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Abstract

[n thís paper we provide an empirical analysis of the term structure of interest
rates using the affine class of terru structure models introducrd hy nuffie and Kan.
~Ve estimate these models by combining time-series and cross-section information
in a theoretically consistent way. In the estimation we use an exact discretization
of the continuous time factor process and allow for a general measurement error
structure. We provide evidence that at least two correlated factors are necessary to
dcscribe the term structure. The generalized CIR specification is close to the most
general two-factor affinc model and is preferred over the Vasicek model. However,
there is some evidence that a two factor affine model is misspecified.
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1 Introduction

Good models for the term structure of interest rates are essential for the pricing of bonds

and other interest rate derivatives, as well as for managing the risk of these financial

assets. If we are concerned with derivative pricing, a perfect cross sectional fit of the

observed bond prices is esserrtial. This inspired the exogenous term structure models of

Hull and White (1990) and Heath, Jarrow and Morton (1992). However, the calibrated

coefficients of these models often change rapidly over time. If we are concerned with

risk management, stable estimates of model parameters are required. Endogenous term

structure models here provide a useful structure. A particularly tractable class of term

structure models is proposed by DufFie and Kan (1996). In this class of models the

interest rates on bonds of all maturities are linear (affine) functions of a small number of

underlying factors. The dynamics of these factors are described by a generalized square

root diffusion process. This class of models is able to capture many shapes of the yield

curve and, depending on the number of factors, can describe different developments

of the yield curve over time. The affine term structure model nests many well-known

models, such as the one-factor Vasicek (1977) and Cox, Iugcrs~ll and Ros~ (CIIl, 1985)

rnodels, and the two-factor model of Longstaff and Schwartz (1992).

The affine term structure model consists of a dynamic model for the evolution of

the factors and a model for bond prices (or yields) as function of the factors and the

time to maturity. We will refer to the former as the time series dimension, and the

latter as the cross section dimension of the model. Both dimensions of the model can

be analysed separately, but there is a growing literature t.hat estimates term structure

models using panel data, i.e. combined cross section and time series data.r There are

several advantages of using panel data. Firstly, the panel data appoach fully exploits

the restrictions imposed by the term structure model is therefore expected to give more
accurate estirnates oC the dynamics of the term structure. Secondly, combined use of

time series and cross section data allows for identification of the market price of interest

rate risk, which is not identified from each dimension separately. Of course, both points

are only valid if the model is correctly specified. The panel data framework provides a
natural specification test of the model by testing the restrictions imposed by the model
on the parameters of the pricing equations (the cross section dimension) and the dynamic

model for the factors (the time series equation).

The contribution of this paper is to analyze a more general model structure than is

~An undoubtedly incomplete list is Chen and Scott ( 1992), Pearson and Sun (1994),

Lund (1994,1997), Duan and Simonato (1995), Frachot, Lesne and Renault (1995), Geyer and Pich-

ler ( t997), Santa-Clara (1995), Buraschi (1996), Pagan and Martin (1996), Babbs and Nowman (1997),
and Bams and Schotman (1997).
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employed in rnost previous papers. Typically, the models anaysed are multi-factor ver-
sions of the CIIZ model with mutually independent factors.~ ~'e shall allow for Ceedback
among the Cactors. Moreover, we will allow for a volatility structure that nests the cou-

stant volatility (as in the Vasicek model) and the square root volatility model (as in the
CIR and Longstaff and Schwartz models) and let the data decide on the best specifica-
tion. ~~'e estimate oue and two-factor versions of ihe affine modcl on [iS term structure
data. In addition, we provide an extensive specification analysis of the estimatecí models

to assess their ability to describe the cross section of bond prices and the dynamics of

the yield curve.

Other contributions of this paper are on the econometrie side. The model is specified

in continuous time, whereas the data are observed at discrete points in time (monthly in

our empirical work). In this paper we provide an exact discretization of the conditionaf

mean and variance of the factors. Estimation is based on a subset of the available yields
that covers the maturity spectrum. Typically, the dimension of the observations is higher
than the number of factors. Therefore, the factors are treated as latent variables which

are iutegrated out using the Kalman filter. Estirnation is by Quasi Maximum Likelihood

based on the conditional mean and variance of the process.

The setup of the paper is as follows. Section 2 describes the theoretical model. Sec-

tion 3 discusses the empirical implementation of the model and gives a brief description
of the data. Sections 4 and 5 discuss the empirical results for one-factor models and
two-fact.or models, respectively. Section 6 concludes.

2 The af~ine class of term structure models

Dufiie and Kan (1996) propose a class of affine t,erm structure models in which zero-
coupon bond prices are an exponential-a(iine function of a vector of factors, F~ E R":

Y~(r) - exp[-A(r) - B(r)'Fr]. (1)

where r denotes the time to maturity of the bond. Due to this form, the interest rates
or yields on zero-coupon bonds are a linear funetion of the factors, where the intercept
and factor loadings are time-invariant functions of the time to maturity

Yt(T) - -1nPtlT)~T - `4lT)~T f ~(T)~~T' Ft. (2)

2A notable exception is the work of Frachot, Lesne and Renault (1995), who estimate a general affine

Lerm structure rnodel on French data using indirect inference techniques.
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'I'he underlying factors F~ are assumed to follow a diffusion process with a square-root

type volat,ility structure

aiHt -~ QidWii

dF~-n(F~-p)dtfE~ . ~ (3)

` ~nFt ~ I'nd1'~ o Í

where W,~ are independent Wiener processes under the `real world' or empirical proba-

bility measure P.

The affine model contains several well-known models as special cases. The model of

Langetieg (1980), which generalizes the Vasicek (1977) model to more dimensions, is

obtained if a- O.a The generalized Cox, Ingersoll and Ross (1985) model is obtained if

a is diagonal and Fl - 0. In t,he latter model all yields are guaranteed to be positive, see

Pang and Hodges (1996). If, in addition, the mean reversion matrix A and the correlation

rnatrix r are diagonal, the factors follow mutually independent stochastic processes and

we ~btain a two-factor CIR model which is observationally equivalent to the Longstaíf

and 5chwartz (1992) model. Jegadeesh and Pennacchi (1996) propose a model where

the shorL rate ftuctuates around a stochastic mean. This model is also a special case of

the affine class with a particular recursive structure for A.

