
Time-series Bitmaps: A Practical Visualization Tool for working with Large

Time Series Databases

 Nitin Kumar Nishanth Lolla Eamonn Keogh Stefano Lonardi Chotirat Ann Ratanamahatana
University of California - Riverside

Computer Science & Engineering Department

Riverside, CA 92521, USA

{nkumar, vlolla, eamonn, stelo, ratana}@cs.ucr.edu

Abstract
The increasing interest in time series data mining in the last

decade has resulted in the introduction of a variety of similarity

measures, representations and algorithms. Surprisingly, this

massive research effort has had little impact on real world

applications. Real world practitioners who work with time series

on a daily basis rarely take advantage of the wealth of tools that

the data mining community has made available. In this work we

attempt to address this problem by introducing a simple

parameter-light tool that allows users to efficiently navigate

through large collections of time series. Our system has the

unique advantage that it can be embedded directly into the any

standard graphical user interface, such as Microsoft Windows,

thus making deployment easier. Our approach extracts features

from a time series of arbitrary length, and uses information

about the relative frequency of its features to color a bitmap in a

principled way. By visualizing the similarities and differences

within a collection of bitmaps, a user can quickly discover

clusters, anomalies, and other regularities within their data

collection. We demonstrate the utility of our approach with a set

of comprehensive experiments on real datasets from a variety of

domains.

Keywords: Time Series, Chaos Game, Visualization.

1 Introduction
The increasing interest in time series data mining in the

last decade has resulted the introduction of a variety of

similarity measures/ representations/ definitions/ indexing

techniques and algorithms (see, e.g.,

[1][2][4][6][17][21][22][24]). Surprisingly, this massive

research effort has had little impact on real world

applications. Examples of implemented systems are rare

exceptions [25]. Cardiologists, engineers, technicians and

others who work with time series on a daily basis rarely

take advantage of the wealth of tools that the data mining

community has made available. While it is difficult to

firmly establish the reasons for the discrepancy between

tool availability and practical adoption, the following

reasons suggested themselves after an informal survey.

• Time series data mining tools often come with a

bewildering number of parameters. It is not obvious

to the practitioner how these should be set [23].

• Research tools often require (relatively) specialized

hardware and/or software, rather than the ubiquitous

desktop PC/windows environment that prevails.

• Many tools have a steep learning curve, requiring the

user to spend many unproductive hours learning the

system before any possibility of useful work.

In this work we attempt to address this problem by

introducing a simple parameter-light tool that allows users

to efficiently navigate through large collections of time

series. Our approach extracts features from a time series

of arbitrary length, and uses information about the relative

frequency of these features to color a bitmap in a

principled way. By visualizing the similarities and

differences within a collection of these bitmaps, a user

can quickly discover clusters, anomalies, and other

regularities within their data collection.

While our system can be used as an interactive tool, it

also has the unique advantage that it can be embedded

directly into the any standard graphical user interface,

such as Windows, Aqua, X-windows, etc. Since users

navigate through files by looking at their icons, we

decided to employ the bitmap representation as the icon

corresponding to each time series. Simply by glancing at

the icons contained in a folder of time series files, a user

can quickly identify files that require further

investigation. In Figure 1 we have illustrated a simple

example1.

Figure 1: Four time series files represented as time series

bitmaps. While they are all examples of EEGs,

example_a.dat is from a normal trace, whereas the others

contain examples of spike-wave discharges. The fact that

there is some difference between one dataset and all the rest

is immediately apparent from a casual inspection of the

bitmap representation.

1 This figure, and many others that follow in this work, suffer

from monochromatic printing. We encourage the interested

reader to visit [19] to view full color examples.

The utility of the idea shown in Figure 1 can be further

enhanced by arranging the icons within the folder by

pattern similarity, rather than the typical choices of

arranging them by size, name, date, etc. This can be

achieved by using a simple multidimensional scaling or a

self-organizing map algorithm to arrange the icons.

Unlike most visualization tools which can only be

evaluated subjectively, we will perform objective

evaluations on the amount of useful information contained

within a time series bitmap. More precisely, we will

analyze the loss of accuracy of classification

/clustering/anomaly detection algorithms when the input

is based solely the information contained in the bitmap.

As we will show, the experiments strongly confirm the

utility of our approach.

The rest of the paper is organized as follows. In Section 2,

we report on the related literature and review the SAX

representation, which is a cornerstone of our approach. In

Section 3 we introduce our general visualization

technique called Time Series Bitmaps, and in Section 4 we

consider Time Series Thumbnails, a special representation

that can be tightly integrated into a standard graphical

user interface. Section 5 sees a comprehensive empirical

evaluation, and lastly, Section 6 offers conclusions and

directions for future work.

2 Background and Related Work
We begin this section with a brief description of the

classic time series data mining tasks. We review some of

the relevant data visualization methods as part of the

previous related work in this domain. Finally, we

conclude this section by reviewing SAX, a symbolic

representation which is a cornerstone to our scheme.

2.1 Time Series Data Mining Tasks

Until recently, the bulk of the time series data mining

research was focused on the tasks of indexing

[17][21][24], clustering [1][4][23] and classification [23].

In contrast, there has been relatively little work on time

series visualization, in spite of the fact that the usefulness

of visualization is well documented [27]. The few works

on time series visualization tend to limit their attention to

small datasets [25][32][14]. However, data visualization

becomes of crucial importance when the size of the data is

large. Because we claim that our visualization tool can be

used in conjunction with some of the classic data mining

tasks, we will briefly review them below.

