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Abstract 
The increasing interest in time series data mining in the last 

decade has resulted in the introduction of a variety of similarity 

measures, representations and algorithms.  Surprisingly, this 

massive research effort has had little impact on real world 

applications. Real world practitioners who work with time series 

on a daily basis rarely take advantage of the wealth of tools that 

the data mining community has made available. In this work we 

attempt to address this problem by introducing a simple 

parameter-light tool that allows users to efficiently navigate 

through large collections of time series. Our system has the 

unique advantage that it can be embedded directly into the any 

standard graphical user interface, such as Microsoft Windows, 

thus making deployment easier. Our approach extracts features 

from a time series of arbitrary length, and uses information 

about the relative frequency of its features to color a bitmap in a 

principled way. By visualizing the similarities and differences 

within a collection of bitmaps, a user can quickly discover 

clusters, anomalies, and other regularities within their data 

collection. We demonstrate the utility of our approach with a set 

of comprehensive experiments on real datasets from a variety of 

domains. 
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1  Introduction  
The increasing interest in time series data mining in the 

last decade has resulted the introduction of a variety of 

similarity measures/ representations/ definitions/ indexing 

techniques and algorithms (see, e.g., 

[1][2][4][6][17][21][22][24]). Surprisingly, this massive 

research effort has had little impact on real world 

applications. Examples of implemented systems are rare 

exceptions [25]. Cardiologists, engineers, technicians and 

others who work with time series on a daily basis rarely 

take advantage of the wealth of tools that the data mining 

community has made available. While it is difficult to 

firmly establish the reasons for the discrepancy between 

tool availability and practical adoption, the following 

reasons suggested themselves after an informal survey. 

• Time series data mining tools often come with a 

bewildering number of parameters. It is not obvious 

to the practitioner how these should be set [23]. 

• Research tools often require (relatively) specialized 

hardware and/or software, rather than the ubiquitous 

desktop PC/windows environment that prevails. 

• Many tools have a steep learning curve, requiring the 

user to spend many unproductive hours learning the 

system before any possibility of useful work. 

In this work we attempt to address this problem by 

introducing a simple parameter-light tool that allows users 

to efficiently navigate through large collections of time 

series. Our approach extracts features from a time series 

of arbitrary length, and uses information about the relative 

frequency of these features to color a bitmap in a 

principled way. By visualizing the similarities and 

differences within a collection of these bitmaps, a user 

can quickly discover clusters, anomalies, and other 

regularities within their data collection.  

While our system can be used as an interactive tool, it 

also has the unique advantage that it can be embedded 

directly into the any standard graphical user interface, 

such as Windows, Aqua, X-windows, etc. Since users 

navigate through files by looking at their icons, we 

decided to employ the bitmap representation as the icon 

corresponding to each time series. Simply by glancing at 

the icons contained in a folder of time series files, a user 

can quickly identify files that require further 

investigation. In Figure 1 we have illustrated a simple 

example1.  

 

Figure 1: Four time series files represented as time series 

bitmaps. While they are all examples of EEGs, 

example_a.dat is from a normal trace, whereas the others 

contain examples of spike-wave discharges. The fact that 

there is some difference between one dataset and all the rest 

is immediately apparent from a casual inspection of the 

bitmap representation.   

                                                           

1 This figure, and many others that follow in this work, suffer 

from monochromatic printing. We encourage the interested 

reader to visit [19] to view full color examples. 



The utility of the idea shown in Figure 1 can be further 

enhanced by arranging the icons within the folder by 

pattern similarity, rather than the typical choices of 

arranging them by size, name, date, etc. This can be 

achieved by using a simple multidimensional scaling or a 

self-organizing map algorithm to arrange the icons. 

Unlike most visualization tools which can only be 

evaluated subjectively, we will perform objective 

evaluations on the amount of useful information contained 

within a time series bitmap. More precisely, we will 

analyze the loss of accuracy of classification 

/clustering/anomaly detection algorithms when the input 

is based solely the information contained in the bitmap. 

As we will show, the experiments strongly confirm the 

utility of our approach.  

The rest of the paper is organized as follows. In Section 2, 

we report on the related literature and review the SAX 

representation, which is a cornerstone of our approach. In 

Section 3 we introduce our general visualization 

technique called Time Series Bitmaps, and in Section 4 we 

consider Time Series Thumbnails, a special representation 

that can be tightly integrated into a standard graphical 

user interface. Section 5 sees a comprehensive empirical 

evaluation, and lastly, Section 6 offers conclusions and 

directions for future work. 