In order to price bonds and other term structure derivatives some assumption about

the rnarket price of interest rate risk has to be made. Duffie and Kan (1996) assume

that the market price of risk for factor i is proportional to its instantaneous standard

deviation, ~; n,F~ ~- Q;. Under this assumption, an eyuivalent martingale measure Q

can be constructed, under which the transformed innovation process dW;i - dW,~ -~

~!~; a(F~ -F íi;dt is a Wiener process. `I'he stochastic process for Fi under Q is given by

o;F~ t QtdW,~

dF, - n`(F, - lt')dt f E( 1 (4)

`~;,Fe f QndW„e i

The `risk-neutral' intercept and mean-reversion parameters are related to the parameters

of the real world dynamics through

v,~í ~rai

n`-n-~ ~ , n`~`-n,,~E ~ (5)

Wn~ ~nQn

;Por notatioual convenience, a denotes a matrix wíth rows a; and Q a vector with elements Q;.
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Using no-arbitrage arguments, Duffie and Kan (1996) show that the coefficients A(r)
and B(r) in the bond pricing equation (1) satisfy the system of ordinary differential
equations

dA(r) - Ao - (n~~~)'B(r) - i~2~ ~B,(r)B,(r)b;, (sa)dr ~ ;
dB(r) - BO f(A')'B(T) - I~2~ ~ B,(r)BJ(r)a,1 (6b)
dr ~ ~

where the vectors a;~ and the scalars b;~ are defined by a;~.x ~- b;~ -[y;(crx ~- 3)dE'~;~.4
The af6ne model has many parameters which cannot all be identified. Pang and

Hodges (1996) show that any invertible rotation of the factors gives the same bond
prices. This implies that without loss of generality we may assume that E eyuals the
identity matrix. An equivalent, but sometimes more convenient, normalization is that.
A is diagonal and impose n restrictions on E. For example, one could assume that
E, or E-', has diagonal elements equal to one. Since the factors contain an arbitrary

scale factor, bond prices are invariant under scale transformations of the factors. Hence,
without loss of generality we can normalize B~ - c. This normalization also leads to
simple numerical solutions of the differential equations (6a)-(6b). The final assumption
is Ao - 0, which is typically not restrictive, except in the multivariate CIR model. With
these normalizations, t,he instantaneous interest rate r~ equals the sum of the factors

(ri - ~~~'i)-
Dai and Singleton (1997) discuss some further identfication issues. In particular, they

show that in an n factor model, there should be n- 1 normalizations on the vectors
~e and Q. This implies that, for example, in the multivariate Vasicek model, where the
clements of ~? are free paramaters, only one element of ~ is identified. In the multivariate
CIR model, (3 - 0 and hence all elements of p are identified.s

A final identification issue arises if the volatility of some factors is constant. Dai and
Singleton (1997) show that the model is invariant under certain `unitary rotations'. For

example, in the multívariate Vasicek model this implies that not all elements of E can
be identified but only n(n - 1)~2 elements.

3 Empirical implementation of the afI'ine model

In this section we describe the empirical implementation oí the affiine term structure
model. We [ocus on the the state space formulation, the discretization of the continuous

"The notation (nx f p)d denotes a diagonal rnatrix with elements equal to a~x f fi;,
Sln the midtivariate CIR model the assumption that Ao - 0 is restrictive and could be relaxed.

Following Pearson and Sun ( 19N4), an intercept could be added to the bond price equations.
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tirne dynamics, the measurement error structure, and the estimation. We also brieHy

discuss the data.

3.1 State space formulation

In the panel data framework, the dimension of the vector of observed interest rates is

typically higher than the dimension of the factor. Let there be observations for maturities

rt through rk. Collect the observed yields for period t in the vector

Y(rl)

yr -

Y(rk)

Also, define the coefFicient matrices

~(rl),rl B( rl),,rl

ti - , B - .

A(rk),rk B(rk)~,rk

With these definitions the model is conveniently stated in state space forms

yt - A ~- BFr (7a)

Frtn - F~ t~(Fr - t~) f vrtn (7b)

The second equation in this system is called the transition equation of the factors. It

is the discrete time equivalent of equation (3). "1he parameters of the transition follow

from the conditional mean and variance of the factors. Appendix A shows that the eaact

conditional mean and variance of hr~h given F~ are given by ~

Et(Frtn) - Ir t ~(Ft - fr) (8a)

Varr(Frtn) - 9(Fr) (8b)

with ~ - eah and the elements of q(Fr) given by

1 - e-1K~tK~)h e-Kkh - e-tK~-FK~)h

9i~(Fr) - (a;jtr f bii) ~~ aij,k(Fe - Fr)k
~`ifKi k ~i~~j-~k

Just like th~~ instantaneous variance, the conditional variance of discrete changes in the

factors is an ~~fiine funetion of the current level of the factors.

"1'krc data are observed at discrete intervals oflength h 1 0.
''1'he normalization imposed is that A is a diagonal matrix, with diagonal elements (-wr,..,-K„).
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The coefficients A and B of the rneasurement equation (9a) are functions of the
parameters (A", p`, E, a, ~3) of the risk-neutral factor process (4). In principle, these
parameters could be estimated írom a cross-section of interest rates of different maturit~..
This is the approach taken by Brown and Dybvig (1986) and Schotman and De `luunik
(1994). Note that the market price of risk parameter, tb, cannot be identified using
cross-sectional data onlv.

The coefficients o[ the transition equation (7b) are functions of the pararneters
(A, ~, E, a, (i) of the real-world process (3). These paramelers can be estimated from
time series data on a particular maturity (or more maturities in a multi-factor mod-
el). This is the approach of Aït-Sahalia (1996), I3roze, Scaillet and "Gakoïan (1995),
Chan, Karolyi, Longstaff and Sanders (1992), Conley, Iíansen, Luttmer and Schrinkman
(1997), Koedijk, Nissen, Schotman and Wolff (1997), and many others. Again, separate
identification of the market price of risk is not possible using time-series data only.
The term structure model imposes several restrictions across the parameters of the

measurement equation and the transition equation. In particular, (A',~') are functions

of the parameters 0- (A, te, E, a, Q, ~i) through equation (5). Joint estirnation, in a
panel data framework, of the pricing model and the transition model for the fact,ors
allows for identification of the market price of risk parameters, y'~, but. also imposes
testable restrictions on the parameters A, E, a and ~3. These restrictions provide a
natural specification test of the affine model, similar to cross equation tests used in
models of rational expectations.