2.1.1 Classification

The ability to predict the class of a previously unknown

instance with the help of a training database is called

classification. For example, imagine a scenario in which a

patient visits a doctor because of chest pain and his/her

ECG looks irregular. The doctor might want to search a

database to find similar ECGs, in the hope that he/she will

be able to offer clues about the patient’s condition. The

notion of similarity clearly depends on the particular

measure chosen. For short time series, Euclidian distance

[22] and Dynamic Time Warping (DTW) [1][20][30] are

known to work exceptionally well. However for longer

time series, the choice of the appropriate measure of

similarity for classification tasks is still somewhat of an

open question.

2.1.2 Clustering

Clustering is the problem of organizing data into classes

such that there is high intra-class similarity and low inter-

class similarity. It differs from classification in that the

class labels are obtained directly from the data (cf.

supervised vs. unsupervised learning). More informally,

clustering finds a natural grouping among the objects

according to the similarity measure chosen. Once again,

for short time series such as gene expression data,

Euclidian distance and DTW work very well, but for long

time series, some model-based technique is typically used

[11][18][34].

2.1.3 Anomaly Detection

The task of finding anomalies or irregularities in data has

been an area of active research, which has long attracted

the attention of researchers in biology, physics,

astronomy, and statistics, in addition to the more recent

work by the data mining community [23]. While the word

“anomaly” implies that a radically different subsection of

the data has been detected, we are interested in more

subtle deviations in the data. The possibility of such

subtle deviations from normality are reflected by the

terms which are often used as synonyms for anomaly

detection, such as interestingness/ deviation/ surprise/

deviation/ novelty detection, etc.

2.2 Related Work

There has been relatively little work done on visualizing

massive time series data sets. We will briefly review some

of the algorithms proposed in the literature and we will

explain why they are not well suited to the task at hand.

The human eye is often heralded as the ultimate data-

mining tool [27]. The ubiquitous time series plot is used

to help visualize data in many aspects of human life such

as medicine (ECG), finance (changes in stock market),

business (profit-and-loss history of a company), aerospace

(satellite data), meteorology (fluctuations in air

temperature or pressure on a daily, monthly, or yearly

basis), entertainment (music, movies), etc. However many

real world time series data sets are massive, and plots are

limited by the resolution of the output device (screen,

printer, etc.). Below we discuss some of the techniques

used to mitigate the poor scalability of time series plots.

These algorithms allow a greater scalability to larger

datasets while leveraging off the human visual system to

address the time series data mining tasks addressed above.

2.2.1 Arc Diagrams

Wattenberg introduced a visualization technique called

Arc Diagrams [31] that exploits the fact that “sequences

often contain significant repeated subsequences”. Many

datasets come in the form of strings over finite alphabet

(text, DNA, music, etc.). Datasets containing real-valued

data points can be easily converted to a string using a

discretization technique [26]. Once the input is available

in the form of a string, translucent arcs are drawn between

repeated substrings (as shown in the Figure 2).

Figure 2: Arc diagram for a musical composition. The

repetitive patterns are represented by translucent arcs.

The arc diagram allows the user to observe the

occurrences of repeated patterns with a bird’s eye view of

the sequence’s structure. However, this visualization

technique is of less useful when there are many small

repeated subsequences, which cause an uninformative

jumble. This is often the case when the cardinality of the

alphabet is small (e.g., DNA).

2.2.2 Spiral

Weber et al. presented an approach to visualize time

series data based on a spiral representation [32]. The work

in inspired by the observation that “often, time series data

such as temperature, radiation of light and economic

cycles exhibit periodic structures”. Each periodic

structure of the time series is mapped on to a spiral ring to

reveal the periodic behavior of the underlying process.

The attributes are mapped to the properties of the spiral

such as its color, texture and line thickness. A typical

spiral diagram is shown in Figure 3.

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Jan 1

Dec 23

M onday 00:01

Friday 23:59

Figure 3: A spiral visualization of a power demand dataset.

Although Weber’s technique is simple and intuitive, it is

only useful for identifying patterns the time series that are

periodic. Although spiral are more space effective than

simple linear plots, scalability remains as an issue.

2.2.3 Viz-Tree

Lin et al. employed a visualization technique called Viz-

Tree to discover patterns using a tree structure [25]. The

time series data is first discretized to symbols using SAX

(see below for a review of SAX). Then, the symbolic

representation is encoded into a modified suffix tree

wherein each branch of the tree represents one

subsequence pattern. The frequencies of the various

patterns are encoded as the line thickness of the suffix

tree, so frequently occurring patterns show up as dense

regions and rarely occurring patterns (possibly anomalies)

show up as sparse lines. A screen shot of the Viz-Tree is

shown in Figure 4.

Figure 4: The Viz-Tree for an exhaust emissions dataset.

Similar real valued time series (bottom left) tend to map to

the same region of the tree (middle left) allowing a constant

space summary of an arbitrarily long time series.

While the Viz-Tree is scalable to large data sets, it

performs well only for certain data mining tasks like

anomaly detection and motif discovery. In addition, it is

demanding in terms of user training and computer

resources.