2 Background and Related Work 
We begin this section with a brief description of the 

classic time series data mining tasks. We review some of 

the relevant data visualization methods as part of the 

previous related work in this domain. Finally, we 

conclude this section by reviewing SAX, a symbolic 

representation which is a cornerstone to our scheme. 

2.1 Time Series Data Mining Tasks 

Until recently, the bulk of the time series data mining 

research was focused on the tasks of indexing 

[17][21][24], clustering [1][4][23] and classification [23]. 

In contrast, there has been relatively little work on time 

series visualization, in spite of the fact that the usefulness 

of visualization is well documented [27]. The few works 

on time series visualization tend to limit their attention to 

small datasets [25][32][14]. However, data visualization 

becomes of crucial importance when the size of the data is 

large.  Because we claim that our visualization tool can be 

used in conjunction with some of the classic data mining 

tasks, we will briefly review them below. 

2.1.1 Classification 

The ability to predict the class of a previously unknown 

instance with the help of a training database is called 

classification. For example, imagine a scenario in which a 

patient visits a doctor because of chest pain and his/her 

ECG looks irregular. The doctor might want to search a 

database to find similar ECGs, in the hope that he/she will 

be able to offer clues about the patient’s condition. The 

notion of similarity clearly depends on the particular 

measure chosen. For short time series, Euclidian distance 

[22] and Dynamic Time Warping (DTW) [1][20][30] are 

known to work exceptionally well. However for longer 

time series, the choice of the appropriate measure of 

similarity for classification tasks is still somewhat of an 

open question. 

2.1.2 Clustering 

Clustering is the problem of organizing data into classes 

such that there is high intra-class similarity and low inter-

class similarity. It differs from classification in that the 

class labels are obtained directly from the data (cf. 

supervised vs. unsupervised learning). More informally, 

clustering finds a natural grouping among the objects 

according to the similarity measure chosen.  Once again, 

for short time series such as gene expression data, 

Euclidian distance and DTW work very well, but for long 

time series, some model-based technique is typically used 

[11][18][34].   

2.1.3 Anomaly Detection 

The task of finding anomalies or irregularities in data has 

been an area of active research, which has long attracted 

the attention of researchers in biology, physics, 

astronomy, and statistics, in addition to the more recent 

work by the data mining community [23]. While the word 

“anomaly” implies that a radically different subsection of 

the data has been detected, we are interested in more 

subtle deviations in the data. The possibility of such 

subtle deviations from normality are reflected by the 

terms which are often used as synonyms for anomaly 

detection, such as interestingness/ deviation/ surprise/ 

deviation/ novelty detection, etc.  

2.2   Related Work 

There has been relatively little work done on visualizing 

massive time series data sets. We will briefly review some 

of the algorithms proposed in the literature and we will 

explain why they are not well suited to the task at hand. 

The human eye is often heralded as the ultimate data-

mining tool [27]. The ubiquitous time series plot is used 

to help visualize data in many aspects of human life such 

as medicine (ECG), finance (changes in stock market), 

business (profit-and-loss history of a company), aerospace 

(satellite data), meteorology (fluctuations in air 

temperature or pressure on a daily, monthly, or yearly 

basis), entertainment (music, movies), etc. However many 

real world time series data sets are massive, and plots are 

limited by the resolution of the output device (screen, 

printer, etc.). Below we discuss some of the techniques 

used to mitigate the poor scalability of time series plots. 

These algorithms allow a greater scalability to larger 

datasets while leveraging off the human visual system to 

address the time series data mining tasks addressed above. 



2.2.1 Arc Diagrams 

Wattenberg introduced a visualization technique called 

Arc Diagrams [31] that exploits the fact that “sequences 

often contain significant repeated subsequences”. Many 

datasets come in the form of strings over  finite alphabet 

(text, DNA, music, etc.). Datasets containing real-valued 

data points can be easily converted to a string using a 

discretization technique [26]. Once the input is available 

in the form of a string, translucent arcs are drawn between 

repeated substrings (as shown in the Figure 2).  

 

 

Figure 2: Arc diagram for a musical composition. The 

repetitive patterns are represented by translucent arcs.  

The arc diagram allows the user to observe the 

occurrences of repeated patterns with a bird’s eye view of 

the sequence’s structure. However, this visualization 

technique is of less useful when there are many small 

repeated subsequences, which cause an uninformative 

jumble. This is often the case when the cardinality of the 

alphabet is small (e.g., DNA).  

2.2.2 Spiral 

Weber et al. presented an approach to visualize time 

series data based on a spiral representation [32]. The work 

in inspired by the observation that “often, time series data 

such as temperature, radiation of light and economic 

cycles exhibit periodic structures”. Each periodic 

structure of the time series is mapped on to a spiral ring to 

reveal the periodic behavior of the underlying process. 