3.2 Measurement error structure

The mode] predicts the exact relation yr - A-~ 13Fr between the factors and the yields.
Obviously, in an re factor model, observations on n maturit.ies could be used to construct
the factors by `inverting' the model. This is the approach oí Pearson and Sun (1994).
A drawback of this procedure is that the results are potentially very sensitive to the
particular choice of rnaturities. Moreover, the approach neglects useful information in
other maturities. When using more maturities than factors the equality yt - A~- BFt
carmot be satisfied by all maturities. Therefore, some form of ineasurement error is
necessary. 'I'he important issue is which assumptions to make on the measurement error
structure.

Chen and 5cott (1992) estimate a model with two factors and four rnaturities. They
assume that two yields are obscrved without error so that the model for these two
maturities can be inverted to obtain the factors. The other yields, or linear combinations
thereoí, are assumed to be rneasured wit.h a normally distributed measurement error. The
estimation method is ~4aximum Likelihood.
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A number of papers, e.g. Duan and Simonato (1995), Geyer and Pichler (1995), and

Jegadeesh and Pennacchi (1996) assume that all interest rates are observed with some

measurement error, which is both serially and cross-sectionally uncorrelated. Santa

Clara (1995) has a similar econometric approach for estimating a Markovian model of

the Heat}t, Jarrow and Morton (1992) type. Because of the measurement ertors, the

factors cannot be measured exactly. Instead, the factors are treated as latent variables

and integrated out using a Kalman filter. The estimation method in these papers is

Quasi Maximum Likelihood based on the prediction errors of the Kalman filter. Bams

and Schotman (1997) follow a similar approach but allow for correlation between the

errors for different maturities. The strenght of the correlation depends on the difference

in maturity.

Frachot, Lesne and Renault (1995) point out that a diagonal error covariance matrix is

not robust under linear transformations of the data. They propose to use a more general,

non-diagonal, cross sectional correlation matrix for the measurement errors. In their own

empirical work, Frachot et al. assume that some yields are observed without error. They

also note that G~ML estimates based on the Kalman filter with an approximation to the

exact conditional mean and variance of the factors may suffer from a discretization bias,

and propose to use indirect ínference methods to correct for this bias. Lund (1994)

also argues that the measurement error structure should be unrestricted and estimates a

variant of the generalized Vasicek model on Danish term structure data. Buraschi (1996)

esticnates a multifactor version of the CIR model using indirect inference methods. He

allows for measurement errors on all observed variables and uses the Kalman filter to

construct the auxiliary model in an indirect inference procedure.

P'ollowing these papers we assume that the measurement errors have zero mean, are

serially uncorrelated, but may be cross sectionally correlated with time-invariant covari-

ance matrix H. The most convenient way to parameterize H is as LDL', where L is lower

triangular with ones on the diagonal and D is the diagonai matrix of eigenvalues. This

form makes H positive definite by construction. This parameterization is more general

than the assumptions made in many other papers and, more importantly, it makes the

estirnates of the parameters invariant to linear transformations of the yields. The full

state-space form of the model with measurement errors is

yc - f1 ~- BFc f ut, Var(ui) - H (9a)

Fttn -!r f~(Fc -~) f v,th, Var(vctn) - 9(Fc) (9b)

In r~ppendix B the relation between this state space model and multivariate time series

models is explored.
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3.3 Estimation

Given the state space setup, the most convenient way to estimate the parameters is
by Maximum Likelihood based on the Kalman filter. The relevant equations for the
Kalman filter in the aífine term structure model are given in .Appendix C. The ~IL

estimator is consistent and efficient if the factors and the error terms follow normal

distributions, such as in the Vasicek ( 1977) and Langetieg ( 1980) models. In most afFine
term structure models the conditional distribution of the factors is not normal, but
if the conditional mean and variance of the factors are correctly specified, one could
expect the estimates obtained from the Kalman filter to be constistent by the Quasi

Maximum Likelihood principle ( see Gouriéroux, Montfort arrd Renault ( 1984)). There

is one subtle problem with this argument which arises because the conditional variance

of the factors depends on the current value of the factors, which are latent variables that
can be estimated but not observed exactly. Therefore, the conditional variance used in
the likelihood function will not be correct. An additional problern is that the conditional
distribution of the factors is not normal, which invalidates the updating rules in the

Kalman filter. As a result, the QML estimates obtained from the Kalrnan filter will be

inconsistent, see Lund (1997) for an extensive discussion of this point. The inconsistency

could be removed by applying the indirect inference methods of Gouriéroux, Montíort

and Renault ( 1992) or the efficient method of moments of Gallant and Tauchen (1996).s

On the other hand, the simulation results in Lund ( 1997) suggest that, for parameters

typically found in estimates of term structure models, the bias in the QML estimator
is not particularly large. Therefore, we refrain from using simulation-based estimation
techniques and report the QML estimates.

Since we have a full error covariance matrix, the number of parameters to be estimated

is potentially large. Lund ( 1994) proposes an EM algorithm for the optimization of the
likelihood function that separates the parameters of the measurement error covariance
matrix A from the model parameters. This appoach is attractive because it avoids the

curse of dirnensionality and can therefore deal with a large number of maturities in the

vector of observations. However, we experienced problems with convergence of the EM

algorithm. 'Pherefore, we decided to limit the nurnber of maturities used in estimation
to 4, which leaves 10 fre~e parameters in H to be estimated. Optimization is conducted

in two steps by the BHIIH algorithm. In the first step, the model is estimated with the
error covariance matrix restricted to a constant times the identity matrix. The estimates

frorn this step are used as starting values for the optimization with a full error covariance

matrix.

