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Abstract: Problem statement: Time series analysis and forecasting has become a major tool in 
different applications in hydrology and environmental management fields. Among the most effective 
approaches for analyzing time series data is the model introduced by Box and Jenkins, ARIMA 
(Autoregressive Integrated Moving Average). Approach: In this study we used Box-Jenkins 
methodology to build ARIMA model for monthly rainfall data taken for Amman airport station for the 
period from 1922-1999 with a total of 936 readings. Results: In this research, ARIMA (1, 0, 0) (0, 1, 
1)12 model was developed. This model is used to forecasting the monthly rainfall for the upcoming 10 
years to help decision makers establish priorities in terms of water demand management. 
Conclusion/Recommendations: An intervention time series analysis could be used to forecast the 
peak values of rainfall data. 
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INTRODUCTION 

 
 Many methods and approaches for formulating 
forecasting models are available in the literature. This 
research exclusively deals with time series forecasting 
model, in particular, the Auto Regressive Integrated 
Moving Average (ARIMA). These models were 
described by Box and Jenkins[1] and further discussed in 
some other resources such as Walter[2-4]. 
 The Box-Jenkins approach possesses many 
appealing features. It allows the manager who has only 
data on past years’ quantities, rainfall as an example, to 
forecast future ones without having to search for other 
related time series data, for example temperature. Box-
Jenkins approach also allows for the use of several time 
series, for example temperature, to explain the behavior 
of another series, for example rainfall, if these other 
time series data are correlated with a variable of interest 
and if there appears to be some cause for this 
correlation 
 Box-Jenkins (ARIMA) modeling has been 
successfully applied in various water and environmental 
management applications. The followings are examples 
where time series analysis and forecasting are effective: 
 
• Water resources: Time-series analysis has become 

a major tool in hydrology. It is used for building 
mathematical models to generate synthetic 
hydrologic records, to forecast hydrologic events, 
to detect trends and shifts in hydrologic records 
and to fill in missing data and extend records 

• Staff scheduling: A manager of an environment 
department would need forecast of an hourly 
volume and type of waste generated to be 
processed in order to schedule staff and equipment 
efficiently 

• Process control: Forecasting can also be an 
important part of a process control system through 
monitoring key processes. It may be possible to 
determine the optimal time and extent of control 
action; for example, a chemical processing unit 
may become less efficient as hours of continuous 
operation increase. Forecasting the performance of 
the unit will be useful in planning the shutdown 
time and overhaul schedule 
 

 Chiew et al.[5] conducted a comparison of six 
rainfall-runoff modeling approaches to simulate daily, 
monthly and annual flows in eight unregulated 
catchments. They concluded that time-series approach 
can provide adequate estimates of monthly and annual 
yields in the water resources of the catchments. Kuo 
and Sun[6] employed an intervention model for average 
10 days stream flow forecast and synthesis which was 
investigated by to deal with the extraordinary 
phenomena caused by typhoons and other serious 
abnormalities of the weather of the Tanshui River basin 
in Taiwan. 
 Time series analysis was used by Langu[7] to detect 
changes in rainfall and runoff patterns to search for 
significant changes in the components of a number of 
rainfall time series. 
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 Solid waste management is another field where 
time series could be employed. Anastasia et el.[8] used 
Box-Jenkins methodology used for data analysis and 
stochastic modeling of daily municipal solid waste 
production. The data sets examined are the daily 
quantities of municipal solid wastes for consecutive day 
and for each day separately.  
 