The attributes are mapped to the properties of the spiral 

such as its color, texture and line thickness. A typical 

spiral diagram is shown in Figure 3. 
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Figure 3: A spiral visualization of a power demand dataset. 

Although Weber’s technique is simple and intuitive, it is 

only useful for identifying patterns the time series that are 

periodic. Although spiral are more space effective than 

simple linear plots, scalability remains as an issue.  

2.2.3 Viz-Tree 

Lin et al. employed a visualization technique called Viz-

Tree to discover patterns using a tree structure [25]. The 

time series data is first discretized to symbols using SAX 

(see below for a review of SAX). Then, the symbolic 

representation is encoded into a modified suffix tree 

wherein each branch of the tree represents one 

subsequence pattern. The frequencies of the various 

patterns are encoded as the line thickness of the suffix 

tree, so frequently occurring patterns show up as dense 

regions and rarely occurring patterns (possibly anomalies) 

show up as sparse lines. A screen shot of the Viz-Tree is 

shown in Figure 4. 

 

Figure 4: The Viz-Tree for an exhaust emissions dataset. 

Similar real valued time series (bottom left) tend to map to 

the same region of the tree (middle left) allowing a constant 

space summary of an arbitrarily long time series.  



While the Viz-Tree is scalable to large data sets, it 

performs well only for certain data mining tasks like 

anomaly detection and motif discovery. In addition, it is 

demanding in terms of user training and computer 

resources. 

2.3   Chaos Game Representations 

Our visualization technique is partly inspired by an 

algorithm to draw fractals called the Chaos game [4]. The 

parameters of the game are defined by a set of pairs of 

linear equations (i.e., an affine map), each of which is 

associated with a probability. Each affine map wi is 

defined by six parameters 
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Formally, the set {w1,w2,…,wk} and the associated 

probabilities defines an iterated function system (IFS). By 

changing the parameters of the IFS different fractals can 

be obtained (Sierpinski triangle, Dragon curve, Devil’s 

staircase, etc). 

As said, the chaos game is used to compute the fractal 

from the IFS. The game starts from a random point in the 

square [0,1]×[0,1]. At each step, a map is chosen at 

random according to its probability. The next point is 

obtained by applying the map to the previous point. 

Repeating this step thousands of times and plotting the 

trajectory of the points can visualize the fractal. 

The chaos game representation has been used extensively 

to study DNA sequences (see, e.g., [3],[10],[12],[16]). 

Since DNA has a four letters alphabet, the most natural 

IFS is: 

w a b C d e f prob 

1 .5 0 0 .5 0 0 .25 

2 .5 0 0 .5 0 .5 .25 

3 .5 0 0 .5 .5 0 .25 

4 .5 0 0 .5 .5 .5 .25 

If one runs the chaos game on this IFS using a truly 

random sequence, eventually all the points in [0,1]×[0,1] 

will be visited. In fact, the fractal associated with this IFS 

is the square [0,1]×[0,1]. 

If instead of using the random number generator, one uses 

the sequence under study to drive the selection of the 

maps, the Chaos Game Representation (CGR) of the 

sequence is obtained [16],[17]. In Figure 5, we associated 

w1 with the symbol “A”, w2 with C, w3 with G and w4 

with T. When the choice of the map is driven by the 

sequence, it is easy to realize that each point in the square 

[0,1]×[0,1] is in a one-to-one correspondence to a 

particular substring in the sequence. 

Since we are limited by finite arithmetic, suppose that the 

square [0,1]×[0,1] is divided in 2q×2
q pixels. Then, each 

pixel is uniquely identified by a substring of size q (see 

Figure 5). This representation is also called quadtree 

representation. 

Based on the Suffix Theorem [16], it is easy to prove the 

following fundamental corollary (see also [3]). 

Corollary. The number of occurrences of a substring in 

the original sequence is equal to the number of times the 

Chaos Games visits the pixel associated with that 

substring. 

The method can produce a representation of DNA 

sequences, in which both local and global patterns are 

displayed. For example, a biologist can recognize that a 

particular substring, say in a bacterial genome, is rarely 

used. This would suggest the possibility that the bacteria 

have evolved to avoid a particular restriction enzyme site, 

which means that he might not be easily attacked by a 

specific bacterio-phage. 

