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Abstract

Cloud computing offers on-demand, elastic resource provisioning that allows an enterprise to provide

services to their customers at an acceptable quality while consuming only the requisite computing

resources as a utility. Since cloud computing resources scale elastically, utilizing cloud computing re-

duces the risk of over-provisioning, wasting resources during non-peak hours, and reduces the risk of

under-provisioning, missing potential customers. By using an automated resource scaling algorithm,

a system implemented using cloud services can fully exploit the benefits of on-demand elasticity.

A simple reactive scaling algorithm, resource scaling is triggered after some monitored metric has

crossed a threshold, suffers from the fact that cloud computing workloads can varying widely over

time and a scalable application needs time to perform the triggered scaling action. Instead, resources

can be proactively requested by forecasting future resource demand values based on demand history.

Obtaining accurate prediction results is crucial to the efficient operation of an automated resource

scaling algorithm. In this work, several forecasting models are evaluated for their applicability in

forecasting cloud computing workloads. These forecasting methods were compared for their ability

to forecast real cloud computing workloads including Google cluster data and Intel Netbatch logs.

Two tests are performed to evaluate the accuracy of each forecasting model: out-of-sample forecast-

ing and rolling forecast origin cross-validation.

Keywords: Cloud Computing, Workload Forecasting, Forecasting Models.

1 Introduction

The increase in popularity of cloud computing in recent years is driven by the advantages offered by the

dynamically scalable, pay-as-you-go model. This enables organizations to focus on providing services

to their customers while consuming the requisite computing resources as a utility. By eliminating the

need for on-premises equipment, organizations avoid large capital expenses and instead focus resources

towards faster deployment. The pay-as-you-go model allows an organization to grow naturally with

customer demand. Since cloud computing resources scale elastically, utilizing cloud computing reduces

the risk of over provisioning, wasting resources during non-peak hours, and reduce the risk of under

provisioning, missing potential customers [1]. Success stories of start-ups like Instagram, which built-

up a user base of over 150 million users in less than four years using only public cloud solutions [2],

exemplify the potential for fast growth that utilizing cloud computing can provide. Cloud computing

is a large-scale, distributed computing paradigm which is driven by economies of scale. Providers of

cloud computing offer abstracted, virtualized, dynamically scalable, and managed resources on demand

to external customers over the Internet [3]. These resources include compute, storage and networking.

Cloud computing providers benefit from economies of scale in that they assemble massive datacenters
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operating tens of thousands of servers which service a wide customer base. Large-scale operation more

effectively absorbs operational costs through the benefits of increasing the utilization of equipment, bulk

discounts on purchased equipment, and reducing the cost of cooling and powering equipment [4]. The

demand for large-scale computing resources continues to grow as Internet users generate larger sets of

data to be processed.

Virtualization is a fundamental component of cloud computing, allowing for pooling and dynamically

allocating hardware resources. This technology is used to increase the level of indirection and thus pro-

vide the flexibility needed in a scalable cloud computing environment. Since cloud computing resources

scale elastically, utilizing cloud computing reduces the risk of over provisioning, wasting resources dur-

ing non-peak hours, and reduce the risk of under provisioning, missing potential customers [1]. Cloud

service users can scale resources dynamically by detecting the need for more resources, acquiring the

resources, and distribute the load among the resources with minimal intervention. By using dynamic

resource scaling, a cloud applications can best exploit the benefits of on-demand elasticity. A dynami-

cally scalable application needs to make accurate decisions when scaling since reconfiguring a system

comes with an overhead. As has been suggested in the related works, a proactive approach to triggering

resource requests can be taken by forecasting future resource demand values based on demand history.

With accurate predictions, an application can preemptively scale to the correct level and thus alleviate

some or all of the scaling overhead. Time series analysis can be used to forecast the future resource de-

mand values. Since cloud computing workloads tend to trace the daily, weekly, monthly, etc. of human

web browsing patterns, it is expected that time series forecasting methods could reliably predict resource

demand. The goal of this work is to assess the applicability of several time series forecasting models on

real cloud workloads to support the development of dynamic resource allocation systems. A number of

factors which must be considered in producing accurate forecasts are explored including the frequency

at which data is collected, the amount of data used to make a prediction, the model used to make pre-

dictions, and the number future values are predicted. The following forecasting models are evaluated for

their ability to produce accurate predictions of real cloud workloads:

• First-order autoregressive model (AR(1))

• First-order moving average model (MA(1))

• Simple exponential smoothing

• Double exponential smoothing

• ETS method

• Automated ARIMA method

• Neural network autoregression method

The rest of this work is structured as follows: Section 2 background material on topics including

general cloud computing, virtualization, service level agreements, and time series analysis. Section 3

contains a review of related works. Section 4 explains the experimental design including test methods,

tested work load traces, the experimental setup used. Section 5 presents results of the tests performed.