2.3 Chaos Game Representations

Our visualization technique is partly inspired by an

algorithm to draw fractals called the Chaos game [4]. The

parameters of the game are defined by a set of pairs of

linear equations (i.e., an affine map), each of which is

associated with a probability. Each affine map wi is

defined by six parameters

i i i

i

i i i

a b ex x
w

c d fy y

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎦

Formally, the set {w1,w2,…,wk} and the associated

probabilities defines an iterated function system (IFS). By

changing the parameters of the IFS different fractals can

be obtained (Sierpinski triangle, Dragon curve, Devil’s

staircase, etc).

As said, the chaos game is used to compute the fractal

from the IFS. The game starts from a random point in the

square [0,1]×[0,1]. At each step, a map is chosen at

random according to its probability. The next point is

obtained by applying the map to the previous point.

Repeating this step thousands of times and plotting the

trajectory of the points can visualize the fractal.

The chaos game representation has been used extensively

to study DNA sequences (see, e.g., [3],[10],[12],[16]).

Since DNA has a four letters alphabet, the most natural

IFS is:

w a b C d e f prob

1 .5 0 0 .5 0 0 .25

2 .5 0 0 .5 0 .5 .25

3 .5 0 0 .5 .5 0 .25

4 .5 0 0 .5 .5 .5 .25

If one runs the chaos game on this IFS using a truly

random sequence, eventually all the points in [0,1]×[0,1]

will be visited. In fact, the fractal associated with this IFS

is the square [0,1]×[0,1].

If instead of using the random number generator, one uses

the sequence under study to drive the selection of the

maps, the Chaos Game Representation (CGR) of the

sequence is obtained [16],[17]. In Figure 5, we associated

w1 with the symbol “A”, w2 with C, w3 with G and w4

with T. When the choice of the map is driven by the

sequence, it is easy to realize that each point in the square

[0,1]×[0,1] is in a one-to-one correspondence to a

particular substring in the sequence.

Since we are limited by finite arithmetic, suppose that the

square [0,1]×[0,1] is divided in 2q×2
q pixels. Then, each

pixel is uniquely identified by a substring of size q (see

Figure 5). This representation is also called quadtree

representation.

Based on the Suffix Theorem [16], it is easy to prove the

following fundamental corollary (see also [3]).

Corollary. The number of occurrences of a substring in

the original sequence is equal to the number of times the

Chaos Games visits the pixel associated with that

substring.

The method can produce a representation of DNA

sequences, in which both local and global patterns are

displayed. For example, a biologist can recognize that a

particular substring, say in a bacterial genome, is rarely

used. This would suggest the possibility that the bacteria

have evolved to avoid a particular restriction enzyme site,

which means that he might not be easily attacked by a

specific bacterio-phage.

From our point of view, the crucial observation is that the

CGR representation of a sequence allows the investigation

of the patterns in sequences, giving the human eye a

possibility to recognize hidden structures

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

Figure 5: The quad-tree representation of a sequence over

the alphabet {A,C,G,T} at different levels of resolution

We can get a hint of the potential utility of the approach

if, for example, we take the first 16,000 symbols of the

mitochondrial DNA sequences of four familiar species

and use them to create their own file icons. Figure 6

below illustrates this. Even if we did not know these

particular animals, we would have no problem

recognizing that there are two pair of highly related

species being considered.

With respect to the non-genetic sequences, Joel Jeffrey

noted, “The CGR algorithm produces a CGR for any

sequence of letters”[17]. However it is only defined for

discrete sequences, and most time series are real valued.

Figure 6: The gene sequences of mitochondrial DNA of four

animals, used to create their own file icons using a chaos

game representation. Note that Pan troglodytes is the

familiar Chimpanzee, and Loxodonta africana and Elephas

maximus are the African and Indian Elephants respectively.

The file icons show that humans and chimpanzees have

similar genomes, as do the African and Indian elephants.

This encouraged us to try a similar technique on time

series data and investigate the utility of such

representation on the classic data mining tasks of

clustering, classification and visualization. Since CGR

involves treating a data input as an abstract string of

symbols, a discretization method is necessary to transform

continuous time series data into discrete domain. For this

purpose, we used the Symbolic Aggregate approXimation

(SAX) [26], which we review below.

2.4 Symbolic Time Series Representations

While there are at least 200 techniques in the literature for

converting real valued time series into discrete symbols

[9], the SAX technique of Lin et. al. [26] is unique and

ideally suited for data mining. SAX is the only symbolic

representation that allows the lower bounding of the

distances in the original space. The ability to efficiently

lower bound distances is at the heart of hundreds of

indexing algorithms and data mining techniques

[2][8][20][22][26][30]. While we do not directly exploit

the lower bounding property in this work, we note that if a

representation is tightly lower bounding the original data,

it must be representing it with great fidelity. It is this

implicit property we are exploiting. We can be sure that

the SAX representation is accurately summarizing the

time series, and as we will show, a minor modification of

the chaos game can accurately summarize the SAX

sequences.

The SAX representation is created by taking a real valued

signal and dividing it into equal sized sections. The mean

value of each section is then calculated. By substituting

each section with its mean, a reduced dimensionality

piecewise constant approximation of the data is obtained.

This representation is then discretized in such a manner as

to produce a word with approximately equi-probable

symbols. Figure 7 shows a short time series being

converted into the SAX word baabccbc.

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

Figure 7: A real valued time series can be converted to the

SAX word baabccbc. Note that all three possible symbols

are approximately equally frequent.

The time and space complexity to convert a sequence to

its SAX representation is linear in the length of the

sequence.

It is very common to process very long time series. In that

case, it is not necessarily a good idea to convert the entire

time series into a single SAX word. For example, let us

assume we have a time series that is composed of several

sine waves. We would expect the SAX representation to

be repetitive, something like abcbabcbabcbabcba… .