From our point of view, the crucial observation is that the 

CGR representation of a sequence allows the investigation 

of the patterns in sequences, giving the human eye a 

possibility to recognize hidden structures 
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Figure 5:  The quad-tree representation of a sequence over 

the alphabet {A,C,G,T} at different levels of resolution 

We can get a hint of the potential utility of the approach 

if, for example, we take the first 16,000 symbols of the 

mitochondrial DNA sequences of four familiar species 

and use them to create their own file icons. Figure 6 

below illustrates this. Even if we did not know these 

particular animals, we would have no problem 

recognizing that there are two pair of highly related 

species being considered.   

With respect to the non-genetic sequences, Joel Jeffrey 

noted, “The CGR algorithm produces a CGR for any 

sequence of letters”[17]. However it is only defined for 

discrete sequences, and most time series are real valued.   



 

Figure 6: The gene sequences of mitochondrial DNA of four 

animals, used to create their own file icons using a chaos 

game representation. Note that Pan troglodytes is the 

familiar Chimpanzee, and Loxodonta africana and Elephas 

maximus are the African and Indian Elephants respectively. 

The file icons show that humans and chimpanzees have 

similar genomes, as do the African and Indian elephants. 

This encouraged us to try a similar technique on time 

series data and investigate the utility of such 

representation on the classic data mining tasks of 

clustering, classification and visualization. Since CGR 

involves treating a data input as an abstract string of 

symbols, a discretization method is necessary to transform 

continuous time series data into discrete domain. For this 

purpose, we used the Symbolic Aggregate approXimation 

(SAX) [26], which we review below.  

2.4   Symbolic Time Series Representations 

While there are at least 200 techniques in the literature for 

converting real valued time series into discrete symbols 

[9], the SAX technique of Lin et. al. [26] is unique and 

ideally suited for data mining. SAX is the only symbolic 

representation that allows the lower bounding of the 

distances in the original space. The ability to efficiently 

lower bound distances is at the heart of hundreds of 

indexing algorithms and data mining techniques 

[2][8][20][22][26][30]. While we do not directly exploit 

the lower bounding property in this work, we note that if a 

representation is tightly lower bounding the original data, 

it must be representing it with great fidelity. It is this 

implicit property we are exploiting. We can be sure that 

the SAX representation is accurately summarizing the 

time series, and as we will show, a minor modification of 

the chaos game can accurately summarize the SAX 

sequences. 

The SAX representation is created by taking a real valued 

signal and dividing it into equal sized sections. The mean 

value of each section is then calculated. By substituting 

each section with its mean, a reduced dimensionality 

piecewise constant approximation of the data is obtained. 

This representation is then discretized in such a manner as 

to produce a word with approximately equi-probable 

symbols. Figure 7 shows a short time series being 

converted into the SAX word baabccbc. 
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Figure 7: A real valued time series can be converted to the 

SAX word baabccbc. Note that all three possible symbols 

are approximately equally frequent.    

The time and space complexity to convert a sequence to 

its SAX representation is linear in the length of the 

sequence.  

It is very common to process very long time series. In that 

case, it is not necessarily a good idea to convert the entire 

time series into a single SAX word. For example, let us 

assume we have a time series that is composed of several 

sine waves. We would expect the SAX representation to 

be repetitive, something like abcbabcbabcbabcba… . 

However if we add a small linear trend to the entire 

sequence, the SAX representation would drastically 

change to something like aaaaaaaabbbbbbbcc… .  In 

other words, the apparently local features of the sequence 

depend on the global structure. This is an undesirable 

property.  

Therefore, for long time series, we slide a shorter window 

across it, and obtain a set of shorter SAX words. In the 

case of the sine waves example, we would expect to 

obtain a set of SAX words something like 

abcba 

  bcbab 

    cbabc 

       …. 

Note that such a list is a global summary of local shapes. 

In the case above, consecutive rows only differ at the 

endpoints. For example, the c in the third place in the first 

word, moves to the second place in the second word, and 

the first place in the third word. In general, this is not 

always true. Because we are normalizing the contents of 

the sliding window at each step, a region that maps to one 

letter at the beginning of a word, may map to a different 

letter at the end of a word etc. 

Although there is some redundancy between rows, only 

two bits are required per symbol (for an alphabet size 

four) and therefore this representation is much smaller 

than the original data. 



Note that the user must choose both the length of the local 

sliding window N, and the number n of equal sized 

sections in which to divide it (as we will see, there is no 

choice to be made for alphabet size). A good choice for N 

should reflect the natural scale at which the events occur 

in the time series. For example, for ECGs this is about the 

length of one or two heartbeats. For traffic patterns, a 24-

hour window makes sense. A good value for n depends of 

the complexity of the signal.  Intuitively one would like to 

achieve a good compromise between fidelity of 

approximation and dimensionality reduction. Two groups 

of researchers have independently suggested using 

Minimum Description Length MDL to set these 

parameters [23][29]. As we shall see, the proposed 

technique is not too sensitive to parameter choices. 
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The SAX representation has been successfully used by 

various groups of researchers for indexing, classification, 

clustering [26], motif discovery [7][8][29], rule discovery, 

[28], visualization [25] and anomaly detection [23].  