MATERIALS AND METHODS 
 
 The main stages in setting up a forecasting ARIMA 
model includes model identification, model parameters 
estimation and diagnostic checking for the identified 
model appropriateness for modeling and forecasting. 
Model Identification is the first step of this process. The 
data was examined to check for the most appropriate 
class of ARIMA processes through selecting the order 
of the consecutive and seasonal differencing required to 
make series stationary, as well as specifying the order 
of the regular and seasonal auto regressive and moving 
average polynomials necessary to adequately represent 
the time series model. The Autocorrelation Function 
(ACF) and the Partial Autocorrelation Function (PACF) 
are the most important elements of time series analysis 
and forecasting. The ACF measures the amount of 
linear dependence between observations in a time series 
that are separated by a lag k. The PACF plot helps to 
determine how many auto regressive terms are 
necessary to reveal one or more of the following 
characteristics: time lags where high correlations 
appear, seasonality of the series, trend either in the 
mean level or in the variance of the series. 
 The general model introduced by Box and Jenkins 
includes autoregressive and moving average parameters 
as well as differencing in the formulation of the model. 
The three types of parameters in the model are: the 
autoregressive parameters (p), the number of 
differencing passes (d) and moving average parameters 
(q). Box-Jenkins model are summarized as ARIMA (p, 
d, q). For example, a model described as ARIMA 
(1,1,1) means that this contains 1 autoregressive (p) 
parameter and 1 moving average (q) parameter for the 
time series data after it was differenced once to attain 
stationary 
 In addition to the non-seasonal ARIMA (p, d, q) 
model, introduced above, we could identify seasonal 
ARIMA (P, D, Q) parameters for our data. These 
parameters are: Seasonal autoregressive (P), seasonal 
Differencing (D) and seasonal moving average (Q). 
For example, ARIMA (1,1,1)(1,1,1)12 describes a 
model that includes 1 autoregressive parameter, 1 
moving average parameter, 1 seasonal autoregressive 
parameter and 1 seasonal moving average parameter. 

These parameters  were  computed  after the series 
was differenced once at lag 1 and differenced once at 
lag 12. 
 The general form of the above model describing 
the current value Xt of a time series by its own past is: 
 
(1-φ1B)(1-α1 B

12)(1-B)(1-B12) Xt= (1-θ1B)(1-γ1B
12)et  (1) 

 
Where: 
1-φ1B = Non seasonal autoregressive of order 1 
1-α1 B

12 = Seasonal autoregressive of order 1 
X t  = The current value of the time series 

examined 
B = The backward shift operator BXt = X t-1 and 

B12X t= Xt-12 

1-B = 1st order nonseasonal difference 
1-B12 = Seasonal difference of order 1 
1-θ1B = Non seasonal moving average of order 1 
1-γ1B

12 = Seasonal moving average of order 1 
 
 This model can be multiplied out and used for 
forecasting after the model parameters were estimated, 
as we discussed below. 
 After choosing the most appropriate model (step 1 
above) the model parameters are estimated (step 2) by 
using the least square method. In this step, values of the 
parameters are chosen to make the Sum of the Squared 
Residuals (SSR) between the real data and the 
estimated values as small as possible. In general, 
nonlinear estimation method is used to estimate the 
above identified parameters to maximize the likelihood 
(probability) of the observed series given the parameter 
values*. The methodology uses the following criteria in 
parameter estimation: 
 
• The estimation procedure stops when the change in 

all parameters estimate between iterations reaches 
a minimal change of 0.001 

• The parameters estimation procedure stops when 
the SSR between iterations reaches a minimal 
change of 0.0001  

 
 In diagnose checking step (step three), the residuals 
from the fitted model shall be examined against 
adequacy. This is usually done by correlation analysis 
through the residual ACF plots and the goodness-of-fit 
test by means of Chi-square statistics χ2. If the residuals 
are correlated, then the model should be refined as in 
step one above. Otherwise, the autocorrelations are 
white noise and the model is adequate to represent our 
time series. 
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 After the application of the previous procedure for 
a given time series, a calibrated model will be 
developed which has enclosed the basic statistical 
properties of the time series into its parameters (step 
four). For example, the developed model, as shown in 
Eq. 1 above can be multiplied out and the general 
model is written in terms of Xt.  
 