However if we add a small linear trend to the entire

sequence, the SAX representation would drastically

change to something like aaaaaaaabbbbbbbcc… . In

other words, the apparently local features of the sequence

depend on the global structure. This is an undesirable

property.

Therefore, for long time series, we slide a shorter window

across it, and obtain a set of shorter SAX words. In the

case of the sine waves example, we would expect to

obtain a set of SAX words something like

abcba

 bcbab

 cbabc

 ….

Note that such a list is a global summary of local shapes.

In the case above, consecutive rows only differ at the

endpoints. For example, the c in the third place in the first

word, moves to the second place in the second word, and

the first place in the third word. In general, this is not

always true. Because we are normalizing the contents of

the sliding window at each step, a region that maps to one

letter at the beginning of a word, may map to a different

letter at the end of a word etc.

Although there is some redundancy between rows, only

two bits are required per symbol (for an alphabet size

four) and therefore this representation is much smaller

than the original data.

Note that the user must choose both the length of the local

sliding window N, and the number n of equal sized

sections in which to divide it (as we will see, there is no

choice to be made for alphabet size). A good choice for N

should reflect the natural scale at which the events occur

in the time series. For example, for ECGs this is about the

length of one or two heartbeats. For traffic patterns, a 24-

hour window makes sense. A good value for n depends of

the complexity of the signal. Intuitively one would like to

achieve a good compromise between fidelity of

approximation and dimensionality reduction. Two groups

of researchers have independently suggested using

Minimum Description Length MDL to set these

parameters [23][29]. As we shall see, the proposed

technique is not too sensitive to parameter choices.

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

abcdba

bdbadb

cbabca

3

7

Level 1 Level 2 Level 3

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

aa ab ba bbaa ab ba bb

ac ad bc bdac ad bc bd

ca cb da dbca cb da db

cc cd dc ddcc cd dc dd

a b

c d

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

0 2 3 00 2 3 0

0 1 2 10 1 2 1

1 1 0 31 1 0 3

0 1 0 00 1 0 0

5 7

3 3

5 7

3 3

abcdba

bdbadb

cbabca

3

7

Level 1 Level 2 Level 3

The SAX representation has been successfully used by

various groups of researchers for indexing, classification,

clustering [26], motif discovery [7][8][29], rule discovery,

[28], visualization [25] and anomaly detection [23].

3 Time Series Bitmaps

At this point the connection between the two

“ingredients” for the time series bitmaps should be

evident. We have seen in Section 2.3 that the Chaos game

[4] bitmaps can be used to visualize discrete sequences,

and we have seen in Section 2.4 that the SAX

representation is a discrete time series representation that

has demonstrated great utility for data mining. It is natural

to consider combining these ideas.

The Chaos game bitmaps are defined for sequences with

an alphabet size of four. It is fortuitous that DNA strings

have this cardinality. SAX can produce strings on any

alphabet size. As it happens, a cardinality of four (or

three) has been reported by many authors as an excellent

choice for diverse datasets on assorted problems

[7][8][23][25][26] [28][29].

We need to define an initial ordering for the four SAX

symbols a, b, c, and d. We use simple alphabetical

ordering as shown in Figure 8.

After converting the original raw time series into the SAX

representation, we can count the frequencies of SAX

“subwords” of length L, where L is the desired level of

recursion. Level 1 frequencies are simply the raw counts

of the four symbols. For level 2 we count pairs of

subwords of size 2 (aa, ab, ac, etc). Note that we only

count subwords taken from individual SAX words. For

example, in the SAX representation in Figure 8 middle

right, the last symbol of the first line is a, and the first

symbol of the second word is b. However we do not count

this as an occurrence of ab.

Figure 8: Top) The four possible SAX symbols are mapped

to four quadrants of a square, and pairs, triplets etc are

recursively mapped to finer grids. Middle) We can extract

counts of symbols from a SAX representation and record

them in the grids. Bottom) The recorded values can be

linearly mapped to colors, thus creating a square bitmap.

Once the raw counts of all subwords of the desired length

have been obtained and recorded in the corresponding

pixel of the grid, a final step is required. Since the time

series in a data collection may be of various lengths, we

normalize the frequencies by dividing by the largest

value. The pixel values thus range from 0 to 1. The final

step is to map these values to colors. In the example

above we mapped to grayscale, with 0 = white, 1 = black.

However, it is generally recognized that grayscale is not

perceptually uniform [33]. A color space is said to be

perceptually uniform if small changes to a pixel value are

approximately equally perceptible across the range of that

value. For all images produced in this paper we use

Matlab’s “jet” color space, which is a linearization of a

large fraction of all possible colors and which is designed

to be perceptually uniform.

Note that unlike the arbitrarily long, and arbitrarily shaped

time series from which they where derived, for a fixed L,

the bitmaps have a constant space and structure.

We do not suggest any utility in viewing a single time

series bitmap. The representation is abstract, and we do

not expect a user to be able imagine the structure of time

series given the bitmap. The utility of the bitmaps comes

from the ability to efficiently compare and contrast them.

4 Time Series Thumbnails

A unique advantage of the time series bitmap

representation is the fact that we can transparently

integrate it into the user graphical interface of most

standard operating systems.

Since most operating systems use the ubiquitous square

icon to represent a file, we can arrange for the icons for

time series files to appear as their bitmap representations.

