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ABSTRACT

Monthly rainfall data of twenty-one years (1980 -0@0) were analyzed for the six regions of
Nigeria using the rescaled range (R/S) statistibgtstandard fluctuation analysis (FA) and the
detrended fluctuation analysis (DFA). The resultadicated that the distribution of monthly

rainfall has a Hurst exponent of 1 in the short ter which is an evidence of self-organized criti-
cality, and a Hurst exponent of about 0.5 in thenig run which is an evidence of a random walk.
The Hurst exponents decreased from around 1 for $hwandow sizes and reached 0.5 after 36
months and then remained fairly constant. The RAatsstic was found to perform better than the
FA and the linear DFA used in the analysis.

Keywords. Self-Organized Criticality, Hurst exponent, monthainfall, crossover, fluctuation
analysis.

INTRODUCTION birth (Sornette, 2002), run off, daily tempera-
It is difficult to represent many natural phe-ture (Vjushinet al, 2002) have been shown not
nomena which vary randomly with time with to be subject to pure chance but follow a power
an accurate physical model. This is becausaw.

they exhibit a high degree of randomness, not

easily portraying any pattern. However, studieSeveral methods such as the autocorrelation
have shown that the so called random phenonanalysis, variance ratios, and spectral analysis
ena exhibit some correlations which can bédave been used for the analysis of time series.
unmasked with some recently developed anadowever, these methods may fail when trends
Iytical tools. Occurrences such as earthquakesme present in the system. Trends are systematic
(Bak et al, 2002), landslides (Turcottet al, deviations from the average data (runoff, rain-
2002), rainfall, DNA (Penget al, 1994), spot fall, etc.) that are caused by external processes,
electricity, World Wide Web (Barabasi, 1999),e.g. the construction of a water regulation de-
forest fire (Turcotteet al, 2002) financial time vice, the seasonal cycle and climate change.
series (Czarneckiet al, 2008; Grech and

Mazur, 2004; Mato®t al., 2008), fragmenta- Monotonous trends may lead to an overestima-
tion (Turcotte, 1997), fracture (Sornette, 2002)tion of the Hurst exponent or even make uncor-
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related data, under the influence of a trend, lookhis study aims at ascertaining the presence
like long-term correlated ones. Furthermore, iand range of Self-Organized Ciriticality in the
is difficult to distinguish trends from long-term monthly rainfall pattern of Nigeria using data
correlations, because stationary long-term corspanning twenty one year period. The rescaled
related time series exhibit persistent behaviourange (R/S) analysis, the standard fluctuation
and a tendency to stay close to the momentagnalysis (FA), and the detrended fluctuation
value (Koscielny-Bundet al.,2003). analysis (DFA) will be used to obtain the Hurst
exponentsh for the six regions of Nigeria with
The concept of Self-Organized Criticality a view to ascertaining short-term and long-term
(SOC) was introduced by Balt al. (1987) to correlations of rainfall data in these regions.
explain the behavior of open and extended
driven systems with avalanche-like energy disMETHODOLOGY
sipation, as sandpile and earthquake modédllonthly rainfall data of twenty one years (1980
Bak et al. (1987, 1988)used the agent-based— 2000) for six states in each geopolitical re-
modeling approach to simulate the emergingiion of Nigeria were analyzed using the re-
large-scale dynamics of avalanches whescaled range statistic (R/S), the standard fluc-
grains of sand were added slowly and randomltuation analysis (FA) and the first order de-
to a sandpile. The sandpile system was said teended fluctuation analysis (DFA1).
be self-organized because a power-law relation-
ship between the size and the frequency of avé&Rescaled Range Analysis (R/S)
lanches appeared without any external guidancehis method was first developed by Hurst, a
(Linkenkaer-Hansen, 2002). SOC refers to th&ritish bureaucrat who spent a lifetime study-
tendency of non-equilibrium systems driven bying the Nile and the problems related to water
a low constant energy input to organize themstorage (Hurst, 1951). Mandelbrot (1983) is of
selves to a complex correlated state where alhe opinion that the rescaled range analysis is a
scales are relevant (Jianlat al, 2005). This more powerful tool in detecting long range cor-
concept is deeply related to the idea of scaleelation when compared to more conventional
invariance of the distribution of relaxation methods like autocorrelation analysis, variance
events and with the existence of self-regulatoryatios, and spectral analysis. In the rescaled
internal mechanisms that drive the systemange determination of long-term memory, the
spontaneously to a statistical stationary state. mean (X) of the monthly rainfall data col-
lected is obtained. Then the deviation from the
The extreme complexity of atmospheric procmean value is calculated and the cumulative
esses results from the coupling of several norsum of the deviation is calculated as follows:
linear processes having completely different N
temporal and spatial characteristic generating@ (1) = >, (X (i) = (X)) (1)
correlation that extends throughout the entire o
system and leading to power law distributionWhereR(i) = cumulative deviation from mean
The aim of the science of self-organization andnonthly rainfall;X(i) = monthly rainfall (mm);
complexity is to understand the source andx)=mean monthly rainfall (mm)y=total num-
character of structures and temporal dynamicser of months since we are dealing with
in systems that naturally exhibit large variabil-monthly rainfall.
ity. A system is said to be self-organizetien
its structure emerges without external influ-The profile R(i) is then divided into non-
ence. This implies that the constraints on th@verlapping segments of time lengthcalled
organization result from the interactions amongvindow. For each segment (s) of window size
the components and are internal to the systef) the rescaled range is obtained as the differ-
(Lucas, 2002). ence between the maximum value of the profile
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R(i) and the minimum value of the profile usingStandard Fluctuation Analysis (FA)