Section 6 presents concluding remarks.
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Figure 1: Service layers of a grid computing system [5]

2 Background

2.1 Cloud Computing

The origins of cloud computing can be traced back to grid computing that was largely useful in high-

performance computing. Access to large amounts of widely geographically distributed computing units

federated through standardized protocols are offered to grid users. Figure 1 shows the layers of a grid

computing system where a user interfaces with grid services through an application layer. The grid ser-

vices layer coordinates the distributed groups of resources in the machine layer to service the requests

issued by the user through the application layer. Heterogeneous computing systems are unified into a sin-

gle pool of computing resources that is abstracted such that a user can interface with a high-performance

uniform computing service without worrying about the complexities involved in coordinating the com-

ponents of such a large system [3].

The name grid computing is intended to convey the paradigm’s ability to offer computing resources

as a utility similar to power from the power grid. Previously, access to high-performance computing sys-

tems was only available to large enterprises with the capital and time necessary to assemble a datacenter

with hundreds of servers. With this new technology, researchers could work on a class of scientific

problems requiring large-scale, parallel computing resources that distributed grid computing systems

handle exceptionally well. Although grid computing did not achieve long lasting popularity, the concept

of computing as a utility, giving users access to nearly unlimited computing power on demand, is the

driving force behind the wide spread adoption of cloud computing. Cloud computing is a large-scale,

distributed computing paradigm which is driven by economies of scale. Providers of cloud computing

offer abstracted, virtualized, dynamically scalable, and managed resources on demand to external cus-

tomers over the Internet [3]. Access to storage, computing, or networking are offered in abstracted units

that can be requested on-demand as the customer needs via a pay-as-you-go business model.

2.2 Essential Characteristics

The essential characteristics of cloud computing as described in the NIST definition of cloud comput-

ing [7] are:

• On-demand self-service: The ability to provide computing capabilities as needed automatically.

Computing capabilities may include server capacity, network storage, access to applications, or
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Figure 2: Price and characteristics Amazon EC2 instances with a Linux OS in June 2015 [6]

other services.

• Broad networks access: Cloud services are available over the network, usually through the Internet,

and accessed through standard mechanisms including desktop computers, laptops, and mobile

devices.

• Resource pooling: Physical and virtual resources are dynamically assigned to serve multiple con-

sumers using a multi-tenant model. The server from which the computing resources are provided

to a user may change as consumer demand fluctuates. A goal for a cloud provider is to prevent

these fluctuations from imposing performance variations on the requested computing resources.

• Rapid elasticity: Capabilities are elastically provisioned and released quickly without perceived

bound. This allows users to scale requested resources appropriately as consumer demand changes.

• Measured service: Cloud services automatically control resource use by leveraging appropriate

metering capabilities. Services are typically provided in a pay-per-use model that naturally incen-

tivizes the optimal use of resources.

2.3 Service Layers

The NIST definition of cloud computing [7] categorizes the services that providers offer into three ser-

vice models: infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS), or a software-as-a-service

(SaaS).

• An IaaS provides access to instances of unified resources including computing, storage, and net-

working. Providers offer flexible computing resources for a usage-based price. These resources

are distributed as instances on demand which are treated like physical hardware by the user. This

service model offers the most flexibility the user is allowed to run arbitrary software. This also

means that the user is left with the responsibility for demanding and initializing new instances

when scaling is required.

• A PaaS provides many of the same resources as an IaaS but through an integrated environment

which reduces the development burden of using the resources. This comes at the expense of re-

stricting the features available to a user and potentially being locked in to a particular platform.

PaaS providers offer a variety of computing and storage resources in a more constrained environ-

ment that can be accessed through APIs. By using a pre-built and maintained infrastructure, a
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Figure 3: Average utilization rate versus the size of a cloud data center [8]

PaaS user can focus on the higher-level end-user experience. Many application specific tools are

pre-built and available to users such as web hosting, data management, business analytics, etc.

• SaaS, such as e-mail and Google Docs, are special-purpose software services that are hosted in

a cloud infrastructure and accessed remotely by the end user through a thin client or program

interface. They are often built using PaaS and IaaS tools, but their implementation details are

hidden from the end-user. The end-user has narrow access to a well-defined set of services that

have limited configurability.