Simply by glancing at the contents of a folder of time

series files, a user may spot files that require further

investigation, or note natural clusters in the data.

The largest possible icon size varies by operating system.

All modern versions of Microsoft Windows2 support 32

by 32 pixels, which is large enough to support a bitmap of

level 5. As we will see, level 2 or 3 seems adequate for

most tasks/datasets.

To augment the utility of the time series bitmaps, we can

arrange for their placement on screen to reflect their

structure. Normally, file icons are arranged by one of a

handful of common criteria, such as name, date, size etc.

We have created a simple modification of the standard

Microsoft Windows (98 or later) file browser by

introducing the concept of Cluster View. If Cluster View

is chosen by the user, the time series thumbnails arrange

themselves by similarly. This is achieved by performing

Multi-Dimensional Scaling (MDS) of the bitmaps, and

projecting them into a 2 dimensional space. For aesthetic

reasons, we “snap” the icons to the closest grid point.

Figure 9 displays an example of Cluster View in

Microsoft Windows XP Operating System.

In this example the Cluster View is obtained for five MIT-

BIH Arrhythmia Database files. It is evident in the figure

that eeg1.dat, eeg2.dat and eeg3.dat belong to one cluster

whereas eeg6.dat and eeg7.dat belongs to another cluster.

In this case, the grouping correctly reflects the fact that

latter two files come from a different patient to first three.

To optimize the Cluster View, a cache (cluster.db) can be

made to contain all relevant information required to

generate the bitmaps and display their clustering, so that

all the files do not have to be processed every time

viewing the folder. However, even on a large screen full

of small icons, an efficient MDS implementation can

dynamically adjust the position of the icons in real time as

the user changes the aspect ratio of the file browser.

2 Actually, Windows systems support icons of size 48 by 48

pixels, however we require a size that is an integer power of

two.

Figure 9: A snapshot of a folder containing cardiograms

when its files are arranged by “Cluster” option. Five

cardiograms have been grouped into two different clusters

based on their similarity.

5 Experimental Evaluation
In this section, we test our proposed approach with a

comprehensive set of experiments. In Section 5.1 we will

show a simple experiment which require subjective

evaluation, but which strongly hint at the value of our

approach. In Section 5.2 we will show some experiments

that objectively measure the utility of our approach on

classification, clustering and anomaly detection. We note

once again that the quality of illustrations here suffers

from monochromic printing and small-scale reproduction.

We urge the interested reader to consult [19] for large-

scale color reproductions and additional details.

5.1 Subjective Demonstration

First, we used the tool to browse the hundreds of datasets

in the UCR archive. One such dataset, known as

Kalpakis_ECG, contains 70 ECGS used to test an

ARIMA based clustering technique [18]. When we

glanced at this dataset with our tool we noticed something

interesting. While ECGs (and therefore the thumbnails

derived from them) can have great variability, five of the

70 thumbnails had radically different thumbnails. Figure

11 illustrates this on a subset of the full database.

It was natural to ask why this should be, so we further

examined the original raw data, and noticed that the 5

relevant time series had radically different structure to all

the rest.

Figure 10: The two thumbnails in the first row are radically

different from others. Whereas normal2.txt, normal4.txt,

normal6.txt and normal8.txt are actually ECGs, normal14.txt

and normal16.txt turned out to be the action potential of a

pacemaker cell.

We asked a cardiologist to explain these findings. She

informed us that the 5 recordings in question are not

ECGs! They are in fact examples of the action potential of

a normal pacemaker cell (not to be confused with the

electronic man-made devices which mimic them, and are

named after them).

Figure 11: Top) Four snippets from randomly chosen ECGs

from the Kalpakis_ECG dataset. Note that ECGs can have

great variability. Bottom) A snippet from the normal18

“ECG” from the Kalpakis_ECG dataset. In fact, this is not

an ECG, but an example of the action potential of a normal

pacemaker cell. The fact that this time series did not belong

with the others was discovered by a casual glance with our

time series thumbnail tool (See Figure 10).

Once the time series is plotted, it becomes obvious that

these data are not ECGs. However, neither the original

s noted in Section 3, our time series bitmap

feature among visualization

forcefully

clustering and anomaly detection, we

eriment, we examined the UCR Time

or datasets that come in pairs. For

r level of the tree,

1] and ARIMA models

authors [18] nor the other researchers who have published

on this data [] seem to have noticed this. This suggests the

utility of our approach a simple sanity check for

practitioners working with large datasets.

5.2 Objective Experiments

A

representation has a unique

techniques in that it allows the calculation of distance

between two time series. This ability is particularly

attractive because it allows very efficient comparison.

Once the bitmap is created (in time linear in the length of

the sequence) the time complexity for comparison is only

O(L), since L is a small constant, this is O(1).

Note that we are mostly interested in relatively long time

series here. For short time series, it has been

shown that Euclidean distance and DTW are very hard to

beat [22][30]. In any case, since short time series can be

visualized directly, there is less motivation to use

visualization techniques on them. It is difficult to define

“short” and “long” formally. Intuitively, short time series

would include things like a gene expression profiles (10 to

40 datapoints) and individual heartbeats (100 to 1,000

datapoints). In contrast long time series include things like

a 5-minute trace of an ECG or 10-days worth of a

telemetry sensor.

Since a distance/similarity measure is all that is required

for classification,

will compare time series thumbnails to classic solutions to

these problems below.

