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Abstract

This paper presents a statistical feature approach in fully convolutional time series classification (TSC), which is

aimed at improving the accuracy and efficiency of TSC. This method is based on fully convolutional neural

networks (FCN), and there are the following two properties: statistical features in data preprocessing and fine-

tuning strategies in network training. The key steps are described as follows: firstly, by the window slicing principle,

dividing the original time series into multiple equal-length subsequences; secondly, by extracting statistical features

on each subsequence, in order to form a new sequence as the input of the neural network, and training neural

network by the fine-tuning idea; thirdly, by evaluating the classification performance about test sets; and finally, by

comparing the sample sequence complexity and network classification loss accuracy with the FCN using the

original sequence. Our experimental results show that the proposed method improved the classification effects of

FCN and the residual network (ResNet), which means that it has a generalization ability to the network structures.
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1 Introduction
Time series data are widely used for representing special

data such as biological observations, stock prices, wea-

ther readings, and health monitoring data. How to ex-

tract useful information from time series data is

becoming more and more important. Time series classi-

fication (TSC) is one of the key tasks, which is aimed at

predicting class labels for time series. Nowadays, TSC is

widely used successfully in medical diagnosis and early

warning [1].

Many scholars have studied TSC and provided some

methods. The approaches can be divided into the follow-

ing three categories: distance-based approach, feature-

based approach, and ensemble-based ones [2]. The key

idea of distance-based approach is to measure the simi-

larity between any given two time series. Commonly

used classification algorithms are K-nearest neighbor

(KNN), support vector machines (SVM) with similarity-

based kernels, and dynamic time warping (DTW). The

key idea of feature-based ones is mainly extracting a set

of features representing the global time series patterns,

and then commonly form a bag-of-words (BoW)

provided to classifiers [3]. These kind of classification al-

gorithms are the bag-of-features framework (TSBF) [4],

bag-of-SFA-symbols (BOSS) [5], and BOSSVS method

[6]. The key idea of third ones is to combine different

classifiers together to achieve a higher accuracy. For ex-

ample, PROP combines 11 classifiers based on elastic

distance measures with a weighted ensemble scheme [7].

Shapelet ensemble (SE) provides the classifiers through

the shapelet transform in conjunction with a heteroge-

neous ensemble [8]. In summary, these methods de-

scribed above commonly require data preprocessing and

feature extraction.

In recent years, deep neural networks have been used

for TSC tasks, for example, multi-scale convolutional

neural network (MCNN) [1], fully convolutional network

(FCN) [2], and residual network (ResNet) [2]. FCN and

ResNet do not require a lot of data preprocessing or fea-

ture engineering and can provide a good classification

effect. Karim et al. proposed long-short-term memory

fully convolutional networks (LSTM-FCN), which fur-

ther improved the performance of the FCN [9]. But it in-

creased the complexity of calculations and classification.

Based on FCN, this paper studies the time series prepro-

cessing and found a way to improve the performance of

FCN classification. The key idea is described as follows:
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given some original time series of UCR data sets [10],

the method uses the window slicing principle to divide

the original time series into multiple equal-length subse-

quences and then extracts statistical features on each

subsequence to form a new sequence as the input of the

neural network. In the network training process, we

introduce the fine-tuning idea and evaluate the classifi-

cation performance of the network by using a test set.

Finally, the sample sequence complexity and network

classification loss accuracy are compared with the FCN

using the original sequence. Experimental results show

that FCN performs better on the samples of the statis-

tical features of the extracted subsequences, and the

found method also improves the classification perform-

ance of ResNet, which means that it has generalization

ability to the network structures.

The remainder of the paper is organized as follows.

Section 2 gives some basic notations such as time series

classification. Section 3 introduces the network architec-

ture and fine-tuning of models. Section 4 provides ex-

periments and results analysis. Section 5 improves the

experiments from two aspects: increase the number of

original sequences and extract more statistical features.

Finally, we present conclusions and future work.

2 Some basic notations
This section will introduce some basic notations such as

TSC [11].