2.4 Benefits of Economy of Scale

Cloud computing providers benefit from economies of scale in that they assemble massive datacenters

operating hundreds of thousands of servers which service a wide customer base. Large-scale operation

more effectively absorbs operational costs through the benefits of increasing the utilization of equipment

as resources are made available to the public [4]. Having a larger pool of customers also reduces variabil-

ity in the aggregate data center workload, allowing for higher resource utilization given a fixed required

performance. Assembling and maintaining a cloud data center with 100,000s of servers allows for pur-

chasing equipment at a large volume discount, reducing capital expenses. Since energy consumption

accounts for a significant portion of operational costs, engineering efforts to reduce the cost of cooling

and powering equipment have allowed cloud data centers to run much more efficiently than smaller-scale

operations.

2.5 Virtualization

Virtualization is a fundamental component of cloud computing, allowing for pooling and dynamically

allocating hardware resources. A server in a datacenter acting as a host machine is installed with a

hypervisor which can simultaneously run instances of virtual machines or guest machines. These virtual

machines are operating system instances managed by a separate controlling computer which loads them

into respective host machines. With the controlling computer managing the computing resources of

many servers, a cloud computing provider thus unifies the datacenter’s resources into an encapsulated

pool which can be allocated and released according to user demand.

The hardware resources of physical servers are distributed among multiple virtual machines running

logically isolated operating system instances. This technology is used to increase the level of indirection

and thus provide the flexibility needed in a scalable cloud computing environment. Given the configura-

bility of virtual machine instances, the resources to host applications with diverse storage and compute
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Figure 4: Virtual machine abstraction [9]

requirements can be allocated instance for as long as they are needed and released back into the resource

pool [3]. By partitioning resources in this way, servers can achieve higher utilization.

2.6 Cloud Workloads

The demand for large-scale computing resources continues to grow as Internet users generate larger sets

of data to be processed. The following workloads are commonly implemented with cloud services [10]:

• Data serving: Data stores designed to serve as the backing store for large-scale web applications

• MapReduce [11]: A parallel processing framework used for many cloud-based batch-processing

projects.

• Media streaming: Used to packetize and transmit media files in various bit-rates and formats.

• SAT solver: Used to calculate solutions for Boolean satisfiability problems.

• Web frontend: Many instances of stateless web servers are used to host services in scalable, fault-

tolerant way.

• Web search: Perform search queries against web indexes.

2.7 Service Level Agreements

As more computing is being done through web-based services and more services become available, cloud

computing providers must provide customers of web services a high level of performance consistency to

stay competitive. Cloud service providers offer a service level agreement (SLA) to customers to provide

a certain quality of service (QoS) or provide compensation, often in the form of a percentage refund of

payment. An SLA is composed of service level objectives (SLO) that describe the expected quantitative

performance of a service or feature of a service.

A list of common performance SLOs includes [12]:

• Availability: The property of being accessible upon demand by an authorized entity expressed in

terms of uptime, percentage of successful requests, or percentage of timely service requests. A list

of availability SLOs can be found in figure 2.
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Figure 5: Availability SLO offered by popular cloud service providers June 2015

Figure 6: Provisioning resources for a variable workload [1]

• Response time: The time interval between a customer-initiated event and the response to that

event. For many applications, such as gaming and SaaS, response time can have a large impact on

an end-user’s satisfaction with a service.

• Capacity: Maximum amount of some property e.g. data storage, number of CPUs, service through-

put, etc. of a cloud service.

• Capability indicators: Guarantee to provide specific functionality that might be essential to cloud

service customer. For example, a customer may need a service to be compatible with an external

system.

2.8 Resource Allocation

On demand, elastic resource provisioning enables cloud service users to focus on providing services to

their customers while consuming the requisite computing resources as a utility. The pay-as-you-go model

allows an organization to grow naturally with customer demand. Since cloud computing resources scale

elastically, utilizing cloud computing reduces the risk of over provisioning, wasting resources during

non-peak hours, and reduce the risk of under provisioning, missing potential customers [1].

Figure 6 illustrates the effects of choosing a static resource capacity when a server is presented with

a variable amount of demand. The left figure shows the case where the resource capacity is selected to

satisfy the peak load. Although the server is never overloaded, the resource capacity is usually under-

utilized as shown in the shaded area. The right figure shows the case where the resource capacity is

below the peak load. The resources are more fully utilized in this case but the shaded area above the

capacity limit corresponds to customer demand that is not serviced. Instead of selecting a static resource
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Figure 7: Time series of the Dow Jones Industrial average over 10 year [17]

capacity, cloud service users can scale resources dynamically by detecting the need for more resources,

acquiring the resources, and distribute the load among the resources with minimal intervention.