BThis is the approach followed by Frachot, Lesne and Renault (1995) and Pagan and Martin (1996).
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Table 1: Descriptive statistics of the McCullogh and Kwon data

maturity 3 month 1 year 5 year 10 year

average 7.68 8.20 8.75 8.95
standard deviation `1.68 2.58 2.27 2.13
minumiirn 3.38 3.74 5.15 5.72

ni~~, „

3.4 Data

Our database is the extended McCulloch dataset (McCulloch and Kwon, 1993). This

dataset contains rnonthly observations on US interest rates with maturities running from

1 month to 30 years. The series starts in 1947 and ends in 1991. The data are zero-

coupon rates which were calculated from prices of coupon bonds using MeCulloch's

interpolation method. From 1985 only bonds which do not have prepayment provisions

are used, before that year the data may include such bonds. For the maturities over 10

years, the hond data is quite scarce, so the interpolation is not very accurate. Moreover,

there are a lot of missing observations in the early part of the sample. A related problem

shows up in the very short term interest rates. The one and two month rate series show

some exceptionally large one-period changes. We feel more confident using maturities

from 3 months and longer. As for the choice of maturities, to keep the estimation feasible

we confine ourselves to four maturities: three months, one year, five years and ten years.

We use a subsatnple of the data that starts in January 1970 and ends in February 1991.

In total, there are 254 monthly observations. Figure 1 graphs the data and Table 1 gives

some descriptive statistics. The long maturity interest rates are somewhat less variable

than the shorti rates. Moreover, on average the term structure is upward sloping. The

large volatilities of the interest rates around 1980 show up clearly. Since this is also a

period with high levels of interest rates, the data give some intuitive support for models

where the conditional variance depends on the level of the interest rates.

4 Empirical results for one-factor models

In this section we take a first shot at modeling the term structure by one-factor affine

term strttcture models. The one-factor version of the affine model is very tractable

because the differential equations (6a)-(66) have analytical solutions for A(r) and B(r).

In ihe one-factor model equations (3) and (4) specialize to

dF, - K(~ - F~)dt f ~F~ ~- ~dWi (l0a)

9



dFr - ~c'(p' - Ft)dt f aF, f QdiV; (lOb)

The functions A(r) and B(r) can be found from a straightforward generalization of the
standard CIR equations which are given e.g. in Hull ( 1993):

2~ 2rye~Z' p
A(r) - n ln ~

(K~ ~ ?')(e~ - 1) -f- 2ry~ - a
(r - B(7))

B(r) - 2(e7~ - 1)
(K'-1-y)(e"-1)f2y

K`-~f~a, ~-~IFrfá~, y - (~')z -f- 2~.

For the special case of the Vasicek model (~ - 0) the coefficients are

A(r) - B(r - B(r)) f~ B(r)~

B(r) -
1 - exp(-~r)

where B-~-~- 2p, is the yield on infinite maturity bonds.
In Table 2 we report estimates of the one-factor afHne model. Also, estimates of the

one-factor CIR and Vasicek models, which are special cases of the affine yield curve
model, are presented. The parameters estimated are the mean reversion coefficient rc,
the long run mean of the factor ~, the variance parameters a and Q, and the market
price of risk parameter ~i.

The estimated mean reversion coefficients under the risk-neutral distribution are very
small: k" in the affine model is 0.0014, which implies a half life of around 500 years.9 The
result in the CIR model is virtually the same, and in the Vasicek model the estimated
half-life is around 30 years. This slow mean reversion implies very flat term structures,
as graphed in Figure 2. Although the infinite maturity yield must be constant if k' is
positive, the mean reversion is slow enough to create considerable movements in, say, 10
year rates.

The estimated intercept of the instantaneous variance is negative, and the `slope'
coefficient a is larger than the comparable estimate for the CIR model. The sensitivity
of the conditional variance to the level of the short rate is therefore stronger in the
affine model than in the CIR model. Time-series based studies have reported a similar
phenomenon, see e.g. Chan et aL (1992). A negative intercept may be somewhat counter-
intuitive and may threathen the existence of the model. We also estimated the affine
rnodel under the restriction that the intercept ~i is non-negative. In that case, ~i was

9The half-life of the factor is defined as In(2)~K'.
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estimated very close to 0; the other parameter estimates were virtually identical the CIR

estimates.

The estimates of the market price of risk are significantly negative and of the same

order of magnitude in all specifications.'o This result implies that the risk premium for

holding long term bonds is positive. The estimated risk premium for a ten year bond is

around 1.6501o annually, which corresponds quite well with the observed risk premium.

Given the estimated parameters and factors,r' we can construct in each month a fitted

term structure for all maturities, also for maturities not used in the estimation. The

differences between the observed and the fitted term structures (the residuals) provide

important information on the cross sectional and dymamic fit of the model. Figure 3

graphs the average of the fitted and observed term structures, as well as the root mean

squared error (RMSE) of the residuals. The figure shows that the model fits the long end

pretty well, but fails to capture the short end of the yield curve: the RMSE is around

150 basis points for the three rnonth rate. There is also substantial serial correlation in

the residuals, with first order autocorrelation coefficients around 0.9 or higher.

Another way to jndge the quality of the model is by regressing the observed yields

on a constant and the estimated factors. The regression can be done in levels or in first

differences. Either way, the regression coefficients should be more or less the same as

the factor loadings obtained from the term stucture model. Figure 4 shows that this

holds for the long ntaturities (over 5 years) the but for shorter maturities there are large

differences between the estimated sensitivities and the model values.

A more formal way to test the specification of the model is by testing the restrictions

the model imposes between the pricing equations (the cross section dimension) and the

dynamics of the factors (the titne series dimension). In the time series dimension the

parameters (tc,p,a,Q) can be identified. In the cross section dimension, we estimate a

separate mean reversion parameter tc~ and variance parameters n~ and Q~. To enhance

comparability among estimates, we assume that the long run mean of the factor, p, in

the cross section dimension is the same as in the time series dimension. This leaves the

market price of risk t~ as a free parameter. The parameters A' and ~' of the risk-neutral

distribution (106) are calculated from the cross-sectional parameters (ec~,p,~~,~3~,t(i).

~I'able 3 reports results for the one-factor model with separate coefTicients for the cross-

section and the time-series dimension. The restrictions between the time-series and

cross section parameters are rejected by the Likelihood Ratio test.'z The key to this

rejection is that the time series estimates show a much stronger mean reversion and

'oThe risk premia are derived in Appendix D.