3   Time Series Bitmaps 
 

At this point the connection between the two 

“ingredients” for the time series bitmaps should be 

evident. We have seen in Section 2.3 that the Chaos game 

[4] bitmaps can be used to visualize discrete sequences, 

and we have seen in Section 2.4 that the SAX 

representation is a discrete time series representation that 

has demonstrated great utility for data mining. It is natural 

to consider combining these ideas. 

The Chaos game bitmaps are defined for sequences with 

an alphabet size of four. It is fortuitous that DNA strings 

have this cardinality. SAX can produce strings on any 

alphabet size. As it happens, a cardinality of four (or 

three) has been reported by many authors as an excellent 

choice for diverse datasets on assorted problems 

[7][8][23][25][26] [28][29].  

We need to define an initial ordering for the four SAX 

symbols a, b, c, and d. We use simple alphabetical 

ordering as shown in Figure 8. 

After converting the original raw time series into the SAX 

representation, we can count the frequencies of SAX 

“subwords” of length L, where L is the desired level of 

recursion. Level 1 frequencies are simply the raw counts 

of the four symbols. For level 2 we count pairs of 

subwords of size 2 (aa, ab, ac, etc). Note that we only 

count subwords taken from individual SAX words. For 

example, in the SAX representation in Figure 8 middle 

right, the last symbol of the first line is a, and the first 

symbol of the second word is b. However we do not count 

this as an occurrence of ab. 

 

Figure 8: Top) The four possible SAX symbols are mapped 

to four quadrants of a square, and pairs, triplets etc are 

recursively mapped to finer grids.  Middle) We can extract 

counts of symbols from a SAX representation and record 

them in the grids. Bottom)  The recorded values can be 

linearly mapped to colors, thus creating a square bitmap.  

Once the raw counts of all subwords of the desired length 

have been obtained and recorded in the corresponding 

pixel of the grid, a final step is required. Since the time 

series in a data collection may be of various lengths, we 

normalize the frequencies by dividing by the largest 

value. The pixel values thus range from 0 to 1. The final 

step is to map these values to colors. In the example 

above we mapped to grayscale, with 0 = white, 1 = black. 

However, it is generally recognized that grayscale is not 

perceptually uniform [33]. A color space is said to be 

perceptually uniform if small changes to a pixel value are 

approximately equally perceptible across the range of that 

value. For all images produced in this paper we use 

Matlab’s “jet” color space, which is a linearization of a 

large fraction of all possible colors and which is designed 

to be perceptually uniform. 

Note that unlike the arbitrarily long, and arbitrarily shaped 

time series from which they where derived, for a fixed L, 

the bitmaps have a constant space and structure. 

We do not suggest any utility in viewing a single time 

series bitmap. The representation is abstract, and we do 

not expect a user to be able imagine the structure of time 

series given the bitmap. The utility of the bitmaps comes 

from the ability to efficiently compare and contrast them.  



4   Time Series Thumbnails 
 

A unique advantage of the time series bitmap 

representation is the fact that we can transparently 

integrate it into the user graphical interface of most 

standard operating systems. 

Since most operating systems use the ubiquitous square 

icon to represent a file, we can arrange for the icons for 

time series files to appear as their bitmap representations. 

Simply by glancing at the contents of a folder of time 

series files, a user may spot files that require further 

investigation, or note natural clusters in the data. 

The largest possible icon size varies by operating system. 

All modern versions of Microsoft Windows2 support 32 

by 32 pixels, which is large enough to support a bitmap of 

level 5. As we will see, level 2 or 3 seems adequate for 

most tasks/datasets.  

To augment the utility of the time series bitmaps, we can 

arrange for their placement on screen to reflect their 

structure. Normally, file icons are arranged by one of a 

handful of common criteria, such as name, date, size etc.    

We have created a simple modification of the standard 

Microsoft Windows (98 or later) file browser by 

introducing the concept of Cluster View. If Cluster View 

is chosen by the user, the time series thumbnails arrange 

themselves by similarly. This is achieved by performing 

Multi-Dimensional Scaling (MDS) of the bitmaps, and 

projecting them into a 2 dimensional space. For aesthetic 

reasons, we “snap” the icons to the closest grid point.  

