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Abstract

Background: Thousands of children experience cardiac arrest events every year in

pediatric intensive care units. Most of these children die. Cardiac arrest prediction

tools are used as part of medical emergency team evaluations to identify patients in

standard hospital beds that are at high risk for cardiac arrest. There are no models to

predict cardiac arrest in pediatric intensive care units though, where the risk of an

arrest is 10 times higher than for standard hospital beds. Current tools are based on

a multivariable approach that does not characterize deterioration, which often

precedes cardiac arrests. Characterizing deterioration requires a time series approach.

The purpose of this study is to propose a method that will allow for time series data

to be used in clinical prediction models. Successful implementation of these

methods has the potential to bring arrest prediction to the pediatric intensive care

environment, possibly allowing for interventions that can save lives and prevent

disabilities.

Methods: We reviewed prediction models from nonclinical domains that employ

time series data, and identified the steps that are necessary for building predictive

models using time series clinical data. We illustrate the method by applying it to the

specific case of building a predictive model for cardiac arrest in a pediatric intensive

care unit.

Results: Time course analysis studies from genomic analysis provided a modeling

template that was compatible with the steps required to develop a model from

clinical time series data. The steps include: 1) selecting candidate variables; 2)

specifying measurement parameters; 3) defining data format; 4) defining time

window duration and resolution; 5) calculating latent variables for candidate variables

not directly measured; 6) calculating time series features as latent variables; 7)

creating data subsets to measure model performance effects attributable to various

classes of candidate variables; 8) reducing the number of candidate features; 9)

training models for various data subsets; and 10) measuring model performance

characteristics in unseen data to estimate their external validity.

Conclusions: We have proposed a ten step process that results in data sets that

contain time series features and are suitable for predictive modeling by a number of

methods. We illustrated the process through an example of cardiac arrest prediction

in a pediatric intensive care setting.
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Background

Roughly 1-6% of children being cared for in an ICU will experience a cardiac arrest

while in the ICU [1,2]. Many of these arrests occur because their vital signs deteriorate

to the point where they enter a state of progressive shock [3-5]. These arrests happen

despite the fact that they are being continuously monitored by ECG, pulse oximetery,

and frequent blood pressure measurements. While there are tools that help identify

patients in a non-intensive care setting that are at risk of arrest or have deteriorated to

the point where they need to transfer to an ICU[6-21], there are no equivalent tools to

identify which patients are likely to arrest in an intensive care setting. That is not to

say that ICU environments are devoid of useful tools that provide decision support:

systems such as VISICU and BioSign/Visensia [22-26] provide an added level of safety

to the ICU environment by enabling remote monitoring and providing automated rule

checking and high-specificity alerting for deteriorations that occur across multiple

channels. While these tools are excellent for detecting deteriorations, they still are lar-

gely lacking in their ability to predict specific adverse outcomes. The goal of this study

is to develop a framework for building prediction models that use time series data and

can serve as the foundation for tools that can evaluate for specific consequences of a

deterioration, with the ultimate goal of augmenting existing systems with the ability

answer questions like “Who is most likely to arrest?” in an ICU environment.

There are over 13,000 tools available to help clinicians interpret the data they are pre-

sented [27]. Almost all of these tools have been designed so that they can be manually

used. A tool’s adoption typically depends on a balance between how easy it is to use and

what the information content of the tool is [28,29], so tools that are built to be manually

used are constrained to a relatively small number of variables in order to achieve ade-

quate simplicity. As a result, input variables have typically been restricted to a multivari-

able data paradigm where each variable is represented by a single value. A consequence

of this strategy is that useful trend information cannot be incorporated into a model

unless it is explicitly encoded as a variable. Of course doing this would add complexity

to the task, so it is therefore rarely done.

As healthcare is transitioning from manual processes to electronic ones, it is becoming

increasingly easy to automate the processes of data collection and analysis. In an auto-

mated system, there is no longer a need to remain constrained to a multivariable data

paradigm in order to achieve simplicity at the user level. Clinical studies using time ser-

ies analysis has been undertaken in a number of settings [30-41], but thus far has been

relatively limited in scope, tending to focus on interpretation of a single analytic method

rather than incorporating multiple analytic methods into a more robust modeling

paradigm.

The purpose of this article is to describe a method for developing clinical prediction

models based on time-series data elements. The model development process that we are

presenting is novel to clinical medicine, but the individual steps comprising the process

are not. Our intention is to provide not only the description of the method, but the theo-

retical basis of the steps involved. We are demonstrating the application of this process in

an example of cardiac arrest prediction in a pediatric intensive care unit. It is our hope

that we describe the steps of the process and their theoretical basis clearly enough that the

methods can be extended to other domains where predictions based on time-series data is

needed.
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Introduction

In order to ensure that the concepts in this article can be understood by clinician and

nonclinician alike, we will provide four brief overviews of the core concepts that form

the foundation of this article. First, we will describe how the growth of data has

impacted medicine and some of the strategies that have evolved to manage this

growth. Second, we will review a few relevant concepts that relate to statistical analysis

and modeling, with special focus on multivariable versus time series data paradigms.

Third, we will specifically discuss clinical prediction models: their utilities, their limita-

tions, and considerations for improvements. Finally, we will review the rationale behind

selecting cardiac arrest in a pediatric ICU (PICU) as the example to illustrate the pro-

cess, and we will provide a brief overview of the physiologic principles that serve as

the theoretical basis for our prediction model.

Data in Medicine

Medical care has existed since long before diseases were understood at a scientific level.

Early medical care was characterized more by art and religion than by science as we know

it today [42]. The transition of medicine from an art to a science is based on the accumu-

lation of data, and the information, knowledge, and wisdom that has been derived from it.

While this transition has improved outcomes, there is a side effect of the data: information

overload [43-46]. Currently, the amount of data in the medical field is so extensive and is

growing so fast that is impossible for any single person to utilize it all effectively. In order

to utilize data, it must be interpreted in context (transforming it into information) and

evaluated by the user [47]. This process requires substantial cognitive resources and is

time consuming. In an attempt to address this problem, at least two strategies have been

employed: specialization and computerized support [43,48]. Specialization allows clinicians

to focus their efforts on a narrow field where they become expert in a relatively small

group of related diseases. In doing so, they reduce their educational burden to a point

where they can “afford” the cost of training and staying current in their specialty. In fact,

some specialties have even reached the point where subspecialization is required in order

to stay abreast of the latest trends [49]. There is a fundamental limitation to specialization

as a means to cope with excessive amounts of data or information: a more robust solution

to the problem is needed. Ideal properties of the new solution should include: scalability

[50] (it can continue to grow indefinitely), flexibility [50,51] (it can be used for a number

of purposes), explicit and accurate [51] (it relies on objective parameters), and automaticity

[52] (it functions independent of frequent supervision). Computer technology possesses

these characteristics, and the field of informatics has been born out of effort to utilize

computer based solutions to automate the transformation of data to information in the

healthcare setting [53,54]. These solutions come in many forms, ranging from aggregating

knowledge available on a given disease to informing clinicians when tests or treatments

violate parameters deemed to be unsafe [55,56]. One of the fundamental goals of this arti-

cle is to describe a method that can be automated as a computer based solution to help

inform clinicians of a patient’s risk of cardiac arrest using trend information that would

otherwise require manual interpretation. Since clinicians cannot continuously check the

risk of cardiac arrest for all patients they are caring for, we are attempting to leverage

information from data that would otherwise be left unanalyzed in the current “intermit-

tent check” paradigm.
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Statistical Analysis and Modeling

Of course, medicine is not the only field where data has become so abundant that it is

impossible to understand it all. Compared to fields such as physics and astronomy,

medicine is in a relative state of adolescence. When presented with an abundance of

data, the first priority is to understand what the data represent. This process of gaining

an understanding is based on statistical analysis [57-59]. Depending on the information

needs, data can be analyzed in a number of ways to provide a range of understandings.

For instance, a univariable analysis [60] of “heart rate” provides an understanding of

what the most common heart rate is, the range of heart rates, and how the range is

distributed. A multivariable analysis [61] that includes “heart rate” as a variable can

provide an understanding of how heart rate relates to temperature or blood pressure.

A time series analysis [62] of “heart rate” can provide an understanding of how the

heart rate changes different times of the day. The statistical methods for analyzing the

data differ fundamentally for time series data since a single variable is represented by

multiple values that vary depending on the time they represent. Univariable and multi-

variable statistics, on the other hand, rely on a single value per variable for each case.

Also, time series data elements are assumed to correlate to adjacent data elements

[62], whereas this type of correlation can interfere with univariable and multivariable

analysis [63,64].

Whereas univariable and multivariable data analysis informs the user of the distribu-

tion of a variable across a population and how the variable relates to other variables,

time series analysis informs the user of how a variable relates to itself. In particular,

time series analysis provides two types of information about a variable of interest:

trends and seasonality [65]. The distinction between the two is that univariable and

multivariable analyses aim to describe the static properties of a variable, whereas the

aim of a time series analysis is to describe its dynamic properties over time. Knowing

an airplane is 10 feet off the ground with the nose angled up and is at full throttle are

static variables that would suggest a plane is taking off. However, knowing that over

the last five seconds the elevation was 150 feet off the ground, then 140, then 120,

then 90, and then finally 60 feet off the ground changes the interpretation of the multi-

variable data to suggest that the plane is about to crash. The addition of the trend fea-

tures for the altitude changes the interpretation of the static data about height, pitch

and thrust significantly.