By using dynamic resource scaling, a cloud applications can best exploit the benefits of on-demand

elasticity. Scaling a cloud application typically involve one or more of the following concepts:

• Horizontal scaling [13]: Scaling by adding or removing an instance of an application. The appli-

cation runs on a virtual machine with identical configuration.

• Vertical scaling [13]: Scaling by changing the amount of resources allocated to a virtual machine

that is already running.

• Load balancing [14]: Distribute requests to a service evenly among the available virtual machine

instances.

• Threshold triggering [15]: Establish a threshold value for a given metric that when crossed will

trigger a scaling event.

A dynamically scalable application needs to make accurate decisions when scaling since reconfig-

uring a system comes with an overhead. Initialization time of a virtual machine instance and migrating

virtual machine instances to under-utilized servers can affect the cost of a scaling decision. Making the

wrong decision when scaling could lead to over provisioning, wasting resources, or under-provisioning,

potential causing SLA violations.

A simple reactive approach to dynamic resource scaling is to monitor a metric, such as CPU uti-

lization, until a threshold is passed. A scaling event is then initiated. This scheme suffers from the fact

that cloud computing workloads can varying widely over time and a cloud application needs time to

perform the triggered scaling event [16]. An alternative is to use a proactive approach by forecasting

future resource demand values based on demand history. With accurate predictions, an application can

preemptively scale to the correct level and thus alleviate some or all of the scaling overhead.

2.9 Time Series Forecasting

Time series analysis can be used to forecast the future resource demand values. A time series is a set

of observations ordered with respect to time, typically in fixed-length intervals [18]. To forecast future

values of a time series, a prediction model is first trained with the time series. Parameters within the

model are fitted to extract patterns in the data. With the trained model, a probability distributions for a

future value can be calculated. The expected value of the distribution is used as the forecasted value. A

series of multiple predicted values are referred to as a forecast horizon.

By aggregating resource demand over a sampling period, a resource demand time series can be

extracted and forecasted. Since cloud computing workloads tend to trace the daily, weekly, monthly,
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etc. of human web browsing patterns, it is expected that time series forecasting methods could reliably

predict resource demand.

2.10 Forecasting Methods

The list of time series forecasting methods considered in this work includes:

• Autoregressive (AR(1)) model: A first order autoregressive model is a linear regression of the

current value of the series against the prior value of the series [19]. This is expressed by the

equation:

Xt = c+θXt−1 + εt ,−1 < θ < 1 (2.1)

c = constant

θ = a model parameter

εt = white noise

• Moving average (MA(1)) model: The first order moving average model can be thought of as a

linear regression of the current value of the series against the white noise or random shocks of one

or more prior values of the series [19]. A moving average process is expressed by the equation:

Xt = µ + εt +θεt−1,−1 < θ < 1 (2.2)

µ = mean

θ = a model parameter

εt = white noise

• Simple exponential smoothing: The equation for simple exponential smoothing is:

X̂t+1 = αXt +(1−α)X̂t (2.3)

α=smoothing constant

The forecasted value time t+1 is a weighted combination of the observed value at time t and the

forecasted value at time t [20].

• Double exponential smoothing: The equations for double exponential smoothing are given as [21]:

St = αXt +(1−α)(St−1 +bt−1),0 ≤ α ≤ 1 (2.5)

bt = γ(St −St−1)+(1− γ)bt−1,0 ≤ γ ≤ 1 (2.6)

α,γ = smoothing constants
Xt+1 = St +bt (2.7)

The first smoothing equation (2.5) adjusts for the trend of the previous period, bt . The second

smoothing equation (2.6) then updates the trend, which is expressed as the difference between the

last two values. The third equation (2.7) is used to forecast values.

• ETS: The ETS (error, trend, seasonal) [22] method automatically selects an exponential smoothing

model. These models, referred to as state space models, are composed of the time series data and a

description of how the state transitions over time in terms of level, trend, and seasonal components.

Multiple models are evaluated for their goodness of fit to the data using AIC [23] and the best fit

model is selected.
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Figure 8: Three layer neural network [27]

• Automated ARIMA: ARIMA models are composed of autoregressive (AR(p)), integrated (I(q)),

and moving average (MA(d)) components. The parameters p, q, and d specify the order of each

model. An automated ARIMA algorithm [24] discovers appropriate values for p, q, and d by:

1. The number of differences d is determined using repeated KPSS [25] tests.

2. The values of p and q are then chosen by minimizing the AICc [23] after differencing the

data d times.

