of the fraction of the occupied surface. An
AMPAR has a diffusion coefficient of 0.2 μm2 s−1 in a free membrane.

where τ̄ is given by

τ̄ ≈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c1 for 0.8 < ε < 1,

c2|�| log
1

ε
+ d1 for 0.55 < ε < 0.8,

c3

|�|√
ε

+ d2 for ε < 0.55,

(3.3)

with ε = (L − 2a)/a and d1, d2 = O(1) for ε ≪ 1 (see figure 10). The constants

ci, (i = 1, 2, 3) are calculated in Holcman et al (2011): the MFPT c1 from the center to
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the boundary of an unrestricted square is the solution of (6.6), given by

u(x, y) = 4L2

π3D

∞
∑

0

[

cosh
(

k + 1
2

)

π − cosh(k + 1
2
)π(2y/L − 1)

]

sin(2k + 1)πx/L

(2k + 1)3 cosh(2k + 1)π
,

so c1 = u(L/2, L/2) ≈ [4L2/π3D][cosh(π/2 − 1)/ cosh π ] remains unchanged and with

L = 1, D = 1, the value c1 ≈ 0.076 is obtained. Similarly, c2 = 1/2πD ≈ 0.16. The

coefficient c3 is approximated by c3 ≈ π/8 D ≈ 0.39. The coefficients di are chosen by

patching τ̄ continuously between the different regimes. They are given by

d1 = c1 + c2|�(r1)| log(1 − 2r1)

d2 = c1 − c2[|�(r1)| log(1 − 2r1) + |�(r2)| log(1 − 2r2)] − c3|�(r2)|r1/2

2
(1 − 2r2)

−1/2,

where |�(r)| = L2 − πr2. Equation (3.3) holds in the full range of values of a ∈ [0, L/2]

and L.

Brownian simulations, with diffusion coefficient D0, of the passage from one square to the

other with fixed L and variable a (see figure 10(b)) confirm that in the given geometry the mean

square displacement (MSD) is linear in time, so that crowding does not affect the effectively

diffusive character of the Brownian motion on a sufficiently coarse time scale. The simulations

also confirm that the effective diffusion coefficient can be computed from Da = MSD(t)/4t

for sufficiently large t. Figure 10(c) shows the diffusion coefficient ratio Da/D0 as a function

of a/L. For a = 0.3, the value Da/D0 ≈ 0.7 is obtained, whereas a direct computation with

the mean exit time formula (3.3) gives

τ0

τa

= c1

c2|�| log
1

ε
+ d1

≈ 0.69, (3.4)

where ε = (L − 2a)/L = 0.4. It follows that the coarse-grained diffusion coefficient is

classical and the effective diffusion coefficient Da/D0 = τ0/τa decreases nonlinearly as a

function of the radius a, as given by the uniform formula (3.3). The three regimes of equation

(3.3) are recovered (figure 10(c)): a non-crowded regime for a < 0.2L, where the effective

diffusion coefficient does not show any significant decrease, a region 0.2L < a < 0.4L, where

the leading order term of the effective diffusion coefficient is logarithmic, and for a > 0.4L

the effective diffusion coefficient decays as
√

(L − 2a)/L, in agreement with (3.3). Thus the

analytical expression for the NET through the narrow neck between obstacles coarse-grains

Brownian motion in an environment crowded with obstacles (figure 10) into a Markovian

random walk that jumps between the connected domains at exponentially distributed times

with rates determined by the NET. This random walk can in turn be approximated by an

effective coarse-grained isotropic diffusion, as done for atomic migration in crystals (Schuss

1980, chapter 8, section 2) and for effective diffusion on a surface with obstacles (Holcman

et al 2011). The diffusion approximation to the transition probability density function of an

isotropic random walk that jumps at exponentially distributed waiting times with rate λ on a

square lattice with step size L is given by

∂ p

∂t
= D̄

(

∂2 p

∂x2
+ ∂2 p

∂y2

)

, D̄ = λL2

4
. (3.5)

To illustrate this theory, a reduction of the effective diffusion coefficient from 0.01 on a clear

membrane to 0.2 μm2 s−1 on an obstructed membrane (Triller and Choquet 2003), which leads

to the estimate of 70% occupancy of the membrane surface with obstacles (Holcman et al

2011), as can be seen from figure 10.
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Figure 11. Schematic representation of neurite outgrowth: vesicles are delivered to the
neurite tip while microtubules can associate in a bundle. When the microtubule bundle
is attached to the neurite tip, the entire neurite structure is stabilized. Such a model
accounts for the different between dendritic versus axonal growth (Tsaneva et al 2009).
Reproduced with permission from Tsaneva et al 2009 Biophys. J. 96 840–57. Copyright
(2009) Elsevier.

3.2. Trafficking and the delivery flux of vesicles in neurite outgrowth

Vesicular delivery is a fundamental process of development, which requires both membrane

expansion by exocytosis and cytoskeletal dynamics (Kandel et al 2000). It is also involved in

constitutive material delivery (figure 11). To study the specific contribution of these processes

and to account for live imaging data, a biophysical model was used in Tsaneva et al (2009) to

relate the overall neurite outgrowth rate to the rate of vesicle delivery at the growth-cone tip.

The vesicle motion was modeled as isotropic diffusion in a spherical domain of radius R with

constant radial potential U (x) = −v(x) · x, where v(x) is the constant field of radial average

motion away from the center.

This model represents the motion of vesicles in the cell soma by a combination of

Brownian motion and directed motion along microtubules (MTs) and actin filaments. The

MFPT to a small neurite initiation site of radius a on the membrane was shown to be given in

the large-force limit by

τ̄ = |S|
a|v|

[

1 + O

(

D

|v|R

)]

, (3.6)

where |S| is the surface area of the soma. Formula (3.6) reveals that due to the sequestration

at the surface by the strong drift, the search time for Brownian motion in this case depends

on the surface area of the boundary. Simulations show that Brownian trajectories stay close to

the boundary surface in their search for the absorbing window (Tsaneva et al 2009).

3.3. References to section 3

The organization of a cellular membrane was studied in Edidin et al (1991), Sheetz (1993),

Suzuki and Sheetz (2001), Kusumi et al (2005, 1993), Saxton (1995), Saxton and Jacobson

(2010), Eisinger et al (1986), and more. Single-particle imaging results were reported in

Borgdorff and Choquet (2002), Tardin et al (2003), Triller and Choquet (2003), Choquet

(2010). It was shown in Kim et al (2002) that in bacteria, receptors re-cluster depending on the

external concentration of a chemotactic attractant. The papers (Bouzigues et al 2007, 2010)
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show that receptors are known to re-cluster before the tip of a growing neuron. Taflia and

Holcman (2011) and Freche et al (2011) show that rearrangement of AMPA receptors affects

synaptic transmission. Segal and Andersen (2000) report variations in the shape of dendritic

spines of neurons as a result of learning and other physiological activities in changing both

the density and distribution of receptors, transporters, and other regulatory proteins. Changes

in ionic flux through the membrane as the result of rearrangements are reported in Bourne and

Harris (2008).

4. Physical virology: modeling the early steps of cell viral infection at the

molecular level

The goal of this section is to present modeling for quantifying the early steps of cell viral

infection.

4.1. The cytoplasmic viral trafficking

Most viruses entering cells after binding to specific membrane receptors (Whittaker et al

2000, Greber and Way 2006) are enveloped in an endosomal compartment (figure 12). To

undergo cytoplasmic or nuclear replication and to avoid degradation in acidic lysosomes,

viruses must then successfully escape the endosome. Thus the Brownian motion of the virus

can be terminated by killing the trajectory (see section 4.2.1 below). Enveloped viruses, such

as influenza, contain membrane-associated glycoproteins, which mediate the fusion between

the viral and endosomal membranes. In particular, acidification of the endosome triggers the

conformational change of the influenza hemagglutinins (HA) into a fusogenic state, leading

to endosome-virus membranes fusion and release of genes into the cytoplasm. Other non-

enveloped viruses, such as the Adeno-Associated-Virus, have to escape the endosome, a

process that requires one of the (less than 10) capsid proteins to change conformation.

Following the endosomal escape, viruses have to travel through the crowded cytoplasm to

reach the nucleus and deliver their genetic material through the nuclear pores. While the

cytoplasmic movement of viral particles towards the nucleus is facilitated by the microtubular

network and viral proteins, very little is known about the fate of non-viral DNA vectors in the

cytoplasm. However, trapping of large DNA particles (>500 kDa) in the crowded cytoplasm

drastically hinders their cytoplasmic diffusion (Verkman 2000, Dauty and Verkman 2005)

and subsequently diminishes the transfection rate of synthetic gene vectors (see figure 13).