Statistical analysis provides a systematic and standardized process of characterizing

data so that it can be understood in the context that it is being analyzed. Modeling

endeavors also require a systematic approach, but the range of options is more varied

than in statistical analysis [66,67] since the products of analyses are often used as

“building blocks” for a model. It is not uncommon for models to draw on elements

from more than one type of analysis in making a prediction. One example of this

hybrid technique is the time-course approach to microarray analysis [68,69]. As an

example of this approach, the expression levels of twenty different genes are measured

to determine their activity in two classes of cancer. If it were to stop here, this would

be a basic multivariable model. However, the expression levels of these same twenty

genes are measured repeatedly under different conditions and at different points in

time. Under the standard multivariable model that used baseline expression levels of

the twenty genes, it is impossible to tell which genes determine cancer class. However,
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by adding the behavior over time in the different nutrient environments, the different

classes of cancer can be distinguished from one another. This is a well established

technique for genomic modeling. The technique is based on a paradigm that utilizes

time series data elements in a multivariable data format. In multivariable statistical

analysis, a high degree of correlation between independent variables (known as multi-

collinearity - an inherent feature of time series data) can invalidate the results of the

analysis by invalidating the calculations relating to the analysis of the independent vari-

ables as unique components [63,64]. However, when modeling is focused on the rela-

tionship between the dependent variable and the aggregate of all independent variables

(without trying to measure the effects of the independent variables themselves), this

multicollinearity is permissible [70].

Clinical Prediction Models

For centuries, models have been used to demonstrate our knowledge about the world

in which we live. They help us share our understandings about the observations we

make, and they help us anticipate what is to come. In medicine, scoring tools are a

class of models that combine multiple data elements, weight them according to their

correlation with the outcome of interest, and output a score that can be used in a

number of ways. Individual scores can be used to make predictions that can help guide

treatment decisions and communications with patients and families. As an example,

medical emergency teams use scoring tools to identify high risk patients that merit

transfer to a higher acuity unit [6-9,13-21]. Grouping scores allows standardized com-

parisons between two or more entities by providing a risk-based adjustment to the out-

come of interest [10-12,71,72].

Almost all clinical models are built on multivariable regression or a regression-like

approach that evaluates a number of candidate input features (variables) and measures

their individual correlation with the outcome of interest. The strength of the correlation

is used to assign points for each of the included variables, with more points being

assigned for highly correlated variables and for greater deviation from the variable’s nor-

mal value. Finally, points attributable to each feature are summed together to provide

the composite score that provides an estimate of the net effect of all the features com-

bined. To illustrate, the Pediatric Risk of Mortality (PRISM) score [11,12] assigns a child

who has a heart rate of > 150 beats per minute (bpm) 4 points for the abnormal heart

rate. Heart rate is not the strongest predictor of death though - plenty of children

admitted to the PICU have heart rates > 150 bpm during the first 24 hours and survive.

However, if the child’s pupils are fixed and dilated (evidence of severe brain dysfunc-

tion), they get 10 points for pupillary reaction: kids that have this degree of brain dys-

function are much more likely to die than those that have a high heart rate - thus the

higher score. After points are assigned for each of the variables, all of the points are

added together to generate the overall PRISM score. The combined score is then entered

into an equation that provides the user with the probability of death during the PICU

stay.

Since most of these scoring tools have been built using a multivariable data paradigm

that is constrained to a single value per variable, they are generally limited to evaluat-

ing a static state at one point in time. They are unable to characterize an extremely

important type of information: trends. In order to evaluate a dynamic state over
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multiple points in time, a time series data paradigm is required. However, since most

scoring tools weight their independent variables differently based on regression coeffi-

cients, they are prohibited from using data with high degrees of multicollinearity and

are therefore unable to use time series data.

While multivariable models prevail in the setting of clinical prediction tools, there

are small but growing number of medical models based on time series data. These

models have been used in a number of settings [73,74] ranging from imputation strate-

gies for missing data [75] to analysis of beat-to-beat variability in heart rate as a way to

discriminate survivors from nonsurvivors [40,41]. However, unlike the multivariable

based scoring tools that tend to employ a spectrum of independent variables, most

medical models that use time series data have restricted their focus to the time series

features of a limited number of independent variables.

Finally, there is the concept of using the results of multiple models as latent indepen-

dent variables in their own right. While there is precedent for this is in financial and

weather forecasting disciplines [76,77], it is not a common practice in medicine. There

are plenty of examples of studies that compare performance of one model to another,

but studies that combine two or more predictive models to arrive at a new prediction

are sparse. A general observation noted in our review of these types of studies is that if

two or more models are based on similar data, then one of the component models

often dominates and there is little effect of adding the second model. However, if the

models are based on disparate data, the resultant model typically performs better than

either of the component models in isolation.

Inpatient Cardiac Arrest as the Example to Illustrate the Process

In order to build a clinical prediction model that combines the traditional multivariable

data elements with the time series data elements, we sought out a problem space that

had the following characteristics: 1) target problem has a known relationship to vari-

ables measured in a time series fashion; 2) measured variables are abundantly available;

3) time series elements are likely to help predict the target problem. We selected “car-

diac arrest in a pediatric intensive care unit” as our target for a number of reasons.

First, we were able to identify all cases of cardiac arrest easily since they are recorded

on specialized code sheets. Second, standardized criteria [78] can be used to isolate

true cardiac arrests from other events that get documented on the code sheets. Finally,

cardiac arrest is a significant, life threatening condition that predictably results when a

patient’s vital signs deteriorate beyond a point of compensation. As vital signs deterio-

rate, patients progress from a state of normalcy, to a state of compensated shock, to a

state of uncompensated shock, and finally to cardiac arrest. Progressive shock is one of

the leading causes of pediatric cardiac arrest [3]. Given that shock can be characterized

by vital signs (establishing their plausible association to cardiac arrest) and vital signs

are automated and ubiquitously available in pediatric intensive care settings, we felt

this was an appropriate example on which to illustrate the process. Furthermore, since

shock can often be reversed with treatment, we believe there is a possibility of real

world application of the example.

After establishing that cardiac arrest fits the desired criteria, the spectrum of possible

conditions that can lead to cardiac arrest must be considered. In reviewing the litera-

ture for inpatient cardiac arrest, we determined that patients arrest due to a number of
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other causes [3], including intrinsic arrythmias that can send a patient into immediate

cardiac arrest, and unexpected events that can result in cardiac arrest in a matter of

minutes, such as sudden uncontrollable bleeding, unplanned removal of life support

devices such as ventilators or endotracheal tubes [79], and embolic phenomena such as

pulmonary embolism. The list of possible causes is extensive, but almost all causes not

attributable to progressive shock share a common feature: they lead to arrest very

rapidly. Also from our review of inpatient cardiac arrest literature, we discovered that

shock is usually insidious in onset and is characterized by deterioration over minutes

to hours, whereas the other causes of arrest are characterized by deterioration over

seconds to minutes. Finally, shock can be characterized by vital sign data, while other

causes of arrest are not so easy to characterize. Given the slower nature of the progres-

sive shock process affords a greater amount of data than the other processes, we felt it

appropriate to constrain the example model to parameters that relate to shock.

The fundamental feature of shock is that the body’s need for energy is not being sup-

plied in sufficient quantities. By far, the most frequent cause of shock in the pediatric

intensive care setting is one of insufficient oxygen delivery to the tissues [80]. Shock

can be described from a perspective of supply and demand. On the supply side, oxygen

delivery is a process that is dependent on: hemoglobin, oxygen, and blood flow [80].

Hemoglobin and oxygen can be measured directly. Measuring a patient’s blood flow,

on the other hand, is not commonplace. However, blood flow is a function of heart

rate and the stroke volume associated with each heartbeat. Heart rate is measured

directly, but again, stroke volume measurements are uncommon. For a fixed vascular

resistance, though, stroke volume is proportional to the pulse pressure (the difference

between systolic and diastolic blood pressure readings) [81]. The pulse pressure can be

directly measured. One other nuance regarding oxygen delivery is that it is dependent

on the pressure gradient across the tissue bed, so the gradient between the mean arter-

ial pressure and the central venous pressure is important. Mean arterial pressure can

be determined from systolic and diastolic blood pressures. Central venous pressure, on

the other hand, is only obtained in a relatively small fraction of the population. Not

having this value readily present for the majority of the population is a potential obsta-

cle to being able to model cardiac arrest due to progressive shock.