Case study: According to Jordanian Ministry of Water 
and Irrigation[9] Jordan is located 80 kilometers east of 
the eastern coast of the Mediterranean Sea. Its location 
between 29°11'N and 33°22'N and between 34°19'E 
and 39°18'E with an area of 89329 km2. In Jordan, 
more than 80% of the country is classified as arid areas 
with an average of rainfall ranges from 600 mm years−1 
in the north to less than 50 mm year−1 in the south. The 
precipitation pattern is both latitude and altitude 
dependent. In addition, water resources in Jordan are 
limited and with deteriorating quality due to urban 
development. Therefore, it is important to know the 
future water resources budget in order to help decision 
makers improve their decisions with taking 
consideration the available and future water resources. 
Additionally, using modeling and forecasting for future 
water resources becomes possible with advances in 
forecasting methodologies such as time series analysis.  
 The rainy season is between October and May 
where 80% of the annual rainfall occurs through 
December to March. Jordan witnessed rainy seasons 
above average for the years 1970/1971 and 1991/1992 
where the last one considered the highest in the last 75 
years.  
 The climate in Jordan is predominantly of the 
Mediterranean type. Hot and dry summer and cool wet 
winter with two short transitional periods in autumn and 
spring. Four climatic regions are distinguishable in 
Jordan. They are: 
 
• The Jordan rift valley (Al-Ghor): The climate of 

Al-Ghor is classified as tropical. It is very hot in 
summer and warm in winter with an annual rainfall 
of 150-250 mm. The elevation of the Ghor is below 
Mean Sea Level ranging from 200-400 m. Its width 
ranges from 15 km in the North to 30 km in the 
South 

• The mountainous (hilly) region: The climate of 
these Regions is rather mild in summer and cold in 
winter. The amount of rainfall ranges from 300-
600 mm year−1. Snowfall occurs over the 
mountains. This region lies to the east of the Jordan 
rift valley extending from North to South. Its 
elevation varies from 750-1200 m with some tops 
exceeding 1700 m 

 
 
Fig. 1: Monthly rainfall data for Amman airport station 
 
Table 1: Basic statistics for Amman station monthly rainfall data in 

millimeter 
No of observations Mean St. Dev. Variance Min Max 
936 22.47 35.896 1288.52 0 235.2 
 
• The badia region: A flat terrain that lies to the east 

of the high lands with an elevation varies from 
600-700m. It is characterized by dry hot summer 
and relatively cold dry winters with rainfall varying 
from 40-100 mm year−1 

• The Gulf of Aqaba: This area is considered very 
hot in summer and warm in winter with an amount 
of rainfall <50 mm year−1 

 
 Amman is the capital city of Jordan where more 
than one million people live. In this research, readings 
from Amman Airport Station monthly rainfall data 
were considered, as shown in Fig. 1. The descriptive 
statistics for our data is shown in Table 1. This station 
is operated by the Metrological Department, climate 
division, who operates 37 other stations distributed 
throughout the country. Since rainfall data for this 
station is around the average among these stations it is 
used as a case study in our analysis. 
 

RESULTS AND DISCUSSION  
 
 Since the data is a monthly rainfall, Fig. 1, shows 
that there is a seasonal cycle of the series and the series 
is not stationary. The ACF and PACF of the original 
data, as shown in Fig. 2, show that the rainfall data is 
not stationary. 
 In order to fit an ARIMA model stationary data in 
both variance and mean are needed. We could attain 
stationarity in the variance could be attained by having 
log transformation and differencing of the original data 
to attain stationary in the mean. For our data, we need 
to have seasonal first difference, d = 1, of the original 
data in order to have stationary series. After that, we 
need to test the ACF and PACF for the differenced 
series to check stationary.  



Am. J. Environ. Sci., 5 (5): 599-604, 2009 
 

602 

 
(a) 
 

 
(b) 

 
Fig. 2: (a): Autocorrelation (ACF); (b): Partial 

Autocorrelation (PACF) for original rainfall data 
 

 
 (a) (b) 
 
Fig. 3: (a): Autocorrelation (ACF); (b): Partial 

Autocorrelation (PACF) for first order seasonal 
differencing and de-seasonalized original 
rainfall data 

 
 As shown in Fig. 3, the ACF and PACF for the 
differenced and de-seasonalized rainfall data are almost 
stable which support the assumption that the series is 
stationary in both the mean and the variance after 
having 1st order non seasonal difference. Therefore, an 
ARIMA (p, 0, q) (P, 1, Q)12 model could be identified 
for the differenced and de-seasonalized rainfall data. 
After ARIMA model was identified above, the p, q, P 
and Q parameters need to be identified for our model. 