Figure 9 displays an example of Cluster View in 

Microsoft Windows XP Operating System.  

In this example the Cluster View is obtained for five MIT-

BIH Arrhythmia Database files. It is evident in the figure 

that eeg1.dat, eeg2.dat and eeg3.dat belong to one cluster 

whereas eeg6.dat and eeg7.dat belongs to another cluster. 

In this case, the grouping correctly reflects the fact that 

latter two files come from a different patient to first three. 

To optimize the Cluster View, a cache (cluster.db) can be 

made to contain all relevant information required to 

generate the bitmaps and display their clustering, so that 

all the files do not have to be processed every time 

viewing the folder. However, even on a large screen full 

of small icons, an efficient MDS implementation can 

dynamically adjust the position of the icons in real time as 

the user changes the aspect ratio of the file browser. 

                                                           

2 Actually, Windows systems support icons of size 48 by 48 

pixels, however we require a size that is an integer power of 

two. 

 

Figure 9: A snapshot of a folder containing cardiograms 

when its files are arranged by “Cluster” option. Five 

cardiograms have been grouped into two different clusters 

based on their similarity. 

  

5   Experimental Evaluation 
In this section, we test our proposed approach with a 

comprehensive set of experiments. In Section 5.1 we will 

show a simple experiment which require subjective 

evaluation, but which strongly hint at the value of our 

approach. In Section 5.2 we will show some experiments 

that objectively measure the utility of our approach on 

classification, clustering and anomaly detection. We note 

once again that the quality of illustrations here suffers 

from monochromic printing and small-scale reproduction. 

We urge the interested reader to consult [19] for large-

scale color reproductions and additional details.  

 

5.1 Subjective Demonstration 

First, we used the tool to browse the hundreds of datasets 

in the UCR archive. One such dataset, known as 

Kalpakis_ECG, contains 70 ECGS used to test an 

ARIMA based clustering technique [18]. When we 

glanced at this dataset with our tool we noticed something 

interesting. While ECGs (and therefore the thumbnails 

derived from them) can have great variability, five of the 

70 thumbnails had radically different thumbnails. Figure 

11 illustrates this on a subset of the full database.  

It was natural to ask why this should be, so we further 

examined the original raw data, and noticed that the 5 

relevant time series had radically different structure to all 

the rest. 

 



 

Figure 10:  The two thumbnails in the first row are radically 

different from others. Whereas normal2.txt, normal4.txt, 

normal6.txt and normal8.txt are actually ECGs, normal14.txt 

and normal16.txt turned out to be the action potential of a 

pacemaker cell. 

We asked a cardiologist to explain these findings. She 

informed us that the 5 recordings in question are not 

ECGs! They are in fact examples of the action potential of 

a normal pacemaker cell (not to be confused with the 

electronic man-made devices which mimic them, and are 

named after them). 

 

 

Figure 11: Top) Four snippets from randomly chosen ECGs 

from the Kalpakis_ECG dataset. Note that ECGs can have 

great variability. Bottom) A snippet from the normal18 

“ECG” from the Kalpakis_ECG dataset. In fact, this is not 

an ECG, but an example of the action potential of a normal 

pacemaker cell.  The fact that this time series did not belong 

with the others was discovered by a casual glance with our 

time series thumbnail tool (See Figure 10). 

Once the time series is plotted, it becomes obvious that 

these data are not ECGs. However, neither the original 

s noted in Section 3, our time series bitmap 

feature among visualization 

forcefully 

clustering and anomaly detection, we 

eriment, we examined the UCR Time 

or datasets that come in pairs. For 

r level of the tree, 

1] and ARIMA models 

authors [18] nor the other researchers who have published 

on this data [] seem to have noticed this. This suggests the 

utility of our approach a simple sanity check for 

practitioners working with large datasets. 

 

5.2 Objective Experiments 

A

representation has a unique 

techniques in that it allows the calculation of distance 

between two time series. This ability is particularly 

attractive because it allows very efficient comparison. 

Once the bitmap is created (in time linear in the length of 

the sequence) the time complexity for comparison is only 

O(L), since L is a small constant, this is O(1).   

Note that we are mostly interested in relatively long time 

series here. For short time series, it has been 

shown that Euclidean distance and DTW are very hard to 

beat [22][30]. In any case, since short time series can be 

visualized directly, there is less motivation to use 

visualization techniques on them. It is difficult to define 

“short” and “long” formally. Intuitively, short time series 

would include things like a gene expression profiles (10 to 

40 datapoints) and individual heartbeats (100 to 1,000 

datapoints). In contrast long time series include things like 

a 5-minute trace of an ECG or 10-days worth of a 

telemetry sensor.  