When examining the variables that relate to the supply of oxygen to the body, most

adhere to the desired features of being automatically collected by the monitors, reliably

measured, and ubiquitous in the pediatric intensive care population. Oxygen demand

depends primarily on temperature and level of activity. Temperature is measured

directly, but the method of measurement determines the accuracy of the reading: core

temperatures esophageal or rectal probes tend to be more accurate than oral or axillary

readings [82]. Furthermore, some measurement modalities are integrated into the phy-

siologic monitoring system, which has two implications: 1) it allows for automated cap-

ture, which can also achieved with an electronic medical record; and 2) it allows for

continuous measurement, whereas others typically do not. Therefore, care should be

exercised when using temperature as a variable to characterize oxygen demand. This

introduces another potential obstacle for successfully modeling cardiac arrest. Level of

activity is comprised of a host of factors ranging that can include factors such as the

work of breathing, digestion, presence of chills and rigors, seizure activity, and a
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number of other conditions. It is generally not measured in an objective, quantitative

fashion, and again, not being able to incorporate it into the modeling process poses a

risk to diminishing model performance.

Although we identified at least three potential weaknesses, we have established that

there are still a number of variables that are time series in nature and directly relate to

the physiology of shock. Despite the risk of not being able to generate an ideal model,

we nonetheless felt there was a sufficient amount of data to determine whether the

addition of time series data elements influence model performance, as compared to

baseline multivariable analysis.

Methods [& Results]

In order use time series data in a clinical predictive modeling paradigm that is based

on a multivariable data format we needed to accomplish three fundamental tasks: 1)

characterize models that utilize time series data to perform classification; 2) explicitly

represent the candidate features that determine the target of interest in both multivari-

able and time series fashions, including: a) specific measurement modalities; b) win-

dows of observation; c) resolution of observations; and d) computations required to

derive the time series features such as slopes and intercepts; and 3) create the model-

ing data sets using the candidate features in a data structure supported by the model-

ing algorithm.

The method we are proposing is listed below as a series of steps. In order to main-

tain continuity of focus between the method and the results, we will begin each section

by identifying the task and providing a general description of the concepts and theories

that we are applying. As the result for each step, we illustrate the step using the speci-

fic case of modeling cardiac arrest in a pediatric intensive care unit. [The illustration is

indented and placed in brackets.]

Determine Model Characteristics

In order to discover which what characteristics and properties could potentially suit

our needs, we examined models from a variety of disciplines that use time series data.

Starting at the broadest level, we initially searched web-accessible articles for “time ser-

ies” and “prediction model.” A basic exploration of the qualitative properties of the

resultant hits produced several observations that provided focus for subsequent ana-

lyses.

[The first observation was that some models rely on raw statistical associations

while other models utilize explicit equations for mathematical or physical proper-

ties. For instance, financial models tended to have a more statistical focus while

engineering models tended to provide mathematical representations for the phe-

nomena being studied. The second observation was that the majority of models uti-

lize information from past events to predict future events. While measures of

seasonality are germane to many areas of medical predictive modeling, they do not

apply to cases where initial or singular events are the target, which is the case in

this study. The final observation was that “pattern recognition” and “classification”

tasks more precisely describe the focus of our study.]
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Refining our screening query to “time series” and either “pattern recognition” or

“classification” we obtained a more homogenous group of studies, including a greater

fraction from medically related fields.

[However, clinical models were still lacking, and strategies to predict initial events

were rare. One class of studies that seemed to hold promise was based on time

course analysis [68,69]. Frequently used in genomic classification tasks, this strategy

has been used to classify diseases where less than 100 samples were available for

training but thousands of candidate variables were being analyzed. The method

relies on defined variables (gene expression levels) under defined conditions (expo-

sure to different agents) at defined times of measurement (baseline and several

post-exposure times). The methods share many of the properties we desire for

modeling cardiac arrest, and we therefore focused our efforts on adapting this

strategy as a template for our work.]

Select Candidate Features

Selecting the set of variables to serve as candidate features that will discriminate between

different classes is of key importance in modeling. A combination of approaches, includ-

ing literature review, concept mapping [83,84], and statistical analysis are several meth-

ods that can be used to identify plausible features. Ideally, features should describe the

target, correlate with the target, or have other plausible associations with the target.

[Since shock states are characterized by imbalances between supply and demand,

and since neither is constant, there is no established variable or combination of

variables that can be used to identify the threshold at which to define shock. How-

ever, we can define a set of variables that semiquantitatively represent supply and

demand, and we can measure several markers of anaerobic metabolism, which

takes place during shock states where demand exceeds supply. In addition to the

direct determinants of shock, there are associated variables that may modulate the

baseline risk of cardiac arrest: the overall metabolic profile, comprised of various

salts in the body is one modulator, and the functional status of the organs of the

body is another. These modulators are often measured as laboratory values. In

order to select candidate features for modeling cardiac arrest, we generated a list of

variables based on concept mapping [83,84] and literature review that are relevant

to shock and matched them with data that was electronically available. The concept

map can be found in Figure 1 and the resulting list of variables can be found in

Figure 2. Note that several of the variables identified in the concept map were not

electronically available.]

Select Measurement Tools

Often times, candidate features can be measured in a variety of ways. Recall the exam-

ple given above for temperature: it can be measured by digital devices, old fashioned

mercury thermometers, or temperature sensitive chemical strips and it can be obtained

from the skin, various mucous membranes, the tympanic membrane, the temporal
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artery, or even from the bloodstream. It can also be recorded continuously or intermit-

tently. Defining how candidate features are to be measured helps one understand

potential strengths and weaknesses of the models being built.

Figure 1 Overview of shock. Determinants of shock include variables that represent supply, demand,

measures of end organ function, and modulators of the metabolic environment. Clinically useful concepts

that are not explicitly measured but directly relate to supply and demand of oxygen are represented as

explicitly calculated latent variables.

Figure 2 Determinants of shock: variable source and data type. Physiologic variables selected as

determinants of shock. Each variable has been matched to a source that contains the raw measurement.

For measurements with more than one source, the preferred source was used for the match.
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[Several candidate features for cardiac arrest prediction were measured by multiple

means. Heart rate can be measured by ECG signals or by pulse oximetry. Blood

pressures can be measured continuously by arterial lines or intermittently by blood

pressure cuff. Temperature can be measured by all the methods described above.

As a general rule of thumb, when presented with multiple possibilities, we selected

the measurement modality that had the highest reliability. For heart rate, we

selected ECG signals. Even by allowing for multiple means of measurement, tem-

perature availability as an electronic source was present in < 10% of the population,

so we had to exclude it from the list of candidate features. Blood pressure determi-

nations posed a particular problem, though: there is a difference in data resolution

between continuous arterial line readings and intermittent noninvasive (blood pres-

sure cuff) checks. Clinically, when these two measurements disagree, neither is uni-

formly more accurate than the other. Also, arterial line pressures are not

ubiquitous in the population. From a pure “desired properties” standpoint, we felt

the noninvasive measurements were more ideal since they are obtained on every-

one and since they don’t require a procedure to obtain. However, since blood pres-

sure is so fundamental to the concept of shock, and since arterial line tracings

provide a more detailed representation of blood pressure, we felt it appropriate to

include both modalities in the model.]

Standardize Candidate Feature Formatting

Time series data are different from multivariable data in one fundamental way: they are

repeated measures rather than a single measurement. The timing of their acquisition

may be irregular or of an undesired periodicity. In order to use them as features in a

model, one must devise a strategy for transforming their native properties into proper-

ties appropriate for modeling. This requires several steps, and results in explicit for-

matting specifications for each of the candidate features. The steps to this process are

shown graphically in Figure 3.

Determine Class of Representation

The first step of this pricess is to determine whether the feature should be represented

in a multivariable format (single value) or in a time series format (multiple values). To

make this decision, one must evaluate the tradeoff between potentially useful trend

information in the time series format and the complexity it adds to the modeling

Figure 3 Data management in the prearrest timeframe. Multivariable variables were always assigned as

the most recent measurement taken before the reference point: the event in this illustration. For

continuously measured variables, a multivariable representative was assigned according to the multivariable

parameters. The remaining elements were considered time series elements: 59 minute by minute

measurements in the one hour preceding the event, and hour by hour measurements in the 12 hours

preceding the event.
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process. Time series data can be collected in fixed intervals (such as vital signs in

physiologic monitors) or they can be collected in nonstandard intervals (such as

laboratory measurements). Fixed intervals are somewhat easier to manage, since the

predictable timing between measurements allows for consistent representation between

subjects. Nonstandard intervals pose the problem of many measurements being taken

in a given time period for some subjects with single or no measurements being taken

for other subjects. Nonstandard intervals can still be represented in a time series for-

mat, but additional specifications need to be determined for how to standardize their

representation. Another strategy is to encode nonstandard interval features in a multi-

variable format, using single values (first, last, mean during some timeframe...) to

represent them in the modeling process.

[We represented physiologic monitor data in a time series format and laboratory

and demographic data in a multivariable format. Both noninvasive blood pressure

measurements and laboratory measurements are characterized by nonstandard

intervals of measurement. We treated the noninvasive blood pressure measure-

ments as time series data since their frequency of measurement far exceeded the

frequency of laboratory measurements. Many patients in the arrest group had mul-

tiple laboratory measurements taken in the hours preceding their arrest, and we

were concerned that representing these as time series elements could bias model

performance, since the number of unique measurements taken could itself serve as

a feature distinguishing arrest from control. Although this could be viewed as a

legitimate feature, we felt that the risks imposed by the operator controlled nature

of this variable and the potential bias that it would introduce in isolating “time ser-

ies effects” outweighed the benefits of using it as a feature unto itself.]