2.1 Definition 1

An ordered set of real values with the form X = [x1, x2,

..., xt] is called a univariate time series (UTS). The length

of X is equal to number t.

2.2 Definition 2

Given N different UTS with Xi
∈ RT, X = [X1, X2, ..., XN] is

called an M-dimensional multivariate time series (MTS).

2.3 Definition 3

A data set D = {(X1, Y1), (X2, Y2), ..., (XN, YN)} is a set of

pairs (Xi, Yi) where Xi could either be a UTS or MTS

with Yi as its one-hot label vector. For a data set con-

taining N classes, Yi is the vector of length N, where

j ∈ [1,N] is equal to 1 ifXi is j and 0 otherwise.

2.4 Definition 4

Given some time series of length t, X = {Xt, t ∈ 1, 2, ...N}

and their labels {Y1, Y2, ..., YN}, TSC refers to input a new

time series and output its labels Yi.

3 Network architecture and fine-tuning of models
3.1 Network module and architecture

In FCN, a time convolution block is used as a time series

feature extraction module, which consists of a convolution

layer, a batch normalization layer, and an activation func-

tion [4, 12–15]. Some researchers provided methods for

training deep networks [15–18]. The activation function

may be a linear correction unit or a parametric linear cor-

rection unit. Convolution layer is shown in Fig. 1. Gener-

ally, the input to a temporal convolutional network is a

time series signal. Given L convolutional layers, filters can

capture how the input signals evolve over the course of an

action. For each layer, all of the filters are parameterized

by tensor W ðlÞ
∈RF l�d�F l−1 and biases bðlÞ∈RF l , where

l ∈ {1, ..., L} is the layer index and d is the filter duration.

For the l − th layer, the i − th component of the incoming

(normalized) activation matrix Eðl−1Þ
∈RF l−1�T l−1 from the

previous layer for each time t where f(·) is a rectified linear

unit [9, 12, 15].
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When training neural networks, standardized input

can increase the speed of neural network training. The

method is to normalize the training data, which means

that raw data is subtracted from its mean and divided by

its variance. Standard processing is also required at each

hidden layer of the neural network, which is the batch

normalization, as shown in Fig. 2.

Batch normalization processes lth hidden layer input

Zl − 1 as follows, ignoring the superscript l − 1:

μ ¼ 1

m

X

i

z ið Þ

σ2 ¼ 1

m

X

i

zi−μð Þ2

z ið Þ
norm ¼ z ið Þ

−μffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ε

p

ð2Þ

where m is the number of single mini-batch samples and

ε prevents the denominator from being zero, which can

Fig. 1 Convolution operation diagram [4, 12–15]
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be a value 10−8. In this way, all the inputs of the hidden

layer have a mean of 0 and a variance of 1.

In most cases, we do not expect all z(i) means equal to

0 and the variance is 1. So, it usually needs to be further

processed onz(i):

~z ið Þ ¼ γ � z ið Þ
norm þ β ð3Þ

where γ and β are hyper-parameters, which can be ob-

tained by gradient descent. Setting γ and β to different

values, you can get any mean and variance. Activation

function ReLU is shown in Fig. 3. Compared with other

activation functions, ReLU has the advantages as follows:

for linear functions, ReLU is more expressive; for nonlin-

ear functions, ReLU is due to nonnegative interval gradi-

ents. Hence, there is no vanishing gradient problem.

After the time series is extracted by the time convolu-

tional block, the extracted features are input to the

global average pooling module to output the classification

result. The global average pooling module is composed of

the global average pooling layer and the Softmax layer.

Global average pooling layer is shown in Fig. 4.

The last layer of the traditional CNN is a fully con-

nected layer. The number of parameters is very large,

which is easy to cause over-fitting (such as AlexNet net-

work). Therefore, the paper proposes to use the global

mean pooling layer instead of the fully connected layer

[13]. For different traditional connection layers, global

averaging is performed for each feature sequence so that

each feature sequence can get an output. This can

greatly reduce the network parameters and avoid over-

fitting. On the other hand, each feature sequence is

equivalent to an output feature, and this feature repre-

sents the characteristics of the output class.