"Estitnates of the factors are obtained From the Kalman filter.
1zThe test statistic is 17.76, which is larget than the 501o critical value of a chi-square distribution

with 3 degrees offreedom.
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higher instantaneous variance than the cross section estimates. To fit the ratlier flat
shape of the observed yield curves a slow mean reversion is necessary, whereas in the time
series dimension the mean reversion oí interest rates is quite strong. The estimated mean
reversion under the risk-neutral distribution is comparable to the previous estimates for
the affine and Vasicek model. For the CIR model, the estimate of K' is negative, but the
shape of the i3(r) curve is not very different from the ot.her models for the maturities
we consider.ts

All these results point at substantial misspecification of the one-factor afhne term
structure model. The model fails to give a good fit of the term structure at the short
end. Moreover, the dynamics of the yield curve are not well described as evidenced by
the strong residual serial correlation and the differences in parameter estimates for the
time series and cross section dimensions. We therefore now turn to multifactor models.

5 Empirical results for two-factor models

In this section we present estimates of affine term structure models with two factors.
The normalization imposed is that A is diagonal and E-t has diagonal elements equal
to 1. The free parameters are the diagonal elements of A, denoted by tc, the off-diagonal
elements of E-', denoted by xr2 and x2r, and the elements of ~, a, ~i and zG. "'I'able 4
reports the paranreter estimates for the two-factor affine model and for two special cases,
the generalized CIR and Vasicek mocíels. It turned out that the off-diagonal elements of
a were never significantly different from zero. The table therefore only reports results
for the affine model with a diagonal a.

The result.s for the two-factor Vasicek model are not as good as the results of the affine
and CIR rnodels. The likelihood for this specification is much lower, and the variance
of the measurement errors is typically larger. As a result, and similar to the one-factor
case, the Vasicek specification is rejected against the more general affine specification.
We therefore confine the discussion oí the results to the affine and CIR models.
The estimation results show that there are two factors with very different properties.

The mean reversion of the first factor is similar to the mean reversion in the one-factor
model, with a half-life over 30 years. The second factor shows a much stronger mean
reversion with a half-life of less than one year. There is a significant correlation between

13Strictly speaking, a negative mean reversion coefficient implies an explosive process for the instanta-
neous interest rate under the risk-neutral distribution, but the functions A(r) and B(r) are well-defined
for such values.
14In the two-factor Vasicek model, only one element of the mean vector p is identified, and the

restriction ~2 - 0 is imposed. Similarly, in the affine model only one element of 0 is identified, and the
restriction pp - 0 is imposed.
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the factors, which is evident from the non-zero off-diagonal elements of E-t. Indeed, the

Likelihood Ratio tests reported in Table 6 strongly reject independence of the factors.

One way to interpret this result is to write the model in `feedback' form, with a mean

reversion matrix given by

A - E-r ~ -~r 0 ~ E
` 0 -~c2

This representation is shown in the second panel of Table 4. It appears that the feedback

from the second factor to the first is not very strong. One could think of the first factor

as determining the level of the yield curve, whereas the second factor is related to the

slope of the yield curve.rs The graph of the estimated factors in Figure 5 supports this

interpretation. The movements in the first factor appear to capture slow movements in

inflation or other macro-economic factors. The second factor follows the peaks in the

short term interest rates quite closely and appears to capture policy shocks. Figure 6

graphs the implied intercepts A(r) and factor loadings B(r). The first factor loading,

Bt(r), is very flat; the impact of a shock in the first factor is around 1 for all maturities

considered. Theoretically, Bt(r) should converge to zero for large r but apparently this

convergence is so slow that it is hardly detectable at horizons up to ten years. 50,

alt.hough the model implies constant infitite maturity yields, long run yields can vary

substantially. The factor loading of the second factor declines much faster, but is not

negligible even for the longest maturities we consider.

Turning to the variance parameters, the estimates of arr and a22 are strongly sig-

nificant. In the affine model, ~it is negative and significant, with a higher estimate for

art t.han in the CIR tnodel. Therefore, the affine model is slightly preferred to the CIR

model, but the results are qualitatively very similar. The market prices of risk for both

factors are negative, which implies a positive risk premium for holding long term bonds.

With the instantaneous variance evaluated at the long term mean of the factors, the

impliecl risk premium for a ten year bond is 1.32e1o, split over the first factor (around

0.4010) and the second factor (around 0.9010).

The final estimates concern the variance-covariance matrix of the measurement errors.

'Che 3 month and 10 year maturity have the smallest errors, but their standard deviation

is still in the order oÏ 10 to 20 basis points.ts The measurement error for the middle

range maturíties is somewhat greater, around 30 to 50 basis points.

Like for the one-factor model, we ran a battery of specification tests on the residuals of

the two-factor modeL The average fitted term structure and the RMSE of the residuals

are graphed in Figure 7. The first thing to notice is that the fit of the two-factor model

t'Using a pri~ipal components methodology, Litterman and Scheinkman ( 1991) document a slope

lacter. llalduzzi, Das and Foresi (1991) model the second factor as a central tendency.

~~A Likelihood Ratio test strongly rejects the restriction that the variance oC these error terms is zero.
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is subst,antially better than the fit of the one-factor model. Espcially the fit in the long
end and in the short end is very good. However, there are still substantial errors for the
maturities around 1 year. The explanation for this result is that the term structure is
often very steep in the short end. The second factor tracks the three month rate quite
closely but the observed term structures are often steeper than the fitted term structures,
causing large errors in the 1 year range. The residuals are not free from serial correlation,
but the estimated first order serial correlation coefficients are much smaller than in the
one-factor model, around 0.6. A brief analysis showed that about half of the variance of
the residuals can be explained by lagged residuals. However, the serial covariances do
not show a clear pattern and it is hard to detect a common structure which could serve
as a third factor in an affine model.t~

The time series regressions of the observed yields on the estimated factors gives some
nice results, see Figure 8. The estimated coefficients are close to the factor loadings
implied by the two-factor model. Only in the short end there are some small deviations
from the theoretica] values.