Identify Reference Point

The second step is to identify a reference point for the time series features so that their

relationship to the target of interest is standardized. Typically this will be a particular

event (such as cardiac arrest) and measurements can be referenced by the number of

minutes that they preceded the event. This strategy would typically be employed in

situations where the candidate features lead to the event, which is also the target. If the

reference point is an event that may lead to changes in the features, and the target is

something else, then measurements can be referenced by the number of minutes that

they follow the event.

[We selected the cardiac arrest event as the reference point in time and repre-

sented candidate features by the number of minutes that they preceded the arrest.]

Specify Windowing Parameters

The third step is to constrain the time series features to a specific window of time and to

specify the resolution of measurement within the window. At this step, higher resolution

(more frequent) measurements are generally preferable to low resolution measurements,

since subsequent steps will use multiple data points in calculations, and higher resolu-

tion provides for a more accurate representation of the underlying data than a lower

resolution. However, provided there are enough measurements specified in the chosen
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window to accurately represent any trends of interest preceding (or following) the refer-

ence point, the resolution can be reduced from the native resolution of the measurement

tool. The resolution does not need to be uniform for the entire window. If trends of

interest occur close to the reference point, then measurements taken closer to the refer-

ence point can be represented in a higher resolution and those that are farther from the

reference point can be represented in a lower resolution.

[Based on our understanding of the physiologic changes that precede an arrest, we

chose to include measurements that were taken up to 12 hours prior to the arrest.

However, changes in vital signs in the hour before the arrest tend to be more rapid

and pronounced than changes that occur greater than an hour before the arrest. In

particular, the most dramatic changes occur in the 10-15 minute window before an

arrest. For this reason, we chose a resolution of every one minute for vital signs

taken in the one hour window preceding the arrest, and we chose a resolution of

every one hour for vital signs taken in the 12 hour window preceding the arrest.]

Transforming Native Properties to Desired Properties

The final step required to standardize the formatting of candidate features is to trans-

form the native measurement resolution to the resolution specified by the windowing

parameters. When the number of native measurements in a given time period preced-

ing or following the reference point exceeds the desired number of measurements spe-

cified, a reduction strategy is needed. Several options include selecting the mean,

median or mode, maximum, or minimum of the native measurements. When the

number of native measurements is less than the desired number of measurements spe-

cified, an imputation strategy is needed. Several options include imputing a normal

value, a mean, median, or mode value from the data, or carrying forward previous data

points.

[We selected the latest measurement taken prior the arrest to represent our multi-

variable features. The time series features were already represented by every one

minute measurements, so no additional transformations were necessary for the one

hour window preceding the arrest. Noninvasive blood pressure measurements were

an exception. Measurements of noninvasive blood pressures ranged from every one

minute to every 60 minutes. Since the corresponding counterparts (arterial line

measurements) were continuously measured, we imputed missing values by a sim-

ple carry forward strategy and imputed a predefined normal value when no prior

measurements were available to carry forward. For the 12 hour window preceding

the arrest, the 60 native measurements (every minute) were averaged to obtain the

single value specified by the windowing parameter.]

The specific strategy chosen to impute missing data is an important detail. Each strat-

egy involves the creation of new data based on heuristic rather than measurement. As

such, each strategy has inherent assumptions, and inherent strengths and limitations.

Engels and Diehr present an excellent overview of common practices [85]. In the case of

predictive modeling that will ultimately be used in a real-time environment, a strategy

that is not dependent on future events is necessary. When imputation must extrapolate
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beyond known data points, constant measures such as carrying forward last known

measurements or using central-tendency measures from previous measurements tend to

be more conservative approaches characterized by greater stability over longer periods

of time, whereas variable measures (such as from regression analysis) may provide more

accurate representations over the short term but the short term benefits are replaced by

increased risk the longer these methods are used to impute data [86].

[Our choice of carrying forward most recently measured values was chosen primar-

ily because it is a conservative approach commonly employed in the clinical

domain [87]. It has mid-range deviation and bias effects as compared to other

available strategies. Our primary goal was to demonstrate the relative information

gain afforded by including time series data in the predictive modeling task, so it

was necessary to treat both control and arrest groups equally with respect to impu-

tation strategy. We acknowledge that any imputation strategy will differentially

affect the two groups if the data is missing in a nonrandom fashion. This area

deserves additional study, but is beyond the scope of the current study.]

Compute Latent Variables

Although simple inclusion of the raw time series features may be sufficient to proceed

to building a model for cardiac arrest, there are explicit computations that may further

improve the ability of the models to discriminate one class from another. At least two

such types of computations exist: trend features in the time series data, and clinically

relevant latent variables that represent concepts not directly encoded in the raw data.

The steps to these processes are shown graphically in Figure 4.

Clinically Relevant Variables

When two or more of the features can be mathematically combined to express another

feature that has an association with the chosen target, explicitly performing the calcu-

lation and encoding the new feature as a latent variable may help discriminate between

two target classes. Although many of the advanced modeling algorithms may inher-

ently be able to properly classify without the explicit calculation of the clinically

Figure 4 Data classes. Latent variables were derived from the raw physiologic Multivariable and Time

Series data sets. Clinical Latent Variables were based on calculations used in clinical medicine in assessing

for shock. Trend Analysis Latent Variables were based on slopes, intercepts, means, and the ratios of these

features for 5, 10, 15, and 60 minute windows that preceded the arrest event.
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relevant latent variable, it may serve as a way to minimize the size of the modeling

data set by allowing for elimination of the core features used in their calculation.

[For the cardiac arrest case, two candidate features, the shock index [88] and the

oxygen delivery index [89], can be determined from the variables we selected for

our analysis. Given that the calculated measures often convey a better representa-

tion of shock than any single variable in isolation, we thought it prudent to expli-

citly include these two latent variables in the modeling process. Shock index is

calculated by dividing the heart rate by the systolic blood pressure. Oxygen delivery

is estimated by multiplying heart rate, pulse pressure (the difference between systo-

lic and diastolic blood pressures), oxygen saturation, and hemoglobin. Since each of

these values is dependent on continuously measured parameters, we treated them

as time series data. Of note, at least one other clinically relevant feature would

have theoretical utility in a cardiac arrest model model: oxygen extraction index -

the difference between arterial and venous oxygen saturations. If blood supply to a

tissue bed diminishes, oxygen delivery diminishes, and the amount of oxygen

extracted from the arterial blood increases, thereby decreasing the amount of oxy-

gen in the venous blood. Although there is theoretical utility to this measure,

obtaining the arterial-venous oxygen difference requires a central line and unless

the central line has a venous oximeter, the measurement requires two simultaneous

blood gas measurements. We were unable to include this variable in the model

since the data to perform this calculation was rarely present in the raw data set.]

Trend Features

For each feature, its time series data is represented graphically as the value of the measure-

ment plotted against the resolution of time specified in the windowing parameter.

Depending on the nature of the data and the specific trends that one would expect to help

distinguish one class from another, candidate trend features should be explicitly encoded

as numerical representations by performing the computations necessary to characterize

the features of interest. This can include any number of representations, but the slopes

and intercepts, and the mean values for various intervals of time relative to the reference

point are standard methods of characterizing “trends” and overall status for any given

interval. Unless the trends of interest are uniform and precise, a strategy of calculating

slopes, intercepts, and means for multiple intervals may provide a better chance to discri-

minate between classes than a single set of calculations. Additionally, beyond the single

determination of slope, intercept, or mean for any given interval, expressing combinations

of features, such as the ratio of the mean of one interval compared to the mean from

another interval, may provide an even better discrimination.

[Since the trends leading to a cardiac arrest are not well characterized and vary from

case to case, we derived multiple permutations of slopes, intercepts, and means for

several prearrest intervals. We chose a 5 minute prearrest interval since the majority

of arrests demonstrate a more pronounced deterioration in vital signs during this

interval. We also chose 10, 15, and 60 minute prearrest interval in order to provide a

diverse representation of trends occurring during multiple prearrest intervals. We

explicitly represented ratios between mean measurements for each interval to each
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of the intervals that preceded it: 5/10, 5/15, 5/60, 10/15, 10/60, and 15/60. Finally,

considering that steeply negative slopes combined with baseline low means may

provide the best measure of discrimination, we divided the slope by the mean for

each prearrest interval in an effort to maximize the contrast of such a combination.

The specific elements are presented in Table 1.]

Seasonality Features

Seasonality features of time series data also hold important information that is not

characterized by multivariable data or by trend features of time series data. If such fea-

tures are of interest, then mathematical representations of their properties are required

if they are to be used as representative features. These may come in the form of auto-

regressive integrated moving average models (ARIMA) or any number of other time

series analyses. As in the case of trend features, if the seasonality features are not uni-

form and precise, multiple analyses may be necessary in order to properly characterize

the seasonality features and encode them as latent variables.

[In the case of predicting cardiac arrest, we are only interested in identifying the

initial event, not on predicting future arrests based on previous arrests. We there-

fore did include any features related to seasonality in this study.]