TSC is multi-category. Generally, the most common

method for solving multi-classification is to design n-

output nodes. For example, the neural network can de-

sign an n-dimensional array as an output. Each dimen-

sion in the array corresponds to a category of the time

series. The Softmax layer transforms the output of a

neural network into a probability distribution. Each di-

mension value represents the probability of belonging to

this category, and hence by cross entropy, it can be pre-

dicted about the distance between the probability distri-

bution and one of the real answers.

FCN is performed as a feature extract. Its overall

structure is shown in Fig. 5. The FCN contains three

time convolutional blocks and one global average pool-

ing one, where filter sizes of convolutional blocks are

128, 256, and 128, respectively.

The convolution operation is fulfilled by three 1D kernels

without striding, whose sizes are 8, 5, and 3, respectively.

The 1 × 1 convolution kernel can operate on a cross-

channel aggregation and further reduce the dimension. The

calculation of the time convolution block [2] is as follows:

y ¼ W � xþ b

s ¼ BN yð Þ
h ¼ ReLU sð Þ

ð4Þ

where ⊗ is the convolution operator.

Fig. 2 Batch normalization [15]

Fig. 3 ReLU function expression and image representation
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The global average pooling block further processes the

feature sequence, and the final classification result is

given by the Softmax layer. Residual network is shown

in Fig. 6. By adding a long jump connection to each frag-

ment, ResNet extends the neural networks to very deep

structures, which can allow the gradient flow to pass dir-

ectly through the bottom layer. It achieves the most ad-

vanced performance in target detection and other

visually related tasks [14]. The residual network also per-

forms well in solving TCS. The convolutional blocks in

Eq. 4 are used to build each residual block. Let Blockk
denote the convolutional block with the number of fil-

ters k, and the residual block is formalized as follows [2]:

h1 ¼ Blockk1 xð Þ
h2 ¼ Blockk2 h1ð Þ
h3 ¼ Blockk3 h2ð Þ
y ¼ h3 þ x

ĥ ¼ ReLU yð Þ

ð5Þ

The number of filters is the pair (64, 128, 128). The re-

sidual network used consists of three residual blocks and

a global mean pool block, as shown in Fig. 6.

3.2 Fine-tuning of models

Fine-tuning can be described as transfer learning on the

same data set [9]. The training procedure consists of two

distinct phases. In the initial phase, the model is trained

on a given data set with selected optimal hyper-

parameters. In the second one, fine-tuning is applied to

the initial model. In fact, the procedure of transfer learn-

ing is iterated over in fine-tuning phase. Each repetition

is initialized using the model weight of the previous iter-

ation. At each iteration, the learning rate is halved,

which accelerates the iterative process. The procedure is

repeated K times, until the initial learning rate gets the

lowest threshold, where K is an arbitrary constant. The

algorithm is shown in Algorithm 1.

4 Experiments and result analysis
4.1 Experiment settings

In the experiment, FCN neural network is trained with

original sequence data set and data set based on statis-

tical feature processing, and the network performance is

evaluated on the test set. In order to present the

generalization ability of the neural network structure

based on statistical feature sequence, the same experi-

ment on ResNet is carried out to evaluate and compare.

The original sequence data set comes from UCR time

series data, which contains 44 classes, divided into train-

ing sets and test sets, as shown in https://www.cs.ucr.

edu/~eamonn/time_series_data_2018/. Among them,

the class with the longer time series is selected as the

Fig. 4 Schematic diagram of pooling operation

Fig. 5 The network structure of FCN [2]
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input sample. The training sample format in the data set

is as follows:

data ¼
y1; x

1
1; x

1
2; :::; x1t

y2; x
2
1; x

2
2; :::; x2t

::::::

yN ; xN1 ; xN2 ; :::; xNt

2
664

3
775

N� tþ1ð Þ

ð6Þ

where N is the number of training samples and t is the

length of the time series in the training samples. The

only preprocessing of the original sequence before the

experiment is standardization. Let μ be the average and

σ2 be the variance of the data, then

data ¼ data−μ

σ2
ð7Þ

Then the training samples are extracted from the data

to form a matrix.