equation (2). In this method, the profile
R(s,n) = max(X(s,n)) —min(X(s,n)) R() :i(x(t) —(X)) is divided intos=int (N/n)
forl<ss <s @ =

non-overlapping segments of window size n

Wheres represents different segments and  starting from the beginning, and s non-
an integer. overlapping segments starting from the end of
the rainfall series. The notation int(N/n) simply
The rescaled range statistic is obtained as folmplies that the N/n must be an integer number
lows: when creating segments. The fluctuation is ob-
R, tained by extracting the values of the profile at

—| Dsn both ends of each segment. For each segment,
R(s,n)/S(s,n) [ssn ] 3) the square of the difference of the two end val-
' ues is obtained so that

WhereR(s,n)/S(s,n¥ the rescaled range statis-

tic for segment ;sof window size nR(s,n) = Fz(n)=(R3 - Ri—l)n+1)2 (5)
max(X(s ,n)) - min (X(s ,n)); S(s,n)= standard

deviation for segment of window size nh =  The average df’(i,s) over the 8 subsequences
Hurst exponenty = window size in months. is obtained for all the segments of a chosen

window size (n). Hence, the fluctuation is given
The average value &(n)/S(n)is then obtained by
for the window sizen. The window size is

changed and the procedure is repeated so tr’,la n) = } > R -R. 2
E ) S;( is (|—1)n+1)

(6)

for different window sizes (n), we obtain differ-
ent values ofR(n)/S(n) hence Equation (4).

This procedure is repeated for different window
R(n)/S(n) = nh (4) sizes to obtain a scaling relation betwdgn)

and n. The fluctuatiodr(n) can be viewed as
All parameters have been previously defined. Ithe root-mean-square displacement of a random
Equation (4) is log transformed, a linear funcwalker on a linear chain aftersteps. The stan-
tion is obtained. A linear regression linedard fluctuation analysis is somewhat similar to
through a set of points, composed of the log athe rescaled range analysis described previ-
n (the size of the areas on which the averageusly except that it focuses on the second mo-
rescaled range is calculated) and the log of thment F,(n) while the rescaled range method
average rescaled range over a set of regions obnsiders the first momer;(n). Just like in
sizen, is calculated. The slope of the regressiothe rescaled range analysis, the fluctuation fol-
line is the estimate of the Hurst exponemt, lows the power law of Equation (4) so that the
The Hurst exponenth, is equal to 0.5 for slope ofLog F versusLog n gives the Hurst
Brownian motion also referred to as the randorexponent.
walk phenomenon or Gaussian white noise;
h<0.5is an indication of anti-correlation or anti Detrended Fluctuation Analysis
-persistenceh>0.5 is an indication of positive Detrended Fluctuation Analysis (FA) was first
correlation, whileh = 1 indicates 1/f noise proposed by Pengt al. (1994) while examin-
which is a signature of self organized critical-ing series of DNA nucleotides. The rescaled
ity. range analysis and the standard fluctuation
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analysis are usually affected by the presence @iiough they all lead to the same conclusion.
trends (Vjushiret al, 2002). In order to elimi- The DFA results show that the monthly rainfall
nate trends in a systematic way, several metlier the six regions examined exhibit a positive
ods have been developed. These methods inerrelation in the s hort range (Figures 1 - 3).
clude the detrended fluctuation analysis (DFA),