Since a distance/similarity measure is all that is required 

for classification, 

will compare time series thumbnails to classic solutions to 

these problems below.  

5.2.1 Clustering 
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Series Archive f

example, in the Buoy Sensor dataset, there are two time 

series, North Salinity and East Salinity, and in the 

Exchange Rate dataset, there are two time series, 

German Marc and Swiss Franc. We were able to identify 

fifteen such pairs, from a diverse collection of time series 

covering the domains of finance, science, medicine, 

industry, etc. Although our method is able to deal with 

time series of different lengths, we truncated all time 

series to length 1,000 for visual clarity. 

While the correct hierarchical clustering at the top of the 

tree is somewhat subjective, at the lowe

we would hope to find a single bifurcation separating each 

pair in the dataset. Our metric, Q, for the quality of 

clustering is therefore the number of such correct 

bifurcations divided by fifteen, the number of datasets. 

For a perfect clustering, Q = 1. 

We compared to two well-known and highly referenced 

techniques, Markov models [1

[18][34]. For each technique we spent one hour searching 

over parameter choice and reported only the best 



performing result. To mitigate the problem of overfitting, 

we set the parameters on a different, but similar dataset. 

The results for the three approaches are given in Table 1. 
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Table 1: The quality of clustering obtained by 

the 3 algorithms under consideration.  

Algorithm  Q 

Thumbnails 0.93 

Markov Model 6 0.4

ARMA models  0.40 

 

Figure esult endrogram for our 

pproach. The dendrograms for the other approaches are 

 

proach with different parameter settings. 

12 shows the r ing d

a

omitted here for brevity, but may be viewed at [19].  

We wished to test whether our approach was sensitive to 

its parameters, so we randomly changed them and

reevaluated the quality of the clustering. Table 2 contains 

the results. 

Table 2: The quality of clustering obtained by 

our ap

N n Q 

64 8 0.86 

77 11 3 0.7

54 9 0.86 

 

These re s suggest that our app  is not overly 

nsitive to parameter choices.  

CG clustering problem, 

sult roach

se

We repeated the experiment with a homogenous datasets. 

We considered a four-class E

where each class corresponds to a different patient. Figure 

13 shows the clustering obtained with level 3 bitmaps, 

using parameters N = 50, n = 10. The results are correct, 

in that each time series from a given patient is assigned to 

it own sub-tree. For this problem we found that we could 

vary the N amd n parameters by a factor of 4 (N > n) and 

still obtain the correct clustering. 

ee. For this problem we found that we could 

vary the N amd n parameters by a factor of 4 (N > n) and 

still obtain the correct clustering. 

  

Figure 12: The clustering obtained by the time series 

thumbnail approach on a heterogeneous data collection. 

Bold lines denote incorrect subtrees. A key the data appears 

in Appendix A. 

Figure 12: The clustering obtained by the time series 

thumbnail approach on a heterogeneous data collection. 

Bold lines denote incorrect subtrees. A key the data appears 

in Appendix A. 

  

  



 

Figure 13: The clustering obtained by the time series 

thumbnail approach on a homogeneous data collection. 

 

5.2.2 Classification 

For classification we considered an ECG classification 

problem, and a video surveillance problem. Our ECG 

dataset is a four-class problem derived from BIDMC 

Congestive Heart Failure Database of four patients.  Each 

instance consists of 3,200 contiguous data points (about 

20 heartbeats) randomly extracted from a long (several 

hours) ECG signal.  Twenty instances are extracted from 

each class (patient). 

The video surveillance dataset is a time-series dataset 

extracted from video sequences of two actors either 

aiming a gun or simply pointing at a target. We randomly 

extracted twenty instances of 1,000 contiguous data points 

from each of the following long time series: 
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A. Male Actor 1 with gun 

B. Male Actor 1 without gun (point) 

C. Female Actor 2 with gun 

D. Female Actor 2 without gun (point) 

The problem is therefore a four-class problem of 

differentiating each of the acts independently – A vs. B 

vs. C vs. D.  In total, each dataset contains eighty 

instances. 

We compared to the ubiquitous Euclidean distance [21] 

[22][24] and DTW [20][30]. 

For both datasets we measure the error rates, using the 

one-nearest-neighbor with leaving-one-out evaluation 

method. The results are summarized in Table 3. 

Table 3: Classification error rates for two datasets. 