(a) The best model (with smallest AICc) is selected from the following four: ARIMA(2,d,2),

ARIMA(0,d,0), ARIMA(1,d,0), ARIMA(0,d,1). If d=0 then the constant c is included; if

d=1 then the constant c is set to zero. c affects the long-term forecasts of the model. This is

called the “current model”.

(b) Variations on the current model are considered by varying p and/or q from the current

model by ±1 and including or excluding c from the current model. The best model consid-

ered so far becomes the new current model.

(c) Repeat Step 2(b) until no lower AICc can be found.

• Neural network autoregression: A neural network consists of connected “neurons” that take an

input, and produce one or more outputs depending on the number of neurons it is connected to.

The neurons are grouped into layers and connected such that the outputs of one layer feed into the

inputs of a smaller layer. The connections between each neuron has an associated weight value.

At each layer, input values are combined by a node using some function to produce an output that

is propagated to the next layer until the output layer is reached. Parameters in the aggregation

functions and interconnection weights are learned during a training phase. The neural network

autoregressive model [26], can forecast time series values by using a fully connected, three-layer

neural network.

2.11 Prediction Accuracy Methods

Several metrics are available to evaluate the ability of a forecasting model to produce accurate predictions

from time series data. Given a time series of observed data, , and a time series of predicted values from

X , X̂ , both of length n, the following accuracy metrics are defined:

• Root mean square error (RMSE) [28]

RMSE =

√
1

n

n

∑
t=1

(X̂t −Xt)2 (2.8)

96



Time Series Forecasting of Cloud Data Center Workloads Vazquez, Krishnan, and John

• Mean absolute error (MAE) [18]

MAE =
1

n

n

∑
t=1

|X̂t −Xt | (2.9)

• Mean absolute percentage error (MAPE) [18]

MAPE =
1

n

n

∑
t=1

|X̂t −Xt |

Xt

(2.10)

• Mean absolute scaled error (MASE) [29]

MASE =
1

n

n

∑
t=1

|X̂t −Xt |

α
,α =

1

n−1

n

∑
t=2

|Xt −Xt−1| (2.11)

3 Related Work

In this section, works related to time series analysis of cloud computing workloads for use in dynamic

provisioning algorithms are reviewed. Systems that provide dynamic resource allocation offer cloud ser-

vice users the ability to scale resources dynamically by detecting the need for more resources, acquiring

the resources, and distribute the load among the resources with minimal intervention. To detect the need

for scaling events, a proactive approach of forecasting future resource demand values based on demand

history allows the system to preemptively scale to the correct level and thus alleviate some or all of the

scaling overhead.

In [16], a string matching based scaling algorithm is developed and suggested to predict the aggregate

number of CPUs requested in traces of Animoto and IBM cloud workloads. This algorithm is compared

to AR(1), linear regression, and the Rightscale democratic voting algorithm [30]. The PRESS [31],

predictive elastic resource scaling, system is presented which uses FFT with signal processing for long

range prediction and Markov chains for shorter predictions. This system was compared against an au-

toregressive and an autocorrelation method with three workloads: ClarkNet webserver trace, web access

logs from the World Cup ’98 official web site, and a hybrid of ClarkNet traces and a synthetic workload.

In [32], double exponential smoothing and weighted moving averages are compared for their ability to

predict cloud workloads. The CPU utilization values of a simulated cloud system implemented using

CloudSim cloud simulator were used as the workload for these methods. A neural network prediction

algorithm is developed and compared to linear regression in [27]. The accuracy of these algorithms are

assessed by predicting CPU utilization traces of a server running TPC-W benchmarks.

Several full dynamic provisioning algorithms have been proposed. In [33], a system for dynamic re-

source provisioning that utilizes a server model to relate application server requirements to their dynamic

workloads and a predictor, AR(1), to predict future workload values. The workload for two applications,

one of which is synthetic and the other is based on the World Cup ’98 server logs, were used to evaluate

the efficacy the prediction and allocation techniques. In [34], a server provisioning and load dispatching

algorithm are used to provision resources for long-lived connections in connection servers. An autore-

gressive model is suggested for workload prediction. Methods were evaluated in a simulated a cluster

of connection servers with data traces of total connected users and login rates obtained from production

instant massaging connection servers.

An automated scaling framework is developed in [13] to use vertical and horizontal scaling to meet

scaling demands while reducing reconfiguration costs. They suggest using polynomial approximation

of future workloads. They tested their system to managing a small virtualized testbed of servers with
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live migration capability running the Olio cloud benchmark that simulates social networking workloads.