Mathematical and physical models of this process are constructed for the purpose of predicting

and quantifying infectivity and the success of gene delivery. The models give rise to rational

Brownian dynamics simulations for the study of sensitivity to parameters and, eventually,

for testing the increase or the drop in infectivity by using simultaneously a combination of

various drugs. The modeling approach can be used for the optimization of the delivery in a

high-dimensional parameter space.

For example, fusogenic peptides derived from viral glycoproteins, are increasingly used

in cationic synthetic vectors and the pH-sensitivity of fusogenic glycoproteins can now be

tuned by modifying the electrostatic stability of the fusogenic complex. These engineered

glycoproteins are intended for designing efficient gene vectors, so quantitative models can help

optimizing glycoprotein molecular properties with respect to the endosomal escape efficacy

of the vector.

4.2. Stochastic description of viral trajectories

Vesicular and viral motions alternate intermittently between periods of free diffusion and

directed motion along MTs. Such viral trajectories have been recently monitored by using
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(a)

(b)

(c)

(d )

(e)

(f )

Figure 12. Common entry and uncoating mechanisms of selected nuclear-replicating
viruses. Viruses can undergo substantial uncoating in the cytoplasm before translocating
into the nucleus; (a) HIV, (b) influenza virus. Alternatively, viruses can dock to the
NPC and uncoat at the cytoplasmic side of the nuclear membrane; (c) adenovirus and
(d) herpesvirus. They may possibly disassemble within the nuclear pore; (e) hepatitis B
virus; (f) parvovirus Whittaker et al (2000). Reproduced with permission from Whittaker
et al 2000 Annu. Rev. Cell Dev. Biol. 16 627–51. Copyright (2003) Annual Reviews.

new imaging techniques in vivo. The trajectory of a viral particle x(t) can be modeled as the

randomly switching process

dx(t) =
{√

2D dw for x(t) free

V dt for x(t) bound to a MT,
(4.1)

where w(t) is standard Brownian motion, D is the diffusion constant, and V (x) is the velocity

field of the directed motion along MTs.

The particle motion (4.1) can be coarse-grained by the stochastic equation

dx = b(x) dt +
√

2D dw, (4.2)
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Figure 13. Virus infection in cell. (a) Trajectories of single AAV-Cy5 particles: the
traces showing single diffusing virus particles were recorded at different times. They
describe various stages of AAV infection, e.g. diffusion in solution (1 and 2), touching at
the cell membrane (2), penetration of the cell membrane (3), diffusion in the cytoplasm
(3 and 4), penetration of the nuclear envelope (4), and diffusion in the nucleoplasm
(Seisenberger et al 2001). Reproduced with permission from Seisenberger et al 2001
Science 294 1929–32. Copyright (2001) The American Association for the Advancement
of Science. (b) Schematic description of early steps of infection for viral and synthetic
vectors. Synthetic vectors are not assisted by active transport during their cytoplasmic
trafficking.

where b(x) is a drift that accounts for ballistic periods along MTs. The stochastic dynamics

(4.2) can be used to generate computer simulations of trajectories in free and confined

environment (Schuss 2010b). It can also be used to derive asymptotic formulas for the

probability and the MFPT of the virus to a nuclear pore (Holcman 2007). Various analytic

expressions for the effective drift have been derived for various geometries. The expression

for b(x) depends on the MT organization and on the viral dynamical properties, such as the

diffusion constant D, affinity with MTs, and net velocity along MTs.

4.2.1. NET with killing. Consider the diffusion process x(t) defined by the stochastic

dynamics in a domain �

dx = a(x) dt +
√

2B(x) dw(t), (4.3)

where a(x) is a smooth drift vector, B(x) is a diffusion tensor, and w(t) is a vector of

independent standard Brownian motions. If the trajectories x(t) can be terminated at time t

at each point x ∈ � with probability k(x, t)	t + o(	t), the function k(x, t) is called killing

measure (Schuss 2010b). When the boundary ∂� admits no absorption flux, except for a small

absorbing window ∂�a, the NET problem is to find the absorption flux of trajectories that

survive the killing. Thus there are two random termination times defined on the trajectories

x(t), the time T to termination by killing and the time τ to termination by absorption in ∂�a.

4.2.2. The probability of absorbed trajectories. The transition probability density function of

the process x(t) with killing and absorption is the conditional transition probability density
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function of trajectories that have neither been killed nor absorbed in ∂�a by time t,

p(x, t | y) dx = Pr{x(t) ∈ x + dx, T > t, τ > t | y}. (4.4)

It is the solution of the Fokker–Planck equation (Schuss 2010b)

∂ p(x, t | y)

∂t
= Lx p(x, t | y) − k(x)p(x, t | y) for x, y ∈ �, (4.5)

where Lx is the forward operator

Lx p(x, t | y) =
d

∑

i, j=1

∂2σ i, j(x)p(x, t | y)

∂xi∂x j
−

d
∑

i=1

∂ai(x)p(x, t | y)

∂xi
, (4.6)

and σ(x) = 1
2
B(x)BT (x). The operatorLx can be written in the divergence formLx p(x, t | y) =

−∇ · J(x, t | y), where the flux density vector J(x, t | y) is

Ji(x, t | y) = −
d

∑

j=1

∂σ i, j(x)p(x, t | y)

∂xi
+ ai(x)p(x, t | y). (4.7)

The initial and boundary conditions for the Fokker–Planck equation (4.5) are

p(x, 0 | y) = δ(x − y) for x, y ∈ � (4.8)

p(x, t | y) = 0 for t > 0, x ∈ ∂�a, y ∈ � (4.9)

J(x, t | y) · n(x) = 0 for t > 0, x ∈ ∂� − ∂�a, y ∈ �. (4.10)

The probability that the particle reaches the absorbing ∂�a before being killed is given by

Holcman et al (2005b) and Schuss (2010b)

Pr{T < τ | y} =
∫ ∞

0

∫

�

k(x)p(x, t | y) dx dt. (4.11)

The absorption probability flux on ∂�A is J(t | y) =
∮

∂�
J(x, t | y) ·n(x) dSx and

∫ ∞
0

J(t | y) dt

is the probability of trajectories that have ever been absorbed at ∂�a.

The probability distribution function of the killing time T is the conditional probability

of killing before time t of trajectories that have not been absorbed in ∂�a by that time,

Pr{T < t | τ > t, y} = Pr{T < t, τ > t | y}
Pr{τ > t | y} =

∫ t

0

∫

�
k(x)p(x, s | y) dx ds

∫ ∞
0

∫

�
k(x)p(x, s | y) dx ds

.

The probability distribution of the time to absorption at ∂�a is the conditional probability of

absorption before time t of trajectories that have not been killed by that time,

Pr{T < t | τ > t, y} =
∫ t

0
J(s | y) ds

1 −
∫ ∞

0

∫

�
k(x)p(x, s | y) dx ds

. (4.12)

Thus the NET is the conditional expectation of the absorption time of trajectories that are not

killed in �, that is,

E[τ | T > τ, y] =
∫ ∞

0

Pr{τ > t | T > τ, y} dt =
∫ ∞

0
sJ(s | y) ds

1 −
∫ ∞

0

∫

�
k(x)p(x, s | y) dx ds

.

The survival probability of trajectories that have not been terminated by time t is given by

S(t | y) =
∫

�

p(x, t | y) dx. (4.13)

The mean time spent at x prior to termination,

p̃(x | y) =
∫ ∞

0

p(x, t | y) dt (4.14)

24



J. Phys. A: Math. Theor. 47 (2014) 173001 Topical Review

is the solution of the boundary value problem

Lx p̃(x | y) − k(x) p̃(x | y) = −δ(x − y) for x, y ∈ �

p̃(x | y) = 0 for x ∈ ∂�a, y ∈ � (4.15)

J(x | y) · n(x) = 0 for t > 0, x ∈ ∂� − ∂�a, y ∈ �.

If the initial pdf is a sufficiently smooth function pI (x), the density of the time spent at x prior

to termination,

p̃(x) =
∫

�

p̃(x | y)pI(y) dy, (4.16)

satisfies

Lx p̃(x) − k(x) p̃(x) = −pI (x) for x ∈ � (4.17)

p̃(x) = 0 for x ∈ ∂�a

J̃(x) · n(x) = 0 for t > 0, x ∈ ∂� − ∂�a.