 Euclidean DTW Bitmaps 

ECG 42.25 % 16.25 % 7.50 % 

Surveillance 37.50 % 12.5 % 8.75 % 

We also considered a Normal vs Arrhythmia problem that 

appeared in [11]. Using Markov models, the authors 

reported an error rate of 2%. With our technique, under 

virtually any parameter settings we achieve 0% error.  We 

can achieve perfect classification using one nearest 

neighbor as above, or we can use MDS to project the data 

into 2 dimensional space and achieve perfect 

classification using a simple linear classifier, a decision 

tree or SVD. Figure 14 shows the data projected into 2D 

space, and the linear classifier learned.  

1

23

4

5

6

7

8

910

11

12

13 14

15

16
1718

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MIT ECG Arrhythmia Data

1

23

4

5

6

7

8

910

11

12

13 14

15

16
1718

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MIT ECG Arrhythmia Data

 

Figure 14: The MIT ECG Arrhythmia dataset projected into 

2D space using only the information from a level 2-time 

series bitmap. The two classes are easily separated by a 

simple linear classifier (gray line). 



 

5.2.3 Anomaly detection  

The time series bitmap distance measure allows the 

creation of a simple anomaly detection algorithm. 

We can create two concatenated windows, and slide them 

together across the sequence. At each time instance we 

build a time series bitmap for the two windows, and 

measure the distance between them. This distance we 

report as an anomaly score. Figure 15 illustrates the idea 

on some annotated ECG data.  

 

Figure 15: Using time series bitmaps as anomaly detectors. 

Top) A subsection of an ECG dataset. A cardiologist 

annotated an anomaly at approximately the 22-second mark. 

Bottom) The score for our approach shows a strong peak for 

the duration of the anomaly. 

This approach easily detects the single anomaly shown, 

and the rest of the annotated anomalies in this dataset (not 

shown). At each “step” of the sliding window we can 

incrementally ingress a new data point, and egress an old 

data point (updating only two pixels of the each 

thumbnail), so the time complexity is linear in the length 

of the time series. 

In the simple example above, both sliding windows are of 

the same length. More generally, one may wish for the 

trailing window to be larger, so that it retains more of a 

“memory” of the previous data. We leave such 

considerations for future work. 

6  Conclusions and Future Work. 
In this work, we have introduced a new framework for 

visualization of time series. Our approach is unique in that 

it can be directly embedded into any standard GUI 

operating system. We demonstrated the effectiveness of 

our approach on a variety of tasks and domains. Future 

work includes an extensive user study, and investigating 

techniques to automatically set the system parameters.   
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Appendix A: Key to Datasets 

 
Table A: The datasets used in the Experiments in Section 5.1.1 
1  MotorCurrent1:   17  Exchange Rate: Swiss Franc        

2  MotorCurrent2:    18  Exchange Rate: German Mark    

3  Video Surveillance: Ann, gun      19  Furnace: heating input     

4  Video Surveillance: Ann, no gun    20  Furnace: cooling input            

5  Video Surveillance: Eamonn, gun      21  Reel 2: angular speed       

6  Video Surveillance: Eamonn, no gun 22  Reel 2: tension      

7  Power Demand: Jan-March (Italian)      23  Balloon1     

8  Power Demand: April-June (Italian)    24  Balloon2 (lagged) 

9  Great Lakes (Erie) 25  Evaporator: feed flow   

10  Great Lakes (Ontario) 26  Evaporator: vapor flow      

11  Buoy Sensor:  North Salinity   27  Shuttle Inertia Sensor X    

12  Buoy Sensor   East Salinity        28  Shuttle Inertia Sensor X 

13  Koski ECG: slow 1      29  Shuttle Inertia Sensor Z 

14  Koski ECG: slow 2        30  Shuttle Inertia Sensor Z 

15  Koski ECG: fast 1     

16  Koski ECG: fast 2      

 

 

 

 



Appendix B: Additional Anomaly Detection 

Results 

Note that these results do not appear in the SIAM paper. 

 

 A: Using time series bitmaps as an anomaly detector. 

Top) A subsection of an ECG dataset. A cardiologist 

annotated a premature ventricular contraction at 

approximately the 1.4 mark. Bottom) The score for our 

approach shows a strong peak for the duration of the 

anomalous heartbeat. 

 

B: A cardiologist annotated two premature ventricular 

contractions at approximately the 0.4 and 1.1 mark 

respectively, and a supraventricular escape beat at about 

the 1.0 mark. Our approach easily detects all the three 

anomalies. Top) A subsection of an ECG dataset. Bottom) 

The score for our approach shows three strong peaks for 

the duration of the anomalous heartbeat. 

 C: This figures shows a very complex and noisy ECG. 

But according to a cardiologist, there is only one abnormal 

heart beat at approximately the 0.23 mark. Our tool easily 

finds it. 

 

 