In [15], an architecture for monitoring and optimizing resource usage is presented that uses predic-

tions based on autoregressive model of smooth request traces. They tested their implementation with a

three-tier, php-based online collaboration system. A self-reconfiguration approach for reallocating VMs

in [35] uses genetic algorithms to find optimal reconfiguration policies and Brown’s double exponential

smoothing [36] to predict load. Their evaluation platform consisted of a large cluster hosting virtual ma-

chines deployed with TPC-W benchmark. Activity in the benchmark was driven based on requests in the

World Cup ’98 web site and ClarkNet web server traces. In [37], a prediction-based method for dynamic

resource provisioning and scaling of MMOGs in distributed Grid environments is presented that uses

neural networks for prediction. They test several implementations of neural networks with different net-

work structures against predictions based on averages, a moving average, the last value, and exponential

smoothing.

Many of the listed related works compare a relatively small number of forecasting methods against

each other. Further, a suggested method is often compared to a simple method such as a weighted moving

average. Here seven different methods, some of which were suggested in the related work, are evaluated

against each other, giving a wider coverage of the relative performances of the forecasting methods

than previously available. The workload traces used to access the accuracy of a forecasting method for

use in a cloud environment included traces from webservers such as the ClarkNet and World Cup ’98

server logs. These traces only include webserver activity which is one of many types of workload (data

serving, media streaming, MapReduce, etc.) that can be simultaneously hosted by a cloud data center.

This work uses real cloud data center workloads from Google and Intel production cloud environments

used to service a diverse variety of requests. Many of the related works that developed full dynamic

provisioning algorithms tested the performance of the entire algorithm in terms of some overall cost

reduction or efficiency gain. Separating the performance evaluation of the forecasting method from the

performance of a larger system allows for a direct comparison of methods that cannot be attained with

the current literature.

4 Experimental Design

This section explains the methods used to evaluate the applicability of several time series forecasting

models on real cloud job request traces. A list of models tested, tests performed, cloud data center job

request traces, and the experimental set up are presented.

The following forecasting models are evaluated for their ability to produce accurate predictions of

cloud job request traces:

• First-order autoregressive model (AR(1))

• First-order moving average model (MA(1))

• Simple exponential smoothing

• Double exponential smoothing

• ETS method

• Automated ARIMA method

• Neural network autoregressive method
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4.1 Tests Performed

Three tests are performed to evaluate the accuracy of each forecasting model: out-of-sample forecasting,

rolling forecast origin cross-validation, training set length analysis.

• Out-of-sample forecasting error [38]: In this test, historical data is used to train a model which is

used to make predictions of future values. This test is included to evaluate the forecast model’s

ability to produce accurate single-point predictions.

1. In this test, an input time series is first partitioned into two sets: a training set and a test set.

This must be done because when evaluating the accuracy of a forecasting model to predict a

certain data set, the model can become over-fitted if the same data set is used for the training

set and test set, producing overly optimistic accuracy values.

2. The training set, composed of the first N samples of the data set, is used to train the forecast-

ing model. In order to preserve any seasonal patterns in the data set, the training set should

include enough data points to capture several periods.

3. The trained model is used to perform a single-point forecast for each point in the test set,

producing a time series of forecast values. The test set typically starts at time N+1 and

includes at least enough points to form one period of the input time series.

4. Accuracy metrics are calculated between the test set and the forecast time series. Mean

absolute percentage error (MAPE) is used as the error metric.

• Rolling forecast origin cross-validation [38]: This test is included to evaluate a forecasting models

ability to accurately produce a number of predictions, h.

1. Select a number of observations required, k, for reliable forecast. The first k observations are

used as a training set for the forecasting model.

2. The following h points starting at time k+1 and ending at time k+h are used as the test set.

The trained model is used to perform a multiple-point forecast of the test set, producing a

time series of forecast values with length h.

3. Calculate the mean absolute parentage error (MAPE) for each point in the forecast horizon.

4. Slide the training set forward and repeat steps 1-3.

5. Calculate the average of the MAPE for each forecast horizon point

• Training set length analysis - In order to observe the effect of increasing the training set length

the following test sequence is performed. This set performs is a series of rolling forecast origin

cross-validations with different training set lengths.

1. Select a training set length, N. For this work, the initial training set length used was 5 points.

2. Train the model with the training set, which is initially composed of the first N observations

in the input time series.

3. Perform a single point forecast of the next point, at time N+1, and calculate MAPE of the

forecast.