The probability PN of trajectories that start at y ∈ � and are terminated at ∂�a is

PN =
∫

�

Pr{τ 〈T | x(0) = y}pI(y) dy = 1 −
∫

�

k(x) p̃(x) dx. (4.18)

4.3. Probability that a viral particle arrives alive at a nuclear pore

For Brownian motion with diffusion coefficient 1 (without drift) the boundary value problem

(4.17) can be solved asymptotically for a small absorbing window ∂�a in terms of the Neumann

function N(x, ξ), which is a solution of the boundary value problem

	xN(x, ξ) = −δ(x − ξ) for x, ξ ∈ �,

∂N(x, ξ)

∂n(x)
= − 1

|∂�| for x ∈ ∂�, ξ ∈ �, (4.19)

and is defined up to an additive constant. Multiplying (4.17) by N(x, ξ) and using Green’s

theorem, the identity

p̃(ξ) = −
∫

�

N(x, ξ)[−pI (x) + k(x) p̃(x)]dx +
∫

∂�a

N(x, ξ)
∂ p̃(x)

∂n
dSx + 1

|∂�|

∫

∂�

p̃(x) dSx

is obtained. The leading order term in the expansion of p̃(x) for small |∂�a| and sufficiently

small killing rate k(x, t) (i.e., smaller than the absorption rate, see Holcman (2007)) is constant

p̃(x) ≈ Pa outside a boundary layer near ∂�a. Then the following approximation is valid,

p̃(ξ) ≈
∫

∂�a

N(x, ξ)
∂ p̃(x)

∂n
dSx + Pa

(

1 −
∫

�

k(x)N(x, ξ) dx

)

+
∫

�

N(x, ξ)pI (x) dx.

The compatibility condition, obtained from the integration of (4.17) over �, and the boundary

layer expansion (see Holcman (2007)), give in the three-dimensional case the approximation

of the density of the time spent at x ∈ � as

Pa ≈ 1

4ε +
∫

�
k(x) dx

, (4.20)

provided (see Schuss 2013 and Holcman and Schuss 2014)

|∂�|1/(d−1)

|�|1/d
= O(1) for ε ≪ 1, (4.21)
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and the probability of the absorbed trajectories as

PN = 1 −
∫

�

k(x) p̃(x) dx ≈ 4ε

4ε +
∫

�
k(x) dx

for k(x) ≪ 1. (4.22)

If the diffusion coefficient is D, the parameter ε in (4.20) and (4.22) is changed to Dε. The

case of Brownian motion with drift is described in Holcman (2007). The results of this section

are used to estimate the probability that a live virus arrives at one of the small pores in a cell’s

nucleus.

4.4. The mean arrival time to a small nuclear pore

The crowded cytoplasm is a risky environment for gene vectors that can be either trapped or

degraded through the cellular defense machinery. Thus cytoplasmic trafficking is rate-limiting

and to analyze quantitatively that step, asymptotic expressions for the probability PN and the

mean arrival time Eτ of a virus vector to one of n small nuclear pores ∂�a were derived in

Holcman (2007) and Lagache et al (2009b).

Viral degradation or immobilization is modeled as a steady state degradation rate k(x).

The probability density function p(x, t) of viral trajectories that survive by time t in the

cytoplasm � is defined as the joint probability and density of the trajectory, the killing time

T , and the time to absorption τ ,

p(x, t) dx = Pr{x(t) ∈ x + dx, T > t, τ > t} (4.23)

with initial viral pdf pI(x). The probability PN of trajectories that start with the viral pdf in

� and are terminated at ∂�a is calculated from the expression for the NET as follows. For n

identical nuclear pores in the shape of absorbing disks of radius ε and when b(x) = −∇
(x)

for some potential 
(x), the leading order terms in the expansions of PN and Eτ for small ε

are given by Amoruso et al (2011) as

PN ≈
1

|∂�|
∮

∂�
exp

{

− 
(x)

D

}

dx

1
|∂D|

∮

∂D
exp

{

− 
(x)

D

}

dx +
(

1
4nDε

+ 1
DC�

) ∫

�
k(x) exp

{

− 
(x)

D

}

dx

and

Eτ ≈
(

1
4nDε

+ 1
DC�

) ∫

�
exp

{

− 
(x)

Dcal

}

dx

1
|∂D|

∮

∂D
exp

{

− 
(x)

D

}

dx +
(

1
4nDε

+ 1
DC�

) ∫

�
k(x) exp

{

− 
(x)

D

}

dx
,

where C� is the capacity of the nucleus (for a sphere of radius δ, C� = 4πδ). Interestingly, for

a biological cell with a spherical nucleus (radius δ = 5 μm ), the n = 2000 circular nuclear

pores (radius ε = 25 nm ) cover a surface nπε2/4πδ2 ≈ 1% of the total nuclear surface and

1/4nDε is only one third of 1/C�.

4.5. Endosomal viral escape

Once a virus enters an endosome, it has to escape into the cytoplasm before being degraded by

lysosomes. Although the exact pathways leading to endosomal escape are not fully elucidated,

they are limiting steps. Most viruses possess efficient endosomolytic proteins allowing them

to disrupt the endosomal membrane, such as the VP1 penetration protein of the adeno-

associated virus or the influenza HA. In addition, the biophysical mechanism leading to

endosomal membrane destabilization and concomitant plasmids release for synthetic vectors

is still poorly understood. However, in both cases, acidification of the endosome is needed

to trigger endosomal escape. For viruses, protons or low pH-activated proteases bind viral

endosomolytic proteins, triggering their conformational change into a fusogenic state. The
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case of proton-binding sites on the viral envelope of the influenza virus has also been discussed

(see references below).

Models aimed at estimating the residence time of a viral particle inside an endosomal

compartment are based on the assessment of the accumulation of discrete proton-binding

events, that lead to the conformational change of HAs. These models, for both enveloped

and non-enveloped viruses, consist of two steps. In the first step, the concentration of protons

is fixed and the mean time for protons to bind to fundamental protein binding sites until a

threshold is reached is calculated from a jump-Markov-process model by asymptotic methods.

A conformational change into a fusogenic state is triggered after the threshold is reached. In

the second step, the dynamics of endosomal escape is modeled by coupling the pH-dependent

conformational change of glycoproteins with the proton-influx rate. The impact of the size of

the endosome on the escape kinetics and pH can be mathematically predicted. It reconciles

different experimental observations: while a virus can escape from small endosomes (radius

of 80 nm) in the cell periphery at pH ∼ 6 in about 10 min, it can also be routed towards the

nuclear periphery, where escape from larger endosomes (radius of 400 nm) is rapid (less than

1 min) at pH = 5. The detailed modeling of these two steps were reviewed in Amoruso et al

(2011).

4.6. References to section 4

Mathematical and physical models of the viral infection process were proposed in Holcman

(2007), Lagache and Holcman (2008a, 2008b), Amoruso et al (2011), Lagache et al (2009a).

Optimization of the virus delivery in a high-dimensional parameter space is discussed in

Lagache et al (2012). Synthetic vectors are discussed in Abe et al (1998) and Tu and Kim

(2008). Tuning of the pH-sensitivity of fusogenic glycoproteins is discussed in Rachakonda

et al (2007). Escape efficacy of the vector is discussed in Sodeik (2000).

Vesicular and viral motions that alternate intermittently between periods of free diffusion

and directed motion along MTs are discussed in Greber and Way (2006). Such viral trajectories

have been recently monitored by using new imaging techniques in vivo (Seisenberger et al

2001, Brandenburg and Zhuang 2007).

The MFPT of a virus to a nuclear pore was calculated in Holcman (2007). The effective

drifts of viral motion have been derived for various geometries in Lagache and Holcman

(2008a, 2008b).

The adeno-associated virus and the influenza HA have been discussed in Farr et al (2005)

and Huang et al (2002). Models aimed at estimating the residence time of a viral particle inside

an endosomal compartment are considered in Lagache et al (2012). The key to the calculation

of the MFPT of the Markovian jump process model is the method of Knessl et al (1984a),

Matkowsky et al (1984) and Knessl et al (1984b). The detailed modeling of two key steps in

the viral release was reviewed in Amoruso et al (2011).

5. The NET in neurobiology and synaptic transmission

As mentioned above, the NET reflects the role of the cell’s geometrical structure in determining

the cell’s biological function. Next, illustrations are given of the way the NET is manifested

in modeling synaptic transmission and in the simulation, analysis, and interpretation of the

output of the models. The explicit asymptotic formulas for the NET also coarse-grain spatial

organization of a fundamental domain, called the PSD, which is discussed in detail below.