X ¼
X1

X2

X3

X4

2
664

3
775 ¼

x11; x
1
2; :::; x1t

x21; x
2
2; :::; x2t

::::::

xN1 ; xN2 ; :::; xNt

2
664

3
775

N�t

ð8Þ

The class label yi corresponding to the training sample

is converted to a one-hot vector Yi, which is composed of

only 0 and 1. If the training sample Xi belongs to a class,

the corresponding class label is 1, and otherwise is 0.

Y ¼ Y 1;Y 2; :::;YN½ � ¼

1; 0; 0; :::; 0
0; 1; 0; :::; 0
0; 0; 1; :::; 0
:::

0; 0; 0; :::; 1

2
66664

3
77775
C�N

ð9Þ

where C is the number of types of time series. Normalize

the time series samples (X, Y) into the FCN neural net-

work for training. We call statistical feature data set,

which is shown in Fig. 7.

With regard to time series preprocessing, the trad-

itional machine learning method is to extract the

Fig. 6 The network structure of ResNet [2]

Fig. 7 Subsequence division diagram
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statistical features of the entire time series and then use

the algorithm of random forest to classify. The modern

deep learning method is to convolute directly on the

normalized original sequence [2], then enter into FCN.

In this paper, we have found a better time series prepro-

cessing method. Before the standardization, the original

sequence is divided into multiple subsequences accord-

ing to the given step size and subsequence length, and

then the statistical features are extracted from each sub-

sequence (maximum, mean, polar difference, variance,

peak trough, kurtosis, etc.), and let these statistical fea-

tures constitute a new time series as the input of the

neural network. On the data set, the final input data

samples are described as follows:

x11; x
1
2;…; x1t

x21; x
2
2;…; x2t
…

xN1 ; xN2 ;…; xNt

2
664

3
775

N�t

sl; s;nsf

x11;…; x1nsf
x21;…; x2nsf

…

xN1 ;…; xNnsf

j
x11;…; x1nsf
x21;…; x2nsf

…

xN1 ;…; xNnsf

j
…

…

…

…

2
664

3
775

N�nsf t−slþs
s

¼ Xnew

ð10Þ

where sl is the length of the subsequence, s denotes to

stride, and nsf refers to the number of statistical features

selected. Moreover, new time series samples (Xnew, Y)

are standardized and then input into FCN neural net-

work for training.

4.2 Hyper-parameter setting

FCN and ResNet are trained with the Adam algorithm.

Using the learning rate attenuation (the learning rate de-

creases as the number of iterations increases), the initial

value of the learning rate is set to 0.001, and the final

value of the fine-tuning 0.0001; in order to avoid the

small amount of data and when the neural work is over-

fitting, the method of early termination is adopted, in

which the optimal value does not change for 50 genera-

tions, and the network determines that the optimal value

is found, and the program ends early. Batch

normalization parameters β1 = 0.9, β2 = 0.999, ε = 10−8.

The loss function for all tested models is categorical

cross entropy. The number of iterations is 2000.

4.3 Experiment and evaluation

In order to present the generalization ability based on

the statistical feature method, the same experiments are

performed on the residual network. The performance of

FCN and ResNet has been presented to be superior to

Fig. 8 MPCE ranking of time series algorithm

Table 1 The dimensions of OTS and new SEF

Class Original data Subsequence data

Train_sample Test_sample Train_sample Test sample

Beef (30,470,1,1) (30,470,1,1) (30,17,7,1) (30,17,7,1)

_ECG_torso (1380,1639,1,1) (40,1639,1,) (1380,64,7,) (40,64,7,1)

FISH (175,463,1,1) (175,463,1,1) (175,17,7,1) (175,17,7,1)

Haptics (308,1092,1,1) (155,1092,1,1) (308,42,7,1) (155,42,7,1)

nlineSkate (550,1882,1, 1) (100,1882,1,1) (550,74,7,1) (100,74,7,1)

Lighting2 (61,637,1,1) (60,637,1,1) (61,24,7,1) (60,24,7,1)