 
 (a) (b) 
 
Fig. 4: (a): Autocorrelation (ACF); (b): Partial 

Autocorrelation (PACF) for residual errors 
resulted from ARIMA (1, 0, 1) (1, 1,1)12 model 

 
Table 2: ARIMA (1, 0, 1) (1, 1, 1)12 model parameter characteristics  
Parameter Parameter value T-value 

φ1 0.4308 0.40 
α1 -0.0267 -0.81 
θ1 0.4077 0.37 
γ1 0.9805 200.31 
 
 In Fig. 3, we have one autoregressive (p) and one 
moving average (q) parameters and the ACF has 
exponential decay starting at lag 12. Similarly, the 
PACF has an exponential decay starting at lag 12. 
These patterns suggest that we have ARIMA (1, 1) for 
seasonal and non seasonal rainfall data. Since we have 
identified the first order seasonal difference for the 
rainfall data our tentative model will be ARIMA (1, 0, 
1) (1, 1, 1)12. In order to make sure that this model is 
representative for our data and could be used to forecast 
the upcoming rainfall data we need to test the 
Autocorrelation Function (ACF) and the Partial 
Autocorrelation Function (PACF) for the residual errors 
resulted from fitting such model for our data. Figure 4 
shows the residual errors for the ARIMA fitted model. 
It is clear that we have no pattern was observed in the 
residual errors which shows that the model could be 
used to represent our data.  
 After we fitted an ARIMA (1, 0, 1) (1, 1, 1)12 for 
our data we need to estimate parameters values for our 
model, as shown in Eq. 2. As a rule of thump, in 
ARIMA modeling we need to minimize the sum 
squared of residuals needs to be minimized between the 
forecasted and existing values: 
 
(1-φ1B)(1-α1 B

12)(1-B12) Xt = (1-θ1B) (1-γ1B
12)et  (2) 

 
 The sum squared of residuals for the model was 
655288 and the following parameters values, as shown 
in Table 2. 
 As shown in Table 2, the parameters t-statistics are 
relatively small except for γ1 parameter. Comparing 



Am. J. Environ. Sci., 5 (5): 599-604, 2009 
 

603 

these values with the value t0.05 (932) = 1.645 (936 is 
the length of time series minus the number p, q, P, Q 
parameters). It is important to note that not only a 
model to fit the data with minimum sum of squared 
residuals is needed, but also a model with the least 
parameters is needed. Therefore, the correlation matrix 
was tested to check if any of the parameters are 
correlated in order to eliminate any of the correlated 
ones. Table 3, shows that the φ1 and θ1 parameters have 
high correlation value which suggests that one of these 
parameters could be eliminated from our model.  
 By eliminating any of the p or q parameters we will 
end up with the following models: ARIMA (1, 0, 0) (1, 
1, 1)12 model, the sum of squared residuals is 737590 
and ARIMA (0, 0, 1) (1, 1, 1)12, the sum of squared 
residuals is 737984. Table 4, shows the parameter 
values for the model identified above and their t-
statistics values. These results show that both models 
have similar characteristics and could be representative 
time series models for our data. ARIMA (1, 0, 0) (1, 1, 
1)12 will be considered for further analysis. 
 Can any of the model parameters be eliminated in 
the model above without affecting model 
appropriateness for our data? As shown in Table 5, 
there is no strong correlation between parameter values. 
Therefore, all parameters are important to build the 
ARIMA model. On the other hand, by comparing the t-
statistics  values  for the model parameters α1 parameter 
 
Table 3: ARIMA (1, 0, 1) (1, 1, 1)12 model parameter correlation 

matrix 

Parameter φ1 α1 θ1 γ1 

φ1 1.000 -0.058 1.000 -0.008 
α1 -0.058 1.000 -0.060 0.057 
θ1 1.000 -0.060 1.000 -0.008 
γ1 -0.008 0.057 -0.008 1.000 

 
Table 4: ARIMA (1, 0, 0) (1, 1, 1)12 and ARIMA (0, 0, 1) (1, 1, 1)12 

model characteristics  
 ARIMA (1, 0, 0) (1, 1, 1)12 ARIMA (0, 0, 1) (1, 1, 1)12 
 --------------------------------------- -------------------------------- 
Parameter Parameter value T- value Parameter value T-value 