4. Slide the training set forward such that the first point in the previous training set is not in-

cluded and the point after the previous training set, at time N+1, is included.

5. Repeat 2-4 over several iterations. In this work, 200 of such iterations are performed for each

tested training set length.
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6. Repeat the process with an incremented training set length. Lengths between 5 and 25 are

considered.

(a) Google cluster data job request time series, 1 hour

interval period

(b) Google cluster data job request time series, 10 minute

interval period

(c) Intel Netbatch job request time series, 1 hour interval

period

(d) Intel Netbatch job request time series, 10 minute in-

terval period

Figure 9: Job request time series.

4.2 Workload Traces

Two clouds systems, Intel Netbatch logs [39] and Google cluster data [40], are used to evaluate the

forecasting models. Workloads are given as an ordered list of requests to perform a computing job, some

process that consumes a share of the cloud system’s resources. To form a time series with evenly spaced

time intervals, an interval period is selected and the number of jobs per successive interval is used as that

interval’s value. For each cloud workload, two job request count time series are produced with interval

periods of 10 minutes and 1 hour.

4.3 Experimental Setup

Forecasting models were evaluated by performing an out-of-sample forecasting error test, time series

cross-validation, and a training set length analysis for each workload trace. Test set and training set sizes
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for the out-of-sample forecasting error test and the time series cross-validation can be found in figure 10.

Training set lengths ranging from 5 to 25 were considered in the training set length analysis.

The experiments were carried out using R statistical programming [41] version 3.1.3 with the forecast

package [26] installed. All calculations were performed on a Lenovo Yoga Pro 2 laptop computer with

an Intel Core i7-4500U CPU @ 1.80 GHz-2.40GHz, 8GB of RAM, 512GB SSD, and a Windows 8.1

OS.

Figure 10: Out-of-sample forecasting error and time series cross-validation parameters

Figure 11: Google cluster out-of-sample forecast error

Figure 12: Intel Netbatch out-of-sample forecast error

5 Results

5.1 Out-of-Sample Forecast Error Test

The results of the out-of-sample forecast error test for each of the workload traces are given below in

terms of MAPE. In this test, historical data is used to train a model which is used to make predictions of

future values. Prediction errors as low as 27.7% and as high as 85.9% were observed. No one forecasting

model was superior for all traces-models perform well for some traces and not others. It was observed

that the predictability of a trace could change depending on the period it is considered with. The Google

cluster data became significantly less predictable when the smaller period of 10 minutes was used as

opposed to 1 hour periods. This was not the case for the Intel Netbatch trace which showed similar or

reduced forecasting error when a shorter period was considered.

The autoregressive model was calculated using a generic ARIMA function with (p, d, q) at (1, 0, 0).

This method performed especially well relative to the other forecasting methods at forecasting the Intel

Netbatch 10 minute period trace producing a MAPE of 27.7, the lowest MAPE reported in this study.
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Figure 13: Out-of-sample forecast versus observed value for autoregressive model

The autoregressive model was not able to adapt to the rapid fluctuations in demand in the Google cluster

10 minute period trace, resulting in severe underestimates of the peaks.

The moving average model was calculated using a generic ARIMA function with (p, d, q) at (0, 0,

1). For all of the workload traces, this method produced forecasts that tend to remain near an average

value, responding to impulses slowly. The 1 hour Intel Netbatch trace was particularly poorly forecasted,

with a MAPE of 73.5. Large lengths of overestimation and underestimation can be observed in figure 14.

The 10 minute Google cluster trace had shorter, pointed fluctuations from a relatively constant level. By

tracing that constant level, this model produced the best MAPE, 50.1, of all the forecasting methods.

The simple exponential smoothing model was calculated using a generic ARIMA function with (p,

d, q) at (0, 1, 1). The smoothing performed by this model has a pronounced effect on rapidly fluctuating

data, as can be seem on both of the Google cluster traces. This effect works well (MAPE of 37.7) for

the 1 hour period trace, where the predictions fit trends in the data well, and not well (MAPE of 85.9)

for the 10 minute period trace, where values are often overestimated. The double exponential smoothing

model was calculated using a generic ARIMA function with (p, d, q) at (0, 2, 2). Double exponential

smoothing produced similar results to simple exponential smoothing in terms of prediction error and

smoothing effects observed in figure 15 although this method tended to overestimate the prediction values

than the other methods except ETS. As described in section 4, the automated ARIMA method tests

several different models for the most appropriate fit to the training data before fitting training the model’s

parameters. Although this method attempts to find the best ARIMA model for a data set, it selected

a single exponential smoothing model for the 10 minute Google cluster trace which produced the least

accurate forecast, MAPE of 85.9. Models produced by this method are closely comparable if not identical

to other evaluated forecasting models.