To address the structure-function question in molecular-level cell models, the discussion is

focused on the regulation of diffusion flux in synapses and dendritic spines of neurons, whose
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Figure 14. A neuronal synapse. Left panel: electron microscopy of a synapse. The
post-synaptic terminal is located on a dendritic spine (S) branched in the dendrite (D).
The glial cells (G) are located around the axon (A). (Spacek J 2002). Reproduced with
permission from Spacek J 2002 Psychiatrie, Suppl. 3 6 55–60. Copyright (2002) Tigis.
Right panel: schematic representation of a synapse between neurons. Neurotransmitters
(blue) are released to the synaptic cleft at the presynaptic terminal and can find a receptor
(green) on the post-synaptic terminal or be absorbed by the surrounding glial cells (red).
The post-synaptic density (PSD) is the dense region above the yellow sheet holding the
scaffolding molecules (orange).

spatial structure has been studied extensively (see list of references below). A schematic

representation of a synapse between neurons is given in figure 14.3 By its very definition,

synapses are local active micro-contacts underlying direct neuronal communication but

depending on the brain area where they are located and their specificity, they can vary in

size and molecular composition. The molecular processes underlying synaptic transmission

are well known: after NTs such as glutamate, released from a vesicle located on the surface

of a pre-synaptic neuron (see figure 14), they diffuse inside the synaptic cleft, composed of

pre- and post-synaptic terminals. The post-synaptic terminal of an excitatory synapse contains

ionotropic glutamate receptors such as AMPA and NMDA and they may open upon binding

to NTs. When NTs diffuse in the cleft, they can either find a specific receptor protein on the

membrane of the post-synaptic terminal, such as NMDA, AMPA, and so on4, or are absorbed

by the surrounding glia cells and recycled. Relevant terminology, illustrations, and movies for

the biological material can be found in Wikipedia. More generally, there are various types of

synapses characterized by the NT molecules, such as the small molecules acetylcholine (ACh),

dopamine (DA), norepinephrine (NE), serotonin (5-HT), histamine, epinephrine, or the amino

acids gamma-aminobutyric acid (GABA), glycine, glutamate, aspartate, and many others5 that

are released at the presynaptic terminal into the flat cylindrically-shaped synaptic cleft when

an action potential (signal) reaches the presynaptic terminal. Once a receptor binds a ligand

NT molecule (or molecules) it opens to the passage of ions, which diffuse in the cleft from

the pre- to the post-synaptic terminal (also called neuronal spine), thus transmitting the signal

3 This lower figure is based on www.niaaa.nih.gov/Resources/GraphicsGallery/Neuroscience/Pages/synapsebetween

_neurons.aspx.
4 see, e.g. http://en.wikipedia.org/wiki/Biochemical_receptor.
5 see, e.g., http://en.wikipedia.org/wiki/Neurotransmitter.
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across the synapse into the neuronal spine. The signal propagates in the form of a diffusion

flux of ions, such as calcium or sodium, through the spine neck into the dendrite (see idealized

mathematical models of spine structure in figure 20).

For example, AMPA receptors are tetrameric assemblies composed of four different

subunits, which can bind to a glutamate molecule. However, two glutamate molecules are

required to open a single AMPA channel. The amplitude of ionic current is thus proportional

to the number of open receptors and their conductances. The post-synaptic current measures

the efficiency of synaptic transmission and is related to the frequency and location of released

vesicles in a complex manner (see list of references below).

This section reviews some properties of synaptic transmission based on a diffusion model

in microdomains. The presented methods serve to estimate the mean and the variance of the

post-synaptic current. Indeed, this current plays a fundamental role in neuronal communication:

it is the direct and fast signal of synaptic transmission. It activates the post-synaptic neuron or

modulates its membrane potential. This current not only depends on receptors such as AMPA,

but also on the complex molecular machinery edifice underneath that controls them. Possible

changes in the current dynamics is the readout of synaptic plasticity, a process that underlies

learning and memory.

The transmitted diffusion flux can be regulated by the number and distribution of the

receptors, by the length of the spine neck, the number and distribution of ionic channels and

pumps on the spine neck that can leak ions from the neck, and many other structural factors.

Mathematical models of synapse components provide much information about their function

(see section 5.3 below).

5.1. A model of the synaptic current

A general approach to the estimation of the synaptic current is proposed next. The diffusion

of glutamate molecules in the cleft geometry, which is approximated by a flat cylinder, is

described by a direct analysis of AMPA conductances rather than by the classical Markov

description, obtained by optimal fitting of measurements performed outside a synapse. The

presented method accounts for the four glutamate binding sites per receptor. While glutamate

molecules are Brownian inside the cylindrical synaptic cleft �, AMPARs are positioned on

the PSD (see figures 14 (right) and 16 (right)). The model of glutamate binding to an AMPAR

is a radiative boundary condition on the PSD (�PSD), as described below.

When a glutamate molecule hits the lateral boundary (∂�Lat) of the cleft (modeled as a

cylinder �), it is absorbed and no longer can contribute to the activation of AMPARs. The pdf

p(x, t|x0) of a Brownian glutamate molecule x(t), given x(0) = x0 ∈ �, is the solution of the

initial-boundary value problem for the diffusion equation

∂ p(x, t|x0)

∂t
= D	p(x, t|x0) for x ∈ �, t > 0 (5.1)

p(x, 0) = δ(x − x0) for x ∈ �

∂ p(x, t|x0)

∂ν
= 0 for x ∈ ∂�r

p(x, t|x0) = 0 for x ∈ ∂�Lat

−D
∂ p(x, t|x0)

∂ν
= −κ p(x, t|x0) for x ∈ ∂�PSD, (5.2)

where D is diffusion constant of a free glutamate molecule. The partial absorption rate constant

κ not only accounts for the fraction of AMPARs inside the PSD, but also for the activation
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barrier of a single glutamate to a glutamate receptor binding site. The rate constant

κ = D

2πR2
PSD

1
1

Naa
+ D

κe2πa2Na

(5.3)

was proposed in Taflia and Holcman (2011), where a and RPSD are the radii of a single receptor

and the PSD, respectively, and Na is the number of AMPARs. This rate constant was derived in

(appendix of Taflia and Holcman 2011) by considering that the Na receptors are placed on the

PSD which has a surface πR2
PSD. The criterion is that the flux to all receptors is equal to the flux

with the partial absorbing constant κ . Here D is the diffusion constant of glutamate molecules

in the cleft and κe is the partial reflecting rate constant generated by a single AMPAR on a

glutamate molecule. This constant is calibrated from (patch-clamp) experimental data.

The probability p(x0) that a glutamate molecule binds a receptor released at x0, is the

total probability flux into the receptors, that is, into the absorbing boundary ∂�PSD,

p(x0) = D

∫ ∞

0

∫

∂�PSD

∂ p(y, t | x0)

∂n
dy dt = D

∫

∂�PSD

∂u(y | x0)

∂n
dy, (5.4)

where u(x | x0) =
∫ ∞

0
p(x, t | x0) dt satisfies

D	u(x | x0) = −δ(x − x0) for x ∈ �

∂u(x | x0)

∂ν
= 0 for x ∈ ∂�r

u(x | x0) = 0 for x ∈ ∂�Lat

D
∂u(x | x0)

∂ν
= κu(x | x0) for x ∈ ∂�PSD. (5.5)

Brownian trajectories that are absorbed in a small receptor are rare and can hardly be expected

to provide sufficient statistical data for a reliable estimate of the number of saturated receptors.

It is necessary, therefore, to coarse-grain the simulation by deriving analytical approximations

to u(x | x0) and p(x0), to be used in numerical simulations. The absorbing rate constant κe in

equation (5.3) is obtained by calibrating with the experimental value κe ≈ 1.6 (see Taflia and

Holcman 2011).

5.2. The mean and variance of the synaptic current Is

To compute the mean and the variance of the synaptic current the number of bound glutamate

molecules and the probability of a given configuration of bound AMPARs have to be accounted

for. To estimate the first, recall that the probability distribution Prk(x0) of k independent bound

glutamate molecules, after a vesicle is released at x0, follows the binomial distribution

Prk(x0) = Ck
4Na

p(x0)
k(1 − p(x0))

4Na−k, (5.6)

where Na is the mean number of bound glutamates and p(x0) is the probability that a glutamate

binds one of the receptors before it escapes. It is given by equation (5.4), as

p(x0) = κ

∫

∂�PSD

u(x | x0) dS(x). (5.7)

The mean and the variance of the number of bound receptors are given by M(x0) = Ngp(x0)

and σ 2(x0) = Ngp(x0)(1 − p(x0)), respectively. When the vesicle is released at the center of

the synapse, for a PSD and a synaptic radius of respectively 300 nm and 500 nm (the effective

surface area of a single AMPAR is 10 nm2 and κ = 0.25 see figure 15), the probability

p(x0) = 8.10−3 for a glutamate molecule to hit a cluster of AMPARs is found in Taflia and

Holcman (2011).
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Figure 15. (A) The coefficient of variation (CV) reaches a maximum for a PSD of
radius of 0.3 μm. This shows that for a given size of the active zone, where vesicles are
released, the CV is minimum when receptors are spread over an optimal PSD area. (B)
Calibration of the partial absorption rate constant κ . The synaptic current is simulated
according to (5.9) for different values of the activation coefficient κ (see (5.3)). The
optimal synaptic response in the range of 3000–12000 glutamate molecules is achieved
at κ = 1.6.

An additional source of fluctuations in the number of bound AMPARs is as follows.