5.2.1 Clustering

0 100 200 300 400 500

ventricular depolarization

initial rapid

repolarization

“plateau” stage

repolarization

recovery phase

0 100 200 300 400 500

0 100 200 300 400 5000 100 200 300 400 500

ventricular depolarization

initial rapid

repolarization

“plateau” stage

repolarization

recovery phase

0 100 200 300 400 500

For our first exp

Series Archive f

example, in the Buoy Sensor dataset, there are two time

series, North Salinity and East Salinity, and in the

Exchange Rate dataset, there are two time series,

German Marc and Swiss Franc. We were able to identify

fifteen such pairs, from a diverse collection of time series

covering the domains of finance, science, medicine,

industry, etc. Although our method is able to deal with

time series of different lengths, we truncated all time

series to length 1,000 for visual clarity.

While the correct hierarchical clustering at the top of the

tree is somewhat subjective, at the lowe

we would hope to find a single bifurcation separating each

pair in the dataset. Our metric, Q, for the quality of

clustering is therefore the number of such correct

bifurcations divided by fifteen, the number of datasets.

For a perfect clustering, Q = 1.

We compared to two well-known and highly referenced

techniques, Markov models [1

[18][34]. For each technique we spent one hour searching

over parameter choice and reported only the best

performing result. To mitigate the problem of overfitting,

we set the parameters on a different, but similar dataset.

The results for the three approaches are given in Table 1.

1

2

17

18

27

28

29

30

3

4

5

6

21

22

7

8

9

10

11

12

13

14

15

16

19

20

26

25

23

24

1

2

17

18

27

28

29

30

3

4

5

6

21

22

7

8

9

10

11

12

13

14

15

16

19

20

26

25

23

24

Table 1: The quality of clustering obtained by

the 3 algorithms under consideration.

Algorithm Q

Thumbnails 0.93

Markov Model 6 0.4

ARMA models 0.40

Figure esult endrogram for our

pproach. The dendrograms for the other approaches are

proach with different parameter settings.

12 shows the r ing d

a

omitted here for brevity, but may be viewed at [19].

We wished to test whether our approach was sensitive to

its parameters, so we randomly changed them and

reevaluated the quality of the clustering. Table 2 contains

the results.

Table 2: The quality of clustering obtained by

our ap

N n Q

64 8 0.86

77 11 3 0.7

54 9 0.86

These re s suggest that our app is not overly

nsitive to parameter choices.

CG clustering problem,

sult roach

se

We repeated the experiment with a homogenous datasets.

We considered a four-class E

where each class corresponds to a different patient. Figure

13 shows the clustering obtained with level 3 bitmaps,

using parameters N = 50, n = 10. The results are correct,

in that each time series from a given patient is assigned to

it own sub-tree. For this problem we found that we could

vary the N amd n parameters by a factor of 4 (N > n) and

still obtain the correct clustering.

ee. For this problem we found that we could

vary the N amd n parameters by a factor of 4 (N > n) and

still obtain the correct clustering.

Figure 12: The clustering obtained by the time series

thumbnail approach on a heterogeneous data collection.

Bold lines denote incorrect subtrees. A key the data appears

in Appendix A.

Figure 12: The clustering obtained by the time series

thumbnail approach on a heterogeneous data collection.

Bold lines denote incorrect subtrees. A key the data appears

in Appendix A.

Figure 13: The clustering obtained by the time series

thumbnail approach on a homogeneous data collection.

5.2.2 Classification

For classification we considered an ECG classification

problem, and a video surveillance problem. Our ECG

dataset is a four-class problem derived from BIDMC

Congestive Heart Failure Database of four patients. Each

instance consists of 3,200 contiguous data points (about

20 heartbeats) randomly extracted from a long (several

hours) ECG signal. Twenty instances are extracted from

each class (patient).

The video surveillance dataset is a time-series dataset

extracted from video sequences of two actors either

aiming a gun or simply pointing at a target. We randomly

extracted twenty instances of 1,000 contiguous data points

from each of the following long time series:

1

2

3

4

5

11

13

12

14

15

6

9

10

7

8

16

18

17

19

20

1

2

3

4

5

11

13

12

14

15

6

9

10

7

8

16

18

17

19

20

A. Male Actor 1 with gun

B. Male Actor 1 without gun (point)

C. Female Actor 2 with gun

D. Female Actor 2 without gun (point)

The problem is therefore a four-class problem of

differentiating each of the acts independently – A vs. B

vs. C vs. D. In total, each dataset contains eighty

instances.

We compared to the ubiquitous Euclidean distance [21]

[22][24] and DTW [20][30].

For both datasets we measure the error rates, using the

one-nearest-neighbor with leaving-one-out evaluation

method. The results are summarized in Table 3.

Table 3: Classification error rates for two datasets.

 Euclidean DTW Bitmaps

ECG 42.25 % 16.25 % 7.50 %

Surveillance 37.50 % 12.5 % 8.75 %

We also considered a Normal vs Arrhythmia problem that

appeared in [11]. Using Markov models, the authors

reported an error rate of 2%. With our technique, under

virtually any parameter settings we achieve 0% error. We

can achieve perfect classification using one nearest

neighbor as above, or we can use MDS to project the data

into 2 dimensional space and achieve perfect

classification using a simple linear classifier, a decision

tree or SVD. Figure 14 shows the data projected into 2D

space, and the linear classifier learned.