Partition Data Sets

Once the data have been normalized, they are ready for modeling. Although the entire

data set could be used to train a model, the ability of that model to perform in unseen

data (its external validity) would be undetermined. Models should not be put into use

until their external validity has been determined [90]. There are two ways to establish

external validity. The gold standard is to employ the model in a prospective fashion and

measure its prediction accuracy over time, noting any degradation that may occur as a

result of changing practices or disease prevalence. However, this is a laborious process

and typically is not undertaken unless some measure of how well it is likely to perform

already exists. Therefore, in order to estimate the external validity, a random portion of

samples usually is withheld so that they are never accessed during the training process

[91,92]. Determining how many samples to withhold involves a tradeoff: withholding too

many samples may degrade the model’s performance, whereas withholding too few sam-

ples may inaccurately estimate the model’s external validity. Depending on how many

examples are in the data, between 20 and 50 percent of the samples typically are with-

held for validation as the final step in assessing model performance [93,94].

[We randomly withheld 33% of our data as a validation set. Because we had only

103 cases on which to train, and more than a thousand candidate features, we

decided that the training set needed to have as many cases as possible. We did not

go as low as 20% because we were concerned that numbers of cases would be

insufficient to provide a sufficient resolution of accuracy measurement during

model testing: one case in 20 equates to a 5% difference, whereas one case in 33

equates to about 3%.]
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Create Modeling Data Subsets

The final step in preparing to generate predictive models from time series data is to

determine what actually belongs in the model. The effort that was put into selecting

candidate features, specifying their properties and format, and deriving additional clini-

cally relevant and trend features has provided a comprehensive set of candidate fea-

tures that are suitable for modeling, but all may not be necessary or appropriate for

modeling. From this comprehensive set of features, any number of data subsets can be

instantiated to answer the question of “Did that step help improve the model?” In

order to answer the question, two or more subsets of the comprehensive data set need

to be evaluated through a formal modeling process that involves training and tuning

on one data set, and measuring their performance in another. Relative performance

from one reference set to the other serves as a measure of the utility of the candidate

features that differ between them.

[Our first task was to construct a data set to serve as a baseline for how well multi-

variable data alone discriminated arrest cases from control cases. For this baseline

data set, we included measurements and physiologically relevant computations that

were closest in time to the arrest event. None of the time series features were

included in this data set. The second task was to add the raw time series data ele-

ments to the baseline data set. The purpose of this model was to determine

whether or not the addition of time series elements, without their associated trend

calculations, changed the model accuracy. The third task was to add the clinically

relevant latent variables with the time series elements to determine whether or not

the latent variables provided any additional value to classifying arrest versus con-

trol. The fourth task was to add the time series trend features to the baseline data

set (without the raw time series elements) to determine whether or not the trend

features changed the model performance. The final task was to construct a data set

containing all available elements. The purpose of this model was to determine if

the combination of time series data elements and their abstracted trend features

changed model accuracy beyond any changes that may have occurred by either in

isolation. The candidate modeling data subsets are shown in Figure 5.]

Reduce Candidate Features

Many modeling algorithms are able to discriminate even the subtlest differences

between case and control classes of data. When the number of examples is small and

the number of variables that the model can use is large, modeling algorithms are prone

to memorize the classes [95]. If this occurs, the preliminary results of the model accu-

racy will be superb, but the model will fail to predict classes accurately in the validation

data set. In order to prevent this problem, feature reduction is frequently employed

prior to training to reduce the number of candidate variables to a number less than the

algorithms need to achieve memorization. As a field of study, feature reduction is broad

and has literally hundreds of described techniques that span numerous underlying stra-

tegies [96]. At a very basic level, though, feature reduction can be performed by starting

with no features and sequentially adding them, or it can be performed by starting with

Kennedy and Turley Theoretical Biology and Medical Modelling 2011, 8:40

http://www.tbiomed.com/content/8/1/40

Page 17 of 25



all features and sequentially removing them. Additionally, it can be performed in concert

with a modeling algorithm, or independently.

[We selected two strategies that had proven performance in microarray analysis:

recursive feature elimination (RFE), which removes features independent of the

modeling algorithm, and support vector machine weighting (SVMW), which adds

features based on weights assigned during SVM model training. Given that both of

these techniques are sensitive to interdependencies among variables for a given

outcome (i.e., they will retain two or more variables that work together to make a

prediction, even if neither in isolation is highly correlated with the outcome), and

that the modeling tool we were using (MATLAB Spider) supported these techni-

ques, we chose them over the simpler, correlation-based techniques. In order to

estimate the degree of over-fitting, if any, we also trained candidate modeling data

sets without employing feature reduction and compared their performance to those

that were trained with feature reduction.]

Train Models

Once all of the previously described steps have been performed, various modeling algo-

rithms can be used to train models. Before doing so, though, one other point regarding

data set management is necessary. So far we have identified two data sets: one for train-

ing and another for validation (external validity). Nomenclature in the literature often

Figure 5 Data subsets obtained by combining data classes. Five candidate modeling subsets of data

were created to determine the impact of time series and trend analysis latent features (separately) to

baseline multivariable model accuracy. Clinical latent variables were compared to multivariable + time

series features to determine their relative impact to model accuracy. Finally, all candidate features were

combined to determine the net impact of time series + clinical latent + time series latent features on

model accuracy.
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identifies these as training, testing, and validation data sets [97]. In our methods, we are

treating the training and testing data sets a single data set because the modeling tool we

have chosen to use can automatically parse and reparse this data set multiple times as

necessary to create its own internal representations of training and testing data sets.

Many modern modeling tools have this ability to manage training and testing sets auto-

matically from a single data set through use of “cross-validation” routines. These rou-

tines essentially split the data set into internal training and testing sets, generate a model

and test it internally, and then repeat the process a number of times (known as N-fold

cross validation) [97,98]. In repeating this process multiple times using slightly different

data sets for training and testing, the models converge on an optimum set of parameters

that work the best across multiple splits. This process also generates a measure of inter-

nal validity that characterizes how consistent the models are between splits. If models

have chaotic internal performance during the training phase, it is somewhat risky to rely

on their performance in unseen data as a truly reliable measure of external validity.

As was the case for feature selection, an abundant number of strategies and algo-

rithms can be employed to generate predictive models [99]. Again, at a very basic

level, models can be divided into two groups: those that operate with explicit variables

and rules and those that operate in a black-box fashion, where the specific mechanism

for determining the model output is hidden. To date, there is no single best way to

create a predictive model, so several strategies commonly are employed in a trial-and-

error fashion in order to identify the optimum strategy for the data at hand. Histori-

cally, tools used in clinical medicine have relied on regression-based methods, which

work via explicit variables and rules. Decision trees are a class of predictive models

that share the same features of explicitness but are based on the more sophisticated

algorithms that characterize modern modeling strategies. Although models that use

explicit variables and rules provide a degree of understanding to the user as to how a

particular prediction is determined, they often do not achieve the same level of raw

performance as models that operate in a black-box fashion. Two types of black-box

style modeling strategies that have proven to be robust classifiers in multiple domains

are neural networks and support vector machines [100].

[Not knowing what the optimum modeling strategy was, we used a combination of

candidate modeling algorithms for each of the candidate data sets. For explicit rule

based classifiers, we built linear regression and decision tree models. For black-box

based classifiers, we built neural network and support vector machine models. Each

of the modeling strategies had numerous parameters that could be specified as

additional tuning parameters. For the purpose of this study, we accepted default

parameters because our goal was to compare various combinations of features and

core modeling strategies. Further improvements in performance may have been

obtained with an in-depth exploration of parameter effects, but this was considered

to be beyond the scope of this study.]

Validate Models

For any given model that is produced, its performance must be measured in order to

demonstrate its utility. Although we alluded above to the distinction between internal

Kennedy and Turley Theoretical Biology and Medical Modelling 2011, 8:40

http://www.tbiomed.com/content/8/1/40

Page 19 of 25



and external validity measurements, we did not discuss the specific measures used to

assess model validity. As was the case with many of the previous steps, this is an active

area of research, and multiple methods of model assessment have been described

[95,101].

[For each model generated, we measured classification accuracy, sensitivity, specifi-

city, and the area under the receiver operating characteristic curve (AUROC).

These measures of accuracy are well-established and accepted across multiple disci-

plines, and we considered them to be sufficient to demonstrate differences among

the various models we generated. Of note, the ratio of cases to controls in our data

set did not reflect the true prevalence of cardiac arrest (the ratio had to be

balanced in order for the modeling algorithms to perform optimally). Therefore,

positive predictive values and negative predictive values, although listed in perfor-

mance reports, were meaningless. As a result, other measures that rely on these

values (such as gain and the F-statistic) were not evaluated.]

Discussion

Multivariable models serve as the basis for almost all clinical prediction tools that cur-

rently exist. Most of these tools operate on a single value per variable paradigm and

are incapable of factoring change over time into their results. Even if the tools called

for specific calculations of change over time measures, they would most likely not be

used since most of these tools require manual data entry. We have presented a method

that allows models to incorporate time series data so that change over time can be fac-

tored into their results. In doing so, we have identified a number of practical

implications.