ETS is an automated model selecting method that produces an exponential smoothing model. This

method produced the best results for the 1 hour Intel Netbatch trace with a MAPE of 31.3. Similar to

previous exponential smoothing models, ETS produced an overly smoothed estimation of the 10 minute

Google cluster trace with low forecasting accuracy, MAPE of 72.2.

Neural network autoregression is a method for producing and training a three-layer neural network.

For example, the 1 hour Google cluster trace was modeled with a neural networks with a 2-2-1 structure.

This model produced best predictions for the trace with a MAPE of 35.2. Other models produced with

this method were more accurate than most other methods.
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Figure 14: Out-of-sample forecast versus observed value for moving average model

Figure 15: Out-of-sample forecast versus observed value for simple exponential smoothing
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Figure 16: Out-of-sample forecast versus observed value for double exponential smoothing

Figure 17: Out-of-sample forecast versus observed value automated ARIMA
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Figure 18: Out-of-sample forecast versus observed value for ETS

Figure 19: Out-of-sample forecast versus observed value for neural network autoregression
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5.2 Rolling Forecast Origin Cross-Validation

(a) Rolling forecast origin cross-validation for Google

cluster traces-1 hour

(b) Rolling forecast origin cross-validation for Google

cluster traces-10 minutes

(c) Rolling forecast origin cross-validation for Intel Net-

batch traces-1 hour

(d) Rolling forecast origin cross-validation for Intel Net-

batch traces-10 minutes

Figure 20: Rolling forecast origin cross-validation.

Rolling forecast origin cross-validation is included to evaluate a forecasting models ability to accurately

produce a number of predictions, ten for this study. After training the model with a test set of length 100,

ten future values are predicted and the MAPE for each prediction is recorded. This process is repeated

with the test set starting one point later until no more values can be predicted.

The average MAPE for each forecast horizon length are presented in figure 20. It can be seen in the

figures that as the forecast horizon increases in length, the forecasts become less accurate, as one would

expect. Some models were extremely inaccurate as forecast horizon increased, especially the neural

network. The relative performance of a model with respect to the other models tends to stay consistent

i.e. a model that outperforms another model at a given forecast horizon tends to outperform that model

when a larger forecast horizon is considered.
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(a) Effect of training set length for Google cluster traces-

1 hour

(b) Effect of training set length for Google cluster traces-

10 minutes

(c) Effect of training set length for Intel Netbatch traces-

1 hour

(d) Effect of training set length for Intel Netbatch traces-

10 minutes

Figure 21: Effect of training set length.

5.3 Training Set Length Analysis

In order to observe the effect of increasing the training set length the following test sequence is per-

formed. As one would expect, forecasting accuracy tends to improve as the more historical data is in-

cluded in training a forecasting model. However, the benefits of increasing the training set length appears

to saturate for all tested forecasting models at larger lengths. Most models converged to a stable lower

forecasting error level with between 10 and 15 training set points. Although double exponential and

neural network both produced relatively accurate results, these methods require more points to achieve

stable accuracy.

6 Conclusion

In this work an overview of cloud computing concepts has been presented including an explanation of the

dynamic configurability afforded by virtualization. By using an automated resource scaling algorithm,

a cloud applications can best exploit the benefits of on-demand elasticity, reducing wasted computing

resources and avoiding SLA violations. This work has also presented a review of time series forecasting

and several time series forecasting techniques that could be utilized to implement a proactive dynamic
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resource scaling algorithm. Obtaining accurate prediction results is crucial to the efficient operation of

an automated resource scaling algorithm.

These forecasting methods were compared for their ability to forecast cloud computing workloads

including Google cluster data and Intel Netbatch logs. Out-of-sample forecasts of the computing logs

were taken and compared in terms of their accuracy. Although no one model always produced the most

accurate results, some models did tend to perform better than others including first order autoregressive

and neural network autoregression. It was found that accuracy of the forecasts produced by a model

depends on the workload being considered and the frequency at which the workload is being considered.

A rolling forecast origin cross-validation was performed for each of the forecasting models to test the

accuracy of multiple future predictions made with the same test set. Although the accuracy of a model

varied with different trace and frequency, some models could produce useful predictions two or three

time periods into the future. In analyzing the effects of the training set length on prediction accuracy, it

was observed that most of the tested models only needed 10 to 15 points to produce their best accuracy

results.
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