Finally, we tested the specification of the two-factor affine model by allowing for a

different set of parameters for the cross section and the time series dimension of the

model. Table 5 reports the results for this less restricted model. The parameter restric-
tions implied by the theoretical model are rejected on a 5QIo significance level. The main
difference between the two sets of estimates is again the strength of the mean reversion
of the factors. The half-life of the first factor in the time series dimension is around

6 years, compared with around 30 years in the cross section dimension. As a resiilt,

the conditional variances of the factors are also very different. The cross sectional fit is
somewhat better than the fit of the restricted model, but still there isn't enough flexi-
bility to capture the full shape of the yield curve as is clear from the residuals plotted in
Figure 9. The hump aronnd the one year maturity is still present, although it is smaller
than before.

6 Conclusion

In this paper, we provided an empirica] analysis of the affine class of term structure
models proposed by Duffie and Kan (1996) on monthly US data. The estimation method

combines time series and cross section information in a theoretically consistent way. We
estimated one-factor models and models with two factors. The results clearly show
that the one-factor models ace misspecified: the fit is not very good and there is strong

"Geyer and Pichler (1997) estimate CIR models with up to five independent factors. However, their
estimates ot the third and higher factors are very unstable and mostly seem to fit some outliers.
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residual serial correlation. A formal test of equality of the parameters in the bond pricing

equations (the cross section dimension of the model) and the factor dynamics (the time

series dimension) also rejects the model restrictions.

The two-factor affine model fits the data much better and the estimates of the un-

derlying factors are very intuitive. There is one factor with slow mean reversion, which

could proxy a time-varying mean or inflation. The second factor has a much stronger

mean reversion and captures short run eífects such as policy shocks. The mode! fits the

long end of the term structure quite well, but it has some problems fitting the steep

initial part of the yield curve. Perhaps an extension of the model with a stochastic

volatility factor as proposed in Andersen and Lund (1997) could give a better fit of the

steep short end, but this model is outside the affine class and has no known analytical

or simple numerical solutions for bond prices.

A Conditional moments of factors

In this appendix we show how to derive the exact conditi~nal mean and variance of
the generalized square root process given in equation (3), which we repeat here for
convenience

dFi - A(Ft -{r)dt -f E(crF, d- Q)á~2dW~.

The rnean reversion coefficient matrix is normalized to be diagonal, A- diag(-x~, . ., -k„).

'fhe stochastic diíferential equation for F~ can be solved using Ito's lemma

de.-n~(Fi - P) - e-n`E(~F'i -F Q)é~2dW~ ~

F~fn - lr f e"ti(F, - p) -I- f h e"(h-')E(~Fit, -h Q)é~ZdW~t~0

where e"n - diag(exp(-~,h),..,exp(-~„h)). Since the second part of this sum is a

rnartingale, the conditional mean and variance follow immediately as

~i(Ftth) - ~ t e"h(F~ - i!)

Vart(F~t") - f h e"(h-')E(~E~(Fit9) ~- Q)dE'e"(h-')ds
0

Using that. Ee(F;t,) - p f e"`(F~ - p) and defining [E(ax -} ~3)dE']y - a;~x -{- b;~ we

obtain
h

Var;(F',t")„ - r e-(R.tR,)(h-~)(a~~EeFet, f b;~)ds
Jo

h
- Í e-(K,tR,)(h-~)(a~~(Fr ~ en'(Fi - fr)) f b;i)dsfo

- Í" e-(K,tK,)(h-~)(a;~p t b;~)ds - ~ f" e-(K,tK,)(h-~)a~~e"'(F2 -{r)ds

15



Working out the integrals yields the result

1 - e-tK,tK,)h e-Kkh - e-(R,tK )h
~ ~` '

Vart(Ft.Fh)~i -
K; ~- K~

(a~i~ f bii) } j~ K` ai~~k(Ft,k -(Ik)
) k ~Ki-Kk

Note that this results implies a very simple form for the unconditional variance of Ft,

a;ip f b,~
Var(Ft);~ - .

K~ ~- K~

B Relation to multivariate time series models

In this appendix we discuss th~relations between the state space form of the affine yield
curve model and multivariate time series models. To simplify the exposition we write
the yields in deviation from their long run mean, a- A f B~t. Let k to be the dimension
of yt and n the dimension of Ft. Splitting the vector of observed yields into two parts,
with dimensions n and k- n, respectively, the system becomes

yit - ai - Bi(Ft -~t) t uit

yxt - az - Bs(Ft - Fr) f uzt

Ftth - ~t - ~(Ft - Fr) f vtfh

In general B~ will be an invertible matrix, so that the factors equal

Ft - l~ - Bi t(yrt - ar - uit)

Substituting out the factors gives the reduced form of the model

yi,tth - ar - T(ytt - ai) -~ Blvtth f ul,t}h - Tult
1

y2,tfh - a2 - B2Br T(yit - a~) ~ B2~ttn f us,tth - BsB~~Tuit

with T- B~~BÍ'. This system of equations can be written more compactly as the
vector ARMA(1,1) model

ytth - a f~(yt - a) f Bvttn f utth -~ut

where ~Y - B[~B~'~0] - BA', where A and B are matrices of dimension k by n. T'he
rank of iY equals the numbec of factors n, which may be smaller than the number of
yields included in the model. This reduced form contains a moving average term which
implies that a first order V.AR will be a misspecified model for the term structure. Only

if the factors are exact linear combinations of the observed yields, i.e. if u~t - 0, the MA
terms disappear and t.he model reduces to a VAR.
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C The Kalman filter

The standard state space setup of the affine model is found by defining ~t - Ft -~t,

a- A t B~, and Qt - Vart-h(Ft). All models in this paper are estimated using Quasi

Maximum Likelihood based on the following Kalman filter equations18

MODEL

INITIAL CONDITIONS

PREDICTION

yt - a~- B~t f et, Var(et) - H

t;t - ~St-h ~ nt, Var(rtt) - Qe

~o - E(~t)
Po - Var(~t)

~t~t-h - ~~t-h

Pt~t-h - ~Pt-h~' ~- Qt

LIKELIHOOD CONTRIHUTIONS

UPDATWG

vt - yt - a - B~t~t-n

Ft - BPt~t-nB' f H

-21n Lt - In ~F~~ f viFt tvt

Kt - Pt~t-hB'F~ '

Lt - I - ICtB

~t - ~t~t-h } Ktvt

Pt - LtPt~t-h

D Risk premia on long bonds

[n our empirical work we also want to calculate the risk premium on long maturity bonds.