the multifractal detrended analysis (MF-DFA),As can be easily verified from these figures, the
the wavelet transform (WT), the detrendedslopes ofLog F versusLog n suddenly transit
moving average (DMA), the centered movingfrom a region of high values in the short-term
average (CMA), continuous DFA, Fourierto lower values in the long-term. Jos, Kano and
DFA, etc. In DFA, unlike the previous two Bauchi which represent the three regions in the
methods described above, trends are eliminatatrth, the Hurst exponent fér< n < 24months

in the process of calculating fluctuations. Theends to unityout decreases asincreases. For
deviation from the mean is calculated for eaclthese regions, Hurst exponent tends to 0.5 for
data in the monthly rainfall time series and ther24 < n < 252monthavhich is an indication of a
the cumulative deviation from the mean is obtandom walk. This implies that the monthly
tained for each data point (see Equation 1). Theainfall exhibits self-organized criticality for
data generated by Equation (1) is then dividefine temporal resolutions (short range) and
into K = N/n non-overlapping segments of win-Gaussian white noise for coarser resolution
dow size (time interval) n. For each segm&nt (long range). For the R/S analysis, the Hurst
a best linear fit of the profile is determined. Theexponent tends to unity for € n < 12months
ordinate of the fitted line (local trend) for eachand 0.5 for 12<n < 252 monthsfor the same
segment is denoted bBggi), and the detrended regions. For Lagos (South-West), Enugu (South
fluctuation is obtained by subtracting the pro-East) and Calabar (South-South) which repre-
file R(i) from the corresponding local trenfy sent the three regions of the south, the Hurst

(). The fluctuation is given by: exponent for0 < n < 14monthgends to unity,
1 2 and 0.5 for 14< n < 252monthsFor the R/S
2 = _ analysis, the Hurst exponent tends to unity for O
F(s,n) SZ( Rs—l)n‘fi !( )) (7) < n < 12monthsand 0.5 for 12 < n <

= 252monthsin  these regions. The analysis

The linear DFA was first proposed by Pesty above becomes clearer by successively estimat-
al. (1994) when analyzing correlations in DNA.ing h at each window size and comparing the
However, it can be generalized to eliminatevalues.
higher order trends (Buna al, 2000; Kantel-
hardtet al, 2001). The line of best fit can alsoChen et al. (2002) and Kantelhardtet al,
be obtained by fitting a polynomial of order (2002) observed that many records do not ex-
so that the general fluctuation expression fohibit a simple monofractal scaling behavior,
DFA is given by: which can be accounted for by a single scaling
L exponent. In some cases, there exist crossover

2 _ (time) scales separating regimes with different
F=(s, n)_gZ( |%s—l)mi a r(( )) (8) scaling exponents (Het al, 2001). Systems

=1 exist which exhibit long-range correlations on

This approach helps to eliminate trends of themall scales and another type of correlations or

2

K" order. uncorrelated behavior on larger scales. Figures
1 and 2 distinctly reveal the crossovers for the
RESULTSAND DISCUSSION regions under study. A crossover is usually

The result of the DFA and R/S analyses wer@édicated by a clear change in the slope of the
found to behave similarly while that of the FAplot of Log F versud.og n. If a crossover does
analysis showed a somewhat differing behavionot exist, larger window sizes will yield larger
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Hurst exponentsh, but the slope of the plot variations in correlation patterns of a data set in
will remain constant. A crossover usually indi-relation to time scaleThis study has revealed
cates a change in correlation pattern of a dataat rainfall in Nigeria follows this pattern, ex-
set as time scale changes. Some data may haweiting self-organized criticality on small
positive correlation in the short-term but anti-scales, but as time scale increases the correla-
correlation or even pure randomness in the lontion decays giving rise to pure randomness.
-term. So crossovers can be used to monitor the