AMPARs can bind from zero to four glutamate molecules. Therefore the probability Pr{�n | k}
of a given configuration �n = (n4, n3, n2, n1) of n1 AMPARs that bind one glutamate molecule,

n2 AMPARs that bind 2, and so on, when there are Na AMPA receptors and k < 4Na bound

glutamate molecules, is given by

Pr{�n | k} = Na!

n4!n3!n2!n1!(Na − (n4 + n3 + n2 + n1))!

1

F(k, Na)
. (5.8)

This is the probability of choosing at random n4 AMPARs out of N4, n3 out of Na − n4, and

so on. F(k, Na) is the total number of possibilities to decompose the number k as a sum of

Na summands from the set of integers {4, 3, 2, 1, 0}. The number F(k, Na) can be computed

numerically as the (k + 1)th coefficient in the expansion of (1 + x + x2 + x3 + x4)Na in powers

of x. With the notation V for the potential and �γ = (γ1, γ2, γ3, γ4) for the conductance vector,

given these probabilities, all moments of the current can be found, and in particular, the mean

and variance are given by

〈Is(x0)〉 =
Ng

∑

k=1

∑

n∈Sk

�n · �γ Pr{�n | k}V Prk(x0)

=
4Na
∑

k=1

∑

n∈Sk

�n · �γ Pr{�n | k}Prk(x0)V + Naγ4V

(

1 −
4Na
∑

k=0

Prk(x0)

)

〈I2
s (x0)〉 =

Ng
∑

k=1

∑

n∈Sk

(�n · �γ )2 Pr{�n | k}Prk(x0)V
2 − 〈Is(x0)〉2

4Na
∑

k=1

∑

n∈Sk

(�n · �γV )2 Pr{�n | k}Prk(x0)

+ (Naγ4V )2

(

1 −
4Na
∑

k=0

Prk(x0)

)

− 〈Is(x0)〉2. (5.9)
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Here Sk is the set of all the possible configurations of �n = (n1, n2, n3, n4) such that

4n4 + 3n3 + 2n2 + n1 = k. The formulae for the mean and variance are composed of two

terms: in the first one, the summation extends over sites that do not bind the maximal number

of glutamate molecules. The probability for such an event is the product of the probabilities

Prk, that k glutamates are bound (k < 4Na) and the probability Pr{�n | k} for a given binding

configuration k = 4n4 + 3n3 + 2n2 + n1. The second term accounts for the event where all

AMPAR binding sites are occupied (4Na), the probability is the complementary to the one

associated with the partial binding of the first case. Figure 15(A) shows that the coefficient

of variation (CV = SD/Mean, where SD stands for standard deviation) has a minimum as

a function of the size of the PSD. This unexpected result is further discussed in Taflia and

Holcman (2011).

5.3. Leakage in a conductor of Brownian particles

A conductor of Brownian particles is a bounded domain �, with a source of particles on the

boundary or in the interior and a target, which is an absorbing part ∂�a of ∂�. The remaining

boundary ∂�r is reflecting. Some of the Brownian particles may leak out of � not through

∂�a if ∂�r contains a small absorbing hole S(ε). The calculation of the leakage flux is not the

same as that in the narrow escape problem, because the boundary flux does not vanish as the

small hole shrinks. The leakage problem is to find the flux through the small hole S(ε).

The (dimensionless) stationary density u(x) of the Brownian particles satisfies the mixed

boundary value problem

D	u(x) = 0 for x ∈ �

∂u(x)

∂ν
= 0 for x ∈ ∂�r

−D
∂u(x)

∂ν
= φ(x) for x ∈ ∂�s

u(x) = 0 for x ∈ ∂�a ∪ S(ε). (5.10)

The leakage flux,

Jε = D

∫

S(ε)

∂u(x)

∂ν
dSx, (5.11)

is given in terms of the solution u0(x) of the reduced problem (without the leak S(ε)). The

leakage flux Jε can be found by determining the flux of each eigenfunction and then by using

eigenfunction expansion. The eigenvalue problem for (5.10) is

− D	uε(x) = λ(ε)uε(x) for x ∈ � (5.12)

∂uε(x)

∂ν
= 0 for x ∈ ∂�s ∪ ∂�r (5.13)

uε(x) = 0 for x ∈ S(ε) ∪ ∂�a. (5.14)

The eigenvalues have a regular expansion

λ(ε) = λ(0) + λ1ε + o(ε), (5.15)

where λ(0) is the eigenvalue of the reduced problem. The reduced Green function is the

solution of the mixed boundary value problem with D = 1,

− 	G(x, y) = δ(x − y) for x, y ∈ � (5.16)

∂G(x, y)

∂ν
= 0 for x ∈ ∂�s ∪ �r, y ∈ � (5.17)
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G(x, y) = 0, for x ∈ ∂�a, y ∈ �. (5.18)

Multiplying (5.16) by uε(x) and integrating over �, we get

uε(x) = −λ(ε)

∫

�

G(x, y)uε(y) dy +
∫

S(ε)

G(x, y)
∂uε(y)

∂ν
dSy. (5.19)

In view of the boundary condition (5.14), equation (5.19) gives for all x ∈ S(ε)

λ(ε)

∫

�

G(x, y)uε(y) dy =
∫

S(ε)

G(x, y)
∂uε(y)

∂ν
dSy. (5.20)

The integral on the left hand side of (5.20) can be expanded about the center of S(ε) in the

form
∫

�

λ(ε)G(x, y)uε(y) dy = G0(ε) + O(|x|) for x ∈ S(ε), (5.21)

where the origin is assumed to be at the center of S(ε) and the (x1, x2) plane is that of S(ε).

Using Popov’s theorem (Popov 1992, Schuss 2013, Holcman and Schuss 2014), the following

two equations are obtained (Singer et al 2008)

λ(ε)

∫

�

uε(x) dx = 4εD
G0(ε) + O(ε2 log ε)

1 + O(ε log ε)
+ O(ε2 log ε) + D

∫

∂�a

∂uε(y)

∂ν
dSy

G0(ε) = λ(ε)

∫

�

G(0, y)uε(y) dy. (5.22)

This gives

λ(ε)

∫

�

uε(x) dx = 4εD
λ(ε)

∫

�
G(0, y)uε(y) dy + O(ε2 log ε)

1 + O(ε log ε)

+ O(ε2 log ε) + D

∫

∂�a

∂uε(y)

∂ν
dSy.

Solving for λ(ε) gives

λ(ε) =
D

∫

∂�a

∂uε (y)

∂ν
dSy + O(ε2 log ε)

∫

�
uε(x) dx − 4εD

1+O(ε log ε)

∫

�
G(0, y)uε(y) dy + O(ε2 log ε)

=
D

∫

∂�a

∂uε (y)

∂ν
dSy

∫

�
uε(x) dx

(

1 +
4εD

∫

�
G(0, y)uε(y) dy

∫

�
uε(x) dx

)

+ O(ε2 log ε). (5.23)

Note that due to (5.15),

D
∫

∂�a

∂uε (y)

∂ν
dSy

∫

�
uε(x) dx

= λ(0) + O(ε). (5.24)

Obviously, uε → u0 as ε → 0, where u0 is the corresponding eigenfunction of the reduced

problem (see also Ward and Keller 1993), so

lim
ε→0

∫

�

G(x, y)uε(y) dy =
∫

�

G(x, y)u0(y) dy

lim
ε→0

∫

∂�a

∂uε(y)

∂ν
dSy =

∫

∂�a

∂u0(y)

∂ν
dSy.

Therefore (5.22) gives the flux of uε(x) through the small hole as

J(ε) = D

∫

S(ε)

∂uε(y)

∂ν
dSy = 4ελ(0)D

∫

�

G(0, y)u0(y) dy + O(ε2 log ε)

= 4εDu0(0) + O(ε2 log ε). (5.25)
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The function DG(x, y) is Green’s function for the mixed boundary value problem (5.16)–(5.18)

with diffusion coefficient D, rather than 1. Finally, expanding the solution u(x) of (5.10) in

eigenfunctions, (5.25) gives

Jε = 4εDu0(0) (1 + O(ε log ε)) , (5.26)

where u0(x) is the solution of the reduced problem (5.10). In dimensional variables, this gives

Jε = 4aDp0(0) + O

(

a2

|�|2/3
log

a

|�|1/3

)

, (5.27)

where p0(0) is the value of the reduced stationary density at the hole.

Remark 5.1. Note that the asymptotic formula (5.26) holds if ε ≪ L/R, so the source is

outside the boundary layer near the hole.

An alternative approach to study diffusion in narrow domains is to use the averaging

methods of (Reingruber and Holcman 2011a, Taflia and Holcman 2011), where the probability

of binding before exit is computed.