Denote the stochastic process followed by the bond price as

dP(r) - pP~,~P(r)dt f oPl,)P(r)dWt

tsThese eqwitinns are adapted from Hamilton ( 1994, Ch.13), where the notation is slightly ehanged:

If' in Hamilton i~ !í in our notation.
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where the dependence of coefficients and prices on time is suppressed. The expected

instantaneous return on the bond is the risk free rate plus a risk premium, which depends

on the market prices of risk and the instantaneous standard deviation of the bond return

V~P(r) - r f ~~oP(T)

From Ito's lemma, the standard deviation of the bond return is

~P(r~ - -opB~r~

where QFaF is the instantaneous variance-covariance matrix of the factors. Given the

assumed functional forms for oF and a we obtain

hP(,) - r - ~ ~G~(~;F f ~~)B~it)
~

This equation shows that the risk premium on each factor is proportional to the instan-

taneous variance of that factor, multiplied by the factor loading. If all parameters ~;

are negative, the risk premia are positive. Since the factor loadings are increasing with

maturity, longer bonds will typically have a higher expected return than short bonds.
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Table 2: Estimation results one-factor affine models

Measurement error standard deviations (in o10) and correlations

Notes: This table reports QML estimates and standard errors of one-factor affine term
structure models defined in section 4. For legibility, the estimates of the parameters are
scaled as follows: ~c, 100~, ~i~100, 100a and 10000p. The number in [] is the half-life of
the factors under the risk-neutral distribution in years, calculated as ln(2)~~c`

22

Affine CIR Vasicek
k 0.0601 0.0429 0.0222

(0.0074) (0.0042) (0.0028)

~ 6.4642 5.8099 7.3146
(0.2465) (0.5397) (1.4600)

a 0.3961 0.2168
(0.0637) (0.0231)

Q -1.5137 1.9980
(0.4369) (0.2284)

~ -0.1481 -0.1446 -0.0928
(0.0069) (0.0110) (0.0178)

~c' 0.0014 0.0116 0.0222
[495.10] [60.00] [31.19]

21nL 710.45 702.~13 6i~.(i0

model
affine 1.6414

0.92 1.2098
0.50 0.77 0.3737
-0.18 0.22 0.61 0.1839

CIR 1.6729
0.92 1.2434
0.54 0.80 0.4052
-0.01 0.37 0.75 0.2004

Vasicek 1.7142
0.93 1.2946
0.59 0.83 0.4505
0.18 0.53 0.83 0.2309



Table 3: Estimation results one-factor affine models with separate time-series and cross-
section parameters

affine CIR Vasicek
rc 0.2183 0.2041 0.2018

(0.1116) (0.1242) (0.13`ll)

~e 7.4027 7.5788 7.5574
(0.8220) (1.0065) (1.0509)

a 0.4318 0.1988
(0.0788) (0.0232)

~3 -1.7248 1.9220
(0.4813) (0.2185)

rc~ 0.0230 0.0307 0.0218
(0.0034) (0.0049) (0.0031)

a~ 0.0088 0.5943
(0.0002) (0.0907)

Q~ 6.0774 6.0548
(1.1225) (0.8864)

r~ -0.0630 -0.0688 -0.0631
(0.0021) (0.0068) (0.0040)

K' 0.0225 -0.0102 0.0218
[31.39] [31. 7 0]

2ln L 728.21 714.55 693.54
Notes: 'Tktis table reports QML estimates and standard errors of one-factor afLine term
structure models with separate parameters for the cross section and time series
dirnension. Parameters with a subindex c are the cross-section paramaters. For
identification the restriction tr~ - u is irnposed. See also the notes at Table 2.
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Table 4: Estimation results two-factor affine tnódels
Affine CIR Vasicek

k~ 0.0595 0.0368 0.0221
(0.0077) (0.0052) (0.0029)

k2 1.2067 1.2190 0.8742
(0.1405) (0.1947) (0.0546)

~~ 3.5547 3.5600 6.1900
(0.4527) (0.7596) (1.5609)

}~2 1.8520 1.9063
(0.5094) (0.7524)

a~l 0.2017 0.0982
(0.0777) (0.0370)

a22 2.4940 2.3574
(0.8814) (1.2883)

Q~ -0.5540 1.4955
(0.2621) (0.2000)

Qs 6.3157
(1.3600)

~, -0.2230 -0.1480 -0.1076
(0.0132) (0.0269) (0.0102)

~i2 -0.1568 -0.1651 -0.1460
(0.0205) (0.0201) (0.0167)

x12 -0.0372 -0.0344 0.0145
(0.0229) (0.0226) (0.0396)

xz~ 0.4763 0.4548 0.0145
(0.3806) (0.3889) (0.0396)

21n L 1366.35 1356.60 1218.14
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Irnplied parameters of factor process under empirical measure

AHine CIR Vasicek
A -0.0795 0.0419 -0.0550 0.0400 -0.0222 -0.0124

0.5369 -1.1867 0.5294 - 1.2008 0.0124 -0.8744

A 0.0595 1.2067 0.0368 1.2190 0.0224 0.8742
[ll.fi5] [0.57] [18.83] [0.57] [30.91] [0.79]

Implied parameters of factor process under risk neutral measure

Afline CIR Vasicek
A' -0.0345 0.0419 -0.0405 0.0400 -0.0222 -0.0124

0.5369 -0.7965 0.5294 -0.8116 0.0124 -0.8744

~c' 0.0060 0.8211 0.0139 0.8381 0.0224 0.8742
[115.67] [0.8~1J f.19.80] [0.83] [30.91] [0.79]

Measurement error standard deviations (in Qlo) and correlations

rnodel
affine 0.1145

0.38 0.5067
0.47 0.92 0.3594
-0.01 0.87 0.87 0.2401

CIR 0.1360
0.45 0.5025
0.54 0.93 0.3575
0.08 0.88 0.88 0.2324

Vasicek 0.1132
0.66 0.5341
0.84 0.94 0.3801
0.52 0.94 0.90 0.2488

~iotes This table reports QML estimates and standard errors of two-factor aífine term

structure models defined in Section 5. The estimates of the parameters are scaled as in
'I'able 2. The parameters x~2 and x2~ are the off-diagonal elements of E-r.
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Table 5: Estimation results two-factor affine models with separate cross-section and
time-series parameters

time series parameters

afiine CIR Vasicek
~c, 0.2355 0.1105 0.3352

(0.1289) ( 0.1281) (0.2407)