We believe automation is necessary in order for any time series based model to be

successful and sustainable. Multivariable models and tools can be cumbersome to use,

even with only a handful of data points to enter. The number of data points in time

series approaches prohibits manual use. Identifying which candidate features to include

in the modeling process needs to balance the usefulness of the feature in discriminat-

ing between model targets with the ease of getting the feature’s measurements into the

model. Data feeding the model needs to be populated automatically if the model is to

be simple enough to be accepted. Manual data entry of large amounts of data is

impractical for sustained model use. These factors need to be considered as specific

measurement tools are sought for each of the desired features being included in the

mode. Also, the candidate features should be fairly ubiquitous in the study population

and part of routine patient care. Although this isn’t an absolute requirement, having

readily available data facilitates model development by providing a rich retrospective

body of data on which to build and tune the model. Data that is rarely obtained has a

greater chance of biasing model performance, and will serve to limit the population to

which the model is applicable. Likewise, data that requires specialized equipment to

obtain or is not part of routine patient care increases the complexity of the overall pro-

cess since it would likely prohibit a prospective protocol for data collection - again

potentially biasing model performance since consenting an entire population of

patients is unfeasible. Once data can feed into the model automatically, filtering and
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processing the data into a standardized format is necessary. The initial determination

of the format needs to be informed by a conceptual model that relates the candidate

features to the targets of interest. Once the format is determined though, extensive

preprocessing must occur in order to transform the raw measurements for each vari-

able into its desired format. The methods chosen to accomplish these preprocessing

steps should also be compatible with automation.

The addition of time series analysis results as latent candidate features opens up a

realm of possibilities - only a few of which we’ve covered in this study. We’ve specifi-

cally presented possibilities of using calculations based on clinically meaningful con-

cepts and trend analysis. However, if targets of interest occur repeatedly, then analyses

of seasonality features can also be included as candidate features. To date, these types

of analyses have received attention in isolation, but have not been used as candidate

features with a broader set of variables in a comprehensive theoretically based model-

ing construct as we have proposed here. This is work to be done.

While current models and tools are typically based on regression strategies with multi-

variable data, the quantity of data involved in modeling with time series elements

requires algorithms that are more robust when ratios of cases to candidate features is

small. These tools have made some progress into clinical literature, and several clinical

tools are based on them, but their use has still been limited to a multivariable data para-

digm. Historically, tools that have relied on black box methods (such as neural networks

or support vector machines) have encountered significant resistance for clinical use: the

mechanisms used to determine their predictions are hidden and are often nonlinear.

The models cannot be shared on paper - they must be run as a program. Since one can-

not know a priori how changes in a given a variable will impact the model output, it is

difficult to “sell” the model as useful, even though its performance may exceed the per-

formance of models based on a regression formula or a decision tree: being on paper in

black and white allows the user to see in advance how change in a given variable will

impact the prediction. As more studies show these tools to be superior to their regres-

sion based counterparts, we anticipate these advanced algorithms will gain broader

acceptance, making clinical acceptance of the methods proposed here more likely.

Finally, we have demonstrated application of this method in a case of cardiac arrest pre-

diction in a pediatric intensive care setting. We hope we have presented each of the steps

with sufficient detail that they can be generalized to other scenarios where historical data

is used to derive information that helps guide actions. Being able to automatically analyze

this type of data and integrate it with other features to arrive at a final determination has

inherent potential as decision support that can help end users such as bedside caregivers

understand the information contained in the historical data.

Conclusions

Reviewing predictive modeling paradigms from nonclinical domains provided a potential

template for incorporating time series data elements into clinical prediction tasks. The

techniques used for time course analysis, which utilizes patterns of measured gene

expressions over time to distinguish different biological classes, can be adapted to ana-

lyze repeated clinical measures in a similar fashion. We have proposed a six step method

for creating clinical prediction models using time series data. The steps include: develop-

ing a theoretical construct around a prediction task; selecting candidate features and
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specifying their properties to match the theoretical construct; preparing data for model-

ing by transforming it from its raw state into a standardized representation; characteriz-

ing clinically relevant calculations and time series analysis as latent candidate features;

and creating data subsets to measure the effect that each category of candidate feature

has on the predictive accuracy of the resulting model. We have also demonstrated the

general process for building and validating models.

We have used progressive shock as a common mechanism leading to cardiac arrest

in a pediatric intensive care unit as an illustrative example. A successful prediction

model for this phenomenon based on automated techniques could be used to monitor

patients continuously for the risk of cardiac arrest. Continuous, objective measures are

more likely to systematically identify these children than are the intermittent checks

that characterize how they are currently identified. Implementation of such a tool

could ultimately serve to save the lives of hundreds, potentially thousands, of children

every year in the United States alone.

Author’s information

CK is an Assistant Professor of Pediatrics in the Pediatric Critical Care Section of Bay-

lor College of Medicine, working at Texas Children’s Hospital. The work presented

here constitutes the theoretical background for a PhD in Health Informatics at The

University of Texas School of Biomedical Informatics.

JT is an Associate Professor in the School of Biomedical Informatics at The Univer-

sity of Texas Health Science Center, Houston.

List of Abbreviations

We use the following abbreviations in the manuscript: ARIMA: autoregressive integrated moving average; ECG:

electrocardiogram; ICU: intensive care unit; PICU: pediatric intensive care unit; PRISM: pediatric risk of mortality.

Acknowledgements and Funding

This work was supported by a NIH K22 Early Career Development Award: 5 K22 LM008389. James Turley, RN, PhD was

the Chair of the academic mentorship committee that provided project oversight. Jack Smith, MD, PhD, Noriaki Aoki,

MD, PhD, Hualou Liang, PhD, and Michele Mariscalco, MD were also members of the academic mentorship

committee. All members of the academic mentorship committee were funded through their standard academic

appointments. Betty Ligon, PhD provided draft proofreading and revision service and was also funded by her

standard academic appointment.

Author details
1Department of Pediatrics, Baylor College of Medicine, 6621 Fannin, WT 6-006, Houston, TX 77030, USA. 2The

University of Texas School of Biomedical Informatics, 7000 Fannin, Suite 600, Houston, TX 77030, USA.

Authors’ contributions

CK performed work related to conception, review and synthesis of literature, method design, and manuscript

preparation, with oversight by academic mentorship committee throughout.

JT provided critical review and advised the refinement for concept and method development. He reviewed and

augmented draft manuscripts.

Both authors have read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 22 November 2010 Accepted: 24 October 2011 Published: 24 October 2011

References

1. de Mos N, van Litsenburg RRL, McCrindle B, Bohn DJ, Parshuram CS: Pediatric in-intensive-care-unit cardiac arrest:

Incidence, survival, and predictive factors. Crit Care Med 2006, 34:1209-1215.

2. Berg MD, Nadkarni VM, Zuercher M, Berg RA: In-hospital pediatric cardiac arrest. Pediatr Clin North Am 2008,

55:589-604.

3. Paradis NA, Halperin HR, Kern K: Cardiac arrest: The science and practice of resuscitation medicine New York, NY,

Cambridge University Press; 2007.

Kennedy and Turley Theoretical Biology and Medical Modelling 2011, 8:40

http://www.tbiomed.com/content/8/1/40

Page 22 of 25

http://www.ncbi.nlm.nih.gov/pubmed/16484906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16484906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18501756?dopt=Abstract


4. Wheeler DS, Wong HR, Shanley TP: Pediatric critical care medicine: Basic science and clinical evidence London, England,

Springer; 2007.

5. Zideman DA, Hazinski MF: Background and epidemiology of pediatric cardiac arrest. Pediatr Clin North Am 2008,

55:847-59, ix.

6. McGaughey J, Alderdice F, Fowler R, Kapila A, Mayhew A, Moutray M: Outreach and early warning systems (EWS) for

the prevention of intensive care admission and death of critically ill adult patients on general hospital wards.

Cochrane Database Syst Rev 2007, 3:CD005529.

7. Hodgetts TJ, Kenward G, Vlachonikolis IG, Payne S, Castel N: The identification of risk factors for cardiac arrest and

formulation of activation criteria to alert a medical emergency team. Resuscitation 2002, 54:125-131.

8. Subbe C, Kruger M, Rutherford P, Gemmel L: Validation of a modified early warning score in medical admissions.

QJM 2001, 94:521-526.

9. Egdell P, Finlay L, Pedley D: The PAWS score: Validation of an early warning scoring system for the initial

assessment of children in the emergency department. Emergency Medicine Journal 2008, 25:745-749.

10. Zimmerman JE, Kramer AA: Outcome prediction in critical care: The acute physiology and evaluation models. Curr

Opin Crit Care 2008, 14:491-497.

11. Pollack MM, Ruttimann UE, Getson PR: Pediatric risk of mortality (PRISM) score. Crit Care Med 1988, 16:1110-1116.

12. Pollack MM, Patel KM, Ruttimann UE: PRISM III: An updated pediatric risk of mortality score. Crit Care Med 1996,

24:743-752.

13. Naeem N, Montenegro H: Beyond the intensive care unit: A review of interventions aimed at anticipating and

preventing in-hospital cardiopulmonary arrest. Resuscitation 2005, 67:13-23.