φ1 0.0714 2.15 ------------- ------- 
α1 0.0025 0.07 0.0021 -0.06 
θ1 ---------- ------- 0.0037 -1.92 
γ1 0.8909 55.33 0.8902 55.04 
Sum of 737590 737984 
Squares 
residuals 

 
Table 5: ARIMA (1, 0, 0) (1, 1, 1)12 model parameter correlation 

matrix 

Parameter φ1 α1 γ1 

φ1 1.000 0.100 0.105 
α1 0.100 1.000 0.442 
γ1 0.105 0.442 1.000 

has small value compared with t-statistics value t0.05 
(934) = 1.645. Therefore, it is not significant to 
represent the data in the model above. 
 As discussed previously, the best ARIMA model 
has the least parameters numbers with the least squared 
residuals. Thus, the P parameter will be eliminated from 
our model and see if ARIMA (1, 0, 0) (0, 1, 1)12 is more 
appropriate to model our rainfall data. The sum of 
squared residuals from this model is 737593, which is 
not significantly different from the one resulted from 
ARIMA (1, 0, 1) (1, 1, 1)12 discussed above. The t-
statistics for ARIMA (1, 0, 0) (0, 1, 1)12 model 
parameters are significant to represent our data in 
ARIMA model if we compare these values with t-
statistics value t0.05 = 1.645, as shown in Table 6. 
 The ACF and PACF of the residuals resulted from 
our model should not show any pattern. It is clear, as 
shown in Fig. 5, that there is no pattern in residuals. In 
addition, we measured the goodness-of-fit test by 
means of Chi-square statistics χ2. The valueχ2 for the 
autocorrelations up to lag 24 is 26.9. The value of χ2 for 
22 degree of freedom (24- p- q) is 33.9244. Therefore, 
the set of autocorrelations for residuals, as shown in 
Fig. 5, are not significant and considered white noise 
since the observed χ2 value of 26.9 is less than χ2 

0.05 of 
33.9244. 
 Finally, this conclude that ARIMA (1, 0, 0) (0, 1, 
1)12 model identified previously is adequate to represent 
our data and could be used to forecast the upcoming 
rainfall data. 
 After the model parameters were estimated, they 
would  be used to forecast  the  upcoming  rainfall data. 
 
Table 6: ARIMA (1, 0, 0) (0, 1, 1)12 model parameter correlation 

matrix 
Parameter Parameter value T-value 

φ1 0.15 4.4 
γ1 0.88 44.8 

 

 
 (a) (b) 
 
Fig. 5: (a): Autocorrelation (ACF) (b): Partial 

Autocorrelation (PACF) for residual errors 
resulted from ARIMA (1, 0, 0) (0, 1, 1)12 model 
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Fig. 6: Real and simulated values for 1990-2005 of 

overall time series by using ARIMA (1, 0, 0) (0, 
1, 1)12 model  

 
As we discussed before ARIMA (1, 0, 0) (0, 1, 1)12 
model could be written in the following form, as shown 
in Eq. 3: 
 
(1-φ1B)(1-B12) Xt = (1-γ1B

12) et  (3) 
 
 This equation can be multiplied out and written in a 
form that is used in forecasting as shown in Eq. 4: 
 
X t= (1+ φ1)X t-12 + φ1X t-1 + et- γ1 e t-12 (4) 
 
 In Eq. 4, the value of Xt could be estimated by 
substitution the parameter values as we estimated 
above. Figure 6, shows a comparison between the real 
values and the ones resulted from the developed 
ARIMA model  for the period between 1990 and 
1999. It is clear that the model was not able to 
represent the peak values. In addition, it is clear that 
rainfall pattern continues for the upcoming years and 
there is no indication that the amount of rainfall 
decreases with time. 
 

CONCLUSION 
 
 Time series analysis is an important tool in 
modeling and forecasting. ARIMA (1, 0, 0) (0, 1, 1)12 
model give us information that can help the decision 
makers establish strategies, priorities and proper use of 
water resources in Jordan. This piece of information 
was not appropriate to predict the exactly monthly 
rainfall data. Therefore, individual monthly rainfall data 
should not be used in decision making by depending on 
our model. However, an intervention time series 
analysis can be tested to see if we can improve our 
model performance in forecasting the peak values of 
rainfall data 
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