5.4. Regulation of flux in a neuronal spine neck and across a thin synaptic cleft

Leakage through a small hole in a cylindrical conductor of Brownian particles is manifested

in two specific neuronal structures related to synaptic dynamics. One is in regulating calcium

dynamics in dendritic spines, for example, by extruding calcium from exchangers embedded

on the endoplasmic reticulum inside dendritic spines (see Segal and Andersen (2000), Svoboda

et al (1996) and Bloodgood and Sabatini (2005)). The other concerns the probability of NTs

released from a vesicle into the synaptic cleft to bind to small receptors on the post-synaptic

membrane. This process determines the synaptic current.

In the mathematical description of the diffusion of calcium ions from the spine head to the

dendrite, the spine neck is a circular cylinder of length L and radius R, whose bases S0 and SL

are centered at the z-axis, at z = 0 and z = L, respectively, and are parallel to the (x, y) plane.

The lateral surface Sr, which in general represents the internal membrane of the endoplasmic

reticulum, is impermeable to Brownian trajectories (Holcman et al 2004). A constant net flux

φ is injected at S0 (see figure 16 (left)). The flux through a small absorbing circular hole S(ε)

of (dimensional) radius ε on the lateral surface of the cylinder is determined by the NET from

the source to the hole. The following two situations are considered: (i) a given flux at S0,

absorption at SL, and reflection at r = R, and (ii) a given flux at a point source at distance r

from the center of S0, reflection at SL, and absorption at r = R. The model (i) can describe

the diffusion flux of calcium ions through pumps in the neck of a neuronal spine, by applying

(5.27). In model (ii) the NET determines the flux of NTs from a vesicle released at distance r

from the center of the presynaptic membrane S0 into the NMDA or AMPA receptor channels

in the post-synaptic membrane in the synaptic cleft (see figure 16 (right)). If the point of

injection A is moved r away from the center of S0, the decay of the flux through the receptor

at the center of the PSD B is given by (5.27). Here the point 0 is the center of the hole in SL.

Both problems (i) and (ii) are solved with the leakage formula (5.27).

To solve problems (i) and (ii), the variables are scaled with L, so the dimensionless polar

coordinates in the cylinder are

0 < ζ < 1, 0 < ρ <
R

L
, 0 � θ < 2π.

The solution of the reduced problem (i) for the dimensionless system (5.10) with influx density

φ(ρ, θ ) at ζ = 0 is constructed by method of separation of variables. For a point source at the
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Figure 16. Left: a neck of radius R and length L. The lateral surface Sr and the upper
base S0 are reflecting, the lower base SL and the small circular hole S(ε) are absorbing.
The trajectory from S0 to S(ε) is a leak trajectory. Right: an idealized model of the
synaptic cleft. Neurotransmitters are injected at A and can find a receptor on the PSD B
or be absorbed by the surrounding glial cells C.

Figure 17. The exit probability Pr{τhole < τSr
} for a single pump on the neck membrane

versus distance x of pump from the top, according to the separation of variables solution.
Pump size is 1 nm, top curve corresponds to L/R = 5, and bottom curve—to L/R = 100.

center of S0 the exit probability through a small hole at r = R and z is shown in figure 17. If

the source is uniformly distributed in S0, the dimensionless solution of the reduced problem

(i) is u0 (R/L, ζ , θ ) = C(1 − ζ ), where C is a constant. The dimensionless solution of the
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Figure 18. Binding probability Pr{τhole < τSr
} to a single AMPAR channel of radius a in

a synaptic cleft of height L = 20 nm in a PSD of radius R = 350 nm versus normalized
distance from center r/R, according to (5.30). Top curve: a = 1.5 nm, bottom curve:
a = 1 nm.

reduced problem (ii) with influx density of a point source at (ζ , ρ, θ ) = (0, 0, 0), gives at the

other end ζ = 1 the density

u0(ρ, 1, 0) =
∞

∑

m=1

LJ0

( γ0,mLρ

R

)

D̃πRγ0,mJ′
0

2
(γ0,m) sinh

γ0,mL

R

, (5.28)

where γ0,m is the mth root of the Bessel function J0(x). Because the efflux through the lateral

equals the influx through S0, the probability that a Brownian particle injected at the source

will reach a hole centered at (r, L, 0) (in dimensional variables) is, according to the definition

ε = π |∂�a|
|∂�| = πa

|∂�| ≪ 1, (5.29)

(5.26), or (5.27),

Pr{τhole < τSr
} = 4aL

πR2

∞
∑

m=1

J0

( γ0,mr

R

)

γ0,mJ′
0

2
(γ0,m) sinh

γ0,mL

R

+ O

(

a2

R2
log

a

R

)

. (5.30)

If r = 0, then

Pr{τhole < τSr
} = 4aL

πR2

∞
∑

m=1

1

γ0,mJ′
0

2
(γ0,m) sinh

γ0,mL

R

+ O

(

a2

R2
log

a

R

)

.

The sensitivity of the flux to the location of the PSD, in the synaptic cleft is shown in figures 18

and 19 (left). The flux, averaged over a uniform distribution of the PSD is shown in figure 19

(right). The sensitivity to the height of the cleft is also shown in the figures. These sensitivities
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Figure 19. Left: binding probability Pr{τhole < τSr
} to an AMPA receptor in a cluster of

7 in the PSD. Right: the binding probability for 20 AMPA receptors scattered uniformly
within radius r < R, according (5.30) averaged with respect to the uniform density. Top
curve: L/R = 0.05, bottom curve: L/R = 0.1.

may hint at a possible way of regulating synaptic transmission in the cleft of a neuronal

synapse by changing the location of the PSD or its size (e.g., anchoring more NMDA or

AMPA receptors there). Consequently, the probability for a NT to hit the PSD remains very

low and the present computation gives only an upper bound. It was found in Taflia and Holcman

(2011), by using a model with a partially absorbing boundary, that the probability to bind to

receptors in the PSD is of the order of 10−3. This is, however, compensated by a large number

of NTs, of the order of 3 103.

5.5. References to section 5

The leakage problem of section 5.3 was solved in Singer et al (2008). The role of cell geometry

in controlling the diffusion flux and in determining cell function, as revealed by the microscopic

studies of Harris and Stevens (1988) and Bourne and Harris (2008), is elaborated in Svoboda

et al (1996), Korkotian (2004), Hotulainen and Hoogenraad (2010) and Newpher and Ehlers

(2009). It is stated in Rosenmund et al (1998) and Gebhardt et al (2006) that AMPA receptors

can bind to a glutamate molecule. However, Jonas et al (1993) reports that two glutamate

molecules are required to open a single AMPA channel. The post-synaptic current depends on

the frequency and location of released vesicles (Madison et al 1991).

The connection of synaptic plasticity to learning and memory is related in Madison

et al (1991). Regulation of synaptic plasticity by geometry is discussed in Korkotian (2004),

Majewska et al (2000), Svoboda et al (1996), Biess et al (2007) and Holcman and Kupka

(2010). Regulation of the number and type of receptors that contribute to the shaping of

the synaptic current is discussed in Bredt and Nicoll (2003), Shi et al (1999), Malinow and

Malenka (2002), Choquet and Borgdorff (2002), Triller and Choquet (2003), Holcman and

Triller (2006) and Holcman et al (2005a).
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Figure 20. Mathematical idealizations of the cross sections of neuronal spine
morphologies as composite domains: Left: the bulky head �1 is connected smoothly by
an interface ∂�i = AB to a narrow neck �2. The entire boundary is ∂�r (reflecting),
except for a small absorbing part ∂�a = CD. Right: the head, shown separately in
figure 1, is connected to the neck without a funnel.

A general approach to the estimation of the synaptic current was developed in Taflia and

Holcman (2011). A model of cleft geometry as a flat cylinder was proposed in Bourne and

Harris (2008). The traditional description of AMPAR binding in terms of a Markov jump

process is given in Jonas et al (1993). It is based on optimal fitting of measurements performed

outside a synapse (Gebhardt et al 2006). The radiative boundary condition for binding AMPAR

in the PSD was proposed in Zwanzig (1990).

6. Diffusion in composite domains

A composite domain consists of a number of bulky heads interconnected by narrow necks,

such as a dumbbell-shaped domain (see figure 22). The simplest case is a planar composite

domain � with a head �1, connected through a small interface ∂�i to a narrow cylindrical

neck �2 (figure 20 (left)). When the boundary of � reflects Brownian trajectories, except at

the far end of �2, denoted ∂�a, which is absorbing, the NET problem is to evaluate the MFPT

from �1 to ∂�a. In figure 20 (left) the interface ∂�i is the black segment AB and the absorbing

boundary ∂�a is the segment CD at the bottom of the strip. The surface of revolution obtained

by rotating the domain in the figure about its axis of symmetry has a similar structure. The

interface ∂�i in this case is a circle. Thus the length of the interface |∂�i| is given by

|∂�i| =
{

a for a line segment

2πa for a circle.
(6.1)

The following lemma is needed for the calculation of the MFPT τ̄x→∂�a
.