MALLAT (2345,1024,1,1) (55,1024,1,1) (2345,750,1,1) (55,750,1,1)

CG_Thorax1 (1965,750,1, 1) (1800,750,1,1) (1965,29,7,1) (1800,29,7,1)

CG_Thorax2 (1965,750,1, 1) (1800,750,1,1) (1965,29,7,1) (1800,29,7,1)

OliveOil (30,570,1,1) (30,570,1,1) (30,21,7,1) (30,21,7,1)

OSULeaf (242,427,1,1) (200,427,1,1) (242,6,7,1) (200,16,7,1)

ightCurves (8236,1024,1,1) (1000,1024,1,1) (8236,39,7,1) (1000,39,7,1)

Symbols (995,398,1,1) (25,398,1,1) (995,14,7,1) (25,14,7,1)

yoga (3000,426,1,1) (300,426,1,1) (3000,16,7,1) (300,16,7,1)
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many other deep learning algorithms in dealing with the

task of time series classification. According to the stan-

dardized MPCE score based on the mean t test given in

[2], the rankings of FCN and ResNet are shown in Fig. 8.

In the experiment, FCN and ResNet are trained with

standardized raw data sets and new data sets based on

statistical features, and then the test set is used for error

and loss analysis to draw a conclusion. The experimental

environment uses Google Colaboratory and the GPU

model is Tesla K80. Google Colaboratory is a research

tool open to Google, mainly used for machine learning

development and research, where you can run python

code to train neural networks.

Mean per class error (MPCE) is the arithmetic

mean of each type of error, which can be used to

evaluate the classification performance of the specific

models on multiple data sets. The calculation formula

is as follows:

Table 2 Comparison of loss, accuracy, and time of OTS and characteristic subsequences on FCN

Class Sub_acc Ori_acc Sub_loss Ori_loss Sub_
time
(ms)

Ori_time
(ms)

MPCE

Sub Ori

Beef 0.20000000 0.20000000 1.74064850 1.78573286 3084 1027 0.0266 0.0266

_ECG_torso 0.25000000 0.12500000 0.75720222 0.95993692 2001 3002 0.0187 0.0219

FISH 0.12000000 0.16000000 1.89679190 2.04517563 1007 2009 0.0050 0.0048

Haptics 0.25161290 0.21935483 1.60219245 1.62430625 2007 2008 0.0048 0.0050

nlineSkate 0.14000000 0.21000000 1.87575633 1.92259577 2004 3006 0.0086 0.0079

Lighting2 0.66666665 0.58333333 0.7384292 0.66227742 2041 3046 0.0055 0.0069

MALLAT 0.30909091 0.12727272 1.18807646 1.60943770 4002 5002 0.0126 0.0159

CG_Thorax1 0.06666666 0.05833333 3.53328775 3.68092299 4002 5003 0.0005 0.0005

CG_Thorax2 0.08777777 0.04166666 3.56809761 3.69119312 4002 5003 0.0005 0.0005

OliveOil 0.16666667 0.26666668 1.39539515 1.85584843 4137 4149 0.0278 0.0244

OSULeaf 0.30000000 0.24500000 1.56651332 1.55764289 5020 55021 0.0035 0.0038

ightCurves 0.91000000 0.46100000 0.17210860 0.36349089 8942 11001 0.0001 0.0005

Symbols 0.92000001 0.36000001 0.75745789 1.02618091 6006 6006 0.0032 0.0256

yoga 0.45666666 0.49666666 0.58991410 0.67094716 7002 8003 0.0018 0.0017

mean 0.346082 0.253878 1.527277 1.675406 3946.929 8091.857 0.0085 0.0104

Data in italic means better experimental results

Fig. 9 The accuracy of the original sequence and feature subsequence on FCN
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PCEk ¼
1−acc

Ck

MPCEi ¼
1

K

X
PCEk

ð11Þ

The basic idea of MPCE is as follows: the expected

error rate for a single class across all the data sets. By

considering the number of classes, MPCE is more robust

as a baseline criterion [2].