14. Duncan H, Hutchison J, Parshuram CS: The Pediatric Early Warning System score: a severity of illness score to

predict urgent medical need in hospitalized children. J Crit Care 2006, 21:271-278.

15. Edwards ED, Mason BW, Oliver A, Powell CV: Cohort study to test the predictability of the Melbourne criteria for

activation of the medical emergency team. Arch Dis Child 2011, 96:174-179.

16. Edwards ED, Powell CVE, Mason BW, Oliver A: Prospective cohort study to test the predictability of the Cardiff and

Vale paediatric early warning system. Arch Dis Child 2009, 94:602-606.

17. Haines C, Perrott M, Weir P: Promoting care for acutely ill children–Development and evaluation of a Paediatric

Early Warning Tool. Intensive Crit Care Nurs 2006, 22:73-81.

18. Monaghan A: Detecting and managing deterioration in children. Paediatr Nurs 2005, 17:32-35.

19. Parshuram CS, Hutchison J, Middaugh K: Development and initial validation of the Bedside Paediatric Early Warning

System score. Crit Care 2009, 13:R135.

20. Tucker KM, Brewer TL, Baker RB, Demeritt B, Vossmeyer MT: Prospective evaluation of a pediatric inpatient early

warning scoring system. J Spec Pediatr Nurs 2009, 14:79-85.

21. Gao H, McDonnell A, Harrison DA, Moore T, Adam S, Daly K, Esmonde L, Goldhill DR, Parry GJ, Rashidian A, Subbe CP,

Harvey S: Systematic review and evaluation of physiological track and trigger warning systems for identifying at-

risk patients on the ward. Intensive Care Med 2007, 33:667-679.

22. Breslow MJ: Remote ICU care programs: current status. J Critical Care 2007, 22:66-76.

23. Hravnak M, Edwards L, Clontz A, Valenta C, DeVita MA, Pinsky MR: Defining the incidence of cardiorespiratory

instability in patients in step-down units using an electronic integrated monitoring system. Arch Intern Med 2008,

168:1300-1308.

24. Tarassenko L, Hann A, Young D: Integrated monitoring and analysis for early warning of patient deterioration. Br J

Anaesth 2006, 97:64-68.

25. Ismail F, Davies M: Integrated monitoring and analysis for early warning of patient deterioration. Br J Anaesth 2007,

98:149-150, author reply 150-142.

26. Thomas EJ, Lucke JF, Wueste L, Weavind L, Patel B: Association of telemedicine for remote monitoring of intensive

care patients with mortality, complications, and length of stay. JAMA 2009, 302:2671-2678.

27. Iyengar MS, Svirbely JR: The medical algorithms project. 2010 [http://arxiv.org/abs/0908.0932], arXiv:0908.0932 2009.

28. Adams DA, Nelson RR, Todd PA: Perceived usefulness, ease of use, and usage of information technology: A

replication. MIS quarterly 1992, 16:227-247.

29. Takata MN, Benumof JL, Mazzei WJ: The preoperative evaluation form: Assessment of quality from one hundred

thirty-eight institutions and recommendations for a high-quality form. J Clin Anesth 2001, 13:345-352.

30. Buchman TG, Stein PK, Goldstein B: Heart rate variability in critical illness and critical care. Curr Opin Crit Care 2002,

8:311-315.

31. Chen WL, Tsai TH, Huang CC, Chen JH, Kuo C-D: Heart rate variability predicts short-term outcome for successfully

resuscitated patients with out-of-hospital cardiac arrest. Resuscitation 2009, 80:1114-1118.

32. Papaioannou VE, Maglaveras N, Houvarda I, Antoniadou E, Vretzakis G: Investigation of altered heart rate variability,

nonlinear properties of heart rate signals, and organ dysfunction longitudinally over time in intensive care unit

patients. J Crit Care 2006, 21:95-103, discussion 103-4.

33. Goldstein B: Longitudinal changes in heart rate variability: laying the groundwork for the next generation in

clinical monitoring. J Crit Care 2006, 21:103-104.

34. Goldstein B, Fiser DH, Kelly MM, Mickelsen D, Ruttimann U, Pollack MM: Decomplexification in critical illness and

injury: relationship between heart rate variability, severity of illness, and outcome. Crit Care Med 1998, 26:352-357.

35. Tibby SM, Frndova H, Durward A, Cox PN: Novel method to quantify loss of heart rate variability in pediatric

multiple organ failure. Crit Care Med 2003, 31:2059-2067.

36. Heintz E, Brodtkorb TH, Nelson N, Levin LA: The long-term cost-effectiveness of fetal monitoring during labour: A

comparison of cardiotocography complemented with ST analysis versus cardiotocography alone. BJOG 2008,

115:1676-1687.

37. Osorio I, Frei MG, Wilkinson SB: Real-time automated detection and quantitative analysis of seizures and short-term

prediction of clinical onset. Epilepsia 1998, 39:615-627.

38. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN: Frequency domain measures of heart period

variability and mortality after myocardial infarction. Circulation 1992, 85:164-171.

Kennedy and Turley Theoretical Biology and Medical Modelling 2011, 8:40

http://www.tbiomed.com/content/8/1/40

Page 23 of 25

http://www.ncbi.nlm.nih.gov/pubmed/18675022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636805?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636805?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12161291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12161291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11588210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18955610?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18955610?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18787439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3048900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8706448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16150531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16150531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16990097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16990097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21030364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21030364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18812403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18812403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16271295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16271295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15751446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19678924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19678924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19356201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19356201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17318499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17318499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18574087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18574087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16707529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20040555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20040555?dopt=Abstract
http://arxiv.org/abs/0908.0932
http://www.ncbi.nlm.nih.gov/pubmed/11498315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11498315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12386491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19625120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19625120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16616632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16616632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16616632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9468175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9468175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12847404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12847404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19035942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19035942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9637604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9637604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1728446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1728446?dopt=Abstract


39. Hayano J, Sakakibara Y, Yamada M, Ohte N, Fujinami T, Yokoyama K, Watanabe Y, Takata K: Decreased magnitude of

heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation 1990,

81:1217-1224.

40. Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM: Patterns of beat-to-beat heart rate variability in

advanced heart failure. Am Heart J 1992, 123:704-710.

41. Stein PK, Barzilay JI, Chaves PH, Mistretta SQ, Domitrovich PP, Gottdiener JS, Rich MW, Kleiger RE: Novel measures of

heart rate variability predict cardiovascular mortality in older adults independent of traditional cardiovascular risk

factors: The cardiovascular health study (CHS). J Cardiovasc Electrophysiol 2008, 19:1169-1174.

42. Cruse J: History of medicine: the metamorphosis of scientific medicine in the ever-present past. Am J Med Sci 1999,

318:171-180.

43. de Meis L, Leta J: Modern science and the explosion of new knowledge. Biophys Chem 1997, 68:243-253.

44. Imhoff M, Webb A, Goldschmidt A: Health informatics. Intensive Care Med 2001, 27:179-186.

45. Rebitzer JB, Rege M, Shepard C: Influence, information overload, and information technology in health care. Adv

Health Econ Health Serv Res 2008, 19:43-69.

46. Hall A, Walton G: Information overload within the health care system: A literature review. Health Information &

Libraries Journal 2004, 21:102-108.

47. Bernstam EV, Smith JW, Johnson TR: What is biomedical informatics? J Biomed Inform 2010, 43:104-110.

48. Clayton PD, Hripcsak G: Decision support in healthcare. Int J Biomed Comput 1995, 39:59-66.

49. Ebrahim S: Demographic shifts and medical training. BMJ 1999, 319:1358-1360.

50. Chau PYK, Tam KY: Factors affecting the adoption of open systems: An exploratory study. MIS Quarterly 1997,

21:1-24.

51. Power DJ, Sharda R: Decision support systems. In Springer Handbook of Automation. Edited by: Nof, SY. New York, NY,

Springer Publishing Company, Inc; 2009:.

52. March ST, Hevner AR: Integrated decision support systems: A data warehousing perspective. Decis Support Syst 2007,

43:1031-1043.

53. Patel VL, Kaufman DR: Medical informatics and the science of cognition. JAMIA 1998, 5:493-502.

54. Cesnik B: History of health informatics. In Health Informatics: An Overview. Edited by: Hovenga E, Kidd M, and Cesnik B.

Melbourne, Australia, Churchill Livingstone; 1996:.

55. Sujansky W: Heterogeneous database integration in biomedicine. J Biomed Inform 2001, 34:285-298.

56. Gardner RM: Computerized clinical decision-support in respiratory care. Respir Care 2004, 49:378-86.

57. Ott L, Longnecker M: An Introduction to Statistical Methods and Data Analysis. Fifth edition. Belmont, CA, Cengage

Learning, Inc; 2006.

58. Glantz SA: Primer of biostatistics. Fourth edition. New York, NY, McGraw-Hill Inc; 1997.

59. Norusis MJ: SPSS 10.0 guide to data analysis Upper Saddle River, NJ, Prentice-Hall, Inc; 2000.

60. Cook A, Netuveli G, Sheikh A: Basic Skills in Statistics: A Guide for Healthcare Professionals London, GB, Class Publishing;

2004.