1.6

I ——Bauchi —=—Kano -#—Jos —#—Enugu —®—lLagos —®—Benin —¢—|badan —=—Ilkom —-—Calabarl

1.4

1.2

0.8

Log F

0.6

0.4

0.2

0 . . .
0.5 1 1.5 2 2.5
Logn
Fig. 1: Plot of R/S Analysisfor the six regions
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Fig. 2: Plot of DFA Analysisfor the six regions
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Fig. 3: Plot of FA Analysisfor the six regions

Even though researchers have claimed that tselts obtained (Figures 4 —9) and 1 - 2) seem to
DFA gives better results than the R/S analysimdicate otherwise for this study.
and the FA (Grech and Mazur, 2004), the re-
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Fig. 4: Plotsof R/S, FA and DFA for Calabar (South-South)
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Fig. 5: Plotsof R/S, FA and DFA for Lagos (South-West)
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Fig. 6: Plots of R/S, FA and DFA for Enugu (South-East)
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Fig. 7: Plotsof R/S, FA and DFA for Bauchi (North-East)
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Fig. 8: Plotsof R/S, FA and DFA for Kano (North-West)

Journal of Science and Technology © KNUST April 2011



Time Series Analysis of Monthly Rainfall... 147

3
25 * ’
. N ..
* Py s ,. .== ™ [ ]
- = | I
L ®
2 .
w15 " 3
(@]
(o]
- 1
A A ‘AA ‘ :
A A aa 2ata
A
0.5 —
0 T T T 1 T
0 0.5 L 1.5 2 2.5 3
ogn

Fig. 9: Plots of R/S, FA and DFA for Jos (North-Central)

Figures 4 — 9 indicate that apart from variatiorused instead of the linear DFA used in this
in fluctuations, there are no marked variationstudy. It was also observed that the Hurst expo-
in the values oh for the three methods. Be- nents calculated using DFA have a stronger
sides, the R/S method seemed to predict thendency to converge to a single line at 0.5
presence of SOC better. The DFA indicates thgFigure 10) for all the regions and window
monthly rainfall exhibits SOC biannually for sizes, while those from the R/S and FA analy-
the North and during a fourteen month periodses maintained clearly distinct lines near 0.5
for the South, the R/S analysis consistentlfFigs 11 and 12) for different regions. This im-
indicates an annual SOC for both regions whiclplies that even though the R/S analysis was
is a more accurate representation of the yearlyore accurate in predicting the crossovers, the
seasonal rainfall in the country. KristoufekDFA gave better and finer results after the
(2009) showed that rescaled range analysis camossovers.
still stand the test against new methods. The R/
S is known to usually overestimate Hurst expoThe result of the standard fluctuation analysis
nent. (FA) did not exhibit any distinct demarcation
between the region of SOC and the region of
Despite this overestimation, studies have showrandom walk as did the other two methods
that even if R/S shows higher values of Hurs{Figure 3). But it tends to show that monthly
exponent than DFA, the standard deviations amainfall is purely random. Though the three
lower for R/S so that the confidence intervalanethods used in this study give results of vary-
are narrower. Nevertheless, both methods shoing degrees to an extent, they all seem to point
very similar estimates (Figures 4 - 9), when théo randomness in monthly rainfall distribution
bias is taken into consideration, whereas thegver the 21 year period of study. Figures 10 to
are more correlated with growing time seriesl2 are plots of Hurst exponerit) (versus win-
length (Kristoufek, 2009). However, the resultdow size (n) which show that for all the re-
of the DFA could become more accurate angions, Hurst exponent decreases from around 1
consistent if higher order DFAs (DFAare to 0.5, remaining at 0.5 at n = 42 months for the
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Fig. 10: Plot of Hurst exponent (h) versuswindows size (n) for DFA analysis

DFA and 36 months for the R/S analysis, retime passes, this influence decays so that, when
spectively. This seems to show that monthlynonthly rainfall data for so many years are
rainfall has a memory span of about threeonsidered, they appear to follow a random
years. This implies that the rainfall of a particupattern. This can be interpreted to mean that
lar year will be influenced by that of the previ-monthly rainfall exhibits positive correlations
ous year to an extent, and will, in turn, influ-in the short range and anti-persistence in the
ence that of the following year. However, adong run.
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Fig. 11: Plot of Hurst exponent (h) versuswindows size (n) for R/S analysis
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