4.4 Results and analysis

The experiment limited the length of the time series, se-

lected 14 classes with a time series length exceeding 350,

and calculated the original time series and the time

series dimensions after extracting the statistical features.

The dimensions of the two time series are shown in

Table 1, where the original time series (OTS) and new

sequence of extracted features (SEF).

From the data in Table 1, it can be found that the ori-

ginal time series is divided into multiple subsequences

Fig. 10 The loss of original sequence and feature subsequences on FCN

Table 3 Comparison of loss, accuracy, and time of OTS and characteristic subsequences on ResNet

Class Sub_acc Ori_acc Sub_loss Ori_loss Sub_time
(ms)

Ori_time
(ms)

MPCE

Sub Ori

Beef 0.20000000 0.20000000 1.74496531 1.73106301 5158 3086 0.0266 0.0266

_ECG_torso 0.25000000 0.57500000 0.39711393 0.76636980 8006 12008 0.0187 0.0106

FISH 0.29142857 0.12000000 1.74508711 2.00773776 5028 6034 0.0040 0.0050

Haptics 0.21935484 0.11612903 1.59135229 1.63156084 80255 9029 0.0050 0.0057

nlineSkate 0.18000000 0.18000000 1.80085803 1.99357187 13023 13023 0.0082 0.0082

Lighting2 0.66666666 0.66666665 0.82555122 0.80486704 10167 11185 0.0055 0.0055

MALLAT 0.81818181 0.25454545 0.45194966 0.68730921 16007 22009 0.0033 0.0135

CG_Thorax1 0.09777778 0.08388889 3.28499700 3.29407895 18009 23012 0.0005 0.0005

CG_Thorax2 0.13000000 0.02277778 3.31574941 3.43187079 20010 25013 0.0005 0.0005

OliveOil 0.16666667 0.43333334 1.71029079 1.31717467 18609 20650 0.0278 0.0189

OSULeaf 0.27000000 0.22000000 1.52914039 1.45554120 21089 22093 0.0036 0.0039

ightCurves 0.96600000 0.84100000 0.11879947 0.24178773 36004 555007 0.0000 0.0001

Symbols 0.87999999 0.40000000 0.43127703 0.52733892 27027 30030 0.0048 0.0240

yoga 0.45666666 0.45666666 0.52088028 0.64692467 32011 36012 0.0018 0.0018

mean 0.399482 0.326429 1.390572 1.466943 22171.64 56299.36 0.0079 0.0089

Data in italic means better experimental results

Lei and Wu EURASIP Journal on Wireless Communications and Networking         (2020) 2020:46 Page 8 of 13



and the data dimension of the new time series

formed after extracting the statistical features is sig-

nificantly reduced, and the new sequence maintains

the statistical characteristics of the original series and

removed redundant part, so if the new sequence is in-

put to FCN, the calculation of the neural network

can be simplified and the operation efficiency can be

improved while ensuring the correct rate. The original

sequence and the extracted features are first tested in

FCN. The final loss and accuracy of the various types,

as well as the final results of the network’s runtime,

are shown in Table 2.

From Table 2, in many time series categories, the new

sequence based on statistical features is more accurate in

the FCN than the original sequence in terms of the loss

function, and the overall performance is better. The FCN

network has a short classification time and a small average

error. The loss and accuracy of the original sequence and

the new sequence based on statistical features are ob-

tained and visualized. Accuracy images of the original se-

quence and feature subsequence on the FCN network, as

shown in Fig. 9, the results show that the accuracy of the

FCN based on the statistical feature subsequence is super-

ior to the original sequence in most of the classes (the

Fig. 11 The accuracy of the original sequence and feature subsequence on ResNet

Fig. 12 The loss of the original sequence and feature subsequences on ResNet
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latter several classes are more obvious), and the trend

of the two curves in the first few classes is more con-

sistent, and the algorithm runs relatively. In the visual

image of the loss of the original sequence and the

feature subsequence on the FCN network, from Fig.

10, we can find that the loss of the FCN based on

the statistical feature subsequence is generally smaller

than that of the original sequence, and the trends of

the two curves are relatively consistent.