61. Harris R: A Primer of Multivariate Statistics. Third edition. Mahwah, NJ, Lawrence Erlbaum Associates, Inc; 2001.

62. Hamilton JD: Time Series Analysis Princeton, NJ, Princeton University Press; 1994.

63. Tabachnick BG, Fidell LS, Osterlind SJ: Using multivariate statistics Boston, MA, Allyn and Bacon; 2001.

64. Pedhazur EJ, Schmelkin LP: Measurement, Design, and Analysis: An Integrated Approach Hillsdale, NJ, Lawrence Erlbaum

Associates Inc; 1991.

65. Hill T, Lewicki P: STATISTICS Methods and Applications Tulsa, OK, Statsoft; 2007.

66. Berry MJA, Linoff G: Data mining techniques: For marketing, sales, and customer relationship management. Second

edition. Indianapolis, IN, Wiley; 2004.

67. Dunham MH: Data mining: Introductory and advanced topics Upper Saddle River, NJ, Prentice-Hall, Inc; 2002.

68. Ebert BL, Golub TR: Genomic approaches to hematologic malignancies. Blood 2004, 104:923-932.

69. Murphy D: Gene expression studies using microarrays: Principles, problems, and prospects. Adv Physiol Educ 2002,

26:256-270.

70. Agresti A, Finlay B: Statistical methods for the social sciences. Fourth edition. Upper Saddle River, NJ, Prentice-Hall, Inc;

2009.

71. Woodhouse D, Berg M, van der Putten J, Houtepen J: Will benchmarking ICUs improve outcome? Curr Opin Crit Care

2009, 15:450-455.

72. Duke G, Santamaria J, Shann F, Stow P: Outcome-based clinical indicators for intensive care medicine. Anaesth

Intensive Care 2005, 33:303-310.

73. Tsien CL: Event discovery in medical time-series data. Proc AMIA Symp 2000, 858-862.

74. Stacey M, McGregor C: Temporal abstraction in intelligent clinical data analysis: A survey. Artif Intell Med 2007,

39:1-24.

75. Gan X, Liew AWC, Yan H: Microarray missing data imputation based on a set theoretic framework and biological

knowledge. Nucleic Acids Res 2006, 34:1608-1619.

76. Duan Q, Ajami NK, Gao X, Sorooshian S: Multi-model ensemble hydrologic prediction using bayesian model

averaging. Adv Water Resour 2007, 30:1371-1386.

77. Kuttner KN: Estimating potential output as a latent variable. Journal of Business & Economic Statistics 1994, 12:361-368.

78. Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, Cassan P, Coovadia A, D’Este K, Finn J, Halperin H, Handley A,

Herlitz J, Hickey R, Idris A, Kloeck W, Larkin GL, Mancini ME, Mason P, Mears G, Monsieurs K, Montgomery W, Morley P,

Nichol G, Nolan J, Okada K, Perlman J, Shuster M, Steen PA, Sterz F, Tibballs J, Timerman S, Truitt T, Zideman D,

International Liason Committee on Resusitation: Cardiac arrest and cardiopulmonary resuscitation outcome reports:

update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare

professionals from a task force of the international liaison committee on resuscitation (American Heart

Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council,

Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern

Africa). Resuscitation 2004, 63:233-429.

Kennedy and Turley Theoretical Biology and Medical Modelling 2011, 8:40

http://www.tbiomed.com/content/8/1/40

Page 24 of 25

http://www.ncbi.nlm.nih.gov/pubmed/2317904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2317904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1539521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1539521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18631274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18631274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18631274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10487407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17029907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11280631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19548513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22034530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19683067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7601543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10567150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9824797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11977810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15030611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15155462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12443997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19633547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15973912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17011175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16549873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16549873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12530436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15582757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15582757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15582757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15582757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15582757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15582757?dopt=Abstract


79. Mort TC: Unplanned tracheal extubation outside the operating room: A quality improvement audit of

hemodynamic and tracheal airway complications associated with emergency tracheal reintubation. Anesth Analg

1998, 86:1171-1176.

80. Fuhrman BP, Zimmerman JJ: Pediatric critical care. Second edition. St. Louis, MO, Mosby, Inc; 1998.

81. Harley A, Starmer CF, Greenfield JC Jr: Pressure-flow studies in man. An evaluation of the duration of the phases of

systole. J Clin Invest 1969, 48:895-905.

82. Jensen BN, Jensen FS, Madsen SN, Lolssl K: Accuracy of digital tympanic, oral, axillary, and rectal thermometers

compared with standard rectal mercury thermometers. Eur J Surg 2000, 166:848-851.

83. Goel G, Chou IC, Voit EO: Biological systems modeling and analysis: a biomolecular technique of the twenty-first

century. J Biomol Tech 2006, 17:252-269.

84. Panniers TL, Feuerbach RD, Soeken KL: Methods in informatics: using data derived from a systematic review of

health care texts to develop a concept map for use in the neonatal intensive care setting. J Biomed Inform. 2003,

36:232-239.

85. Engels JM, Diehr P: Imputation of missing longitudinal data: a comparison of methods. J Clin Epidemiol 2003,

56:968-976.

86. Myers WR: Handling missing data in clinical trials: an overview. Drug Information Journal 2000, 34:525-533.

87. Shao J, Jordan DC, Pritchett YL: Baseline observation carry forward: reasoning, properties, and practical issues. J

Biopharm Stat 2009, 19:672-684.

88. Birkhahn RH, Gaeta TJ, Terry D, Bove JJ, Tloczkowski J: Shock index in diagnosing early acute hypovolemia. Am J

Emerg Med 2005, 23:323-326.

89. Kaufman BS, Rackow EC, Falk JL: The relationship between oxygen delivery and consumption during fluid

resuscitation of hypovolemic and septic shock. Chest 1984, 85:336-340.

90. Tropsha A, Gramatica PVK: The importance of being earnest: Validation is the absolute essential for successful

application and interpretation of QSPR models. QSAR & Combinatorial Science 2003, 22:69-77.

91. Han J, Kamber Micheline: Data mining: Concepts and techniques San Francisco, CA, Morgan Kaufmann Publishers; 2006.

92. Ian H Witten, Frank E: Data mining: Practical machine learning tools and techniques Amsterdam, Netherlands, Morgan

Kaufman Publishers; 2005.

93. Stein R: Benchmarking default prediction models: Pitfalls and remedies in model validation. Journal of Risk Model

Validation 2007, 1:77-113.

94. Altman DG, Royston P: What do we mean by validating a prognostic model? Stat Med 2000, 19:453-473.

95. Dreiseitl S, Ohno-Machado L: Logistic regression and artificial neural network classification models: A methodology

review. J Biomed Inform 2002, 35:352-359.

96. Guyon I, Elisseeff A: An introduction to variable and feature selection. The Journal of Machine Learning Research 2003,

3:1157-1182.

97. Hsu C, Chang C, Lin C: A practical guide to support vector classification. 2010 [http://www.csie.ntu.edu.tw/~cjlin/

papers/guide/guide.pdf].

98. Kohavi R: A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc 14th Intl.

Joint Conference on Artificial Intelligence 1995, 2:1137-43.

99. Lim T, Loh W, Shih Y: A comparison of prediction accuracy, complexity, and training time of thirty-three old and

new classification algorithms. Machine Learning 2000, 40:203-228.

100. Byvatov E, Schneider G: Support vector machine applications in bioinformatics. Appl Bioinformatics 2003, 2:67-77.

101. Lobo JM, Jimenez-Valverde A, Real R: AUC: A misleading measure of the performance of predictive distribution

models. Global Ecology and Biogeography 2008, 17:145-151.

doi:10.1186/1742-4682-8-40
Cite this article as: Kennedy and Turley: Time series analysis as input for clinical predictive modeling: Modeling
cardiac arrest in a pediatric ICU. Theoretical Biology and Medical Modelling 2011 8:40.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Kennedy and Turley Theoretical Biology and Medical Modelling 2011, 8:40

http://www.tbiomed.com/content/8/1/40

Page 25 of 25

http://www.ncbi.nlm.nih.gov/pubmed/9620498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9620498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5780199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5780199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11097149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11097149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17028166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17028166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14568628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20183433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15915406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6697788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6697788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22030313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22030313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10694730?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12968784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12968784?dopt=Abstract
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15130823?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Introduction
	Data in Medicine
	Statistical Analysis and Modeling
	Clinical Prediction Models
	Inpatient Cardiac Arrest as the Example to Illustrate the Process

	Methods [& Results]
	Determine Model Characteristics
	Select Candidate Features
	Select Measurement Tools
	Standardize Candidate Feature Formatting
	Determine Class of Representation
	Identify Reference Point
	Specify Windowing Parameters
	Transforming Native Properties to Desired Properties

	Compute Latent Variables
	Clinically Relevant Variables
	Trend Features
	Seasonality Features

	Partition Data Sets
	Create Modeling Data Subsets
	Reduce Candidate Features
	Train Models
	Validate Models

	Discussion
	Conclusions
	Author’s information
	Acknowledgements and Funding
	Author details
	Authors' contributions
	Competing interests
	References