1

23

4

5

6

7

8

910

11

12

13 14

15

16
1718

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MIT ECG Arrhythmia Data

1

23

4

5

6

7

8

910

11

12

13 14

15

16
1718

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MIT ECG Arrhythmia Data

Figure 14: The MIT ECG Arrhythmia dataset projected into

2D space using only the information from a level 2-time

series bitmap. The two classes are easily separated by a

simple linear classifier (gray line).

5.2.3 Anomaly detection

The time series bitmap distance measure allows the

creation of a simple anomaly detection algorithm.

We can create two concatenated windows, and slide them

together across the sequence. At each time instance we

build a time series bitmap for the two windows, and

measure the distance between them. This distance we

report as an anomaly score. Figure 15 illustrates the idea

on some annotated ECG data.

Figure 15: Using time series bitmaps as anomaly detectors.

Top) A subsection of an ECG dataset. A cardiologist

annotated an anomaly at approximately the 22-second mark.

Bottom) The score for our approach shows a strong peak for

the duration of the anomaly.

This approach easily detects the single anomaly shown,

and the rest of the annotated anomalies in this dataset (not

shown). At each “step” of the sliding window we can

incrementally ingress a new data point, and egress an old

data point (updating only two pixels of the each

thumbnail), so the time complexity is linear in the length

of the time series.

In the simple example above, both sliding windows are of

the same length. More generally, one may wish for the

trailing window to be larger, so that it retains more of a

“memory” of the previous data. We leave such

considerations for future work.

6 Conclusions and Future Work.
In this work, we have introduced a new framework for

visualization of time series. Our approach is unique in that

it can be directly embedded into any standard GUI

operating system. We demonstrated the effectiveness of

our approach on a variety of tasks and domains. Future

work includes an extensive user study, and investigating

techniques to automatically set the system parameters.

Acknowledgments: We would like to thank cardiologist

Helga Tsotras for her helpful insights into the ECG data.

This research was partly funded by the National Science

Foundation under grant IIS-0237918.

Reproducible Results Statement: In the interests of

competitive scientific inquiry, all datasets used in this

work are available at the following URL [19].

References

[1] Aach, J., & Church, G. (2001). Aligning gene

expression time series with time warping algorithms.

Bioinformatics, Volume 17, pp. 495-508.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.

(1995). Fast similarity search in the presence of

noise, scaling, and translation in times-series

databases. In Proceedings of twenty-first

International Conference on Very Large Databases,

pp. 490-501.

MITdb/210

Dataset

0:19 0:21 0:23 0:25 0:27

Fusion of

ventricular

and normal

beat

Anomaly Score

MITdb/210

Dataset

0:19 0:21 0:23 0:25 0:27

Fusion of

ventricular

and normal

beat

Anomaly Score

[3] Almeida, J.S., Carrico, J.A., Maretzek, A., Noble,

P.A., & Fletcher, M. (2001). Analysis of genomic

sequences by Chaos Game Representation.

Bioinformatics, 17(5), pp. 429-37.

[4] Barnsley, M.F., & Rising, H. (1993). Fractals

Everywhere, second edition, Academic Press.

[5] Bar-Joseph, Z., Gerber, G., Gifford, D., Jaakkola, T.,

& Simon, I. (2002). A new approach to analyzing

gene expression time series data. In Proceedings of

the sixth Annual International Conference on

Research in Computational Molecular Biology, pp.

39-48.

[6] Berndt, D., & Clifford, J. (1994). Using dynamic time

warping to find patterns in time series, AAAI

Workshop on Knowledge Discovery in Databases,

pp. 229-248.

[7] Celly, B. & Zordan, V. B. (2004). Animated People

Textures. In proceedings of the 17th International

Conference on Computer Animation and Social

Agents. Geneva, Switzerland.

[8] Chiu, B., Keogh, E., & Lonardi, S. (2003).

Probabilistic Discovery of Time Series Motifs. In the

9th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 493-498.

[9] Daw, C. S., Finney, C. E. A. & Tracy, E. R. (2001).

Symbolic Analysis of Experimental Data. Review of

Scientific Instruments. (2002-07-22).

[10] Fiser. A., Tusnady, G.E., & Simon, I. (1994). Chaos

game representation of protein structures. J. Mol.

Graph, 12(4), pp. 302-4, 295.

[11] Ge, X., & Smyth, P. (2000). Deformable Markov

model templates for time-series pattern matching. In

proceedings of the sixth ACM SIGKDD, pp. 81-90.

[12] Hahn, M.W., Stajich, J.E., & Wray, G.A. (2003). The

Effects of Selection Against Spurious Transcription

Factor Binding Sites. Mol. Biol. Evol. 20(6), pp. 901-

906.

[13] Haigh, K., Foslien, W., & Guralnik, V. (2004). Visual

Query Language: Finding patterns in and

relationships among time series data, In Proceedings

of the seventh Workshop on Mining Scientific and

Engineering Datasets.

[14] Havre, S., Hetzler, E., Whitney, P., & Nowell, L.

(2002). ThemeRiver: Visualizing Thematic Changes

in Large Document Collections. IEEE Transactions

on Visualization and Computer Graphics, pp. 9-20.

[15] Hu, N., Dannenberg, R.B., & Tzanetakis, G. (2003).

Polyphonic Audio Matching and Alignment for Music

Retrieval, IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics.

[16] Jeffrey, H.J. (1990). Chaos game representation of

gene structure. Nucleic Acids Research 18, pp. 2163-

2170.

[17] Jeffrey, H.J. (1992). Chaos Game Visualization of

Sequences. Comput. & Graphics 16, pp. 25-33.