~cz 0.7709 0.7306 0.7960
(0.2436) (0.2823) (0.5256)

~, 4.7706 6.5115 6.8300
(0.8062) (1.3314) (0.8546)

pz 2.0647 1.6503
(0.3876) (0.6563)

a„ 0.2508 0.1233
(0.0527) ( 0.0204)

azz 2.1934 2.1181
(0.5078) ( 0.5203)

Q, -0.6739 1.4958
(0.2190) (0.2200)

Qz 6.0639
(1.4300)

x,z -0.3045 -0.2980 -0.5648
(0.2241) (0.2490) (0.4535)

xz, -0.2027 -0.2943 -0.5648
(0.3358) (0.2757) (0.4535)
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cross section parameters

affine CIR Vasicek
rcl 0.0240 0.0220 0.0239

(0.0078) (0.0038) (0.0031)

~c2 1.6317 2.2399 0.7569
(0.2948) (1.1141) (0.0411)

alt 0.0008 0.0000
(0.0000) (0.0000)

aZ2 55.7775 97.3178
(18.9940) (55.8528)

Q, -3.0677 0.6950
(1.3839) (0.2200)

Q2 281.16
(33.67)

x~2 -0.0595 -0.0807 0.0501
(0.0383) (0.0550) (0.0445)

x21 0.2565 0.1921 0.0501
(0.0786) (0.0918) (0.0445)

~i, -0.0667 -0.1495 -0.1462
(0.0216) (0.0060) (0.0006)

~,2 -0.0`l01 -0.0180 -0.0098
(0.0082) (0.0017) (0.0013)

2ln G 1463.02 1447.66 1302.87
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Implied parameters of factor process under empirical measure

Affine CIR Vasicek
A -0.2002 0.1738 -0.0509 0.2025 -0.1193 0.3822

-0.1157 -0.8061 -0.2000 -0.7902 -0.3822 -1.0118

k 0.2355 0.7702 0.1105 0.7306 0.3352 0.7960
[2.94] (0.90] [6.27] [0.95] [2.07j [0.87J

Implied parameters of factor process under risk neutral measure

affine CIR Vasicek
A' -0.0481 0.0942 -0.0559 0.1762 -0.0220 -0.0368

0.4062 -0.4879 0.4196 -0.4495 0.0368 -0.7588

rc' -0.0263 0.5623 -0.0830 0.5883 0.0239 0.7569
[1.23] [1.18] [29.04] [0.92]

Measurement error standard deviations (in o-lo) and correlations
affine 0.1518

0.02 0.3839
0.11 0.91 0.3134
-0.47 0.79 0.83 0.2016

CIR 0.1839
0.12 0.3994
0.21 0.92 0.3201
-0.36 0.81 0.84 0.1965

Vasicek 0.0680
0.79 0.4572
0.96 0.92 0.3415

~ 0. ~ 3 0.9.1 0.89 0.2209
Notes: This table reports QML estimates and standard errors of two-factor afhne term
structure models defined in Section 5, with separate parameters for te cross section and
time series dimension of the model. For reasons of identification pl and ~2 are
restricted to be the same for the cross section and the time series dimension. See also
notes to Table 4.

ZS



`Table 6: Likelihood Ratio tests in two-factor models
af6ne CIR Vasicsk

LRl 41.97 38.30 4.39

LR2 89.00 79.70 54.88

LR3 96.67 91.10 84.73

Notes:
LRl is a test for independence between the factors. This hypothesis imposes the
restrictions that a and E are diagonal.
LR2 is a test for the absence of ineasurement errors on the three month and 10 year
interest rate. This imposes the restrictions that the rows and columns of H
corresponding to these maturities vanish.
LR3 tests the equality of K, a, Q and E across the time series and cross section
dimension. The test statistic is equal to the difference between the likelihood values
reported in Table 4 and Table 5.
~ denotes a statistic which is not significant at the 5Plo level
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Figure 1: US term structure data. The figure sho~'s the 3 mouth, 1, 5 and
10 y'ear zero coupon yields constructed b}' 4ícCullogó and K~cou (1993) íroni L~S
treasury coupon bonds.
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Figure 2: Factor loadings in one-factor affine models. The figure shows
the estimated factor loadings !3(r)~r as a functiou of maturity for the one-factor

alfine, ('Ilt and Vasicek rnodels.
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Figure 3: Fit of the one-factor affine model. 'I'he figure : hows the averagc
of tLe actual and fitted term structures, as we ll ew the sLai,dai~ ~k~iali~~~ ~f tl~.-
resicuals, in the one-factor affine model.
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Figure 4: Regression of observed yields on fitted factors. The figurc

shows the coefficients of a regression (in levels and first differences) of the observed

tirne series of yields on the time series of fitted factors in the one-factor affine

model.
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Figure 5: Fitted factors in two-factor affine model. 'The figure shows tóc
estimatcd factors in the two-factor affine model.
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Figure 6: Factor loadings in two-factor affine models. The figure shows
the estimated factor loadings H;(r)~r, z- 1,'l as a functiou of maturity Cur LLe
two-factor affine, CIR and Vasicek models.
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Figure 7: Fit of the two-factor affine model. The figure shows the average
of the actual and fitted term structures, as well as the standard deviation of tiie
residuals, in the two-factor afFine model.
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Figure 8: Regression of observed yields on fitted factors. The fifiure

shows the coefficients of a regression (in levels and first di(Ferences) of the observcd

timc sf:ries of viclds on the time series of fitted factors in the two-fari.~r affine

model.
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Figure 9: Fit of the unrestricted two-factor afRne model. '1'he figurc

shows the average of the actual aud fitted term structures, as well as the standard

cleviation of t,he resicluals, in the two-factor affine model with separate parameters

for the time series ancl cross section climension of the rnodel.
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