Lemma 6.1. The MFPT from a point x ∈ �1 to ∂�a satisfies the renewal equation

τ̄x→∂�a
= τ̄x→∂�i

+
∫

∂�i

G(x | ξ)τ̄ξ→∂�a
dSξ, (6.2)

where G(x | ξ) is Green’s function for the mixed boundary value problem

	u(x) = 0 for x ∈ �1 (6.3)

∂u(x)

∂n
= 0 for x ∈ ∂�1 − ∂�i, u(x) = ϕ(x) for x ∈ ∂�i.
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Proof. The identity follows from the fact that both sides of (6.2) satisfy (6.3) for x ∈ �1 and

coincide on ∂�i. �

The identity (6.2) can be interpreted as

τ̄x→∂�a
= τ̄x→∂�i

+ τ̄∂�i→∂�a
, (6.4)

where the MFPT τ̄∂�i→∂�a
is τ̄x→∂�a

, averaged over ∂�i with respect to the flux density of

Brownian trajectories in �1 into an absorbing boundary at ∂�i (see Schuss 2010b for further

details).

Theorem 6.2 (The NET from a domain with a long neck). The MFPT of Brownian motion

from a composite domain � with reflecting boundary to an absorbing boundary at the end of

a narrow cylindrical neck of length L is given by

τ̄x→∂�a
= τ̄x→∂�i

+ L2

2D
+ |�1|L

|∂�a|D
. (6.5)

Proof. Consider the domain � in figure 20. Lemma 6.1 indicates how to sum the MFPTs. To

calculate τ̄∂�i→∂�a
and the absorption flux at the interface the boundary value problem

	v(x) = − 1

D
for x ∈ � (6.6)

v(x) = 0 for x ∈ ∂�a (6.7)

∂v(x)

∂n(x)
= 0 for x ∈ ∂�r (6.8)

has to be solved in the narrow neck �2. The solution can be approximated by that of the

one-dimensional boundary value problem

Duzz = −1 for 0 < z < L, u(0) = 0, u(L) = uH,

where the value at the interface u(L) = uH is yet unknown. The solution is given by

u(z) = − z2

2D
+ Bz, (6.9)

so that

u(L) = uH = − L2

2D
+ b.l., (6.10)

where b.l. is a boundary layer term. Equation (6.10) relates the unknown constants B and

uH . The constant B is found by multiplying equation (6.6) by the Neumann function N(x, y),

integrating over �1, applying Green’s formula, and using the boundary conditions (6.7) and

(6.8). Specifically, we obtain for all y ∈ ∂�i

v(y) = − 1

D

∫

�1

N(x, y) dx −
∫

∂�i

N(x, y)
∂v(x)

∂n
dSx + 1

|�1|

∫

�1

v(x) dx. (6.11)

Approximating, as we may, v(y) ≈ u(L) and using (6.10) gives

− L2

2D
+ b.l. = −1

D

∫

�1

N(x, y) dx−
∫

∂�i

N(x, y)
∂v(x)

∂n
dSx + 1

|�1|

∫

�1

v(x) dx. (6.12)

Because v(x) is the solution of the boundary value problem (6.6)–(6.8) in the entire domain

� = �1

⋃

�2, the meaning of (6.12) is the connecting rule (6.4), where

τ̄x→∂�a
= 1

|�1|

∫

�1

v(x) dx (6.13)
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τ̄∂�i→∂�a
= u(L) (6.14)

τ̄x→∂�i
= − 1

D

∫

�

N(x, y) dx −
∫

∂�i

N(x, y)
∂v(x)

∂n
dSx. (6.15)

Equation (6.13) gives the MFPT, averaged over �1. The averaging is a valid approximation,

because the MFPT to ∂�i is constant to begin with (except in a negligible boundary layer).

Equation (6.14) is the MFPT from the interface to the absorbing end ∂�a of the strip, and

(6.15) follows from the identity (Singer et al 2006c, Schuss 2013, Holcman and Schuss 2014)

0 = 1

D

∫

�

N(x, ξ) dx +
∫

∂�a

N(x, ξ)g(x) dSx + Cε, (6.16)

for all ξ ∈ ∂�a. Matching the solutions in �1 and �2 continuously across ∂�i, the total flux

on ∂�i is obtained as

J = D

∫

∂�i

∂v(x)

∂ν
dSx = − (|�1| + |�2|) . (6.17)

Noting that ∂v(x)/∂n = −u′(0) = −B, equations (6.1) and (6.17) give that

B = −

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|�1|
aD

+ L

D
for a line segment

|�1|
2πaD

+ L

D
for a circle

|�1|
πa2D

+ L

D
for a circular disk.

(6.18)

Finally, equations (6.4)–(6.18) give (6.5). The NET τ̄x→∂�i
for the various domains is given in

Holcman and Schuss (2014). �

Expression (6.5) for the NET from a two-dimensional domain with a bottleneck in the

form of one-dimensional neck, such as a dendritic spine (figure 20 (left)), can be phrased as

follows. Consider a domain � with head �1 and a narrow cylindrical neck �2 of length L and

radius a. The radius of curvature at the bottleneck in a smooth connecting funnel is Rc. The

following classification of the NET from a dendritic spine holds (figure 21),

τ̄x→∂�a
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|�1|
πD

ln
|∂�1|

a
+ O(1)

D
+ L2

2D
+ |�1|L

aD

planar spine connected to the neck at a right angle

π |�1|
D

√

Rc

a
(1 + o(1)) + L2

2D
+ |�1|L

2πaD

planar spine with a smooth connecting funnel

|�1|
2πD

log
sin θ

2

sin δ
2

+ L2

2D
+ |�1|L

2πaD

spherical spine connected to the neck at a right angle

|�1|
2D

(

ε
ℓ

)−α/1+α
2α/1+α

(1 + α) sin π
1+α

+ L2

2D
+ |�1|L

2πaD

spherical spine with a smooth connecting funnel,

(6.19)

where R is the radius of the sphere, a = R sin δ/2, and θ is the initial elevation angle on the

sphere. If |�1| ≫ aL and L ≫ a, the last term in (6.19) is dominant, which is the manifestation

of the many returns of Brownian motion from the neck to the head prior to absorption at ∂�a

(see an estimate in Biess et al 2007). Formula (6.19) is used to estimate the residence time of

receptors on the surface of a dendritic spine. A generalization to three dimensions is given in

Holcman and Schuss (2012).
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Figure 21. Receptor movement on the neuronal membrane.

Figure 22. A dumbbell-shaped domain consists of two large compartments �1 and �3

connected by a narrow neck �2. The bottleneck is the interval AB.

6.1. Transition rate and the principal eigenvalue in composite domains

Consider, for simplicity, the sojourn time of Brownian motion in a compartment interconnected

by a narrow neck to another compartment in a composite domain, as shown in figure 22. The

sojourn time is the MFPT from that compartment to another one. In the limit of shrinking neck,

the sojourn time is to leading order independent of the initial point of the escaping trajectory

and equals twice the MFPT from the compartment to the narrowest passage in the bottleneck

(e.g., the interval AB in figure 22). Indeed, the reciprocal of this MFPT is to leading order the

rate at which trajectories reach the bottleneck from the first compartment, so the reciprocal of

the MFPT is the lowest eigenvalue of the mixed Neumann–Dirichlet boundary value problem

in the first compartment with Dirichlet conditions on the cross section of the neck.

There is a spectral gap of order one from the smallest eigenvalue to the next one. Thus, it

follows that long transition times of Brownian trajectories between compartments connected by
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Figure 23. Three-dimensional EM reconstruction of two hippocampal dendrites with
spines. The post-synaptic domain of excitatory synapses are marked red and of inhibitory
synapses m blue. The dendritic spine geometry is approximated as the composite domain
shown in figure 20 (left).

bottlenecks are exponentially distributed and therefore the leading eigenvalues of Neumann’s

problem for the Laplace equation in a domain that consists of compartments interconnected

by narrow necks are to leading order the eigenvalues of a Markov chain with transition

rates that are the reciprocals of the MFPTs through the narrow necks, as is the case for

diffusion in a potential landscape with several deep wells (high barriers) (Schuss 2010b). The

evaluation of the leading eigenvalues of the Neumann problem for the Laplace equation in

domains with bottlenecks reduces to the computation of the leading order eigenvalues for the

mixed Neumann–Dirichlet boundary value problem for the Laplace equation in domains with

reflecting (Neumann) boundary, except for a small absorbing (Dirichlet) window at the end of

a funnel.