In order to verify the generalization ability of the

method based on statistical features, the same experi-

ments are performed on the residual network and the

same analysis. The accuracy, loss, and time of the ori-

ginal sequence and feature subsequence on ResNet are

shown in Table 3.

Table 3 shows that the ResNet performs well in the

statistical feature subsequence classification. In many

time series categories, when the loss function is equiva-

lent, the new sequence based on statistical features is

more accurate than the original sequence in ResNet, and

the overall performance is better than the original se-

quence in terms of accuracy or loss. The ResNet net-

work has a short classification time and a small class

average error. The loss and accuracy of the original se-

quence and the new sequence based on statistical fea-

tures are obtained and visualized. From the visual image

of the accuracy on the original sequence and feature

subsequence using the ResNet network, Fig. 11 shows

that the accuracy of ResNet based on the statistical fea-

ture subsequence is still better than that of the original

sequence in many classes, but there are some

Fig. 13 Accuracy of SubSeq_FCN and traditional FCN

Fig. 14 Loss of SubSeq_FCN and traditional FCN
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fluctuations in curve changes. In the previous classes,

the performance of ResNet based on statistical feature

subsequence is improved. After the seventh time

series, classes begin to improve. In the visual image

of loss degree on the original sequence and feature

subsequence, it can be seen that the loss of ResNet

network on statistical feature subsequence is generally

smaller than that of the original sequence, and the

trend of change of the two curves is relatively con-

sistent, as shown in Fig. 12.

5 Improved experiments and result analysis
In this section, we improve the experiments from the

following two aspects: increase the number of original

sequences and extract more statistical features.

5.1 Increasing the number of original sequence classes

In the previous experiment, we used sequence data from

the UCR time series data set, as shown in https://www.

cs.ucr.edu/~eamonn/time_series_data_2018/. Fourteen

classes were selected from 85 classes with the length of

time series exceeding 350 steps. This improvement in-

creased the number of the original time series classes.

The number is 22. In this case, the whole convolutional

neural network still performs better in the subsequence

based on the statistical characteristics. Accuracy and loss

are shown in Figs. 13 and 14, respectively.

5.2 Extracting more statistical features

In the data experiment stage, more statistical features

can be extracted, such as k-order origin center distance,

Fig. 15 Accuracy of SubSeq_FCN and traditional FCN

Fig. 16 Loss of SubSeq_FCN and traditional FCN
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linear fitting best curve slope, peak value, maximum

transform amplitude, and average transform rate. Then

we provide on the contrast experiment from the accur-

acy and the loss aspect, as shown in Figs. 15 and 16.

From Figs. 15 and 16, although the 9 and 19 subse-

quences are not as accurate as the original sequences,

the accuracy of the subsequences on most classes is im-

proved with the addition of some features.

6 Conclusions
FCN has been shown to achieve state-of-the-art per-

formance on the task of TSC. Based on FCN, this paper

studies the time series preprocessing and found a way to

improve the performance of FCN classification. The

method uses the window slicing principle to divide the

original time series into multiple equal-length subse-

quences, then extracts statistical features on each subse-

quence to form a new sequence as the input of the

neural network, adds the fine-tuning idea in the network

training process, and then evaluates the classification

performance of the network by using test set. Finally,

the sample sequence complexity and network classifica-

tion loss accuracy are compared with the FCN using the

original sequence. It is proved that the FCN performs

better on the samples of the statistical features of the ex-

tracted subsequences. In order to prove that the pro-

posed method has generalization ability to the network

structure and the same experiment and analysis on the

ResNet, the method based on statistical feature subse-

quence also improves the classification performance of

ResNet.

Several problems remain unsolved. Some of the inter-

esting problems are how to adjust subsequence length/

step length and regularize a network and how to use

LSTM-FCN, ALSTM-FCN [9], hierarchies of feature

[19], or time aware [20, 21] to improve the performance

of time series classification. In addition, we will try to

apply the method of classification service in distributed

cloud/fog environment [22–32] in the future.
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