[18] Kalpakis, K., Gada, D., & Puttagunta, V. (2001).

Distance Measures for Effective Clustering of ARIMA

Time-Series. In the Proceedings of the 2001 IEEE

International Conference on Data Mining, pp. 273-

280.

[19] Keogh, E. www.cs.ucr.edu/~nkumar/SDM05.html

[20] Keogh, E. (2002). Exact indexing of dynamic time

warping. In Proceedings of the twenty-eighth

International Conference on Very Large Data Bases,

pp. 406-417.

[21] Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra

(2001). Locally adaptive dimensionality reduction for

indexing large time series databases. In Proceedings

of ACM SIGMOD Conference on Management of

Data, pp. 151-162.

[22] Keogh, E. & Kasetty, S. (2002). On the Need for

Time Series Data Mining Benchmarks: A Survey and

Empirical Demonstration. In the eighth ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 102-111.

[23] Keogh, E., Lonardi, S., & Ratanamahatana, C.

(2004). Towards Parameter-Free Data Mining. In

proceedings of the tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining.

[24] Korn, F., Jagadish, H., & Faloutsos, C. (1997).

Efficiently supporting ad hoc queries in large

datasets of time sequences. In Proceedings of

SIGMOD, pp. 289-300.

[25] Lin, J., Keogh, E., Lonardi, S., Lankford, J.P. &

Nystrom, D.M. (2004). Visually Mining and

Monitoring Massive Time Series. In proceedings of

the tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining..

[26] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003) A

Symbolic Representation of Time Series, with

Implications for Streaming Algorithms. In

proceedings of the eighth ACM SIGMOD Workshop

on Research Issues in Data Mining and Knowledge

Discovery.

[27] Shneiderman, B. (2002). Inventing discovery tools:

combining information visualization with data

mining. Information Visualization 1(1): 5-12.

[28] Silvent, A. S., Carbay, C., Carry, P. Y. & Dojat, M.

(2003). Data, Information and Knowledge for

Medical Scenario Construction. In proceedings of

the Intelligent Data Analysis In Medicine and

Pharmacology Workshop. Protaras, Cyprus.

[29] Tanaka, Y. & Uehara, K. (2004). Motif Discovery

Algorithm from Motion Data. In proceedings of the

18th Annual Conference of the Japanese Society for

Artificial Intelligence (JSAI). Kanazawa, Japan.

[30] Ratanamahatana, C.A., & Keogh, E. (2004).

Everything you know about Dynamic Time Warping

is Wrong. 3rd Workshop on Mining Temporal and

Sequential Data, in conjunction with the 10th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining.

[31] Wattenberg, M. (2002). Arc Diagrams: Visualizing

Structure in Strings. In proceedings of the IEEE

Symposium on Information Visualization, pp. 110-

116.

[32] Weber, M., Alexa, M., & Mueller, W. (2001)

Visualizing Time-Series on Spirals. In proceedings of

the IEEE Symposium on Information Visualization,

[33] Wyszecki, G. (1982). Color science: Concepts and

methods, quantitative data and formulae, 2nd edition.

New York, Wiley, 1982.

[34] Xiong, Y., & Yeung, D.Y. (2002). Mixtures of ARMA

models for model-based time series clustering. In

Proceedings of the IEEE International Conference on

Data Mining, pp.717-720.

Appendix A: Key to Datasets

Table A: The datasets used in the Experiments in Section 5.1.1
1 MotorCurrent1: 17 Exchange Rate: Swiss Franc

2 MotorCurrent2: 18 Exchange Rate: German Mark

3 Video Surveillance: Ann, gun 19 Furnace: heating input

4 Video Surveillance: Ann, no gun 20 Furnace: cooling input

5 Video Surveillance: Eamonn, gun 21 Reel 2: angular speed

6 Video Surveillance: Eamonn, no gun 22 Reel 2: tension

7 Power Demand: Jan-March (Italian) 23 Balloon1

8 Power Demand: April-June (Italian) 24 Balloon2 (lagged)

9 Great Lakes (Erie) 25 Evaporator: feed flow

10 Great Lakes (Ontario) 26 Evaporator: vapor flow

11 Buoy Sensor: North Salinity 27 Shuttle Inertia Sensor X

12 Buoy Sensor East Salinity 28 Shuttle Inertia Sensor X

13 Koski ECG: slow 1 29 Shuttle Inertia Sensor Z

14 Koski ECG: slow 2 30 Shuttle Inertia Sensor Z

15 Koski ECG: fast 1

16 Koski ECG: fast 2

Appendix B: Additional Anomaly Detection

Results

Note that these results do not appear in the SIAM paper.

 A: Using time series bitmaps as an anomaly detector.

Top) A subsection of an ECG dataset. A cardiologist

annotated a premature ventricular contraction at

approximately the 1.4 mark. Bottom) The score for our

approach shows a strong peak for the duration of the

anomalous heartbeat.

B: A cardiologist annotated two premature ventricular

contractions at approximately the 0.4 and 1.1 mark

respectively, and a supraventricular escape beat at about

the 1.0 mark. Our approach easily detects all the three

anomalies. Top) A subsection of an ECG dataset. Bottom)

The score for our approach shows three strong peaks for

the duration of the anomalous heartbeat.

 C: This figures shows a very complex and noisy ECG.

But according to a cardiologist, there is only one abnormal

heart beat at approximately the 0.23 mark. Our tool easily

finds it.