6.2. The principal eigenvalue in a domain with a head and narrow neck

The composite domain � in figure 20 (left) consists of a head �1 connected by a funnel to

a narrow cylindrical neck �2. The boundary of the domain is reflecting (Neumann) and only

the far end of the cylinder ∂�a is absorbing (Dirichlet). The left half of the dumbbell-shaped

domain shown in figure 22 is a composite domain of this type if the interval AB is an absorbing

boundary. In the three-dimensional case the Dirichlet boundary ∂�a is a small absorbing disk

at the end of the cylinder. The domain �1 is the one shown in figure 24 and it is connected to

the cylinder at an interface ∂�i, which in this case is the interval AB in figure 24. Using (6.5)

and the fact that the principal eigenvalue of the mixed two- and three-dimensional Neumann–

Dirichlet problems in domains with small Dirichlet and large Neumann parts of a smooth

boundary is asymptotically the reciprocal of the MFPT, we find that the principal eigenvalue

λ1 in a domain with a single bottleneck is given by

λ1 ∼ 1

τ̄x→∂�i
+ L2

2D
+ |�1|L

|∂�a|D
, (6.20)

where τ̄x→∂�i
is any one of the MFPTs given in (6.18), depending on the geometry of �1.

If a composite domain consists of a single head and N well-separated bottlenecks of

different radii and neck lengths, then the reciprocal of the MFPT is the sum of the reciprocals
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Figure 24. Cusp geometry. Left: the planar (dimensional) domain �′ is bounded by a
large circular arc connected smoothly to a funnel formed by moving two tangent circular
arcs of radius Rc ε apart (i.e., AB = ε). Right: blowup of the cusp region. The solid,
dashed, and dotted necks correspond to different curvatures of the neck.

of the NETs from a domain with a single bottleneck (Schuss 2013, Holcman and Schuss 2014).

That is, the principal eigenvalue λP is given by

λP ∼
N

∑

j=1

λ j. (6.21)

This can be interpreted as the fact that the total efflux is the sum of N independent effluxes

through the bottlenecks.

6.3. The principal eigenvalue and coarse-grained diffusion in a dumbbell

A dumbbell-shaped domain � consists of two- or three-dimensional compartments �1 and

�3 and a connecting neck �2 that is effectively one-dimensional, as shown in figure 22. The

stochastic separatrix (SS) in � is the locus of initial points for Brownian trajectories that are

equally likely to reach �1 before �3 as they are to reach �3 before �1 (Ryter 1987a, 1987b,

Schuss 2010a, 2013). In figure 22 the SS is the interval AB. Consider the eigenvalue problem

for the Laplace equation in � with Neumann boundary conditions.

Theorem 6.3 (The principal eigenvalue in a dumbbell). The smallest positive eigenvalue λ of

the Neumann problem for the Laplace equation in the dumbbell is to leading order that of the

two-state Markov process,

λ = −(λI→II + λII→I),

where the transition rates from I to II and from II to I are, respectively,

λI→II = 1

2τ̄�1→SS

, λII→I = 1

2τ̄�3→SS

. (6.22)

Proof. Assuming, as we may, that the SS is the cross section of the neck at its center, the mean

time to traverse the neck from �1 to �3 is asymptotically twice the MFPT τ̄x→SS from x ∈ �1

to the SS (see Schuss 2010a). This MFPT is to leading order independent of x ∈ �1 and can

be denoted τ̄�1→SS. Note that when the neck is narrow the mean residence time of a Brownian
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trajectory in �1 or in �3 is much longer than that in �2. Also note that the first passage time

τx→SS for x ∈ �1 is exponentially distributed for long times and so is τx→SS for x ∈ �3 (Schuss

2010b). Therefore the Brownian motion in � can be coarse-grained into a two-state Markov

process (a telegraph process), which is in State I when the Brownian trajectory is in �1 and is

in State II when it is in �3. The state �2 and the residence time there can be neglected relative

to those in �1 and �3. The transition rates from I to II and from II to I, given in (6.22), can

be found from (6.20), with L half the length of the neck and SS = ∂�a. The radii of curvature

Rc,1 and Rc,3 at the two funnels may be different, and the domain is either �1 or �3, as the

case may be.

The asymmetric Markovian random telegraph process jumps between two states, I and II,

at independent exponentially distributed waiting times with rates λI→II and λII→I, respectively.

The transition probability distribution function satisfies the linear differential equations6

(Schuss 2010b)

dP{I, t | x, t0}
dt

= −λI→IIP{I, t | x, t0} + λII→IP{II, t | x, t0}
dP{II, t | x, t0}

dt
= λI→IIP{I, t | x, t0} − λII→IP{II, t | x, t0}, (6.23)

which can be written in the obvious matrix notation as ṗ = Ap with

A =
(

−λI→II λII→I

λI→II −λII→I

)

.

The eigenvalues of A are 0 with the normalized eigenvector ( 1
2
, 1

2
)T , and −(λI→II + λII→I)

with the eigenvector (1,−1)T . It follows that the nonzero eigenvalue of the system (6.23) is

λ = λI→II + λII→I. Hence the theorem follows. �

For example, if the solid dumbbell consists of two general heads connected smoothly to

the neck by funnels, the two rates are given by (Schuss 2013, Holcman and Schuss 2014)

1

λI⇄II

=
√

2

[

(

Rc,1/3

a

)3/2 |�1/3|
Rc,1/3D

]

[1 + o(1)] + L2

4D
+ |�1/3|L

πa2D
. (6.24)

Consider, for example, the Neumann problem for the Laplace equation in a domain that

consists of any number of heads interconnected by narrow necks. The Brownian motion can

be coarse-grained into a Markovian random walk that jumps between the connected domains

at exponentially distributed times with rates determined by the first passage times and exit

probabilities, as described in section 6.2. This random walk can in turn be approximated by an

effective coarse-grained anisotropic diffusion, as done, for example, for atomic migration in

crystals (Schuss 1980, chapter 8, section 2), for effective diffusion on a surface with obstacles

(see section 3.1 and (Holcman et al 2011)), and for a general diffusion on a potential landscape

with deep wells (Hänggi et al 1990).

Some estimates of the asymptotic behavior of the leading eigenvalue in dumbbell-shaped

domains are given in Arrieta (1995), Ward and Stafford (1999), Jimbo and Kosugi (2009),

Dagdug et al (2003), and references therein.

6.4. Diffusional transfer of genetic material during cell division

During cell division, daughter and mother cells remain connected by a neck that grows narrow

until it breaks off. The two connected cells have the shape of an asymmetric dumbbell. During

this division process, some of the genetic (mRNA and TFs) material is delivered from the

6 see http://en.wikipedia.org/wiki/Telegraph_process.
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mother to the daughter cell. It remains unclear how this genetic material is selected. A recent

report (Gehlen et al 2011) proposes that diffusion through the connecting neck is the main

determinant of the delivery rate and of the selection of fast diffusing particles during the

transient regime, before steady state is reached. The effect of asymmetry in the curvature

of the connecting neck in the dumbbell can be analyzed in the limit of a narrow neck. The

transition rates between the two cells can differ by orders of magnitude as the geometry

changes. This can be used to re-interpret the findings reported experimentally in Gehlen et al

(2011).

7. Summary and discussion

This review presents recent progress in stochastic modeling in cellular biology and in coarse-

graining molecular-level models of Brownian motion in biological cells or on their membranes

into the cellular scale, where cell function can be discerned. The key factor in this coarse-

graining is the time scale of passage time through narrow necks. The passage through small

openings or narrow passages emerges as the main flux-controlling machinery on the cellular

level. The coarse-grained models are used to analyze and simulate models of subcellular

processes, to quantify their biological functions, and are the basis for data analysis. The

analytical details of the asymptotic expansion of the narrow escape theory (NET) are reviewed

in Holcman and Schuss (2014) and Schuss (2013).

The models and analysis presented here can be extended in several directions. The theory

of threshold in chemical reactions can be used to quantify checkpoint processes in biology,

such as the induction of plasticity (Dao Duc and Holcman 2010), the decision to start spindle

separation during cell replication (Dao Duc and Holcman 2012) or any other decision process

that occurs when a certain number of molecules are activated. The model of virus trafficking

can be extended to enveloped viruses. Other steps of viral infection should be further modeled,

such as the insertion of the genetic material to a DNA site, the synthesis part, the formation of

the capsid and budding. Another direction is the search for a promoter site in the cell nucleus.

Indeed, a key feature in the search by a TF is the local structure of the DNA conformation and

chromatin near the specific binding site. So far no modeling approach has been proposed that

integrates the DNA organization into the algorithm for estimating of the mean time to find the

DNA promoter site. It would be interesting to combine polymer dynamics in microdomains

with the NET. The methodology presented here can be applied to the modeling of synaptic

transmission and extended to include various molecular feedbacks implied in modulating the

probability of vesicular release.
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